Dataset Open Access
Sara Moccia; Elena De Momi; Leonardo S. Mattos
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <controlfield tag="005">20200124192538.0</controlfield> <controlfield tag="001">1003200</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Politecncico di Milano</subfield> <subfield code="a">Elena De Momi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istituto Italiano di Tecnologia</subfield> <subfield code="a">Leonardo S. Mattos</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">8809472</subfield> <subfield code="z">md5:aae9d2ed69a37138268d31763b723d70</subfield> <subfield code="u">https://zenodo.org/record/1003200/files/laryngeal dataset.tar</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2017-10-06</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire_data</subfield> <subfield code="o">oai:zenodo.org:1003200</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Politecncico di Milano, Istituto Italiano di Tecnologia</subfield> <subfield code="a">Sara Moccia</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Laryngeal dataset</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution Non Commercial 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>The dataset in <em><strong>laryngeal dataset.tar </strong></em>contains 1320 patches of healthy and early-stage cancerous laryngeal tissues. The patches (100x100 pixels) were manually extracted from 33 narrow-band laryngoscopic images of 33 different patients affected by laryngeal spinocellular carcinoma (diagnosed after histopathological examination).</p> <p>Specifically, four tissue classes were considered (330 patches/tissue class): He (healthy tissue), Hbv (tissue with hypertrophic vessels), Le (tissue with leukoplakia) and IPCL (tissue with intrapapillary capillary loops).</p> <p>The dataset was created for testing the method proposed in <em>Moccia, Sara, et al. "Confident texture-based laryngeal tissue classification for early stage diagnosis support." JOURNAL OF MEDICAL IMAGING 4.03 (2017): 1-10.</em></p> <p>The folder<em> <strong>laryngeal dataset.tar</strong> </em>contains 3 subfolders (FOLD 1, FOLD 2, FOLD 3), which are the 3 folds used for cross-validation purpose in the tissue classification performance assessment.</p> <p>Each subfolder contains 4 folders relative to the four tissue classes, i.e., Le, He, Hbv, IPCL.</p> <p>----------------------------------------------------------------------------------------------------------------------------------------------------------</p> <p>If you want to use the dataset, please cite <em>Moccia, Sara, et al. "Confident texture-based laryngeal tissue classification for early stage diagnosis support." JOURNAL OF MEDICAL IMAGING 4.03 (2017): 1-10.</em></p> <p> </p> <p> </p> <p> </p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.1003199</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.1003200</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 1,767 | 1,776 |
Downloads | 656 | 656 |
Data volume | 5.8 GB | 5.8 GB |
Unique views | 1,583 | 1,592 |
Unique downloads | 555 | 555 |