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ABSTRACT  

Ru(II)-dyads are a class of bioactive molecules of interest as anticancer agents obtained 

incorporating an organic chromophore in the light-absorbing metallic scaffold. A careful DFT and 

TDDFT investigation of the photophysical properties of a series of Ru(II)-polypiridyl dyads 

containing polythiophene chains of different lengths bound to a coordinating imidazo[4,5-

f][1,10]phenantroline ligand, is herein reported. The modulation of the crucial chemical and 
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physical properties of the photosensitizer with the increasing number of thiophene units, has been 

accurately described investigating the UV-Vis spectra, Type I and Type II photoreactions, also 

including spin orbit coupling values (SOC). Results show that the low-lying 3IL states afforded as 

the number of the thiophene ligands increases (n=3,4) are energetically high enough to ensure the 

singlet oxygen production and can be also involved in electron transfer reaction, showing a dual 

type I/typeII photeoreactivity.   

1. INTRODUCTION  

Due to their appealing physico-chemical properties, Ru(II) compounds have found wide 

applications in biological and medical field and are now attracting an increasing interest as 

potential candidates for Photodynamic Therapy (PDT). (1) The latter is a non-invasive medical 

approach used for the treatment of several skin diseases and more recently, for the treatment of 

some types of cancer. (2) The so-called photodynamic effect rests on the oxidative damage of 

biological material by reactive forms of oxygen generated by sensitized reactions.  As currently 

practiced, a photosensitizing agent (PS) is injected intravenously and it is excited from its ground 

state S0 to the first excited state S1 by using light of a specific wavelength. The S1 state can relax 

back to the ground state via a radiative process, the singlet–singlet emission called fluorescence, 

or via non radiative intersystem crossing (ISC) from the singlet to triplet state. The triplet state 

generated by the radiationless intersystem crossing, can be quenched through two kinds of 

processes. 

In oxygenated environment and under particular conditions, the chromophore in its excited 

triplet state can transfer its energy to ground-state molecular oxygen (3O2), undergoing Type-II 

photoreactions. (2) The interaction between electronically excited triplet sensitizer and ground-state 
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molecular oxygen (3O2) usually involves energy transfer to yield chemically highly active singlet 

oxygen 1O2 which reacts with many biological molecules, including lipids, proteins, and nucleic 

acids, leading to cancer cell death. Singlet lowest-energy oxygen 1O2(
1Δg) can be generated 

provided that the energy difference ΔS-T of the sensitizer exceeds the energy required to promote 

the O2 
3Σg

- →1Δg transition (0.98eV). (2,3) 

On the other hand, the excited PS can react directly with organic substrates by electron exchange 

producing radical intermediates that are subsequently scavenged by oxygen, with the formation of 

the superoxide oxygen radical species O2
.(-) and other highly reactive radicals. Collectively these 

reactions are classified as Type-I photoreactions. (2,3)  

Type-II processes are believed to predominate in the induction of cell damage and their 

efficiency depends on many factors, among which the triplet state lifetime and the triplet quantum 

yield (ΦT) of the photosensitizer. Moreover, sensitizers suitable for PDT, should possess i) a red-

shifted electronic absorption band falling in the so-called therapeutic window (600-800 nm) to 

penetrate human tissues allowing the treatment of deeper tumours, ii) a high intersystem spin 

crossing probability and iii) a ΔS-T higher than the energy required to generate the singlet oxygen. 

Other requested properties include solubility in aqueous media, redox stability, absence of 

intermolecular aggregation phenomena which decreases the photodynamic action and no toxicity 

in the dark.  

There are a number of photosensitizers whose excited triplet lifetimes are too short to permit a 

Type-II process to occur. For this reason, much efforts are devoted to the synthesis of compounds 

with excited triplet state having long lifetimes. The strategy to incorporate organic chromophores 

into Ru(II) scaffolds attempts to accomplish this requirement. The resulting dyads systems are 
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characterized by the installation of an additional low-lying 3IL state of organic triplet character 

which are able to extend the excited state lifetimes compared to traditional Ru(II) complexes that 

do not invoke 3IL states. Pyrene chromophore has been employed so far to establish excited state 

equilibration between the organic 3IL state and the Ru(II)-based 3MLCT. (4) The energy of the 

organic triplet was further lowered by using spacers to link pyrene to the Ru’s phenanthroline 

ligand, (5) achieving the longest lifetime for Ru(II) dyads to date. (6) 

In view of their interesting properties, α-oligothiophenes have been recently used to obtain 

Ru(II) dyads with promising physico-chemical characteristics. (7,8) The in vitro PDT effect of these 

compounds was found to increase with the polythiophene chain length. (8) Among them, Ru(II)-

polypyridyl complexes with three thiophene units (Scheme 1), has been suggested to act via a dual 

TypeI/II photosensitization processes, depending on the tissue oxygen tension, broadening the 

spectra of applicability of PDT, and it is currently under optimization for clinical phase I trials. (7, 

8) Moreover, it has been suggested to photocleave DNA when exposed to visible light. Both Type-

I and II pathways hence, could play a pivotal role in inducing light-mediated damages to DNA. 

 

 Scheme: 1 Investigated Molecules 

1: X=H             

2: X=CH3

a:n=1             

b:n=2

c:n=3             

d:n=4
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In order to shed light on the photochemistry of these molecules, we report a careful DFT and 

TDDFT investigation of the photophysical properties of Ru(II) dyads containing either 2,2’-

bipyridine (bpy) (1) or 4,4’-dimethyl-2,2’bipyridine (dmb) (2) as coligands, and in which 

polythiophene chains of different lengths (a-b) are incorporated at C2 of the coordinating 

imidazo[4,5-f][1,10]phenantroline ligand (IP) (Scheme1).  

The influence of the increasing number of thiophene units on the crucial chemical and physical 

properties of the photosensitizer has been accurately described investigating the UV-Vis spectra, 

Type I and Type II photoreactions, also including spin orbit coupling values (SOC). 

Results reveal that all the investigated compounds (1a-d and 2a-d) possess a ΔS-T gap high 

enough to ensure the O2 
3Σg

- →1Δg transition, combined with not-negligible SOC values. 

Nevertheless, 3 or 4 thiophene units are required to allow the installation of a low energy 

absorption band with an organic character, which could be useful for application in PDT.   

Inspection of the excited states of all the compounds, reveal that a very low-lying 3IL state is 

afforded with the increasing of the thiophene ligands, which could be populated by ISC mechanism 

and can promote also Type I photoreactions, generating a reducing form of the sensitizer 

subsequently scavenged from oxygen leading to the superoxide anion. A fast bimolecular decay 

to yield oxidising species as H2O2 and OH. can thus, easily take place. Moreover, our results show 

that O2
.(-) can act itself as reducing agent for other Ru(II)-dyads in the triplet state, which may be 

one rationale for the high phototoxicity induced by these compounds even at low oxygen 

concentration. 
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2. COMPUTATIONAL DETAILS 

All the calculations herein presented have been performed at DFT and its time-dependent TD-DFT 

formulation (9) by using the Gaussian 09 program code. (10) A preliminary benchmark study was 

conducted testing several exchange-correlation functionals (M06, (11) M06L, (12) M062X, (11) 

B3LYP, (13,14)   Cam-B3LYP, (15)   PBE0, (16)    wB97XD (17)) against the experimental data available 

for molecule 1a,(18) in methanol. The XC functionals and their performances have been evaluated 

comparing both calculated geometrical parameters and absorption electronic spectra with available 

experimental data. 6-31+G** basis set was used for all atom except for Ru one, which was 

described by the quasi-relativistic Stuttgart-Dresden pseudopotential. (19) Water environment was 

simulated by means of the integral equation formalism polarizable continuum model 

(IEFPCM),(20) which corresponds to a linear response in non-equilibrium solvation. Spin-orbit 

matrix elements were computed by using the quadratic-response TDDFT approach, (21,22) as 

implemented in the Dalton code, (23) at their ground-state optimized geometries, using the 

approximate 1-electron spin-orbit operator with scaled nuclear charges. (24) For this purpose, 

B3LYP was used coupled with the cc-pVDZ basis set for all atoms and SDD pseudopotential on 

the metal ion. Spin-orbit couplings (SOCs) have been defined according to the following formula: 

𝑆𝑂𝐶𝑖𝑗 = √∑ |〈𝜓𝑆𝑖
|𝐻̂𝑆𝑂| 𝜓𝑇𝑗,𝑛

⟩〉|
2

𝑛

;        𝑛 = 𝑥, 𝑦, 𝑧 

where 𝐻̂𝑆𝑂 is the spin–orbit Hamiltonian. 
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3. RESULTS AND DISCUSSION 

3.1 Benchmark of XC Functionals and Ground State Properties 

In order to select the most appropriate XC functional to accurately describe geometrical parameters 

and electronic transition energies for the systems under evaluation, a series of preliminary 

computations have been carried out testing several XC density functionals against the experimental 

data available for molecule 1a, (18) in methanol (See S1 and S2).  Results, collected in Table S1, 

show that PBE0 (16) reproduces with great accuracy the geometrical parameters and it has been 

chosen as the most suitable XC functional for the ground state molecular optimizations. 

Nevertheless, the computed absorption spectra reveal that M06(11) outperforms significantly the 

other XC functionals in the reproduction of the absorption spectra, and in particular at high 

wavelengths, although PBE0 give also good results (See S2). The computed absorption peaks for 

1a in methanol, are in good agreement with the experimental bands, as it is reported in Figure S3. 

Each band has been assigned on the basis of the involved molecular orbitals. The very good 

performances of M06 have emerged also in previous studies on metallic compounds. (25,26)  

The optimized 1a-1d structures are reported in Figure 1. The very similar structures obtained for 

2a-2d and selected geometrical parameters are reported in the SI section. 
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Figure: 1 Optimized 1a-1d molecules, in the most stable conformations 

The introduction of the electron-donating thiophene group onto the Ru-coordinated electron-

withdrawing IP unit, extend the molecular planarity of the rigid imidazole-containing 

phenantroline ligand. The dihedral angles between the adjacent imidazole and thiophene ring are 

found to be equal to 3.5 degrees in the presence of one thiophene ligand (1a, 2a), and slightly 

varies as the chain grows, reaching the minimum value with a 4-units chain (1d, 2d).    

The Ru(II) centre maintains its nearly ideal octahedral geometry along the a-d series and the 

sequential addition of thiophene units do not have any effect on the Ru-N distances, which keeps 

the same average values in all the complexes. The increasing of the chain provides more 

conformational flexibility and the additional thio- units (b-d) adopt positions which deviate from 

the thiophene-IP plane.  

Different conformations have been tested for complexes with more than 2 thiophene units. The 

addition of the groups with sulphur atoms in trans between them, resulted in more stable structures, 

although the cis conformations lie in a range of very few kcal/mol compared with trans analogues. 

1a

1b

1c

1d
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Anyway, cis and trans isomers display very similar photophysical properties and the conclusion 

herein derived for trans compounds can be easily transferred also on cis isomers.  (see S5, S6) 

3.2 UV-Vis Absorption Spectra 

In order to evaluate the effect of the variable number of thiophene units on the photophysical 

properties of RuII-dyads, the electronic absorption spectra of molecules 1a-d and 2a-d have been 

computed in water and their superposition is reported in Figure 2, together with main 

photophysical parameters. 

 

Figure 2. i) Computed Absorption Spectra of 1a-d and 2a-d, in water, at the M06/6-31+G(d,p) / SDD level 

of theory; ii) λmax reported in nm, oscillator strengths, f, main configuration and theoretical peak assignment, 

for 1a-1d (2a-2d in parenthesis), in water solvent; See also S3 for more details. 

 

1d

1b
1c

1a

2a
2b
2c
2d

Ru(II)-Dyad λmax nm Main Configuration (%) f Ass.

1a (2a) 460 (465) H-1→L (72%) 0.067 MLCT

1b (2b) 463 (468) H-2→L (56%); H→L (30%) 0.199 MLCT

1c (2c) 474 (476) H→L (33%);H→L+1 (24%) 1.208 LL

1d (2d) 503 (502)
H→L+1 (48%), H→L+3 (25%), H→L 

(16%)
2.063 LL

i)

ii)
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All the molecules are efficient light absorbers throughout the visible region, although significant 

differences can be underlined in going from 1a and 2a to dyads containing more than one thiophene 

unit. Actually, with the increasing of the delocalized π-system, a significant red shift of the λmax is 

observed. Compounds 1a and 2a show the strongest bands in the UV region, computed at 282 and 

330 nm in both cases, in great agreement with the experimental values available for molecule 1a18 

(289 and 330nm). On the contrary, two weaker bands were experimentally located at higher 

wavelengths for 1a, at 425 and 461 nm.18 Actually, the computed 1a spectrum reproduces with 

accuracy both of them. According to our results, the band experimentally found at 425 nm, arises 

from two transitions of similar intensity, computed at 439 and 443nm, while the lowest energy 

transition has been computed at 460nm. (See S3 for more detailed information). 

On the contrary, Ru(II)-dyads with polythiophene chains show the strongest band in the visible 

region of the spectrum. The intensity and the position of the λmax increases systematically with n, 

and it is a direct consequence of the reduced HOMO-LUMO gap observed as the number of 

thiophene increases, as reported in Figure 3. Actually, the highest-occupied molecular orbital 

changes in nature along the a-d series, being localized on the metal centre in the case of 1a and 2a 

but on the imidazo-phenantroline (IP) ligand when n=2,3 and 4. The incorporation of a 

polythiophene chain into Ru(II) scaffold, thus, produce the installation of an additional HOMO 

orbital of organic character lying at higher energies in the case of n >1, leaving the HOMO-1 

orbitals at the same energy and with the same Ru(II)-based character of the 1a and 2a HOMO (See 

Figure 3 and S7). On the contrary, the LUMO orbital does not suffer any changes with the chain 

extension, being localized on the polypiridyl ligand in all cases (See S7, S8). 

The λmax is MLCT in nature in the case of 1a and 1b (and 2a,2b), while neither in 1c (2c) nor in 

1d (2d) it includes the metal contribution, being the donor and acceptor orbitals, in both cases, 
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localized on the ligands. This effect produces a shift of λmax at high wavelengths and enables 

compounds with n=3 and n=4 to absorb in region above 475 nm not accessible to classical Ru(II)-

polypiridyl compunds. The increasing of n results to be useful to move the absorption band to 

lower energy, changing its nature from a MLCT to a ligand-ligand one, opening interesting 

perspective on the use of Ru-polypiridyl polythiophene complexes (n=3,4) as candidate 

photosensitizers for PDT. 

 

Figure 3. Plot of i) Maximum absorption wavelength λmax, ii) Homo-Lumo Gap, for 1a-d and 2a-d (in 

parenthesis); iii) Ru(II)-based HOMO for 1a and 2a and IP-based HOMOs for molecules 1b-d and 2b-d, 

at the M06/6-31+G(d,p)/SDD level of theory, in water.  
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3.3 Type I/II photoreactions 

The ability of a sensitizer to promote Type II photoreactions depends on the efficiency of the 

energy transfer process between the excited triplet photosensitizer and molecular oxygen required 

to generate the singlet cytotoxic species 1O2.   To ensure the O2 
3Σg

- →1Δg transition and to achieve 

a good singlet oxygen quantum yield, a PS must possess a singlet-triplet energy gap larger than 

that of O2 to allow the energy transfer process to take place. Obviously, an efficient triplet state 

population by ISC mechanism from a singlet state is an indispensable requirement. The lowest 

singlet state for oxygen has been computed to be 0.90 eV, (27) in good agreement with the 

experimental value of 0.98 eV.  

The plot of singlet-triplet energy gap (ΔS-T) reported in Figure 4, shows that all compounds could 

promote the formation of singlet oxygen, the first triplet state of all the investigated dyads lying 

above the O2 
3Σg

- one.  
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Figure 4. i) Singlet-triplet energy gap(ΔS-T) for 1a-d and 2a-d, in water, at the M06/6-31+G(d,p)/SDD 

level of theory. If different, values relative to 2a-d compounds are reported in italic, in parenthesis; ii) 

Electron Density Differences Plots between S0-T1, for 1a-1d molecules 

Interestingly, the plot reveals that the first triplet state experiences a great stabilization as a function 

of n. Indeed, the triplet state of 1a and 2a dyads has been localized at 2.30 and 2.23 eV, 

respectively, and reduces in energy systematically as the polythiophene chain increases, reaching 

the minimum value of 1.59 and 1.60 eV for 1d and 2d, respectively. The observed drop in the 

triplet state energy derives from the π-expansive polythiophene chromophore which confers an 

organic IL character to the excited state. Actually, while the T1 state for 1a and 2a is a 3MLCT 

state, in Ru(II)-dyads with polythiophene chains from 2 to 4 we observe the installation of low-

lying 3IL states. The analysis of the electronic difference density plots between S0 and T1 excited 

state (Figure 4ii), shows the involvement of Ru metal in the case of 1a while confirm the triplet IL 
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nature for n≥2. It is not surprising that the triplet state energy computed for dyads with more than 

one thiophene unit is similar to that found for the corresponding α-oligothiophene free (See S9), 

confirming the increasing organic nature of the triplet state with n (i.e. 2.00 eV vs 2.31 eV for 1b 

and di-thiophene (2T), 1.74 eV against 1.96 eV for 1c and tri-thiophene(3T) and 1.59 vs 1.62 eV 

for 1d and 4T). In the case of 1a (and 2a) compounds, the same it is not true, being the triplet state 

energy of the dyad greatly stabilized with respect to that computed for the thiophene ligand free, 

sustaining the metal involvement in the triplet state (2.30 eV vs 3.44 eV for 1a and thiophene, 

respectively). It should be recalled that the drop in 3IL state energy has been connected with longer 

lifetimes (8) for Ru(II) dyads.  

The energy diagram for the lowest Sn and Tm excited states is reported in Figure S10. A large 

number of triplet states lie below the first bright excited singlet one, and each one could contribute 

to populate the T1 state by internal conversion, provided that an efficient intersystem spin crossing 

process takes place from excited singlet states. To establish the feasibility of the intersystem 

crossing process, spin orbit coupling values (SOC) between several excited singlet and triplet 

states have been computed for molecules 1a-1d and 2a-2d. Values are reported in table S11. The 

rationalization of the obtained data is not trivial but the comparison between them allow us to 

devise some considerations. The highest SOC values are obtained for compounds 1a and 2a, in 

which just one thiophene group is linked to the IP ligand. The most favourable channel for them 

involve high excited singlet and triplet states. It is noteworthy that, in the case of 1a and 2a 

molecules, the S5 is the first bright state. Actually, the highest values are found for the channels 

involving S5 and the lower S4 state, with triplet states very close in energy to them (T7, T8, T9 

and T10). Table 1 lists the SOC values of the major ISC channels (Sn to Tm) of 1a and 2a, together 

with the Sn-Tm energy gaps.  In view of the high spin-orbit values computed for them, a direct ISC 
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channel from S5 and S4 states to very close triplet states could be then hypothesized. SOC of 

comparable order of magnitude (>150 cm-1) have been also recently reported for another Ru(II) 

compound. (26) 

On the contrary, compounds containing an increasing number of thiophenes (n>2), display SOC 

values relatively small and equal to few tens of cm-1 (See S11). This result can be ascribed to the 

increasing organic character imparted to the occupied molecular orbitals by the polythiophene 

chain. Accordingly, the smallest values are those displayed by 1d and 2d dyads. Nevertheless, it 

should be recalled that values between 0.2 and 5.0 cm-1 are considered large enough to induce ISC 

on a nanosecond time scale (28) and that organic molecules approved for PDT display very small 

SOC values even though they are able to efficiently produce the cytotoxic singlet oxygen. (29) As 

a consequence, a population of triplet states can be hypothesized for all the investigated 

compounds. 

1a (2a) 

(n,m) SOC(Sn-Tm) ΔSn-Tm  (n,m)  SOC(Sn-Tm)  ΔSn-Tm  

4,7 229 (193) 0.14 (0.14) 5,7 354 (291) 0.20 (0.17) 
4,8 

8 

306 (43) 0.14 (0.06) 5,8 283 (41) 0.17 (0.09) 

4,9 47 (311) 0.04 (0.00) 5,9 46 (204) 0.07 (007) 

4,10 345 (56) 0.02 (-0.02) 5,10 168 (158) 0.05 (0.05) 

Table 1. SOC values (cm-1) and singlet-triplet energy gap ΔSn-Tm (eV) for the major ISC channels involving 

Sn (n=4,5) and Tm (m=7,8,9,10) states, for 1a and (2a) molecules. 

The populated excited triplet state could also follow a different deactivation pathway 

photogenerating the superoxide anion O2
.-  and ROS, instead of transfer its energy to produce the 

singlet oxygen species. For 1c and 2c dyads it was previously suggested the possibility to switch 

to a type I mechanism mediating photoinduced electron transfer reactions. (8) The feasibility of 

such kinds of photoreactions, can be established computing the vertical electron affinity (VEA) 
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and ionization potentials (VIP) for each molecule and molecular oxygen. (30) Results are listed in 

Table2. 

Type I reactions involves electron or hydrogen-atom transfer between the excited sensitizer 

(usually T1) and substrate molecules, such as the cell membrane or the sensitizer itself, to yield 

radical ions and free radicals. These radicals can then interact with oxygen to produce oxygenated 

products. Different pathways can be followed to generate O2
.-  species which then undergo fast 

bimolecular decay to yield oxidizing species as H2O2 and OH., able to promote reactions with 

biomolecules. (2) 

The superoxide anion O2
.(-) can be produced by direct electron transfer from the photosensitizer to 

molecular oxygen according to reaction (I): 

Ps (S0) + 3O2  →Ps.(+) + O2
.(-)    (I) 

Such reaction is still of Type II-oxygen reactions and result to be less feasible as the thiophene 

chain grows. With the increasing of n indeed, the triplet state become weaker electron donors and 

it is not able to promote the direct electron transfer in water. According to our data, only in the 

case of 2a the process is, to some extent, likely to occur, being the sum of VIP(T1) and the electron 

affinity of 3O2 (-3.43 eV at the same level of theory), slightly negative.  

An alternative pathway to generate O2
. (-) may proceed through electron transfer from the reduced 

form of dyads to molecular oxygen, provided that the summation of the electron affinity of 3O2 and 

VEA PS (S0/T1) is negative: 

Ps.(-) + 3O2 →
1Ps + O2

.(-)      (II) 
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 The Ps.(-) species could be formed in solution in presence of electron donors in the near vicinity 

e.g. a DNA base, or through the so-called autoionization reactions (III and IV) which imply the 

reduction of T1 state of Ps by neighbouring S0 or T1 state of Ps itself (Type-I photoreactions):  

Ps (T1) + Ps(S0) → Ps .(+) + Ps .(-)   (III) 

Ps (T1) + Ps(T1) → Ps .(+) + Ps .(-)   (IV) 

According to our results, the T1 states of all the compounds can be reduced through autoionization 

reactions by neighbouring T1 ones, the sum of VEA (T1) and VIP (T1) being negative. More 

interestingly, all the reduced dyads can transfer an electron to the molecular oxygen in its ground 

state through reaction (II) producing the superoxide anion, as confirmed by the higher electron 

affinity of oxygen if compared with that of the sensitizer. Moreover, the superoxide anion can act 

itself as reducing agent for dyads in the triplet state, which maybe one rationale for the fact that 

the phototoxicity induced by these compounds is high even at low oxygen concentration. 

 1a (2a) 1b (2b) 1c (2c) 1d (2d) 

VEA -2.87(-2.81) -2.88(-2.82) -2.88(-2.82) -2.88(-2.82) 

VIP 5.94 ( 5.61) 5.72( 5.71) 5.48( 5.48) 5.33( 5.33) 

VEA(T1) -4.90(-5.04) -4.88(-4.82) -4.62(-4.56) -4.47(-4.42) 

VIP (T1) 3.64 ( 3.38) 3.72( 3.71) 3.74( 3.74) 3.74( 3.73) 

Table 2: VEA and VIP values (eV) in water, for 3O2 molecule and for 1a-1d and 2a-2d Ru(II)-dyads in 

their singlet and triplet states, computed at PBE0/ 6-31+G**/SDD. The O2 electron affinity (-3.42 eV) has 

been computed at the same level of theory.  

Based on our results, all the investigated dyads can undergo Type I photoreactions. Nevertheless, 

only compounds containing 3 and 4 thiophene ligands display a low energy absorption band to be 

useful in PDT through type II mechanism. They are, accordingly, able to afford a low-lying 3IL 
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states which can contribute to the dual TypeI/II photoreactivity, and exert their phototoxicity at 

different oxygen tension. 

Conclusions 

A careful DFT and TDDFT investigation has been carried out on very promising Ru(II) dyads 

incorporating polythiophene chains of different lengths.  The influence of the increasing number 

of thiophene units (1 ≤n≤4) on the crucial chemical and physical properties of the photosensitizer, 

has been accurately described investigating the UV-Vis spectra, Type I and Type II photoreactions, 

also including spin orbit coupling values (SOC). 

Results reveal that the incorporation of a polythiophene chain into Ru(II) scaffold produces the 

installation of an additional HOMO orbital of organic character lying at higher energies in the case 

of n >1, shifting the λmax towards higher wavelengths and enabling compounds with n=3 and n=4 

to absorb in region above 475 nm not accessible to classical Ru(II)-polypiridyl compunds. The 

organic chromophore produces a change of the absorption band which acquires an increased 1LL 

nature as the chain grows. More importantly, results reveal that the increasing of the π-expansive 

polythiophene chromophore confers an organic IL character to the first triplet excited state 

producing a systematic drop in its energy. The first triplet state changes from being a 3MLCT to a 

pure 3IL state when n=3 and 4.  In all cases, the ΔS-T gap is high enough to ensure the O2 
3Σg

- →1Δg 

transition combined with not-negligible SOC values which indicate an efficient triplet population 

by ISC mechanism. The magnitude of SOC values are inversely proportional to the chain length 

and decrease with the increasing of the organic character of the involved states. The high activity 

experimentally found for compound 1c can be then ascribed to the efficient energy transfer from 
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the stable 3IL state to oxygen, accessible by ISC mechanism after irradiation with a low energy 

source. Same conclusion can be extended to 2c, 1d and 2d compounds. 

Results show that the populated triplet states can undergo also Type I photoreactions, generating 

a reducing form of the sensitizer subsequently scavenged from oxygen leading to the superoxide 

anion. A fast bimolecular decay to yield oxidising species as H2O2 and OH. can thus, easily take 

place in all cases. Moreover, our results show that O2
.(-) can act itself as reducing agent for other 

Ru(II)-dyads in the triplet state, which may be one rationale for the  high phototoxicity induced 

by these compounds even at low oxygen concentration.  
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A DFT and TDDFT investigation has been 

carried out on very promising Ru(II) dyads 

of interest as anticancer agents. The 

modulation of the photophysical properties 

with the increasing of thiophene units (1 

≤n≤4) has been accurately described. The 

shift of the λmax towards high wavelengths 

and the systematic drop in energy of the 

first triplet state as the π-expansive 

chromophore increases, contribute to the 

Type I/II dual activity of the dyads 

incorporating long polythiophene chains.   

 

 


