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Abstract ���

Nrf2-small Maf (sMaf) heterodimer is essential for the inducible expression of ���

cytoprotective genes upon exposure to oxidative and xenobiotic stresses. While the ���

Nrf2-sMaf heterodimer recognizes DNA sequences referred to as the ���

antioxidant/electrophile responsive element (ARE/EpRE), we here define these DNA ���

sequences collectively as CNC-sMaf binding element (CsMBE). In contrast, large and small �	�

Maf proteins are able to form homodimers that recognize the Maf recognition element �
�

(MARE). CsMBE and MARE share a conserved core sequence but they differ in the ���

5’-adjacent nucleotide neighboring the core. Because of the high similarity between the ���

CsMBE and MARE sequences, it has been unclear how many target binding sites and target ���

genes are shared by the Nrf2-sMaf heterodimers and Maf homodimers. To address this issue, ���

we introduced a substitution mutation of alanine to tyrosine at position 502 in Nrf2, which ���

rendered the DNA-binding domain structure of Nrf2 similar to Maf, and generated knock-in ���

mice expressing the Nrf2A502Y mutant. Our chromatin immunoprecipitation-sequencing ���

analyses showed that binding sites of Nrf2A502Y-sMaf were dramatically changed from ���

CsMBE to MARE in vivo. Intriguingly, however, one-quarter of the Nrf2A502Y-sMaf binding �	�

sites also bound Nrf2-sMaf commonly and vice versa. RNA-sequencing analyses revealed �
�

that Nrf2A502Y-sMaf failed to induce expression of major cytoprotective genes upon stress ���

stimulation, which increased the sensitivity of Nrf2A502Y mutant mice to acute ���

acetaminophen toxicity. These results demonstrate that the unique cistrome defined as ���

CsMBE is strictly required for the Nrf2-sMaf heterodimer function in cytoprotection and ���

that the roles played by CsMBE differ sharply from those of MARE. ���
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Highlights ���

・� Substitution of Ala-502 to Tyr renders the DNA-binding of Nrf2 similar to that of Maf ���

・� Sequence recognition of Nrf2A502Y shifts from CsMBE to MARE �	�

・� Nrf2A502Y fails to induce major cytoprotective genes upon stress stimulation �
�

・� Recognition of CsMBE by Nrf2-sMaf is required for the cytoprotective function ���

・� Nrf2A502Y mutant mice are susceptible to oxidative and xenobiotic stresses ���
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Introduction 	��

Nrf2 (NF-E2-related factor 2) is a CNC (cap ’n’ collar) family transcription factor that 	��

regulates inducible expression of an array of cytoprotective genes [1-3]. Nrf2 activates target 		�

genes in a stress-dependent manner through forming a heterodimer with small Maf proteins 	
�

(sMaf). Under normal conditions, Nrf2 protein is constitutively trapped by Keap1 	��

(Kelch-like ECH-associated protein 1) and is degraded through the proteasome pathway in 	��

the cytoplasm [4, 5]. Oxidative and electrophilic stresses inactivate Keap1 and stabilize Nrf2 
��

[3]. The stabilized Nrf2 is translocated into nucleus and activates expression of target genes 
��

that encode enzymes/proteins scavenging of reactive oxygen species (ROS) or related to 
��

detoxification of xenobiotics and drug metabolism. 
��

The CNC family transcription factors, including NF-E2 p45, Nrf1, Nrf2, Nrf3, Bach1 
��

and Bach2, form heterodimers with the sMaf family of transcription factors, MafF, MafG 
��

and MafK [6-9]. The CNC-sMaf heterodimers bind to a consensus DNA sequences, which 
	�

are called various names, such as antioxidants response element (ARE) [10, 11], electrophile 

�

response element (EpRE) [12], and NF-E2 binding element [13], via their basic 
��

region-leucine zipper (bZip) structure. We have compared these binding sequences and 
��

found that they show a common consensus sequence, 5’-(A/G)TGA(G/C)nnnGC-3’, but ���

these recognition elements are partially distinct from the element bound by Maf homodimers. ���

Therefore, in this study we refer to the sequence recognized by CNC-sMaf, including the ���

ARE, the EpRE and the NF-E2 binding element, as CNC-sMaf binding element (CsMBE). ���

Of note, the CsMBE sequence shares substantial overlap with that of the Maf recognition ���

element (MARE), a palindromic motif 5’-TGCTGA(G/C)TCAGCA-3’ (underline shows ���

overlapping sequence with CsMBE) that binds homodimers of large Maf proteins (c-Maf, �	�

MafA/L-Maf, MafB and Nrl) and sMaf proteins [14-16]. Because of the significant overlap, �
�

there has been substantial confusion in the cistrome dynamics or the binding sequence ���
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selection by the CNC-sMaf heterodimers and Maf homodimers. ���

CsMBE and MARE harbor TRE (phorbol 12-O-tetradecanoate-13-acetate ���

(TPA)-responsive element; TGA(G/C)TCA) or binding site for AP-1 in the middle of the ���

motifs [17]. MARE harbors GC at the 5’ of TRE, while CsMBE retains A/G at the position. ���

It is interesting to note that the presence of a GC dinucleotide adjacent to the TRE stabilizes ���

MafG homodimer binding [11, 15, 16]. Indeed, the surface plasmon resonance (SPR)-based ���

protein-DNA interaction studies revealed that the GC sequence is essential for recognition ���

by sMaf proteins [18]. Structural analysis of MafG revealed that Arg-57, Asp-61 and Tyr-64 �	�

of the basic region of MafG are important for the recognition of the GC sequence [19, 20]. �
�

These three residues are highly conserved in the large Maf and sMaf family proteins and ���

their ancestors [21-24]. ���

While Arg-57 and Asp-61 of MafG are conserved in the basic region of the CNC family ����

proteins, the residue of Nrf2 corresponding to Tyr-64 of MafG is converted to alanine ����

residue (Ala-502). The alanine residue is highly conserved among the CNC family ����

transcription factors (Nrf1, Nrf2, Nrf3, NF-E2 p45, Bach1 and Bach2) and ancestors of CNC ����

family proteins; SKN-1 (Skinhead family member-1) in Caenorhabditis elegans [25], CncC ����

in Drosophila melanogaster [26] and Nfe2l2a in Danio rerio [27, 28]. We and others ����

previously found that the alanine and tyrosine in the basic region are critical residues to ��	�

determine the unique binding preference of Nrf2-sMaf heterodimer and Maf homodimer to ��
�

CsMBE and MARE, respectively [29, 30]. A heterodimer of an Nrf2 mutant generated by ����

replacing the Ala-502 residue with a tyrosine residue (Nrf2A502Y) and MafG displays binding ����

preferences similar to MafG homodimer [29]. Since both Nrf2A502Y and MafG require the ����

GC sequence in the TRE flanking region, the Nrf2A502Y-sMaf heterodimer displays similar ����

high-affinity binding to the palindromic MARE to that of MafG homodimer. ����

To assess the contribution of CsMBE recognition by Nrf2-sMaf to cytoprotective ����
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function, we generated Nrf2A502Y mutant knock-in mice using a genome-editing technique. ����

Utilizing peritoneal macrophages from the Nrf2A502Y mutant knock-in mice, we performed ����

comprehensive analyses of Nrf2 binding sites [chromatin immunoprecipitation ��	�

(ChIP)-sequencing (ChIP-Seq)] and gene expression profiles [RNA-sequencing (RNA-Seq)]. ��
�

To our surprise, we found that the Nrf2A502Y mutant fails to support the expression of ����

three-quarters of the electrophile-inducible cytoprotective genes, including glutathione ����

conjugation- and hydrogen peroxide degradation-related enzyme genes, inducible expression ����

of which are normally supported by wild-type Nrf2. Meanwhile, the Nrf2A502Y mutant still ����

retains the ability to support the expression of one-quarter of the electrophile-inducible genes ����

under the Nrf2 regulation. These results thus unequivocally demonstrate that CsMBE and ����

MARE, binding sequences for CNC-sMaf heterodimer and Maf homodimer, respectively, ����

generate distinct sets of gene regulations. Specific recognition of the CsMBE by the ����

Nrf2-sMaf heterodimer is critical for the inducible expression of Nrf2 target genes, which ��	�

play key roles in the cytoprotection against ROS and toxic electrophiles. ��
�

����
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Materials and methods ����

Generation of Nrf2A502Y knock-in mice. A plasmid expressing single-guide RNA (sgRNA) ����

and Cas9 was constructed as described previously [31]. Plasmid vector pX330 [32] ����

expressing Cas9 and gRNA was digested with BbsI and a pair of oligo DNA recognizing ����

Nrf2 targeting site (5’-AAG TCG CCG CCC AGA ACT GT-3’) was ligated to the linealized ����

vector. Donor oligo DNA encoding substitution from alanine to tyrosine was designed as ����

follows; 5’-ATC CGA GAT ATA CGC AGG AGA GGT AAG AAT AAA GTC TAC GCC ����

CAG AAC TGT AGG AAA AGG AAG CTG GAG-3’. The plasmid and donor DNA were ��	�

co-injected into BDF1 fertilized eggs. We obtained two lines of Nrf2A502Y knock-in mice. All ��
�

mice were handled according to Regulations for Animal Experiments and Related Activities ����

at Tohoku University. ����

 ����

Mouse genotyping. Genomic DNA was extracted from a piece of tail. The DNA samples ����

were genotyped by using TaqMan SNP Genotyping Assay System (Applied Biosystems). ����

Wild type (WT) alleles were detected by 2’-chloro-7’-phenyl-1, ����

4-dichliro-6-carboxyfluorescein (VIC)-labeled probes, and mutant alleles were detected by ����

6-carboxyfluorescein (FAM)-labeled probes. ����

 ��	�

Genomic DNA and cDNA sequencing. Genomic DNA was extracted from a piece of tail. ��
�

RNA extractions from brain, thymus, lung, heart, liver, pancreas, spleen, kidney, esophagus, ����

skeletal muscle were conducted for cDNA synthesis. Targeted region of Nrf2 gene was ����

amplified by PCR using following primers; forward, 5’- AAG ACA AAC ATT CAA GCC ����

GC-3’; reverse, 5’- GCT TTT GGG AAC AAG GAA CA-3’. The amplicon was sequenced ����

using ABI 3100 sequencer. The primer sequence for sequence was 5’-GCT TTT GGG AAC ����

AAG GAA CA-3’. ����
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 ����

Peritoneal macrophage isolation and cell culture. 7-8 weeks of mice were received an ����

intraperitoneal injection of 4% thioglycolate broth. Four days later, macrophages collected ��	�

by intraperitoneal lavage were cultured in RPMI 1640 medium containing 10% fetal bovine ��
�

serum and 1% penicillin-streptomycin [33]. For analysis of Nrf2-induced state, the ����

macrophages were treated with 100-µM diethylmaleate (DEM). To test the cell viability ����

after 12 hours of menadione treatment, Cell Count Reagent SF (nacalai tesque) was used. �	��

DEM and menadione were from Wako Pure Chemicals and Sigma-Aldrich, respectively. �	��

 �	��

Flow cytometry analysis. The cells were stained with antibodies to Gr-1, Mac1, and F4/80 �	��

conjugated with FITC, APC, and PE, respectively. These antibodies were from eBioscience. �	��

The stained cells were analyzed with FACSCanto II and the data analyses were performed �	��

with FlowJo software (Tree Star).  �		�

��	
�

RNA extraction and quantitative RT-PCR. RNA was extracted with Sepasol-RNA I �	��

Super G (nacalai tesque) and reverse-transcribed with ReverTra Ace qPCR RT Master Mix �	��

with gDNA Remover (TOYOBO) according to the manufacturer’s instruction. Quantitative �
��

PCR was run on ABI7300 (Applied Biosystems). We used the following primers and probe �
��

to detect mRNA levels; Nrf2, forward primer, 5’-CAA GAC TTG GGC CAC TTA AAA �
��

GAC-3’; reverse primer, 5’-AGT AAG GCT TTC CAT CCT CAT CAC-3’; probe 5’-AGG �
��

CGG CTC AGC ACC TTG TAT CTT GA-3’, 18S rRNA, forward primer, 5’-CGG CTA �
��

CCA CAT CCA AGG AA-3’; reverse primer, 5’-GCT GGA ATT ACC GCG GCT-3’; and �
��

Taqman probe, 5’-TGC TGG CAC CAG ACT TGC CCT C-3’. �
	�

��

�

Immunoblot analyses. Peritoneal macrophages were treated with 100-µM DEM for 3 hours. �
��
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Nuclear lysate for immunoblot was prepared using NE-PER Nuclear and Cytoplasmic �
��

Extraction Reagents (ThermoFisher Scientific). 5 µg of nuclear lysate was subjected to ����

immunoblot using anti-Nrf2 [34] and anti-Lamin B (M-20) (Santa-Cruz; sc-6217) antibodies. ����

The densitometries of image were analyzed with ChemiDoc MP Imaging System (Bio-Rad), ����

and normalized to Lamin B intensity. ����

 ����

ChIP-Seq analysis. For ChIP-Seq analysis, the peritoneal macrophages were treated with ����

100-µM DEM for 4 hours as described [11] with minor modifications. ChIP was performed ��	�

with anti-Nrf2 antibody (Cell Signaling Technology; D1Z9C). DNA libraries were prepared ��
�

from 1.5 or 2 ng of ChIP and input samples quantified with Qubit Fluorometer (Life ����

Technologies), using Mondrian SP+ and Ovation SP Ultralow DR Multiplex System ����

(TaKaRa). The constructed libraries were amplified by PCR and DNA fragments in 300-600 ����

bp in size were yielded with AMPure XP Kit (BECKMAN COULTER). Prepared samples ����

were quantified by quantitative MiSeq (qMiSeq) method [35], followed by high throughput ����

sequencing using HiSeq2500 (Illumina) to generate 101 base-single reads. Three biological ����

replicates of ChIPed DNA and Input DNA prepared from each genotype and ChIP-Seq ����

analyses were conducted with these samples. ����

���	�
ChIP-Seq data analyses. The sequenced reads were mapped to the mouse genome (mm9) ��
�

using Bowtie2 software [36]. The mapped tags were visualized by using Integrative ����

Genomics Viewer [37]. Peak calling was performed using a model-based analysis of ����

ChIP-seq (MACS) version 1.4.2 [38]. DNA motif construction was performed using ����

MEME-ChIP version 4.10.0 [39]. Extraction of ARE motifs was performed using R based ����

script.  ����

 ����
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RNA-Seq analysis. Total RNA was prepared by using RNeasy Mini Kit (QIAGEN) and 1.5 ����

µg of total RNA was used for further steps. Isolation of poly(A)-tailed RNA and library ����

construction were performed using Sureselect Strand Specific RNA Sample Prep Kit ��	�

(Agilent Technologies). The libraries were sequenced using NextSeq500 (Illumina) for 86 ��
�

cycles of single read. Three biological replicates were performed in each genotype. ����

 ����

RNA-Seq data analyses. TopHat [40] was used for mapping of RNA-Seq data, and ����

Cufflinks version 2.1.1 [41] was used for quantifying the expression level of each gene as ����

fragments per kilobase of exon per million fragments (FPKM) with default parameters. The ����

differentially expressed genes were identified using Cuffdiff version 2.1.1, threshold of q ����

value < 0.05. The KEGG pathway analysis was performed using DAVID Bioinformatics ����

Resource 6.7��http://david.abcc.ncifcrf.gov/). The KEGG pathway significantly enriched ����

were defined as p value < 0.05. The p values were corrected using Benjamini-Hochberg ��	�

procedure. The gene set analysis was performed using the Gene Set Enrichment Analysis ��
�

(GSEA) software [42]. The gene set was created by using data described in references [11, ����

43].  ����

 ����

Acetaminophen (APAP) induced liver injury model. Following 16-hours fasting, 10-12 ����

weeks male mice were treated with 125-mg/kg or 200-mg/kg APAP by intraperitoneal ����

injection and sacrificed 6 hours after dosing. APAP was purchased from Sigma-Aldrich. ����

Using blood serum obtained from posterior vena cava of anesthetized animal, plasma alanine ����

transaminase (ALT) and asparate transaminase (AST) were determined using FUJI ����

DRI-CHEM 7000V (FUJIFILM).  Liver sample were fixed in 10% formalin solution and ��	�

stained with hematoxylin and eosin (HE). ��
�

 ����
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Accession number. The data discussed in this publication have been deposited in NCBI's ����

Gene Expression Omnibus [44] and are accessible through GEO Series accession number ����

GSE75177 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75177). ����

����
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Results ����

Generation of Nrf2A502Y knock-in mice. Dimetric transcription factors that contain Maf ����

protein can bind various cis-acting element sequences. Whilst Maf homodimers recognize ����

MARE sequences, CNC-sMaf heterodimers recognize CsMBE (Fig. 1A). Molecular basis of ��	�

this cis-element selection resides in the structural difference in Maf and CNC transcription ��
�

factors, and substituting an amino acid residue modifies this specificity. Substitution of Nrf2 ����

Ala-502 residue to tyrosine brings in a significant difference in cistrome, and Nrf2A502Y ����

becomes recognizing Maf-oriented sequence. Accordingly, the recognition sequence ����

specificity of Nrf2-sMaf heterodimer changes from CsMBE to MARE [29] (Figs. 1A and ����

1B). However, in biological context in vivo, the importance of Nrf2 binding specificity to ����

CsMBE has not been fully evaluated. ����

To examine how germline modification to Nrf2A502Y influences the Nrf2-sMaf activity, ����

we generated Nrf2A502Y knock-in mice using the CRISPR/Cas9 technology. To this end, we ����

designed a guide RNA (gRNA) containing 20 nucleotides capable of recognizing the Nrf2 ��	�

target site followed by a protospacer adjacent motif (PAM) to recruit Cas9 to the target site ��
�

(Fig. 1C). We generated a plasmid expressing both Cas9-encoding mRNA and the gRNA ����

[31]. We next introduced 69-mer oligo-DNA including mutations from GCC to TAC ����

resulting in substitution of the 502nd alanine to tyrosine (A502Y) for homologous ����

recombination. We co-injected both plasmid and oligo-DNA into fertilized eggs. We ����

obtained 24 pups. To verify homologous recombination of genomic DNA, we sequenced the ����

targeted regions, and identified two pups carrying mono-allelic A502Y mutation. We then ����

crossed these Nrf2A502Y founder mice with wild-type mice and established two lines of ����

knock-in substitution mice. Through genomic DNA sequencing analyses, we confirmed both ����

TAC (encoding tyrosine) and GCC (encoding alanine) in the heterozygous (Nrf2AY/+) ��	�

offspring (Fig. 1D, middle panel).  ��
�
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To examine whether Nrf2A502Y is expressed in the Nrf2AY/+ mice, we prepared RNA ����

samples from various tissues of the Nrf2AY/+ mice, and synthesized Nrf2 cDNA and ����

sequenced. We detected comparable level of TAC and GCC in all the tissues of the Nrf2AY/+ �	��

mice examined, indicating successful homologous recombination of Nrf2A502Y (Fig. 1E). We �	��

further crossed Nrf2AY/+ mice and obtained homozygous (Nrf2AY/AY) mice (Fig. 1D, lower �	��

panel). Body-weight-gain of both male and female Nrf2AY/AY mice is comparable with that of �	��

the wild-type mice (Fig. 1F) and the mice were fertile. �	��

 �	��

Nrf2AY/AY macrophages are more susceptible to the cytotoxic effect of xenobiotics. To �		�

examine whether Nrf2AY/AY mice preserves cytoprotective activities assisted by Nrf2, we �	
�

employed the thioglycolate-elicited peritoneal macrophage system [33]. We injected �	��

thioglycolate into Nrf2+/+ and Nrf2AY/AY mice and harvested peritoneal macrophages (Fig. �	��

2A). Almost all cells obtained from both Nrf2+/+ and Nrf2AY/AY peritoneal lavage exhibited �
��

Mac1+Gr1–F4/80+ surface markers, indicating that macrophage induction was comparable �
��

between Nrf2+/+ and Nrf2AY/AY mice (Fig. 2B). �
��

We next treated the peritoneal macrophages, harvested both from Nrf2+/+ and Nrf2AY/AY �
��

mice, with an electrophilic Nrf2 inducer DEM (Fig. 2A). We found that the Nrf2 mRNA �
��

level of Nrf2AY/AY macrophages was comparable to that of wild type under the basal and �
��

DEM-induced conditions (Fig. 2C). Furthermore, comparable level of Nrf2 protein was �
	�

accumulated in the nucleus under the DEM-treated condition in the Nrf2+/+ and Nrf2AY/AY �

�

macrophages (Figs. 2D and 2E). These results indicate that stress-responsiveness of Nrf2AY/AY �
��

macrophages were not significantly different from that of Nrf2+/+, regarding intercellular �
��

Nrf2 localization and the abundance. ����

To test cytoprotective function of Nrf2A502Y, we then examined susceptibility of Nrf2AY/AY ����

macrophages against menadione, which is a free radical-generating compound and is ����
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well-established stressor for testing roles played by Nrf2 in the oxidative stress response [45]. ����

Cell viabilities of the Nrf2AY/AY macrophages were lower than those of the Nrf2+/+ ����

macrophages (Fig. 2F), indicating that the Nrf2AY/AY macrophages were more susceptible to ����

toxicity of xenobiotics than the Nrf2+/+ macrophages. ��	�

 ��
�

ChIP-Seq analyses of Nrf2 and Nrf2A502Y reveal their preference of binding sequences. ����

Since the Nrf2AY/AY macrophages were more susceptible to toxicity of xenobiotics, we ����

assumed that Nrf2A502Y might fail to recognize CsMBE in the regulatory regions of Nrf2 ����

target genes and therefore fail to induce their expression. To confirm preferences of binding ����

sequences of Nrf2 and Nrf2A502Y in vivo, we performed ChIP-Seq analyses using an ����

anti-Nrf2 antibody on the DEM-treated peritoneal macrophages derived from Nrf2+/+ and ����

Nrf2AY/AY mice. The ChIP-Seq analyses were performed using three biological replicates ����

from each genotype. We defined Nrf2 and Nrf2A502Y binding peaks as peaks called in three ����

or two samples in the three replicates [46]. We obtained 1062 peaks for Nrf2 binding sites ��	�

and 1304 peaks for Nrf2A502Y binding sites (Fig. 3A). Of the 1062 Nrf2 binding sites, 669 ��
�

peaks were recognized only by Nrf2. We thus designated the 669 sites as “WT-specific” ����

sites. Meanwhile, we identified 911 peaks to which only Nrf2A502Y bound. We named these ����

911 sites as “AY-specific” sites. Of these Nrf2 and Nrf2A502Y peaks, 393 peaks overlapped ����

between both Nrf2 and Nrf2A502Y. We designated the 393 sites that both Nrf2 and Nrf2A502Y ����

bound to as “Common” sites. Typical peak profiles for Nrf2, Nrf2A502Y and the overlap of ����

Nrf2 and Nrf2A502Y are shown in Figure 3B. We found that the Nrf2 binding to the common ����

sites showed higher probability of binding than that of WT- and AY-specific sites, ����

suggesting that Nrf2 and Nrf2A502Y binding to Common sites is tighter than that to WT- and ����

AY-specific sites (Fig. 3C). These results thus demonstrate that the alanine to tyrosine ��	�

substitution of Nrf2 502 position elicits marked conformation change, so that target-binding ��
�
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sites of Nrf2A502Y in vivo are largely different from those of wild-type Nrf2.  ����

To determine consensus binding motifs for Nrf2A502Y and Nrf2 in WT-specific, Common ����

and AY-specific sites, we extracted sequences within ±150 bp of each peak center and ����

performed de novo motif analysis. Core sequences of TRE (position 1-7) neighbored by 3’ ����

GC motif (position 8 and 9) appeared to be similar in WT-specific, Common and ����

AY-specific sites (Fig. 3D). Consistent with our previous report [11], nucleotides A or G ����

(A/G) at 5’-end neighboring to TRE core sequence (position 0) was enriched in WT-specific ����

sites (E-value = 5.8×10-724), conforming our original observation that Nrf2 recognizes ����

CsMBE. On the other hand, the most enriched nucleotide at position 0 of AY-specific sites ��	�

was C, showing that the binding preference of Nrf2A502Y mimics that of sMaf homodimer or ��
�

MARE in vivo (E-value = 2.5×10-521). Of note, we did not detect enrichment of a specific ����

base at position 0 in Common sites by de novo motif analysis (E-value = 1.2×10-365). ����

To analyze the nucleotide at position 0 in detail, we extract core motifs (position 1-9) ����

within ±150 bp of each peak center and examined frequency of bases at position 0. ����

Nucleotides A/G and C were enriched at position 0 of TRE in WT-specific and AY-specific ����

sites, respectively, showing a good agreement with de novo motif analysis (Fig. 3E). On the ����

other hand, we found that A, G, or C but not T were enriched at position 0 in Common sites, ����

showing that Common sites exhibit DNA preference of either WT-specific or AY-specific ����

sites at position 0 (Fig. 3E). ��	�

A number of previous papers show that TMA sequence located the 5' side of the CsMBE ��
�

(position –5 to –3 in Fig. 3F, M represents A or C) influences activation of genes containing ����

the element [11, 47-50]. Therefore, we examined prevalence of the TMA motif in 5’ region ����

of WT-specific, Common and AY-specific sites. We found that the TMA-motif, especially ����

TCA-motif, was observed in 6.9% and 8.0% of CsMBE of WT-specific and Common sites, ����

respectively. On the other hand, TMA sequence was not enriched in AY-specific sites (3.0% ����



�

� �	�

of motif, Fig. 3F). These results suggest that TCA at position –5 to –3 may support the ����

binding of Nrf2-sMaf heterodimer to CsMBE but not support the binding of Maf homodimer ����

to MARE in vivo. ����

 ��	�

Impairment of transcriptional activity in Nrf2A502Y macrophages.  Since the preference ��
�

of binding sequences of Nrf2A502Y shifted from CsMBE to MARE, it is expected that ����

Nrf2A502Y might support expression of a distinct gene set from that supported by Nrf2. To ����

examine this issue, we performed RNA-Seq analysis and compared gene expression profiles ����

in peritoneal macrophages from Nrf2+/+ and Nrf2AY/AY mice between basal and DEM-induced ����

conditions. We found that expression levels of 1402 genes were significantly changed upon ����

DEM stimulation in the Nrf2+/+ macrophages, in which 696 genes were upregulated and 706 ����

genes were downregulated (Fig. 4A). On the other hand, we found that expression levels of ����

402 genes were changed upon DEM stimulation in Nrf2AY/AY macrophages, in which 148 ����

genes were upregulated and 254 genes were downregulated (Fig. 4B). Thus, the numbers of ��	�

upregulated and downregulated genes were strikingly decreased in Nrf2AY/AY macrophages ��
�

compared to those in Nrf2+/+ macrophages. ����

Furthermore, the majority (309 out of 402 genes) of upregulated and downregulated ����

genes [referred to as differentially expressed genes (DEGs)] in Nrf2AY/AY macrophages ����

overlapped with DEGs in the Nrf2+/+ macrophages (Figs. 4C). As shown in Figure 4D, we ����

identified 1093 DEGs (586 and 507 genes were upregulated and downregulated, ����

respectively) observed only in the Nrf2+/+ macrophages (WT-specific DEGs), 309 DEGs ����

(110 and 199 genes were upregulated and downregulated, respectively) observed in both ����

Nrf2+/+ and Nrf2AY/AY macrophages (Common DEGs), 93 DEGs (38 and 55 genes were ����

upregulated and downregulated, respectively) observed only in the Nrf2AY/AY macrophages ��	�

(AY-specific DEGs). The number of WT-specific DEGs was much larger than those of ��
�
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common and AY-specific DEGs. These results unequivocally demonstrate that Nrf2A502Y ����

lacks the induction and repression abilities for the majority of Nrf2 target genes. ����

To annotate upregulated and downregulated genes in the Nrf2+/+ and Nrf2AY/AY �	��

macrophages, we performed a KEGG pathway analysis. We found that known �	��

Nrf2-dependent pathways such as glutathione metabolism and pentose phosphate pathway �	��

were enriched in genes upregulated specifically in the Nrf2+/+ macrophages (Fig. 4E). On the �	��

other hand, inflammation-related pathways such as chemokine signaling pathway, focal �	��

adhesion and leukocyte transendothelial migration pathways were enriched in the gene group �	��

specifically downregulated in the Nrf2+/+ macrophages, showing very good agreement with �		�

the recent findings that Nrf2 regulates anti-inflammatory genes [51, 52]. �	
�

 �	��

Nrf2A502Y fails to induce major cytoprotective genes. Since known Nrf2-dependent �	��

pathways were enriched in the gene set upregulated specifically in the Nrf2+/+ macrophages, �
��

we next examined whether Nrf2A502Y failed to induce known Nrf2 target genes. Our gene set �
��

enrichment analysis (GSEA) showed that differentially expressed genes only in the Nrf2+/+ �
��

macrophages contained known Nrf2 target genes (Fig. 5A). We found that expression levels �
��

of genes related to quinone detoxification (Nqo1), glutathione (GSH) conjugation (Gstm1 �
��

and Gstp1), GSH synthesis (Gss, Gclm and Gclc), GSH reduction (Gsr), hydrogen peroxide �
��

degradation (Cat), and pentose phosphate pathway (Taldo1) were induced specifically in the �
	�

Nrf2+/+ macrophages (Fig. 5B). In contrast, DEM induction of these genes was abrogated �

�

almost completely in the Nrf2A502Y macrophages. Expression levels of genes related to heme �
��

degradation (Hmox1), transcription factor (Mafg), and autophagy (Sqstm1) were induced �
��

both in the Nrf2+/+ and Nrf2AY/AY macrophages. These results indicate that Nrf2A502Y lost ����

ability to induce major cytoprotective genes. ����

To assess whether Nrf2 and Nrf2A502Y directly regulate these genes, we examined ����
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binding peaks of Nrf2 and Nrf2A502Y ChIP-Seq in the proximity of these genes. Expectedly, ����

the genes that were induced specifically in the Nrf2+/+ macrophages, including Nqo1, Gclm, ����

Gss and Cat, harbored WT-specific peaks (Fig. 5D). In addition, the genes that were induced ����

both in the Nrf2+/+ and Nrf2AY/AY macrophages, including Mafg, Hmox1 and Sqstm1, harbored ��	�

Common peaks (Fig. 5E). These results support our contention that differences in the ��
�

Nrf2-sMaf cistrome indeed affect the gene expression profiles. ����

 ����

CsMBE recognition of Nrf2-sMaf is required for liver protection from APAP toxicity. ����

To examine whether Nrf2A502Y mutant mice are more susceptible to toxicity than wild-type ����

mice, we finally examined susceptibility of Nrf2+/+ and Nrf2AY/AY mice to acetaminophen ����

(APAP) toxicity. We intraperitoneally administered low-dose (125 mg/kg) and high-dose ����

(200 mg/kg) APAP to Nrf2+/+ and Nrf2AY/AY mice, which were fasted for 16 hours ����

beforehand. We analyzed these mice 6-hours after re-feeding (Fig. 7A). ����

Levels of liver damage indicators, ALT and AST, in the Nrf2AY/AY mice were ��	�

significantly higher than those in the Nrf2+/+ mice in the low-dose examination (Fig. 7B). ��
�

While there were some fluctuations perhaps due to toxicity in the high-dose examination, the ����

results showed reproducibility. Histological analysis revealed that liver damage in the ����

Nrf2AY/AY mice was more severe than those in the Nrf2+/+ mice (Fig. 7C). These results thus ����

demonstrate that the Nrf2A502Y mutant mice are more susceptible to the acute toxicity of ����

APAP than wild-type mice. Taken together, this study supports the notion that Nrf2-sMaf ����

specifically recognizes CsMBE sequences, which is necessary to the cytoprotective function. ����

����
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� ���

Discussion ����

Since CsMBE and MARE share common core sequence, it has been uncertain how many ��	�

target binding sites and target genes are shared by the Nrf2-sMaf heterodimers and Maf ��
�

homodimers. In this study, we wish to clarify this issue, and have generated a knock-in line ����

of mice expressing Nrf2A502Y mutant. As summarized in Figure 7, we first verified that ����

CsMBE is substantially different from MARE in vivo, despite of their similarity in terms of ����

DNA sequences. Of note, while Nrf2-sMaf prefers A/G nucleotide at 5’-flanking region of ����

the core sequence (CsMBE, left side), Nrf2A502Y-sMaf prefers C at that position (right side), ����

similar to the Maf homodimer-binding site (MARE), demonstrating that the sequence ����

recognition of Nrf2A502Y shifts drastically from CsMBE to MARE in peritoneal macrophages ����

in vivo. The common binding sites of Nrf2 and Nrf2A502Y do not show preference between ����

A/G/C nucleotides at the position. Of note, RNA-Seq data revealed that Nrf2A502Y ��	�

substantially lost the ability to support the expression of majority of the cytoprotective genes ��
�

and, showing very good agreement with the results, Nrf2A502Y mutant mice are severely ����

susceptible to the APAP toxicity. Based on these results, we conclude that the Nrf2-sMaf ����

heterodimers have acquired the CsMBE recognition during molecular evolution, and this ����

progress is critical for the cytoprotective functions of our body. ����

An ancestor of CNC family proteins is SKN-1 in Caenorhabditis elegans [25, 53, 54]. ����

SKN-1 regulates a set of cytoprotective genes responding to oxidative stress as is the case ����

for vertebrate Nrf2 [53]. Of note, despite of the functional similarity to Nrf2, SKN-1 ����

recognizes ATGA(G/A) motif as a monomer. On the other hand, a CNC family protein in ����

Drosophila melanogaster, CncC, forms a heterodimer with sMaf protein, Maf-S, and ��	�

together recognize CsMBE [(A/G)TGA(G/C)nnnGC] [23]. The SKN-1 binding motif is ��
�

conserved within CsMBE (underlined), indicating the CNC transcription factors acquired ����

ability to recognize extended cis-element by forming heterodimer with sMaf proteins in ����
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process of the molecular evolution. We surmise that the acquired long cis-acting element ����

enables vertebrates to execute the strict gene regulation in their huge genomes through ����

competing with the other transcription factors sharing partly the cis-element. Furthermore, ����

differences of CsMBE and MARE reduce mutual interference between CNC-sMaf ����

heterodimers and Maf homodimers, resulting in selective activation of the genes required in ����

the response against oxidative and xenobiotic stresses. ����

Several reports indicate the importance of TMA motif at 5’ flanking region of CsMBE ��	�

[47, 48, 50]. Showing good agreement with the studies, we found that TMA, especially TCA, ��
�

motifs are enriched in WT-specific and Common sites but not in AY-specific sites. While ����

the TCA motif appears to play important roles in Nrf2-sMaf heterodimer binding to CsMBE, ����

it still remains unclear which factor recognizes the TCA motif and how the binding of Nrf2 ����

to CsMBE is stabilized upon the presence of the TCA motif. ����

On the other hand, since Nrf2A502Y-sMaf heterodimers recognize MARE, Nrf2A502Y-sMaf ����

has the potential to affect MARE-dependent transcription of large Maf and sMaf ����

homodimers. Large Maf proteins (c-Maf, MafA/L-Maf, MafB and Nrl) play critical roles in ����

maintenance of homeostasis and ontogeny, including lens development, glucose homeostasis ����

and macrophage differentiation [53, 55-57]. Although accumulation of Nrf2A502Y may ��	�

interfere these biological effects, we did not observe obvious abnormality in the Nrf2AY/AY ��
�

mice except for high susceptibility to oxidative and xenobiotic stresses. These may be due to ����

two reasons. First, Keap1 constitutively degrades Nrf2 and Nrf2A502Y under normal ����

conditions, so that without a challenge of chemical Nrf2-inducers Nrf2A502Y does not ����

accumulate massively in our body. The pharmacological induction of Nrf2 and Nrf2A502Y ����

accumulation by DEM or other inducers is transient. Second, compared with the ����

pharmacological induction, genetic induction by knocking-out or knocking-down of Keap1 ����

is potent and constitutive, and therefore results in adverse effects [58, 59]. We surmise that ����
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analyses using genetic induction of Nrf2 may provide clues about this issue.  ����

In addition to WT-specific (CsMBE) and AY-specific (MARE) binding sites, we ��	�

identified the Common binding sites that bind both Nrf2-sMaf and Nrf2A502Y-sMaf. ��
�

Nevertheless, it still remains enigmatic why both Nrf2-sMaf and Nrf2A502Y-sMaf ����

heterodimers are able to bind to the Common sites. Our results show that the peaks ����

belonging the Common binding sites are highly enrichment compared with both WT-specific �	��

and AY-specific binding sites, suggesting that the Common sites possess beneficial genomic �	��

conditions for binding of these factors, such as adjacent interacting motifs of other �	��

transcription factors that stabilize the binding of Nrf2-sMaf and sMaf homodimers. �	��

We previously identified a competitive regulation between NF-E2 p45 and sMaf �	��

heterodimer (p45-sMaf) and sMaf homodimer in mouse megakaryocytes [60].  In the study, �	��

we identified that transgenic overexpression of sMaf severely repressed the p45-sMaf target �		�

gene expression and resulting proplatelet formation. Our present results further support the �	
�

notion that binding of Nrf2-sMaf heterodimer to the Common genes seems to be competed �	��

with the sMaf homodimer and vise-versa, and the competition between Nrf2-sMaf �	��

heterodimer and sMaf homodimer affects expression profile of the Common genes. On the �
��

other hand, WT-specific genes seem to be regulated by the Nrf2-sMaf heterodimer without �
��

the competition. �
��

In summary, we conclude that this study provides fundamental information that �
��

enlightens the elaborate transcriptional regulation of a subset of cytoprotective genes. The �
��

Nrf2-sMaf heterodimer sustains expression of the genes that are critical for cytoprotection �
��

against oxidative and xenobiotic stresses. In order to achieve a quick response against these �
	�

stresses, it is crucial to select the target genes properly and timely, and CsMBE ensures the �

�

Nrf2-sMaf heterodimer to specify the proper genes without the interference or competition �
��

with large Maf and sMaf homodimers. Meanwhile, heterodimers of sMaf and CNC family �
��
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transcription factors including Nrf1, Nrf2, Nrf3 and NF-E2 p45 regulates different target ����

genes via CsMBE recognition, indicating that the specificity of their gene regulation also ����

exists on different level (e.g. co-activator/co-repressor selection or epigenetic regulation) in ����

addition to simple recognition of DNA sequences [61]. Further analyses are necessary to ����

elucidate mechanisms how these transcription factors select specific target genes and exert ����

their diverse biological functions. ����
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Figure legends 	���

Figure 1. Generation of Nrf2A502Y knock-in mice. (A) Cis-element recognition by 	���

Nrf2-sMaf heterodimers and Maf homodimers. Nrf2-sMaf heterodimer recognizes CsMBE, 	���

while Maf homodimer recognizes MARE. An amino acid substitution of Nrf2 502nd alanine 	���

to tyrosine is expected to change the recognition specificity of Nrf2-sMaf heterodimers from 	���

CsMBE to MARE. Critical GC sequence of MARE in the 5’ of TRE and corresponding A/G 	���

sequence of CsMBE are underlined, and described as lock-and-key models in the scheme. 	���

(B) Domain structure of Nrf2 protein. The 502nd residue of alanine (A, blue letter) positioned 	���

at Nrf2-ECH homology 1 (Neh1) domain is replaced by tyrosine (Y, red letter). (C) 	�	�

Cas9/guide RNA (gRNA)-targeting site in Nrf2 gene. The sequences of gRNA and the donor 	�
�

DNA co-injected for targeting mutagenesis are underlined. The proto spacer adjacent motif 	���

(PAM) sequence is indicated by green. The 502nd alanine residue (blue) and corresponding 	���

tyrosine residue (red) are shown. (D) Representative sequences of Nrf2 targeting region of 
���

genomic DNA from Nrf2+/+, Nrf2AY/+, and Nrf2AY/AY mice. The codons encoding alanine 
���

(GCC) and tyrosine (TAC) are underlined. (E) Representative sequences of Nrf2 targeting 
���

region of cDNA in Nrf2AY/+ mice. (F) The growth curves of Nrf2+/+ (+/+, blue circle, male 
���

n=5, female n=8) and Nrf2AY/AY (AY/AY, pink square, male n=6, female n=6) male and 
���

female mice. Data represent the mean ± standard deviations (S.D.). 
���
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Figure 2. Nrf2AY/AY macrophages are susceptible to cytotoxic effects of xenobiotics. (A) 
�
�

Scheme for induction of peritoneal macrophages and Nrf2 accumulation. (B) Cellular 
���

surface marker profiles of Nrf2+/+ and Nrf2AY/AY macrophages. The cells recovered from 
���

Nrf2+/+ and Nrf2AY/AY mice were stained with Mac1, Gr-1, and F4/80 antibodies. (C) Nrf2 
���

mRNA levels in the Nrf2+/+ and Nrf2AY/AY macrophages under basal (white) and 
���

DEM-treated (gray) states. The abundance of each mRNA was normalized to rRNA. 
���
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Average values for Nrf2+/+ macrophages under basal state were set to 1. Nrf2+/+ n=4, 
���

Nrf2AY/AY n=6. (D and E) Protein levels in the Nrf2+/+ and Nrf2AY/AY macrophages under basal 
���

(white) and DEM-treated (gray) states. Average values for Nrf2+/+ macrophages under basal 
���

state were set to 1. Lamin B was used as a loading control. Nrf2+/+ n=6, Nrf2AY/AY n=5. (F) 
�	�

Relative viabilities of Nrf2+/+ (WT, blue circle, n=5) and Nrf2AY/AY (AY, red square, n=8) 
�
�

macrophages under menadione treatment. Note that Nrf2AY/AY macrophages are prone to die 
���

upon the menadione treatment. Graph data represent the mean ± SD. Student’s t-test 
���

(two-tailed), *P<0.05, n.s., not significant. 
���

 
���

Figure 3. A502Y mutation of Nrf2 converts the binding preference of Nrf2 in vivo. (A) 
���

Venn diagram showing the overlap between the Nrf2 (blue circle) and Nrf2A502Y (red circle) 
���

binding sites. The numbers in parenthesis show total numbers of Nrf2 or Nrf2A502Y binding 
���

sites. (B) Representative binding peaks of Nrf2 and Nrf2A502Y. The representative histograms 
���

of tag count observed in ChIP-ed and Input samples from WT-specific, Common, and 
�	�

AY-specific sites are shown. Scale bars, 1 kb. (C) Fold-enrichment (ChIP-ed/Input) values 
�
�

of Nrf2 (left panel) and Nrf2A502Y (right panel) binding at WT-specific (WT-sp.), Common 
���

(Comm.), and AY-specific (AY-sp.) sites. In the box plots, bottom and top of the boxes 
���

correspond to the 25th and 75th percentiles and the internal band is the median. The bars 
���

outside the boxes indicate the highest and lowest data within 1.5 interquartile ranges of the 
���

upper and lower quartiles, respectively. Wilcoxon rank sum test, *** p<0.001. (D) The 
���

motifs enriched in Nrf2 and Nrf2A502Y binding sites. These motifs were identified using de 
���

novo motif-discovery algorithm MEME-ChIP version 4.10.0. (E) Frequency of nucleotides 
���

at position 0 in WT-specific (WT-sp.), Common (Comm.) and AY-specific (AY-sp.) sites. 
���

Note that AY-sp. prefers C at this position, as is the case for MARE, while WT-sp. prefers 
�	�

A/G at this position. (F) Frequency of TMA-containing CsMBE in WT-specific, Common, 
�
�
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and AY-specific sites.  The consensus sequence of the TMA-containing CsMBE is shown in 
���

top panel. The TMA motif (position –5 to –3, M=A or C) is indicated in red.  
���

 
���

Figure 4. Substitution of Nrf2 to Nrf2A502Y abrogates electrophilic stress response in 
���

mice. (A and B) Scatter plots comparing transcript levels at basal (x-axis) and DEM-induced 
���

(y-axis) states in the Nrf2+/+ (WT, panel A) and Nrf2AY/AY (AY, panel B) macrophages. We 
���

found that transcript levels of 696 and 706 genes were significantly upregulated and 
���

downregulated by DEM (q<0.05), respectively, in WT mouse macrophages. Similarly, 
���

transcript levels of 149 and 254 genes were significantly upregulated and downregulated by 
�	�

DEM  (q<0.05), respectively, in Nrf2AY/AY mouse macrophages. These genes are plotted. 
�
�

The numbers of upregulated (UP) and downregulated (DOWN) genes are shown at the upper 
���

left and lower right, respectively. (C) Venn diagram showing the overlap between 
���

differentially expressed genes (DEGs). DEGs in the Nrf2+/+ (WT) and Nrf2AY/AY (AY) 
���

macrophages are shown in blue and red, respectively. The numbers in parenthesis show total 
���

numbers of DEGs. Note that the genes responding to DEM, irrespective to the upregulated or 
���

downregulated, are significantly reduced in Nrf2AY/AY macrophages. (D) Heat maps showing 
���

relative expression levels of WT-specific (left), Common (middle) and AY-specific (right) 
���

DEGs. The numbers of upregulated (UP) and downregulated (DOWN) genes are shown 
���

above the heat maps. (E) KEGG biological pathways enriched in WT-specific DEGs. 
�	�
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Figure 5. Nrf2A502Y mutant fails to induce Nrf2 target genes. (A) GSEA histogram of the 
���

gene set containing well-known Nrf2 target genes. We compared a gene set that contains 
���

Nrf2-target genes differentially expressed by DEM specifically in the Nrf2+/+ macrophages 
	��

but not in Nrf2A502Y macrophages with a known Nrf2-dependent gene set [11, 43]. The 
	��

enrichment score (ES) and the nominal p value are indicated. The gene expression spectrum 
	��
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(red to blue) is shown in the bottom of the histogram. Note that known Nrf2 target genes are 
	��

contained in the DEM-upregulated gene group in the Nrf2+/+ macrophages. (B and C) 
	��

Transcriptome analyses of representative genes induced by DEM. Typical Nrf2-target genes 
	��

that are induced specifically in Nrf2+/+ (WT, n=3) macrophages, but not in the Nrf2AY/AY 
		�

(AY, n=3) macrophages, as shown in panel B. Note that there exist a group of genes that are 
	
�

induced by DEM both in the Nrf2+/+ and Nrf2AY/AY macrophages, as shown in panel C. 
	��

Expression levels of the genes are expressed as FPKM (fragments per kilobase of exon per 
	��

million fragments). Graph data represent the mean ± SD. Paired t-test, *p<0.05. (D and E) 

��

Representative histograms of Nrf2 and Nrf2A502Y occupancy in proximal region of 

��

representative Nrf2 target genes. WT-specific binding and common binding are shown in 

��

panels D and E, respectively. 

��
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Figure 6. Nrf2A502Y mice are sensitive to APAP-induced liver injury. (A) Scheme for the 

��

analysis of sensitivity of Nrf2A502Y mice to acetaminophen (APAP) toxicity. (B) AST (left) 

	�

and ALT (right) levels in the plasma of Nrf2+/+ (WT, blue circle) and Nrf2AY/AY (AY, red 


�

square) mice. The plots and bars show individual values and means, respectively. Student’s 

��

t-test (two-tailed), *p<0.05. (C) Liver pathology of high-dose APAP-treated Nrf2+/+ and 

��

Nrf2AY/AY mice. HE staining of representative liver sections of Nrf2+/+ (WT) and Nrf2AY/AY 
���

(AY) mice are shown. Scale bars, 100 µm. 
���
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Figure 7. Schematic diagram of target recognition by Nrf2 and Nrf2A502Y. Nrf2-sMaf 
���

prefers CsMBE harboring an A/G nucleotide at the 5’-flanking region of the core sequence 
���

(left side), while Nrf2A502Y-sMaf prefers MARE harboring a C nucleotide at that position 
���

(right side), similar to sMaf homodimer. The common binding sites of Nrf2 and Nrf2A502Y do 
�	�

not show preference between A/G/C nucleotides at that position (middle). Majority of the 
�
�
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cytoprotective genes (e.g., detoxifying and antioxidant genes) are regulated by Nrf2 in a 
���

CsMBE-dependent manner. Nrf2A502Y fails to recognize CsMBE and therefore fails to 
���

induce cytoprotective genes, which results in a weak defense in the Nrf2AY/AY mice. 
���
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Figure 7
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