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   Abstract:

     Integration of a dynamic signal transduction pathway into the tissue dosimetry model is 
a major advancement in the area of computational toxicology. This paper illustrates the 
ways  to  incorporate  the  use  of  existing  system  biological  model  in  the  field  of 
toxicology  via  its  coupling  to  the  Physiological  based  Pharmacokinetics  and 
Pharmacodynamics  (PBPK/PD)  model.This  expansion  framework  of  integrated 
PBPK/PD  coupled  mechanistic  system  pathway  model  can  be  called  as  system 
toxicology that describes the kinetics of both -the chemicals and –biomolecules, help us 
to  understand  the  dynamic  and  steady-state  behaviors  of  molecular  pathways  under 
perturbed condition.  The objective of this  article is  to illustrate a system toxicology 
based approach by developing an integrated PBPK/PD coupled miRNA-BDNF pathway 
model  and to demonstrate its  application by taking a case study of PFOS mediated 
neurotoxicity.  System  dynamic  involves  miRNA-mediated  BDNF  regulation,  which 
plays an important role in the control of neuronal cell proliferation, differentiation, and 
survivability. 
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1. Introduction 

In the field of quantitative risk assessment, a journey of classical dose-response models 
is categorized into different classes for the better quantification and estimation of early 
possible  risk  (Andersen  et  al.,  2005).  These  include  –a)  Physiological  based 
pharmacokinetic  and  pharmacodynamic  modeling  (PBPK)  for  the  quantification  of 
internal biophase concentrations in different tissues, b) pharmacodynamics (PD) model 
quantifies the interactions  of  chemicals with target  biomolecules  c)  System Biology 
describes the dynamic relationship of biological components for a robust physiological 
response.  Perturbation of these biological components can be quantified through the 
integration of PBPK/PD model into the system biological models providing a predictive 
tool for measuring toxicological impact at the cellular and biomolecular level (Andersen 
et al., 2005; Gohlke et al., 2005; Zhao and Ricci, 2010). 

The PBPK model in the area of dosimetry risk assessment has been widely accepted and 
applied and it  is  among the top priority tool recommended in the vision of toxicity 
testing  in  the  21st century  (Andersen  and  Krewski,  2009).  PBPK  model  has  been 
extended  to  develop  the  PBPK/PD  for  certain  pesticides  (Timchalk  et  al.,  2002; 
Foxenberg  et  al.,  2011).  The  integration  of  PD  was  generally  done  with  the 
quantification of the response variable (biomarker) effect of an interaction of a chemical 
(biophase  concentration  estimated  by  PBPK)  with  a  target  biomolecule  (mainly 
receptors).  But it  has a  certain limitation such as lack of robust biology (biomarker 
relation  to  endpoint),  and very  often  the  endpoints  are  specifically  remained  single 
explanatory biomarker. Coupling of PBPK/PD model and system biology together can 
enlighten the effect of changes in key biomolecules considering the whole biological 
system. System biology comprising of genomics, metabolomics, and proteomics which 
rationalizes  the  functional  interaction  of  biological  components  in  a  time-dependent 
fashion (Aderem, 2005; Kitano, 2002). Thus, it could be useful in system toxicology for 
understanding the altered biological pathway due to chemical induced perturbation of 
certain  key  biomolecule  in  a  system,  illustrating  differences  from  normal  pathway 
(Arrell  and  Terzic,  2010;  Auffray  et  al.,  2009;  Hood  et  al.,  2004;  Kell,  2006). 
Understanding  the  biomolecular  mechanisms  are  of  great  interest  to  identify  the 
toxicological effects  at  the very early stages of the disease (toxicological  response). 
However, often we lack sufficient information to link chemically perturbed biological 
components (molecular biomarker) to an altered biological system. This lead to the use 
of  the  simplified  dose-response  model  (simple  PD)  to  predict  the  adverse  outcome 
(disease) for a target chemical(Calabrese and Baldwin, 2003). In the field of toxicology, 
there is limited use of these system biology models (Waters et al., 2003). The wide use 
of  system  toxicology  in  human  environmental  risk  assessment  has  a  time  lag  in 
comparison with pharmaceuticals science as it lacks experimental data,  has complex 
interaction pathways of environmental chemicals than the target specific drugs, and low 
commercial priority of applied toxicological science.

Recently use of the integrated PBPK/PD models in a field of environmental toxicology, 
enables development of a quantitative biologically based risk model which increases our 
understanding  towards  the  relationship  between  tissue  bio-phase  concentration  of 
chemicals and endogenous biomolecule (Timchalk et al., 2002; Foxenberg et al., 2011). 
Furthermore, signaling pathways could be used as an extension of  PBPK/PD, given 
dynamic interactions of chemicals with biological components are known, the first step 
towards system toxicology (Bhattacharya et al., 2012; Gim et al., 2010). It has benefits 
such as: easy to implement if the signaling pathway already developed, often data from 
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the dose-response experiments for known biomolecules can be used, a good step to use 
Adverse  Outcome  Pathways  (AOPs)  knowledge  to  develop  the  generic  PBPK/PD 
model for multi-species and multi-chemicals. 

Neuroendocrine  or  neurotrophins  such  as  nerve  growth  factors,  BDNF  and 
neurotrophin-3  are  proteins,  basically  processed  and  secreted  in  constitutive  and 
regulatory fashion in non-neuron, neurons and neuroendocrine cells (Lu, 2003; Mowla 
et al., 1999). Among them, BDNF is immensely expressed and extensively scattered 
than  other  neurotrophins,  and play  an  important  role  in  neuronal  survival  and 
differentiation  (Boulle et al.,  2012; Michael et al.,  1997; Murer et al.,  2001).  BDNF 
binds  with  a  Tropomyosin  receptor  kinase  B  (TrkB)  presents  on  the  neuronal  cell 
surface causing sequential activation of following pathways such as  Mitogen-activated 
protein  kinases  (MAPKs),  Extracellular-signal-regulated  kinase (ERK),  and  Protein 
kinase B (AKT) that are mainly involved in differentiation and survivability of neurons 
(Michael et al., 1997; Murer et al., 2001 Bursac et al., 2010; Boulle et al., 2012). It has 
been seen that reduced BDNF protein and mRNA expression is  linked with several 
neurological  disorders  such  as  Alzheimer’s  and  Parkinson’s  (Bursac  et  al.,  2010). 
Moreover, dopaminergic, GABAergic, cholinergic, and serotonergic neurons are known 
to require BDNF for their proper development and survival (Lipsky and Marini, 2007; 
Murer et al., 2001), signifies BDNF as an important biomarker for neurodevelopmental 
function.

It  has  been  reported  that  miRNA  regulates  the  synthesis  of  BDNF  via 
posttranscriptional modification of BDNFmRNA (Caputo et al., 2011; You et al., 2016). 
Muiños-Gimeno et al., (2011) reported the involvement of miRNA-22 associated panic 
disorders  in  the  Spanish  and  North  European  population.  Later,  the  transcriptomic 
analysis studied by Li et al., (2015) in SH-SY5Y cell line also found the involvement of 
miRNA-22 dependent decrease in the BDNF level and neuronal cell survivability. The 
miRNAs are turning out to be significant regulators of mRNAs and the related proteins. 
In  this  proposed  study,  miRNA  (micro-RNA)  regulated  BDNF  (Brain-  derived 
neurotropic factor) and its effect on neuronal survivability mechanisms was selected for 
the development of the mechanistic base model. Perfluorooctanesulfonic acid (PFOS) 
was selected as a case study to illustrate the ways to incorporate the use of system 
biological  model  in  the  field  of  toxicology  via  Pharmacodynamic  coupled  tissue 
dosimetry model(PBPK/PD).

Case studies on PFOS

PFOS is  well  recognized among industrial  chemicals that  can easily  cross the BBB 
(blood  brain  barrier)  (Sato  et  al.,  2009) and  its  exposure  was  related  to  several 
developmental neurotoxicity effects (Johansson et al., 2008; Yang et al., 2015; Goudarzi 
et al., 2016; Vuong et al., 2016) . For instance, it was found that PFOS exposure to 
zebrafish  causing  an  alteration  in  the  expression  of  more  than  40 different  type  of 
miRNAs  allied  with  the  developmental  toxicities  (Zhang  et  al.,  2011).  The  several 
mechanisms  were  hypothesized  for  the  PFOS  causing  development  neurotoxicity 
disorders such as oxidative stress, altering neurotransmitters level and upregulation and 
downregulation of apoptotic and pro-survival factors from various animals and cell line 
studies (Long et al., 2013; Chen et al., 2014; Yu et al., 2016). In a recent study, it was 
found that PFOS can decrease the neuronal cell survivability by altering the level of 
miRNA in human neuroblastoma cell line(Li et al., 2015). This could be an important 
mechanism of PFOS as it has been seen that miRNAs regulate the proteins level by 

4

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

7
8



regulating their  mRNAs expression level.   The purpose of  our  model  is  to  test  the 
hypothesis  that  PFOS  perturbed  the  miRNA  affecting  neuronal  survivability  via 
regulating BDNF at mRNA level. The human dosimetry study has shown the longer 
residence time of PFOS inside the body and relatively higher concentration in the brain 
tissue than comparing to other perfluoroalkyl substances (PFASs) (Fabrega et al., 2014). 
Furthermore,  its  continuous  exposure and potential  to  cross  the  BBB could  put  the 
humans  at  high  risk  of  neurodevelopmental  disorders  which  is  in  consonance  with 
recently published paper related to neurotoxicity of PFOS (Yang et al., 2015; Vuong et 
al., 2016).  The PFOS PBPK model has been well developed previously by Fabrega et 
al.,  (2014) that predicts  internal tissue dose. However,  for a better  understanding of 
toxicological mechanisms in the context of risk assessment, we would need one more 
step  towards  the  system  toxicology.  This  gap  could  fill  by  coupling  integrated 
PBPK/PD model into a mechanistic system model.

The objective  of  this  study was  the  development  of  a  mechanistic  pathway system 
(miRNA-BDNF mRNA- BDNF- cell survivability) model and coupling of above model 
with a PBPK/PD taking a case study of the PFOS induced neurotoxicity. 

2. Materials and Methods

2.1. miRNA-mRNA-BDNF-cell survival mechanistic pathway (figure 1) 
Generally, miRNA post-transcriptionally regulates the protein molecule via binding at 3
´UTR of  mRNA  (Perruisseau-Carrier  et  al.,  2011).  It  has  been  found  that  miRNA 
decreases the level of BDNF either via degradation of mRNA or facilitating ribosome 
induced silencing complex formation with mRNA (RISCm) (Bartel, 2004; Djuranovic 
et al., 2011). The other mechanism involves miRNA inhibits the BDNF regulation by 
downregulating the expression ofcyclic response element-binding protein  (CREB) 
(Caputo  et  al.,  2011;  You  et  al.,  2016).  Nonetheless, the numbers of the regulatory 
pathways  have  been  proposed  (Zeng et al., 2011; Sandhya et al., 2013; York, 2015). 
Moreover, a study on population affected with neuronal disorders showed an inverse 
relationship  between  miRNA  and  BDNF  level  (Muiños-Gimeno  et  al.,  2011) 
strengthens the evidence of regulation of BDNF via  miRNA.  BDNF  dependent  cell 
survival  pathways  can  be  extremely  important  from  a  regulatory  perspective.  The 
relationship between BDNF concentration and cell survival are quite well known via the 
dose-response curve obtained from the in-vitro cell line study  (O’Leary and Hughes, 
1998).  Nevertheless,  intermediate  molecular  signaling  pathways  are  prevailed  in-
between the binding of BDNF with TrkB receptors to the effects on the neuronal cell. 
This  involves  activation  of  MAPK/ERK and AKT-PI3K pathways  that  increase  the 
neuronal  survival  and  differentiation  process  via  increasing  expression  of  CREB 
(Michael et al., 1997; Murer et al., 2001 Bursac et al., 2010; Boulle et al., 2012). The 
conceptual diagram is provided in figure 1.

2.1.1. miRNA regulatory BDNF pathway model

The  regulatory  pathway  of  BDNF  involves  different  intermediate  biomolecules. 
However,  in  this  study,  the  generic  miRNA-BDNF pathway  was  adapted  from the 
previously published work of  Wang et  al.,  (2010) to  developed exclusively miRNA 
regulatory BDNF model. The whole pathways are modeled by applying mass balance 
equation  based  on  reaction  kinetics  applying  ordinary  differential  equations.   This 
allows the estimation of a biomolecule given the model parameter corresponds to the 
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reaction rates. BDNF is the output of the miRNA-BDNF model, which was then used as 
an  input  for  the  estimation  of  neuronal  survival.   The  generic  form of  the  system 
dynamic model is as follow:

                        

                   

Where  Ks  is  synthesis  rate  constant  for  the  endogenous  molecules,  P  is  the 
concentration of an endogenous molecule, Kd is the degradation rate constant, Kout is 
the  dissipation  rate  constant  of  P  available  for  the  synthesis  of  the  subsequent 
endogenous  molecule.  Following  this  schematic,  concentration  of  endogenous 
biomolecules is estimated by the following differential equation; 

d
dt

(P )=Ks−Kd∗P−Kout∗P   Eq. (1)

2.1.2. BDNF - cell survival Emax model- 

To simplify the model, we have applied hills sigmoid equations to get the output of the 
neuronal  survival  by  applying  Emax  and  EC50  value  of  BDNF  for  neuronal  cell 
survival from experimental data (O’Leary and Hughes, 1998).   The percentage of cell 
survivability with respect to BDNF concentration was estimated by the use of sigmoid 
Emax model applying the following equations;

EC 50+Cn

(Emax∗Cn
)/¿

Cell survivablity=E0+¿

))   Eq. (2)

Where, Cell survivability  = percentage of cell survivability as function of BDNF 
conc., Eo = baseline response, Emax = maximum response, C= BDNF concentration, 
EC50= concentration at which BDNF shows 50% response of Emax, n= hill coefficient

This developed Emax model was integrated into indirect response model eq. (3) that 
provides the neuronal cell survivability as a function of time. More details on indirect 
response models can be found in Bonate, (2011).

d
dt
Cell survivablity=koutBDNF∗cell survivablity−kd∗cell survivability( t)  

            Eq. (3)

Where  ,
d
dt
Cell survivability=percentage of cell survivability∈the timedomain , 

koutBDNF  is BDNF conc. assumed to be responsible for neuronal cell survivability, 
kd  is the degradation rate of the neuronal cell.

2.2. PFOS PBPK (a case study)
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The PBPK model of PFOS was adapted from the previously published model (Fabrega 
et al., 2014). The concentration of PFOS in a brain considered as the effective target 
dose (target  tissue dosimetry),  considering the brain as a  target  organ in relation to 
potential  neurodevelopment  deficit  disorders.  PBPK model  generates  time course of 
PFOS concentration in the brain, which is used as input for the mechanistic pathway 
model. At the end, integration of the PBPK model of PFOS into the mechanistic BDNF 
–cell  survivability  model  analyzes  the  perturbation  of  PFOS on the  whole  pathway 
results  in  decreased  in  neuronal  cell  survival  rate.  The  conceptual  model  for  this 
integration is provided in figure 2. 

Concentrations  in  the  respective  compartment  (muscle,  richly  perfused,  fat,  kidney, 
Brain and liver) are estimated by applying the following equation:

Vi

pKi

Ci
CaQi

dt

dCi 










:

                            Eq. (4) 

Where, Ci is the concentration in the tissue i (ng/L), Qi is the blood flow in the tissue i 
(L/h), Ca is the arterial concentration (ng/L), Ki:p is the partition coefficient of tissue i, 
and Vi is the volume of the tissue i (L). Detail description of PBPK model can be found 
in our other publications (Fabrega et al., 2014; Fàbrega et al., 2016).

All the physiological, Physicochemical parameters and model equations for the PBPK 
are provided in the Annex-I 

2.3. IVIVE for dose Equivalency

In-vitro in-vivo extrapolation (IVIVE) method was used in order to estimate the oral 
equivalent dose from the given in-vitro dose. It has an assumption that the in-vitro area 
under  the  curve  (AUC),  calculated  by  multiplying  dose  with  the  total  duration  of 
exposure, would be similar with the AUC of target in-vivo organ (in this case Brain). 

Li et al., (2015) in-vitro studies on SH-SY5Y cell line was selected, where a decrease in 
neuronal  cell  survivability  found to  depend on miRNA and BDNF. In Li  et  al.,  an 
experiment  they  used  12 in-vitro  doses  (6  doses  each  for  24hr  and 48 hr)  for  that 
corresponding in vivo doses was determined. The assumption was made that in-vitro 
doses  are  equivalent  to  internal  target  concentration  (brain).  For  the  reconstructing 
equivalent oral dose, the AUC value was calculated for each in-vitro conc., based on 
their duration of treatment (In this case 24hr and 48 hr). The conceptual schematic for 
dose reconstruction is provided in figure 3. The calculated AUC was assumed to be 
equivalent with in-vivo AUC brain. Dose reconstruction approach has been used, so that 
the given equivalent oral dose will provide the AUC in the brain that matches the AUC 
for the 12 different in-vitro doses (6 for 24hr and 6 for 48hr), a similar approach has 
been used in the previous study  (Thiel et al.,  2017). The oral equivalent doses were 
estimated to be way higher, as the PFOS concentration reaching to the brain was found 
to be relatively very low(Fabrega et al., 2014; Fàbrega et al., 2016). The estimated oral 
equivalent doses for the corresponding in-vitro doses are provided in Table 1.

2.4. Integrated PBPK/PD coupled miRNA-BDNF-cell survival pathway
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Coupling of PBPK to mechanistic miRNA-BDNF pathway model has been done with 
the  integration  of  brain  PFOS  concentration  as  a  target  input  that  perturbs  key 
component miRNA of the pathway. The interaction of the PFOS with the miRNA has 
done based on empirical evidence but the mechanism behind the interaction is still not 
clear. The coupling was done by applying stimulatory Emax model that assumes PFOS 
increase the concentration of  miRNA via increasing their  synthesis  rate.  Finally  the 
output we measured as a percentage of neuronal survival rate considering two scenarios; 
with and without PFOS exposure. The conceptual diagram is provided in figure 4.

The integration of PFOS into the BDNF pathway is done by indirect pharmacodynamic 
interaction model with the following equation;

d
dt

(miRNA )=K ¿miRNA∗(1+
Emax∗C
EC50+C )−KoutmiRNA∗miRN A0  Eq. (5)

Where,  K ¿miRNA  = synthesis rate constant of miRNA, KoutmiRNA  = dissipation rate 
of miRNA,  miRN A0  = initial  value of miRNA, Emax = maximum response for 
miRNA, C = brain concentration of PFOS, EC50 = concentration at which PFOS shows 
50% response of Emax.

2.5 Model parameterization 

The  mi-RNA-mRNA-Protein  pathway  parameters  were  taken  from  the  previously 
published model  (Wang et al., 2010).  Specifically, BDNF protein synthesis rate was 
used instead of generic protein synthesis. There was no BDNFmRNA synthesis  rate 
data available in the literature and for that generic BDNFmRNA rate constant was used. 
BDNF synthesis rate was taken from the Castillo et al., (1994) and  Menei et al., (1998). 
Furthermore, the synthesis rate was scaled accounting number of neuronal cells to the 
whole  body  per  kg  weight  nmol/hr/kg(0.75).  The  degradation  rate  of  BDNF  was 
parameterized from half- life by using the following relationship: degradation rate = 
Ln2/t1/ 2. 

For the quantification of neuronal survival against BDNF exposure, the required Emax 
and EC50 parameters for establishing sigmoid Emax model were taken from O’Leary 
and Hughes,(1998).  The Emax and EC50 values for the reaction are implemented as 
such as these parameters tend to have a similar trend across species (Gatzeva-topalova 
et al., 2011). PBPK parameters for the PFOS were used from the previously published 
article  (Fabrega et al., 2014). The dynamic interaction data for the PFOS to miRNA, 
such as EC50 estimated from Li et al., (2015). All the parameters that were used for 
developing mechanistic model are provided in Table 2. All the model equations for the 
mechanistic and integrated PBPK/PD-mechanistic models are provided in the Annex-I 

3. Results

The simulation of the model is divided into two parts; the first simulation of a PBPK 
and a mechanistic  system pathway model  individually  to  get  the base  model.  Later 
simulation of integrated PBPK/PD coupled mechanistic model (system toxicology) was 
done.  The  integration  of  Pharmacodynamic  interaction  between  PFOS  and  target 
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biomolecule was done by using indirect response model. The equivalent exposure doses 
for the PFOS were extrapolated from the in-vitro study of  Li et al., (2015). Neuronal 
survivability was chosen as an end point biomarker for the model and mapping of in-
vitro data  (neuronal survivability) to in-vivo was done based on linear  interpolation 
method. The PFOS PBPK model codes are provided by  Fabrega et al., (2014) which 
was used in this paper to simulate PBPK model. 

The  mechanistic  system  model  simulations  were  performed  for  the  miRNA-BDNF 
signaling  pathway  and  the  resulting  time  course  of  BDNF  was  recorded  as  model 
output.  The  output  of  the  BDNF  time  course  data  was  used  for  performing  the 
simulation  to  get  the  percentage  of  cell  survivability  by  applying  indirect  sigmoid 
response model. This part of simulation results recorded as the normal baseline value 
for  the  model.   The  figure  6  (base  model  of  the  mechanistic  pathway)  showed the 
baseline value of important endogenous biomolecules like miRNA, BDNF, RISC(RNA- 
induced silencing complex), RISCm (complex form between BDNFmRNA and RISC) 
and  percentage  of  neuronal  cell  survivability.  The  mechanistic  system  model  has 
optimized to achieve the maximum neuronal cell survivability steady state which is in 
compliance with experiment data given by Gillespie et al., (2003). The model has been 
simulated for 20 days in order to achieve the steady state. The miRNA regulation of 
BDNF via forming a complex between RISC and BDNFmRNA called RISCm has been 
documented can be seen in the base model figure number 6 which is in compliance with 
Wang et al., (2010) model. This complex formation between RISC and BDNFmRNA 
was enhanced by the miRNA resulting in a decrease of BDNF protein synthesis. The 
RISC complex binds with the mRNA at the 3’ UTR and inhibits its further translation to 
protein. The base model also able to capture the phenomena of regulating BDNF protein 
by miRNA considered to be one of the important biological processes. The behavior of 
model curve for BDNF and cell survival are in a similar trend, which was also observed 
in  in-vivo  experiments  (Rodríguez-Tébar  et  al.,  1992;  O’Leary  and  Hughes,  1998; 
Fletcher et al., 2008). The model shows BDNF maintains cell survivability at the steady 
state level of around 95 percent. In Figure (6), a sudden drop in the cell survivability to 
40 percent level could be explained considering the lag time in the attainment of  BDNF 
steady state level. The simulation of the base model (Figure 6) shows that model able to 
retain the steady state for cell survivability at 95% once BDNF attained a steady state. 
A similar observation was reported by  Gillespie et al., (2003) experimental study that 
survivability  of  neuron in  presence  and absence  of  BDNF were  90 percent  and 40 
percent respectively.

The  PBPK  model  simulation  was  carried  out  for  the  PFOS  for  the  estimated  oral 
equivalent dose (12 doses) given as a single dose. Figure 5 shows the simulation of the 
internal  target  tissue  (brain)  concentration  of  PFOS  with  12  different  dose  levels 
providing different Cmax in dose dependent manner over the time period. The dose was 
given at the 240hr as shown in figure 6 when the mechanistic base model reaches steady 
state. 

The coupling of PBPK into the mechanistic model was done by fitting in-vitro data, 
estimated  from  Li  et  al.,  (2015) study,  via  applying  Emax  sigmoid  model.  The 
developed  coupled  PBPK/PD-mechanistic  model  quantifies  the  dynamic  of  the 
endogenous biomolecular  concentration  of  different  species  at  the  different  level  of 
PFOS exposure that perturb key components of the system (in the miRNA model). The 
interaction of the PFOS to the given pathway was modeled by implementing indirect 
sigmoid response model Eq. (5) for PFOS-miRNA interaction. Consequently, dynamic 
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changes in miRNA level as a function of PFOS concentration over time was observed 
(figure 7). The PFOS alter the steady state of all biological components involved in the 
pathway via stimulating input of miRNA disturbing whole mechanistic pathway. The 
integrated  model  was  simulated  for  12  different  in-vitro  equivalent  in-vivo  doses 
describing  the  whole  system  as  one  unit  rendering  time  course  of  endogenous 
concentration after exposure to environment chemicals distinct from normal condition 
(Base model). 

The figure 7, 8, 9 and 10 shows the effect of a chemical on the endogenous biomolecule 
concentration  (miRNA,  RISCm,  BDNF)  and  cell  survivability  (in  percentage) 
respectively  over  the  time  period.  Figure  7  illustrates  the  dose  depended effects  of 
PFOS on  miRNA level  following  single  exposure  to  PFOS (dose  given  at  240hr). 
Figure 8 illustrates the increase in the formation of the RISCm complex after the PFOS 
exposure. The increase of RISCm complex concentration is due to increase of miRNA 
level  which  can  be considered  as  an indirect  action  of  PFOS.  The highest  level  of 
miRNA is observed at tmax (time point of Cmax) of PFOS and, with the elimination of 
PFOS from the system, shifting of miRNA level to steady state concentration at the 
level higher than baseline concentration was observed. Consequently, a decrease in the 
level of BDNF (figure 9) was noted as increase miRNA level facilitates the formation of 
the RISCm (figure 8), posttranscriptional regulatory mechanism of miRNA (explained 
in  2.1).  With  the  increase  in  dose  level,  the  difference  between  base  steady  state 
concentration  and shifted  steady state  concentration  was higher  that  can  be seen in 
figure  7,  8,  9  and  10.  Figure  10,  illustrates  the  time  vs  neuronal  survivability  that 
describes the effect of PFOS over time as an end point biomarker. 

5. Discussion and Conclusions 

In this  study, an attempt was made for the development of an integrated PBPK/PD 
coupled mechanistic model that allows assessing or characterizing the potential impact 
of  environmental  chemicals  on  a  biological  system.  An Integrated  PBPK/PD PFOS 
model  and  a  mechanistic  (miRNA-BDNF-neuronal  survival)  system  model  were 
evaluated individually. The generic mi-RNA model was adapted with a modification in 
BDNF as a target output protein. The regulation of BDNF involves several pathways 
among which miRNA-dependent pathway is an important one. The endogenous level of 
BDNF has an important effect on the survivability of neurons. For example principal 
hierarchy  of  BDNF  signaling  and  consequently  activation  of  MAPK/ERK/AKT 
pathway is well understood (Michael et al., 1997; Murer et al., 2001 Bursac et al., 2010; 
Boulle  et  al.,  2012),  but  how  these  events  control  cellular  survival  are  not  well 
understood. The reported relation between chemical exposure and significant changes in 
BDNF level, consequently neuronal adverse outcomes, made a plausible argument of 
considering BDNF as a good biomarker. To keep biological plausibility intact in our 
mathematical  expression,  we restrict  our  model  to  the miRNA-BDNF pathway,  and 
later  linking  it  to  the  cell  survivability  as  a  function  of  the  time  course  of  BDNF 
concentration  by  applying  Emax  model.  The  developed  mechanistic  model  shows 
miRNA-dependent regulation of BDNF which is a natural phenomenon of this model 
retaining the regulatory mechanism of miRNA on BDNF. The mechanistic base model 
(figure 6) well  predicted the percentage of cell  survivability as a function of BDNF 
concentration.  The  PBPK  model  was  used  to  estimate  the  internal  target  dose  of 
chemicals. The output of PBPK in target organ is used as input for the mechanistic 
system model providing integrated coupled PBPK/PD-mechanistic system model. This 
will  describe  the  whole  system  as  one  unit  rendering  time  course  of  endogenous 
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biomolecules  concentration  and  their  steady  state  level  with  and  without  chemical 
exposure  marking  the  difference  between  the  normal  and  altered  biology  of  the 
pathway. 

The  integrated  PBPK/PD-  coupled  mechanistic  system  model  well  describes  the 
observed changes in endogenous molecules level during and after discontinuation of 
exposure to the chemical. It can predict the adverse effect of environment chemicals 
considering both; the nature of changes in the system (altered biology) with respect to 
normal biology, and, the capability of an endogenous molecule to retain homeostasis, 
mimicking  the  real  in  vivo  physiological  scenario.  Therefore,  this  kind  of  model 
(integrated  PBPK/PD- coupled  mechanistic  system model)  can  predict  risk  in  more 
quantitatively  as  well  as  mechanistically  considering  pharmacokinetic, 
pharmacodynamic  and  relative  altered  biology  from  normal  biology  pathway  as  a 
consequence of chemical exposure. The advantage of Coupled integrated PBPK/PD- 
mechanistic  system model  is;  it  provides  more  understanding towards  risk not  only 
based on the target  tissue concentration but  also their  effect  on the target  molecule 
participating in the biological network. Integrated PBPK/PD coupled mechanistic model 
are able to predict endogenous molecule concentration involved in pathway over their 
time course as a function of chemical exposure, which was shown by current developed 
model as a case study for PFOS 

In summary, a molecular/cellular model that presented in this article mechanistically 
links BDNF involved in directed neuronal growth and neuronal survival, two distinct 
neurodevelopmental  processes  that  use  an  overlapping  molecular  (that  is  genetic) 
machinery.  The  model  does  not  provide  further  insights  into  which  of  these 
neurodevelopmental processes would be most relevant to the etiology of neurotoxicity, 
or  where  in  the  brain  these  processes  are  localized  to  selectively  impact  on  neural 
circuitry. Although epigenetically regulation of BDNF (Lubin et al., 2008) in the brain 
by miRNA is very important were observed from literature in the theoretical network, it 
is unlikely that there would just be a single explanatory model that connects to BDNF 
on a molecular  level  and corresponding neuronal  adverse outcomes.  Rather,  several 
etiological  cascades  contributing  to  neuronal  adverse  outcome  are  likely  to  exist. 
However, the currently developed model considered the following pathway for a series 
of signaling cascade biomolecules such as chemicals-miRNA-mRNA-RISCm-BDNF-
neuronal survivability, previously described in the conceptual model (figure 2). For the 
currently  selected  pathway  model  predicts  BDNF  as  a  very  sensitive  endogenous 
species biomolecule, which maintains the cell survivability at steady state. Although, 
PFOS does not directly target BDNF in our model it still remains the sensitive target 
which could be due to its regulation is highly dependent on miRNA level. Comparison 
of figure 9 and 10 allow us to see the decrease in neuronal survivability (figure 10) is  
highly sensitive towards BDNF level (figure 9). The model shows that BDNF regulation 
(miRNA based regulation) is very much important for neuronal cell survivability. This 
shows BDNF could be an interesting species (biomarker) which can link between both 
environmental exposure and neuronal adverse outcomes. 

There was an assumption of the existence of an empirical relation between the in-vitro 
toxicity  to  in-vivo  toxicity  (Wambaugh  et  al.,  2013).  Moreover,  tools  have  been 
developed to translate in-vitro toxicity dose-response to predict the in-vivo toxicity by 
applying reverse dosimetry concept that provides equivalent in-vivo dose required to 
produce in-vitro toxicity, eventually validation of model was done by  comparing POD 
(point  of  departure)  from  predicted  in  vivo  dose  response  with  reported  POD  of 
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chemicals  (Abdullah et al.,  2016; Forsby and Blaauboer, 2007; Louisse et al.,  2016; 
Wambaugh  et  al.,  2013).   In  this  case  study  of  PFOS  model  (PBPK/PD  coupled 
mechanistic model) due to lack of in-vivo data particularly for the following proposed 
mechanistic  pathway,  in  worst  case  scenario  we  constrained  to  in-vitro  data  for 
qualitative or partial validation of the developed model. To check the performance of 
the developed PBPK/PD coupled mechanistic model,  neuronal cell  survivability was 
selected  as  an  end  point.  Two  approaches  were  used  for  this  purpose;  first 
reconstructing oral in-vivo equivalent dose for an in-vitro dose; second, response data 
are generated for identified in vivo doses by mapping in vitro toxicity data (in this case 
neuronal cell survivability). Figure 10 illustrates, the simulated response variable (% 
neuronal  survivability),  for  dose  equivalent  to  in-vitro  conc.,  vs  observed  linear 
interpolated  response  variable.  Although  model  could  not  able  to  predict  all  the 
observed data, however, most of them were within the simulated range. The simulated 
maximum % of neuronal cell survivability on the lower side was around 35%, which is 
higher than the experimental observation of around 16 to 20%. This could be possibly 
explained by several facts such as current model uses adaptability mechanism which 
lacks  in  the  in-vitro  system,  only  one  pathway  has  been  accounted,  neglecting  the 
possibility  of several  mechanisms,  empirical  estimation of PFOS-miRNA interaction 
and the inherent uncertainty in in-vitro data and model.

The  purpose  of  this  work  was  to  develop  a  simple  model  which  combines 
pharmacokinetic  model  like  PBPK  predicting  the  internal  tissue  dosimetry  and 
mechanistic  system  model  via  quantifying  the  Pharmacodynamic  interaction  of 
chemicals  with key biomolecule  components  involved in  the mechanistic  system of 
biology.  The measurement of mi-RNA, mRNA, BDNF in the brain at different time 
points gives evidence in parallel changes and difference in between them; significantly 
improves the understanding of relation with neuronal adverse outcomes. Here in this 
model, the mechanistic pathway can be considered as an equivalent AOP pathway for 
neurotoxicity.  However,  this  can  be  further  extended  by  integrating  identified  new 
pathways  responsible  for  neurotoxicity.  There  are  many  ways  that  model  can  be 
extended  to  increase  its  utility,  but  certainly,  the  mi-RNA-based  post-transcription 
regulation of BDNF not limited to PFOS. The same concept can be further applied to 
other environmental chemicals altering the similar system.

In this paper, we have partially validated our model, considering our objective of this 
paper  is  to  focus  on  the  illustration  of  tools  that  use  simple  integrated  PBPK/PD-
coupled  mechanistic  pathway  model  involving  three  main  steps  1.Development  of 
PBPK model, 2. Development of mechanistic system model 3. Couple PBPK with the 
mechanistic  model  by  integrating  PD model  that  quantify  perturbed  biomolecule  (a 
component  of  the  mechanistic  model)  as  a  result  of  chemical  exposure.  This  step 
developed a new framework that could utilize the existing normal mechanistic pathways 
model and integrated PBPK/PD model, a step towards system toxicology based models. 
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Figure Labels

Figure  1.  describes  the  miRNA-mRNA-BDNF-cell  survival  mechanistic  pathway 
showing the importance of miRNA in regulating BDNF via forming a complex with 
RNA-induced  silencing  complex.  Later  BDNF binding  to  TrkB with  the  sequential 
activation  of  pathway  such  as  MAPK/ERK  and  PI3K/AKT  causing  increase  in 
CREB expression which leads to increase in  neuronal survival, differentiation, and 
proliferation.

Figure 2.  represents  the full  scheme of PBPK/PD model showing the integration of 
tissue  dosimetry  model  with  miRNA-BDNF-Cell  survival  pathway  via 
pharmacodynamic interaction of PFOS-miRNA.

Figure 3. Schema for the estimation of in-vivo oral dose 

Figure 5.  Simulated brain concentrations of  PFOS over  the time period.  The figure 
shows a simulation of the time course of PFOS concentration in the brain for each 12 
different doses corresponding to in-vitro dose. The single oral dose was given at 240hr.

Figure  4.  represents  the  pharmacodynamic  interaction  of  PFOS-miRNA  and  the 
consequent effect on neuronal survivability rate.

Figure 6. Mechanistic Base model. The figure shows simulated key biomolecules such 
as RISC, miRNA, RISCm, BDNF and percentage neuronal cell survivability.  

Figure  7.  simulated  time  vs  miRNA  level  The  figure  depicts  simulated  miRNA 
concentration after single oral dose of PFOS for 12 different dose levels.

Figure 8. Simulated time vs RISCm level.  The figure shows the increase in RISCm 
level after single oral dose of PFOS for 12 different dose levels.

Figure  9.  Simulated  time  vs  BDNF  level.  The  figure  depicts  simulated  BDNF 
concentration after single oral dose of PFOS for 12 different dose levels.

Figure 10. Simulated vs predicted neuronal cell survivability (percentage). The figure 
depicts simulated vs observed neuronal cell survivability (percentage) after single oral 
dose of PFOS for 12 different dose levels.
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TABLES

Table 1. oral equivalent dose calculated based on AUC extrapolation method

in-vitro dose 
(µM)

AUC_24 (nM*hr) AUC_48 (nM*hr) in-vivo dose 
(nM)(24hr)

in-vivo dose 
(nM) (48hr)

1 24000 48000 86925 130570

10 240000 480000 896550 1362850

50 1200000 2400000 4494910 6839718

100 2400000 4800000 8992868 13685810

150 3600000 7200000 13490820 20531899

200 4800000 9600000 17988780 27378025

Table 2. Scaled parameters for Coupled PBPK/PD mechanistic pathway model

Description Parameter Symbol Value References

BDNF synthesis 
rate

Kin_BDNF .023 nM/hr/kg 0.75 (Menei et al., 1998)

BDNF dissipation 
rate

Kout_BDNF 0.231/hr (Fukumitsu et al., 
2006)

Maximum BDNF 
effect on cell 

survival

Emax 100 Assumed

Half maximum 
concentration of 

BDNF for neuron 
survivability

EC50_BDNF 5E-03 nM (O’Leary and 
Hughes, 1998)

Cell degradation 
constant

Kd_cell 2.45e-5/hr (Clarke et al., 
2000)

Maximum PFOS 
effect on miRNA

Emax_miRNA 2.4 maximum fold 
change(Li et al., 

2015)
Half maximum 

stimulatory 
concentration of 

PFOS for miRNA

EC50_PFOS 1000nM (Li et al., 2015)

Volume of 
cytoplasm

V_cyt 4e-12/L (Bartlett and Davis, 
2006)

Volume of nucleus V_nucleus 4e-13 (Carlotti et al., 
2000)

Pri miRNA 
synthesis rate

K_primiRNA 3.6 nM/hr (Pérez-Ortín et al., 
2007)

mRNA synthesis 
rate

K_mRNA 0.36 nM/hr (Bartlett and Davis, 
2006)

Adjusted 
Coefficient of R 
promoting pri-

miRNA 
maturation

R_miRNA 0.001 nM (Wang et al., 2010)
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pri-miRNA to pre-
miRNA(n) 

catalyzed by R

K_primiRNA-
premiRNA

360/hr (Wang et al., 2010)

premiRNA 
transport rate

T_premiRNA 180/hr (Wang et al., 2010)

Rate of 
premiRNA(c) 
conversion to 

dsmRNA

K_premiRNA-
dsmRNA

36/hr (Ma et al., 2008)

miRNA formation 
rate

K_miRNA 36/hr (Kohler and 
Schepartz, 2001)

miRNA-induced 
RISC formation 

rate

K_RISC 108/hr (Bartlett and Davis, 
2006)

mRNA-RISC 
complex formation 

rate

K_[mRNA-RISC] 3.6nM/hr (Haley and Zamore, 
2004)

mRNA cleavage 
rate

Kc_mRNA 25.27 (Haley and Zamore, 
2004)

Dissociation rate 
of RISC complex

Kd_[mRNA-
RISC]

3.6/hr (Wang et al., 2010)

Rate of pri-
miRNA 

degradation

d_primiRNA 0.9/hr (Wang et al., 2010)

Rate of pre-
miRNA(c) 

degradation

d_premiRNA 0.9/hr (Wang et al., 2010)

Rate of dsRNA 
degradation

d_dsRNA 3.96/hr (Wang et al., 2010)

Rate of miRNA 
degradation

d_miRNA 0.9/hr (Wang et al., 2010)

Rate of RISC 
degradation 

d_RISC 0.36/hr (Wang et al., 2010)

Rate of mRNA-
bound RISC 

complex 
degradation

d_[mRNA-RISC] 0.077/hr (Wang et al., 2010)

Rate of mRNA 
degradation

d_mRNA 0.36/hr (Wang et al., 2010)
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