Dataset Open Access
Sara Moccia; Elena De Momi; Leonardo S. Mattos
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1003200</identifier> <creators> <creator> <creatorName>Sara Moccia</creatorName> <affiliation>Politecncico di Milano, Istituto Italiano di Tecnologia</affiliation> </creator> <creator> <creatorName>Elena De Momi</creatorName> <affiliation>Politecncico di Milano</affiliation> </creator> <creator> <creatorName>Leonardo S. Mattos</creatorName> <affiliation>Istituto Italiano di Tecnologia</affiliation> </creator> </creators> <titles> <title>Laryngeal dataset</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2017</publicationYear> <dates> <date dateType="Issued">2017-10-06</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1003200</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1003199</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The dataset in <em><strong>laryngeal dataset.tar </strong></em>contains 1320 patches of healthy and early-stage cancerous laryngeal tissues. The patches (100x100 pixels) were manually extracted from 33 narrow-band laryngoscopic images of 33 different patients affected by laryngeal spinocellular carcinoma (diagnosed after histopathological examination).</p> <p>Specifically, four tissue classes were considered (330 patches/tissue class): He (healthy tissue), Hbv (tissue with hypertrophic vessels), Le (tissue with leukoplakia) and IPCL (tissue with intrapapillary capillary loops).</p> <p>The dataset was created for testing the method proposed in <em>Moccia, Sara, et al. "Confident texture-based laryngeal tissue classification for early stage diagnosis support." JOURNAL OF MEDICAL IMAGING 4.03 (2017): 1-10.</em></p> <p>The folder<em> <strong>laryngeal dataset.tar</strong> </em>contains 3 subfolders (FOLD 1, FOLD 2, FOLD 3), which are the 3 folds used for cross-validation purpose in the tissue classification performance assessment.</p> <p>Each subfolder contains 4 folders relative to the four tissue classes, i.e., Le, He, Hbv, IPCL.</p> <p>----------------------------------------------------------------------------------------------------------------------------------------------------------</p> <p>If you want to use the dataset, please cite <em>Moccia, Sara, et al. "Confident texture-based laryngeal tissue classification for early stage diagnosis support." JOURNAL OF MEDICAL IMAGING 4.03 (2017): 1-10.</em></p> <p> </p> <p> </p> <p> </p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 1,767 | 1,776 |
Downloads | 656 | 656 |
Data volume | 5.8 GB | 5.8 GB |
Unique views | 1,583 | 1,592 |
Unique downloads | 555 | 555 |