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Abstract

Nrf2-small Maf (sMaf) heterodimer is essential for the inducible expression of
cytoprotective genes upon exposure to oxidative and xenobiotic stresses. While the
Nrf2-sMaf  heterodimer recognizes DNA  sequences referred to as the
antioxidant/electrophile responsive element (ARE/EpRE), we here define these DNA
sequences collectively as CNC-sMaf binding element (CsMBE). In contrast, large and small
Maf proteins are able to form homodimers that recognize the Maf recognition element
(MARE). CsMBE and MARE share a conserved core sequence but they differ in the
5’-adjacent nucleotide neighboring the core. Because of the high similarity between the
CsMBE and MARE sequences, it has been unclear how many target binding sites and target
genes are shared by the Nrf2-sMaf heterodimers and Maf homodimers. To address this issue,
we introduced a substitution mutation of alanine to tyrosine at position 502 in Nrf2, which
rendered the DNA-binding domain structure of Nrf2 similar to Maf, and generated knock-in

mice expressing the Nrf2"**Y

mutant. Our chromatin immunoprecipitation-sequencing
analyses showed that binding sites of Nrf2****"-sMaf were dramatically changed from
CsMBE to MARE in vivo. Intriguingly, however, one-quarter of the Nrf2***Y-sMaf binding
sites also bound Nrf2-sMaf commonly and vice versa. RNA-sequencing analyses revealed
that Nrf2*°*Y-sMaf failed to induce expression of major cytoprotective genes upon stress

2% mutant mice to acute

stimulation, which increased the sensitivity of Nr
acetaminophen toxicity. These results demonstrate that the unique cistrome defined as

CsMBE is strictly required for the Nrf2-sMaf heterodimer function in cytoprotection and

that the roles played by CsMBE differ sharply from those of MARE.
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55 * Substitution of Ala-502 to Tyr renders the DNA-binding of Nrf2 similar to that of Maf
56 - Sequence recognition of Nrf2****¥ shifts from CsMBE to MARE
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Introduction

Nrf2 (NF-E2-related factor 2) is a CNC (cap ’n’ collar) family transcription factor that
regulates inducible expression of an array of cytoprotective genes [1-3]. Nrf2 activates target
genes in a stress-dependent manner through forming a heterodimer with small Maf proteins
(sMaf). Under normal conditions, Nrf2 protein is constitutively trapped by Keapl
(Kelch-like ECH-associated protein 1) and is degraded through the proteasome pathway in
the cytoplasm [4, 5]. Oxidative and electrophilic stresses inactivate Keap1l and stabilize Nrf2
[3]. The stabilized Nrf2 is translocated into nucleus and activates expression of target genes
that encode enzymes/proteins scavenging of reactive oxygen species (ROS) or related to
detoxification of xenobiotics and drug metabolism.

The CNC family transcription factors, including NF-E2 p45, Nrfl, Nrf2, Nrf3, Bachl
and Bach2, form heterodimers with the sMaf family of transcription factors, MafF, MafG
and MafK [6-9]. The CNC-sMaf heterodimers bind to a consensus DNA sequences, which
are called various names, such as antioxidants response element (ARE) [10, 11], electrophile
response element (EpRE) [12], and NF-E2 binding element [13], via their basic
region-leucine zipper (bZip) structure. We have compared these binding sequences and
found that they show a common consensus sequence, 5’-(A/G)TGA(G/C)nnnGC-3’, but
these recognition elements are partially distinct from the element bound by Maf homodimers.
Therefore, in this study we refer to the sequence recognized by CNC-sMaf, including the
ARE, the EpRE and the NF-E2 binding element, as CNC-sMaf binding element (CsMBE).
Of note, the CsMBE sequence shares substantial overlap with that of the Maf recognition

element (MARE), a palindromic motif 5’-TGCTGA(G/C)TCAGCA-3’ (underline shows

overlapping sequence with CsMBE) that binds homodimers of large Maf proteins (c-Maf,
MafA/L-Maf, MafB and Nrl) and sMaf proteins [14-16]. Because of the significant overlap,

there has been substantial confusion in the cistrome dynamics or the binding sequence
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selection by the CNC-sMaf heterodimers and Maf homodimers.

CsMBE and MARE harbor TRE (phorbol 12-O-tetradecanoate-13-acetate
(TPA)-responsive element; TGA(G/C)TCA) or binding site for AP-1 in the middle of the
motifs [17]. MARE harbors GC at the 5’ of TRE, while CsMBE retains A/G at the position.
It is interesting to note that the presence of a GC dinucleotide adjacent to the TRE stabilizes
MafG homodimer binding [11, 15, 16]. Indeed, the surface plasmon resonance (SPR)-based
protein-DNA interaction studies revealed that the GC sequence is essential for recognition
by sMaf proteins [18]. Structural analysis of MafG revealed that Arg-57, Asp-61 and Tyr-64
of the basic region of MafG are important for the recognition of the GC sequence [19, 20].
These three residues are highly conserved in the large Maf and sMaf family proteins and
their ancestors [21-24].

While Arg-57 and Asp-61 of MafG are conserved in the basic region of the CNC family
proteins, the residue of Nrf2 corresponding to Tyr-64 of MafG is converted to alanine
residue (Ala-502). The alanine residue is highly conserved among the CNC family
transcription factors (Nrfl, Nrf2, Nrf3, NF-E2 p45, Bach1 and Bach2) and ancestors of CNC
family proteins; SKN-1 (Skinhead family member-1) in Caenorhabditis elegans [25], CncC
in Drosophila melanogaster [26] and Nfe2l2a in Danio rerio [27, 28]. We and others
previously found that the alanine and tyrosine in the basic region are critical residues to
determine the unique binding preference of Nrf2-sMaf heterodimer and Maf homodimer to
CsMBE and MARE, respectively [29, 30]. A heterodimer of an Nrf2 mutant generated by
replacing the Ala-502 residue with a tyrosine residue (Nrf2"**"*Y) and MafG displays binding
preferences similar to MafG homodimer [29]. Since both Nrf2**"*" and MafG require the

GC sequence in the TRE flanking region, the Nrf2****"

-sMaf heterodimer displays similar
high-affinity binding to the palindromic MARE to that of MafG homodimer.

To assess the contribution of CsMBE recognition by Nrf2-sMaf to cytoprotective

5
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function, we generated Nrf2"*"*¥

mutant knock-in mice using a genome-editing technique.
Utilizing peritoneal macrophages from the Nrf2****" mutant knock-in mice, we performed
comprehensive analyses of Nrf2 binding sites [chromatin immunoprecipitation
(ChIP)-sequencing (ChIP-Seq)] and gene expression profiles [RNA-sequencing (RNA-Seq)].

To our surprise, we found that the Nrf2"***"

mutant fails to support the expression of
three-quarters of the electrophile-inducible cytoprotective genes, including glutathione
conjugation- and hydrogen peroxide degradation-related enzyme genes, inducible expression

£22°02Y mutant still

of which are normally supported by wild-type Nrf2. Meanwhile, the Nr
retains the ability to support the expression of one-quarter of the electrophile-inducible genes
under the Nrf2 regulation. These results thus unequivocally demonstrate that CsMBE and
MARE, binding sequences for CNC-sMaf heterodimer and Maf homodimer, respectively,
generate distinct sets of gene regulations. Specific recognition of the CsMBE by the

Nrf2-sMaf heterodimer is critical for the inducible expression of Nrf2 target genes, which

play key roles in the cytoprotection against ROS and toxic electrophiles.
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Materials and methods

Generation of Nrf2"*"?" knock-in mice. A plasmid expressing single-guide RNA (sgRNA)
and Cas9 was constructed as described previously [31]. Plasmid vector pX330 [32]
expressing Cas9 and gRNA was digested with Bbsl and a pair of oligo DNA recognizing
Nrf2 targeting site (5’-AAG TCG CCG CCC AGA ACT GT-3’) was ligated to the linealized
vector. Donor oligo DNA encoding substitution from alanine to tyrosine was designed as
follows; 5°-ATC CGA GAT ATA CGC AGG AGA GGT AAG AAT AAA GTC TAC GCC
CAG AAC TGT AGG AAA AGG AAG CTG GAG-3’. The plasmid and donor DNA were
co-injected into BDF1 fertilized eggs. We obtained two lines of Nrf2"*"?" knock-in mice. All
mice were handled according to Regulations for Animal Experiments and Related Activities

at Tohoku University.

Mouse genotyping. Genomic DNA was extracted from a piece of tail. The DNA samples
were genotyped by using TagMan SNP Genotyping Assay System (Applied Biosystems).
Wild type (WT) alleles were detected by 2’-chloro-7’-phenyl-1,
4-dichliro-6-carboxyfluorescein (VIC)-labeled probes, and mutant alleles were detected by

6-carboxyfluorescein (FAM)-labeled probes.

Genomic DNA and ¢cDNA sequencing. Genomic DNA was extracted from a piece of tail.
RNA extractions from brain, thymus, lung, heart, liver, pancreas, spleen, kidney, esophagus,
skeletal muscle were conducted for cDNA synthesis. Targeted region of Nrf2 gene was
amplified by PCR using following primers; forward, 5’- AAG ACA AAC ATT CAA GCC
GC-3’; reverse, 5’- GCT TTT GGG AAC AAG GAA CA-3’. The amplicon was sequenced
using ABI 3100 sequencer. The primer sequence for sequence was 5’-GCT TTT GGG AAC

AAG GAA CA-3’.
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Peritoneal macrophage isolation and cell culture. 7-8 weeks of mice were received an
intraperitoneal injection of 4% thioglycolate broth. Four days later, macrophages collected
by intraperitoneal lavage were cultured in RPMI 1640 medium containing 10% fetal bovine
serum and 1% penicillin-streptomycin [33]. For analysis of Nrf2-induced state, the
macrophages were treated with 100-uM diethylmaleate (DEM). To test the cell viability
after 12 hours of menadione treatment, Cell Count Reagent SF (nacalai tesque) was used.

DEM and menadione were from Wako Pure Chemicals and Sigma-Aldrich, respectively.

Flow cytometry analysis. The cells were stained with antibodies to Gr-1, Macl, and F4/80
conjugated with FITC, APC, and PE, respectively. These antibodies were from eBioscience.
The stained cells were analyzed with FACSCanto II and the data analyses were performed

with FlowJo software (Tree Star).

RNA extraction and quantitative RT-PCR. RNA was extracted with Sepasol-RNA I
Super G (nacalai tesque) and reverse-transcribed with ReverTra Ace qPCR RT Master Mix
with gDNA Remover (TOYOBO) according to the manufacturer’s instruction. Quantitative
PCR was run on ABI7300 (Applied Biosystems). We used the following primers and probe
to detect mRNA levels; Nrf2, forward primer, 5’-CAA GAC TTG GGC CAC TTA AAA
GAC-3’; reverse primer, 5’-AGT AAG GCT TTC CAT CCT CAT CAC-3’; probe 5’-AGG
CGG CTC AGC ACC TTG TAT CTT GA-3’, 18S rRNA, forward primer, 5’-CGG CTA
CCA CAT CCA AGG AA-3’; reverse primer, 5’-GCT GGA ATT ACC GCG GCT-3’; and

Tagman probe, 5’-TGC TGG CAC CAG ACT TGC CCT C-3’.

Immunoblot analyses. Peritoneal macrophages were treated with 100-uM DEM for 3 hours.
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Nuclear lysate for immunoblot was prepared using NE-PER Nuclear and Cytoplasmic
Extraction Reagents (ThermoFisher Scientific). 5 pg of nuclear lysate was subjected to
immunoblot using anti-Nrf2 [34] and anti-Lamin B (M-20) (Santa-Cruz; sc-6217) antibodies.
The densitometries of image were analyzed with ChemiDoc MP Imaging System (Bio-Rad),

and normalized to Lamin B intensity.

ChIP-Seq analysis. For ChIP-Seq analysis, the peritoneal macrophages were treated with
100-uM DEM for 4 hours as described [11] with minor modifications. ChIP was performed
with anti-Nrf2 antibody (Cell Signaling Technology; D1Z9C). DNA libraries were prepared
from 1.5 or 2 ng of ChIP and input samples quantified with Qubit Fluorometer (Life
Technologies), using Mondrian SP+ and Ovation SP Ultralow DR Multiplex System
(TaKaRa). The constructed libraries were amplified by PCR and DNA fragments in 300-600
bp in size were yielded with AMPure XP Kit (BECKMAN COULTER). Prepared samples
were quantified by quantitative MiSeq (qMiSeq) method [35], followed by high throughput
sequencing using HiSeq2500 (Illumina) to generate 101 base-single reads. Three biological
replicates of ChIPed DNA and Input DNA prepared from each genotype and ChIP-Seq

analyses were conducted with these samples.

ChIP-Seq data analyses. The sequenced reads were mapped to the mouse genome (mm9)
using Bowtie2 software [36]. The mapped tags were visualized by using Integrative
Genomics Viewer [37]. Peak calling was performed using a model-based analysis of
ChIP-seq (MACS) version 1.4.2 [38]. DNA motif construction was performed using
MEME-ChIP version 4.10.0 [39]. Extraction of ARE motifs was performed using R based

script.
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RNA-Seq analysis. Total RNA was prepared by using RNeasy Mini Kit (QIAGEN) and 1.5
pg of total RNA was used for further steps. Isolation of poly(A)-tailed RNA and library
construction were performed using Sureselect Strand Specific RNA Sample Prep Kit
(Agilent Technologies). The libraries were sequenced using NextSeq500 (Illumina) for 86

cycles of single read. Three biological replicates were performed in each genotype.

RNA-Seq data analyses. TopHat [40] was used for mapping of RNA-Seq data, and
Cufflinks version 2.1.1 [41] was used for quantifying the expression level of each gene as
fragments per kilobase of exon per million fragments (FPKM) with default parameters. The
differentially expressed genes were identified using Cuffdiff version 2.1.1, threshold of ¢
value < 0.05. The KEGG pathway analysis was performed using DAVID Bioinformatics

Resource 6.7 (http://david.abce.nciferf.gov/). The KEGG pathway significantly enriched

were defined as p value < 0.05. The p values were corrected using Benjamini-Hochberg
procedure. The gene set analysis was performed using the Gene Set Enrichment Analysis
(GSEA) software [42]. The gene set was created by using data described in references [11,

43].

Acetaminophen (APAP) induced liver injury model. Following 16-hours fasting, 10-12
weeks male mice were treated with 125-mg/kg or 200-mg/kg APAP by intraperitoneal
injection and sacrificed 6 hours after dosing. APAP was purchased from Sigma-Aldrich.
Using blood serum obtained from posterior vena cava of anesthetized animal, plasma alanine
transaminase (ALT) and asparate transaminase (AST) were determined using FUIJI
DRI-CHEM 7000V (FUJIFILM). Liver sample were fixed in 10% formalin solution and

stained with hematoxylin and eosin (HE).
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Accession number. The data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus [44] and are accessible through GEO Series accession number

GSE75177 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75177).
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Results

Generation of Nrf2"’””" knock-in mice. Dimetric transcription factors that contain Maf
protein can bind various cis-acting element sequences. Whilst Maf homodimers recognize
MARE sequences, CNC-sMaf heterodimers recognize CsMBE (Fig. 1A). Molecular basis of
this cis-element selection resides in the structural difference in Maf and CNC transcription
factors, and substituting an amino acid residue modifies this specificity. Substitution of Nrf2
Ala-502 residue to tyrosine brings in a significant difference in cistrome, and Nrf2*>**Y
becomes recognizing Maf-oriented sequence. Accordingly, the recognition sequence
specificity of Nrf2-sMaf heterodimer changes from CsMBE to MARE [29] (Figs. 1A and
1B). However, in biological context in vivo, the importance of Nrf2 binding specificity to
CsMBE has not been fully evaluated.

To examine how germline modification to Nrf2****" influences the Nrf2-sMaf activity,
we generated Nrf2"°"?" knock-in mice using the CRISPR/Cas9 technology. To this end, we
designed a guide RNA (gRNA) containing 20 nucleotides capable of recognizing the Nrf2
target site followed by a protospacer adjacent motif (PAM) to recruit Cas9 to the target site
(Fig. 1C). We generated a plasmid expressing both Cas9-encoding mRNA and the gRNA
[31]. We next introduced 69-mer oligo-DNA including mutations from GCC to TAC
resulting in substitution of the 502nd alanine to tyrosine (A502Y) for homologous
recombination. We co-injected both plasmid and oligo-DNA into fertilized eggs. We
obtained 24 pups. To verify homologous recombination of genomic DNA, we sequenced the
targeted regions, and identified two pups carrying mono-allelic A502Y mutation. We then
crossed these Nrf2**"*" founder mice with wild-type mice and established two lines of
knock-in substitution mice. Through genomic DNA sequencing analyses, we confirmed both
TAC (encoding tyrosine) and GCC (encoding alanine) in the heterozygous (NVr, 7y
offspring (Fig. 1D, middle panel).
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A502Y Y/+
2

To examine whether Nr is expressed in the N7, mice, we prepared RNA

samples from various tissues of the Nrf2'" mice, and synthesized Nrf2 ¢cDNA and
sequenced. We detected comparable level of TAC and GCC in all the tissues of the Nrf2*"*

mice examined, indicating successful homologous recombination of Nrf2**"*Y (Fig. 1E). We

Y/+ Y/AY
)

further crossed Nr, mice and obtained homozygous (Nr, mice (Fig. 1D, lower

AY/AY

panel). Body-weight-gain of both male and female Nrf2 mice is comparable with that of

the wild-type mice (Fig. 1F) and the mice were fertile.

Nrf2'V1Y macrophages are more susceptible to the cytotoxic effect of xenobiotics. To
- YAY . . e :

examine whether Nrf2? mice preserves cytoprotective activities assisted by Nrf2, we

employed the thioglycolate-elicited peritoneal macrophage system [33]. We injected

Y/AY

thioglycolate into Nrf2+/+ and Nr, mice and harvested peritoneal macrophages (Fig.

2A). Almost all cells obtained from both NrﬂJr/Jr and Nrf2* vAY peritoneal lavage exhibited
Mac1'Gr1 F4/80" surface markers, indicating that macrophage induction was comparable
between Nrf2"" and Nrf2*"*Y mice (Fig. 2B).

We next treated the peritoneal macrophages, harvested both from Nrf2"" and Nrf2*"4"
mice, with an electrophilic Nrf2 inducer DEM (Fig. 2A). We found that the Nrf2 mRNA
level of NerAY/AY macrophages was comparable to that of wild type under the basal and
DEM-induced conditions (Fig. 2C). Furthermore, comparable level of Nrf2 protein was
accumulated in the nucleus under the DEM-treated condition in the Nrf2"" and Nrf2*"4¥
macrophages (Figs. 2D and 2E). These results indicate that stress-responsiveness of NerAY/ Ar

+/+

macrophages were not significantly different from that of Nrf2""", regarding intercellular

Nrf2 localization and the abundance.

A302Y Y/AY
2

To test cytoprotective function of Nr , we then examined susceptibility of N7,

macrophages against menadione, which is a free radical-generating compound and is
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well-established stressor for testing roles played by Nrf2 in the oxidative stress response [45].

+/+

Cell viabilities of the Nrf2'"*" macrophages were lower than those of the Nrf2

AY/AY

macrophages (Fig. 2F), indicating that the Nrf2 macrophages were more susceptible to

+/+

toxicity of xenobiotics than the Nrf2""" macrophages.
ChIP-Seq analyses of Nrf2 and Nrf2*°"?Y reveal their preference of binding sequences.
Since the Nrf2*"*' macrophages were more susceptible to toxicity of xenobiotics, we

assumed that Nrf24>°%Y

might fail to recognize CsMBE in the regulatory regions of Nrf2
target genes and therefore fail to induce their expression. To confirm preferences of binding
sequences of Nrf2 and Nrf2****Y in vivo, we performed ChIP-Seq analyses using an

++
™ and

anti-Nrf2 antibody on the DEM-treated peritoneal macrophages derived from Nrf2
Nrf2"4Y mice. The ChIP-Seq analyses were performed using three biological replicates
from each genotype. We defined Nrf2 and Nrf2****" binding peaks as peaks called in three
or two samples in the three replicates [46]. We obtained 1062 peaks for Nrf2 binding sites
and 1304 peaks for Nrf2**"*" binding sites (Fig. 3A). Of the 1062 Nrf2 binding sites, 669
peaks were recognized only by Nrf2. We thus designated the 669 sites as “WT-specific”
sites. Meanwhile, we identified 911 peaks to which only Nrf2****" bound. We named these
911 sites as “AY-specific” sites. Of these Nrf2 and Nrf2****" peaks, 393 peaks overlapped
between both Nrf2 and Nrf2***?Y, We designated the 393 sites that both Nrf2 and Nrf2*>**Y

bound to as “Common” sites. Typical peak profiles for Nrf2, Nrf2"***¥

and the overlap of
Nrf2 and Nrf2**"*" are shown in Figure 3B. We found that the Nrf2 binding to the common
sites showed higher probability of binding than that of WT- and AY-specific sites,
suggesting that Nrf2 and Nrf2****" binding to Common sites is tighter than that to WT- and

AY-specific sites (Fig. 3C). These results thus demonstrate that the alanine to tyrosine

substitution of Nrf2 502 position elicits marked conformation change, so that target-binding
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sites of Nrf2/4°0%Y

in vivo are largely different from those of wild-type Nrf2.

To determine consensus binding motifs for Nrf2****Y and Nrf2 in WT-specific, Common
and AY-specific sites, we extracted sequences within +150 bp of each peak center and
performed de novo motif analysis. Core sequences of TRE (position 1-7) neighbored by 3’
GC motif (position 8 and 9) appeared to be similar in WT-specific, Common and
AY-specific sites (Fig. 3D). Consistent with our previous report [11], nucleotides A or G
(A/G) at 5’-end neighboring to TRE core sequence (position 0) was enriched in WT-specific
sites (E-value = 5.8x107**), conforming our original observation that Nrf2 recognizes
CsMBE. On the other hand, the most enriched nucleotide at position 0 of AY-specific sites
was C, showing that the binding preference of Nrf2**"*" mimics that of sMaf homodimer or
MARE in vivo (E-value = 2.5x10™*"). Of note, we did not detect enrichment of a specific
base at position 0 in Common sites by de novo motif analysis (E-value = 1.2x107%),

To analyze the nucleotide at position 0 in detail, we extract core motifs (position 1-9)
within £150 bp of each peak center and examined frequency of bases at position O.
Nucleotides A/G and C were enriched at position 0 of TRE in WT-specific and AY-specific
sites, respectively, showing a good agreement with de novo motif analysis (Fig. 3E). On the
other hand, we found that A, G, or C but not T were enriched at position 0 in Common sites,
showing that Common sites exhibit DNA preference of either WT-specific or AY-specific
sites at position 0 (Fig. 3E).

A number of previous papers show that TMA sequence located the 5' side of the CsSMBE
(position —5 to —3 in Fig. 3F, M represents A or C) influences activation of genes containing
the element [11, 47-50]. Therefore, we examined prevalence of the TMA motif in 5’ region
of WT-specific, Common and AY-specific sites. We found that the TMA-motif, especially
TCA-motif, was observed in 6.9% and 8.0% of CsMBE of WT-specific and Common sites,

respectively. On the other hand, TMA sequence was not enriched in AY-specific sites (3.0%

15
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of motif, Fig. 3F). These results suggest that TCA at position —5 to —3 may support the
binding of Nrf2-sMaf heterodimer to CsMBE but not support the binding of Maf homodimer
to MARE in vivo.

Impairment of transcriptional activity in Nrf2*>"?Y

macrophages. Since the preference
of binding sequences of Nrf2****¥ shifted from CsMBE to MARE, it is expected that
Nrf2*%Y might support expression of a distinct gene set from that supported by Nrf2. To
examine this issue, we performed RNA-Seq analysis and compared gene expression profiles
in peritoneal macrophages from Nrf2"”"* and Nrf2*"" mice between basal and DEM-induced
conditions. We found that expression levels of 1402 genes were significantly changed upon
DEM stimulation in the Nr/2”" macrophages, in which 696 genes were upregulated and 706
genes were downregulated (Fig. 4A). On the other hand, we found that expression levels of

AY/AY

402 genes were changed upon DEM stimulation in Nrf2 macrophages, in which 148

genes were upregulated and 254 genes were downregulated (Fig. 4B). Thus, the numbers of

upregulated and downregulated genes were strikingly decreased in Nrf2*"*Y

macrophages
compared to those in N7/2”" macrophages.
Furthermore, the majority (309 out of 402 genes) of upregulated and downregulated

genes [referred to as differentially expressed genes (DEGs)] in Nrf2*74"

macrophages
overlapped with DEGs in the Nrﬂ”+ macrophages (Figs. 4C). As shown in Figure 4D, we
identified 1093 DEGs (586 and 507 genes were upregulated and downregulated,
respectively) observed only in the Nrf2”" macrophages (WT-specific DEGs), 309 DEGs
(110 and 199 genes were upregulated and downregulated, respectively) observed in both
Nr2"" and Nrf2*"Y macrophages (Common DEGs), 93 DEGs (38 and 55 genes were

AY/AY

upregulated and downregulated, respectively) observed only in the Nrf2 macrophages

(AY-specific DEGs). The number of WT-specific DEGs was much larger than those of
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common and AY-specific DEGs. These results unequivocally demonstrate that Nrf2*>**Y

lacks the induction and repression abilities for the majority of Nrf2 target genes.

To annotate upregulated and downregulated genes in the Nrf2”" and Nrf274"
macrophages, we performed a KEGG pathway analysis. We found that known
Nrf2-dependent pathways such as glutathione metabolism and pentose phosphate pathway
were enriched in genes upregulated specifically in the Nrf2+/+ macrophages (Fig. 4E). On the
other hand, inflammation-related pathways such as chemokine signaling pathway, focal
adhesion and leukocyte transendothelial migration pathways were enriched in the gene group
specifically downregulated in the Nrf2""* macrophages, showing very good agreement with

the recent findings that Nrf2 regulates anti-inflammatory genes [51, 52].

Nrf2*3Y fails to induce major cytoprotective genes. Since known Nrf2-dependent
pathways were enriched in the gene set upregulated specifically in the Nr/2"" macrophages,
we next examined whether Nrf2**"* failed to induce known Nrf2 target genes. Our gene set
enrichment analysis (GSEA) showed that differentially expressed genes only in the Nrf2+/+
macrophages contained known Nrf2 target genes (Fig. 5SA). We found that expression levels
of genes related to quinone detoxification (Ngol), glutathione (GSH) conjugation (Gstm!
and Gstpl), GSH synthesis (Gss, Gelm and Gcele), GSH reduction (Gsr), hydrogen peroxide
degradation (Cat), and pentose phosphate pathway (7aldol) were induced specifically in the
Nrf2"" macrophages (Fig. 5B). In contrast, DEM induction of these genes was abrogated
almost completely in the Nrf2***Y macrophages. Expression levels of genes related to heme
degradation (Hmox1), transcription factor (Mafg), and autophagy (Sgstml) were induced
both in the Nrf2"" and Nrf2*"" macrophages. These results indicate that Nrf2****Y lost

ability to induce major cytoprotective genes.

To assess whether Nrf2 and Nrf2**?Y directly regulate these genes, we examined
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binding peaks of Nrf2 and Nrf2****Y ChIP-Seq in the proximity of these genes. Expectedly,
the genes that were induced specifically in the Nrf2"" macrophages, including Ngol, Gelm,
Gss and Cat, harbored WT-specific peaks (Fig. 5D). In addition, the genes that were induced
both in the Nrf2"" and Nrf2*"*" macrophages, including Mafg, HmoxI and Sgstm1, harbored
Common peaks (Fig. 5E). These results support our contention that differences in the

Nrf2-sMaf cistrome indeed affect the gene expression profiles.

CsMBE recognition of Nrf2-sMaf is required for liver protection from APAP toxicity.
To examine whether Nrf2****Y mutant mice are more susceptible to toxicity than wild-type
mice, we finally examined susceptibility of Nrf2"" and Nrf2*Y*Y mice to acetaminophen
(APAP) toxicity. We intraperitoneally administered low-dose (125 mg/kg) and high-dose
(200 mg/kg) APAP to Nrf2”" and Nrf2*Y™Y mice, which were fasted for 16 hours
beforehand. We analyzed these mice 6-hours after re-feeding (Fig. 7A).

Levels of liver damage indicators, ALT and AST, in the NerAY/AY mice were
significantly higher than those in the Nr/2"" mice in the low-dose examination (Fig. 7B).
While there were some fluctuations perhaps due to toxicity in the high-dose examination, the
results showed reproducibility. Histological analysis revealed that liver damage in the
Nr2*Y2Y mice was more severe than those in the Ni/2"* mice (Fig. 7C). These results thus

demonstrate that the Nrf2*%?Y

mutant mice are more susceptible to the acute toxicity of
APAP than wild-type mice. Taken together, this study supports the notion that Nrf2-sMaf

specifically recognizes CsMBE sequences, which is necessary to the cytoprotective function.
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Discussion

Since CsMBE and MARE share common core sequence, it has been uncertain how many
target binding sites and target genes are shared by the Nrf2-sMaf heterodimers and Maf
homodimers. In this study, we wish to clarify this issue, and have generated a knock-in line

of mice expressing Nrf2**"*"

mutant. As summarized in Figure 7, we first verified that
CsMBE is substantially different from MARE in vivo, despite of their similarity in terms of
DNA sequences. Of note, while Nrf2-sMaf prefers A/G nucleotide at 5’-flanking region of
the core sequence (CsMBE, left side), Nrf2***?Y-sMaf prefers C at that position (right side),
similar to the Maf homodimer-binding site (MARE), demonstrating that the sequence

recognition of Nrf2*>%*Y

shifts drastically from CsMBE to MARE in peritoneal macrophages
in vivo. The common binding sites of Nrf2 and Nrf2****" do not show preference between
A/G/C nucleotides at the position. Of note, RNA-Seq data revealed that Nrf2*>**Y
substantially lost the ability to support the expression of majority of the cytoprotective genes

and, showing very good agreement with the results, Nrf2**%*Y

mutant mice are severely
susceptible to the APAP toxicity. Based on these results, we conclude that the Nrf2-sMaf
heterodimers have acquired the CsMBE recognition during molecular evolution, and this
progress is critical for the cytoprotective functions of our body.

An ancestor of CNC family proteins is SKN-1 in Caenorhabditis elegans [25, 53, 54].
SKN-1 regulates a set of cytoprotective genes responding to oxidative stress as is the case
for vertebrate Nrf2 [53]. Of note, despite of the functional similarity to Nrf2, SKN-1

recognizes ATGA(G/A) motif as a monomer. On the other hand, a CNC family protein in

Drosophila melanogaster, CncC, forms a heterodimer with sMaf protein, Maf-S, and

together recognize CsMBE [(A/G)TGA(G/C)nnnGC] [23]. The SKN-1 binding motif is
conserved within CsMBE (underlined), indicating the CNC transcription factors acquired

ability to recognize extended cis-element by forming heterodimer with sMaf proteins in
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process of the molecular evolution. We surmise that the acquired long cis-acting element
enables vertebrates to execute the strict gene regulation in their huge genomes through
competing with the other transcription factors sharing partly the cis-element. Furthermore,
differences of CsMBE and MARE reduce mutual interference between CNC-sMaf
heterodimers and Maf homodimers, resulting in selective activation of the genes required in
the response against oxidative and xenobiotic stresses.

Several reports indicate the importance of TMA motif at 5° flanking region of CsMBE
[47, 48, 50]. Showing good agreement with the studies, we found that TMA, especially TCA,
motifs are enriched in WT-specific and Common sites but not in AY-specific sites. While
the TCA motif appears to play important roles in Nrf2-sMaf heterodimer binding to CsMBE,
it still remains unclear which factor recognizes the TCA motif and how the binding of Nrf2
to CsMBE is stabilized upon the presence of the TCA motif.

On the other hand, since Nrf2****Y-sMaf heterodimers recognize MARE, Nrf2***Y_sMaf
has the potential to affect MARE-dependent transcription of large Maf and sMaf
homodimers. Large Maf proteins (c-Maf, MafA/L-Maf, MafB and Nrl) play critical roles in
maintenance of homeostasis and ontogeny, including lens development, glucose homeostasis

and macrophage differentiation [53, 55-57]. Although accumulation of Nrf2"***"

may
interfere these biological effects, we did not observe obvious abnormality in the Nrf2*"¥
mice except for high susceptibility to oxidative and xenobiotic stresses. These may be due to

A502Y
2

two reasons. First, Keapl constitutively degrades Nrf2 and Nr under normal

conditions, so that without a challenge of chemical Nrf2-inducers Nrf2****" does not
accumulate massively in our body. The pharmacological induction of Nrf2 and Nrf2*>**Y
accumulation by DEM or other inducers is transient. Second, compared with the

pharmacological induction, genetic induction by knocking-out or knocking-down of Keapl

is potent and constitutive, and therefore results in adverse effects [58, 59]. We surmise that

20



455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

analyses using genetic induction of Nrf2 may provide clues about this issue.

In addition to WT-specific (CsMBE) and AY-specific (MARE) binding sites, we
identified the Common binding sites that bind both Nrf2-sMaf and Nrf2****'-sMaf,
Nevertheless, it still remains enigmatic why both Nrf2-sMaf and Nrf2*°*Y-sMaf
heterodimers are able to bind to the Common sites. Our results show that the peaks
belonging the Common binding sites are highly enrichment compared with both WT-specific
and AY-specific binding sites, suggesting that the Common sites possess beneficial genomic
conditions for binding of these factors, such as adjacent interacting motifs of other
transcription factors that stabilize the binding of Nrf2-sMaf and sMaf homodimers.

We previously identified a competitive regulation between NF-E2 p45 and sMaf
heterodimer (p45-sMaf) and sMaf homodimer in mouse megakaryocytes [60]. In the study,
we identified that transgenic overexpression of sMaf severely repressed the p45-sMaf target
gene expression and resulting proplatelet formation. Our present results further support the
notion that binding of Nrf2-sMaf heterodimer to the Common genes seems to be competed
with the sMaf homodimer and vise-versa, and the competition between Nrf2-sMaf
heterodimer and sMaf homodimer affects expression profile of the Common genes. On the
other hand, WT-specific genes seem to be regulated by the Nrf2-sMaf heterodimer without
the competition.

In summary, we conclude that this study provides fundamental information that
enlightens the elaborate transcriptional regulation of a subset of cytoprotective genes. The
Nrf2-sMaf heterodimer sustains expression of the genes that are critical for cytoprotection
against oxidative and xenobiotic stresses. In order to achieve a quick response against these
stresses, it is crucial to select the target genes properly and timely, and CsMBE ensures the
Nrf2-sMaf heterodimer to specify the proper genes without the interference or competition

with large Maf and sMaf homodimers. Meanwhile, heterodimers of sMaf and CNC family
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transcription factors including Nrfl, Nrf2, Nrf3 and NF-E2 p45 regulates different target
genes via CsMBE recognition, indicating that the specificity of their gene regulation also
exists on different level (e.g. co-activator/co-repressor selection or epigenetic regulation) in
addition to simple recognition of DNA sequences [61]. Further analyses are necessary to
elucidate mechanisms how these transcription factors select specific target genes and exert

their diverse biological functions.
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Figure legends

Figure 1. Generation of Nrf2*°*?Y knock-in mice. (A) Cis-element recognition by
Nrf2-sMaf heterodimers and Maf homodimers. Nrf2-sMaf heterodimer recognizes CsMBE,
while Maf homodimer recognizes MARE. An amino acid substitution of Nrf2 502nd alanine
to tyrosine is expected to change the recognition specificity of Nrf2-sMaf heterodimers from
CsMBE to MARE. Critical GC sequence of MARE in the 5’ of TRE and corresponding A/G
sequence of CsMBE are underlined, and described as lock-and-key models in the scheme.
(B) Domain structure of Nrf2 protein. The 502" residue of alanine (A, blue letter) positioned
at Nrf2-ECH homology 1 (Nehl) domain is replaced by tyrosine (Y, red letter). (C)
Cas9/guide RNA (gRNA)-targeting site in Nrf2 gene. The sequences of gRNA and the donor
DNA co-injected for targeting mutagenesis are underlined. The proto spacer adjacent motif
(PAM) sequence is indicated by green. The 502™ alanine residue (blue) and corresponding
tyrosine residue (red) are shown. (D) Representative sequences of Nrf2 targeting region of
genomic DNA from Nrf2™*, Nrf2*Y"*, and Nrf2*Y*Y mice. The codons encoding alanine
(GCC) and tyrosine (TAC) are underlined. (E) Representative sequences of Nrf2 targeting
region of cDNA in NrﬂAY/ " mice. (F) The growth curves of Nrﬂ”+ (+/+, blue circle, male
n=5, female n=8) and Nrf2*"*Y (AY/AY, pink square, male n=6, female n=6) male and
female mice. Data represent the mean + standard deviations (S.D.).

Figure 2. Nrf2'"Y

macrophages are susceptible to cytotoxic effects of xenobiotics. (A)
Scheme for induction of peritoneal macrophages and Nrf2 accumulation. (B) Cellular
surface marker profiles of Nrf2”" and Nrf2*Y*Y macrophages. The cells recovered from
NrﬂH+ and NerAY/AY mice were stained with Macl, Gr-1, and F4/80 antibodies. (C) Nrf2
mRNA levels in the N2 and Nr2*Y*Y macrophages under basal (white) and

DEM-treated (gray) states. The abundance of each mRNA was normalized to rRNA.
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Average values for Nrf2"" macrophages under basal state were set to 1. Nif2"" n=4,
Nrf274Y n=6_ (D and E) Protein levels in the Nrf2"" and Nrf2*Y*Y macrophages under basal
(white) and DEM-treated (gray) states. Average values for N7/2"" macrophages under basal
state were set to 1. Lamin B was used as a loading control. Nrf2"* n=6, Nrf2*"*" n=5. (F)
Relative viabilities of Nrf2”" (WT, blue circle, n=5) and Nr2*"*Y (AY, red square, n=8)

macrophages under menadione treatment. Note that Nrj?AY/AY

macrophages are prone to die
upon the menadione treatment. Graph data represent the mean + SD. Student’s #-test

(two-tailed), *P<0.05, n.s., not significant.

Figure 3. AS502Y mutation of Nrf2 converts the binding preference of Nrf2 in vivo. (A)

Venn diagram showing the overlap between the Nrf2 (blue circle) and Nrf2**%*Y

(red circle)
binding sites. The numbers in parenthesis show total numbers of Nrf2 or Nrf2****¥ binding
sites. (B) Representative binding peaks of Nrf2 and Nrf2****. The representative histograms
of tag count observed in ChIP-ed and Input samples from WT-specific, Common, and
AY-specific sites are shown. Scale bars, 1 kb. (C) Fold-enrichment (ChIP-ed/Input) values
of Nrf2 (left panel) and Nrf2****Y (right panel) binding at WT-specific (WT-sp.), Common
(Comm.), and AY-specific (AY-sp.) sites. In the box plots, bottom and top of the boxes
correspond to the 25th and 75th percentiles and the internal band is the median. The bars
outside the boxes indicate the highest and lowest data within 1.5 interquartile ranges of the
upper and lower quartiles, respectively. Wilcoxon rank sum test, *** p<0.001. (D) The
motifs enriched in Nrf2 and Nrf2***Y binding sites. These motifs were identified using de
novo motif-discovery algorithm MEME-ChIP version 4.10.0. (E) Frequency of nucleotides
at position 0 in WT-specific (WT-sp.), Common (Comm.) and AY-specific (AY-sp.) sites.
Note that AY-sp. prefers C at this position, as is the case for MARE, while WT-sp. prefers

A/G at this position. (F) Frequency of TMA-containing CsMBE in WT-specific, Common,
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and AY-specific sites. The consensus sequence of the TMA-containing CsMBE is shown in

top panel. The TMA motif (position —5 to -3, M=A or C) is indicated in red.

Figure 4. Substitution of Nrf2 to Nrf2**"?Y abrogates electrophilic stress response in
mice. (A and B) Scatter plots comparing transcript levels at basal (x-axis) and DEM-induced
(y-axis) states in the Nrﬂ”+ (WT, panel A) and Nrj?AY/AY (AY, panel B) macrophages. We
found that transcript levels of 696 and 706 genes were significantly upregulated and
downregulated by DEM (¢<0.05), respectively, in WT mouse macrophages. Similarly,
transcript levels of 149 and 254 genes were significantly upregulated and downregulated by
DEM (¢<0.05), respectively, in Nrf2*Y*Y mouse macrophages. These genes are plotted.
The numbers of upregulated (UP) and downregulated (DOWN) genes are shown at the upper
left and lower right, respectively. (C) Venn diagram showing the overlap between
differentially expressed genes (DEGs). DEGs in the Nrﬂ”+ (WT) and NrﬂAY/AY (AY)
macrophages are shown in blue and red, respectively. The numbers in parenthesis show total
numbers of DEGs. Note that the genes responding to DEM, irrespective to the upregulated or

downregulated, are significantly reduced in Nrf2*Y4Y

macrophages. (D) Heat maps showing
relative expression levels of WT-specific (left), Common (middle) and AY-specific (right)
DEGs. The numbers of upregulated (UP) and downregulated (DOWN) genes are shown

above the heat maps. (E) KEGG biological pathways enriched in WT-specific DEGs.

Figure 5. Nrf2**?Y mutant fails to induce Nrf2 target genes. (A) GSEA histogram of the
gene set containing well-known Nrf2 target genes. We compared a gene set that contains
Nrf2-target genes differentially expressed by DEM specifically in the Nrf2”" macrophages

A3502Y
2

but not in Nr macrophages with a known Nrf2-dependent gene set [11, 43]. The

enrichment score (ES) and the nominal p value are indicated. The gene expression spectrum
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(red to blue) is shown in the bottom of the histogram. Note that known Nrf2 target genes are
contained in the DEM-upregulated gene group in the Nrf2"" macrophages. (B and C)
Transcriptome analyses of representative genes induced by DEM. Typical Nrf2-target genes
that are induced specifically in NrﬂH+ (WT, n=3) macrophages, but not in the NrﬂAY/AY
(AY, n=3) macrophages, as shown in panel B. Note that there exist a group of genes that are
induced by DEM both in the Nrf2"" and Nrf2*Y*Y macrophages, as shown in panel C.
Expression levels of the genes are expressed as FPKM (fragments per kilobase of exon per
million fragments). Graph data represent the mean + SD. Paired t-test, *p<0.05. (D and E)
Representative histograms of Nrf2 and Nrf2***Y occupancy in proximal region of

representative Nrf2 target genes. WT-specific binding and common binding are shown in

panels D and E, respectively.

Figure 6. Nrf2**"*Y mice are sensitive to APAP-induced liver injury. (A) Scheme for the
analysis of sensitivity of Nrf2*°%*Y mice to acetaminophen (APAP) toxicity. (B) AST (left)
and ALT (right) levels in the plasma of Nr/2"* (WT, blue circle) and Nrf2*Y2Y (AY, red
square) mice. The plots and bars show individual values and means, respectively. Student’s
t-test (two-tailed), *p<0.05. (C) Liver pathology of high-dose APAP-treated Nrf2"" and
Nrf28Y'AY mice. HE staining of representative liver sections of Nrf2”" (WT) and Nrf2*Y4Y

(AY) mice are shown. Scale bars, 100 um.

Figure 7. Schematic diagram of target recognition by Nrf2 and Nrf2**"*Y, Nrf2-sMaf
prefers CsMBE harboring an A/G nucleotide at the 5’-flanking region of the core sequence
(left side), while Nrf2**"*Y-sMaf prefers MARE harboring a C nucleotide at that position
(right side), similar to sMaf homodimer. The common binding sites of Nrf2 and Nrf2**"*" do

not show preference between A/G/C nucleotides at that position (middle). Majority of the
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788  cytoprotective genes (e.g., detoxifying and antioxidant genes) are regulated by Nrf2 in a

789  CsMBE-dependent manner. Nrf2***Y fails to recognize CsMBE and therefore fails to

AY/AY

790  induce cytoprotective genes, which results in a weak defense in the Nrf2 mice.
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