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sp0130 in every order of creation there are two sorts of creators, contrary yet
complementary

sp0140 (John Barth 1968)

s0010 7.1 Introduction

s0020 7.1.1 Ejaculate–female interactions are predicted to be complex and
evolutionarily dynamic

p0020 Sexual reproduction is complicated business. A review of sperm–egg interactions
in externally fertilizing species referred to fertilization as one of the least under-
stood of fundamental biological processes (Vacquier 1998). Moreover, one of
the most striking evolutionary trends to emerge in the last decade is the rapid
diversification of proteins involved in reproduction. This pattern has been
demonstrated for protein pheromones that control mating (i.e., conjugation) in
the marine ciliate Euplotes (Luporini et al. 1995; Kuhlmann et al. 1997), the gene
coding for a cell surface protein necessary for the fusion of ‘+’ and ‘�’ mating types
in the green alga Chlamydomonas (Ferris et al. 1997), and the proteins mediating
sperm–egg recognition and binding in externally fertilizing marine invertebrates
(Swanson & Vacquier 2002; Clark et al. 2006; see Chapter 8 of this volume).

p0030 It is reasonable, therefore, to expect the mechanisms of reproduction to be
complex and evolutionarily dynamic in internally fertilizing species, where
numerous biochemical, physiological, morphological and behavioral mechan-
isms mediate insemination, sperm migration, sperm storage, the maintenance of
sperm viability and sperm modification, all of which must be properly executed
before fertilization can begin. In addition, in most species, females mate with
more than one male within a breeding cycle, and sperm can remain viable for a
considerable time within females (Birkhead & Møller 1993; Neubaum &
Wolfner 1999b). This situation provides the opportunity for postcopulatory
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sexual selection, which is predicted to further enhance complexity and diversifi-
cation in genes contributing to differential male fertilization success and female
control over paternity (Birkhead&Møller 1998a; Clark 2002; Arnqvist & Rowe
2005; see Chapter 6 of this volume). It is becoming increasingly clear that sperm
and ejaculate constituents evolve in response to selection pressures imposed by the
female reproductive tract (Parker 1984; Sivinski 1984; Eberhard 1996; Pitnick et
al. 1999). Ejaculate–female interactions (EFIs) can determine whether or not a
reproductive attempt is successful and can influence the outcome of sperm com-
petition within populations (Wilson et al. 1997; Clark et al. 1999; Miller &
Pitnick 2002; Bjork et al. 2007; Pattarini et al. 2006). Evolutionary diversification
of EFIs may further determine the extent of reproductive isolation and gene
introgression between closely related species (see Chapter 9 of this volume).

s0030 7.1.2 A love–hate relationship?

p0040 Sexually reproducing females need viable sperm to reproduce. During ejacula-
tion and some phases of sperm transport through the female reproductive tract,
sperm are subjected to physical stresses and may sustain oxidative damage to
their plasma membrane lipids. Because sperm generally are terminally differen-
tiated cells without an active nucleus and transcription apparatus, they lack the
full repertoire of repair mechanisms available to somatic cells or oocytes. Thus,
and given that there may be a lengthy interval between insemination and fertil-
ization, the female must protect sperm against degenerative changes. Indeed,
females exhibit a variety of adaptations for sustaining sperm viability.

p0050 It is thus initially paradoxical to recognize that the female reproductive tract
may also present an environment that is somewhat unfavorable to, and thus
selective on, sperm. Conditions precluding some sperm reaching eggs may include
(i) active sperm ejection by females (e.g., Pizzari & Birkhead 2000), (ii) physical
barriers (e.g., cervix, long ducts), (iii) chemical barriers (e.g., low pH and viscous
mucus), and (iv) leukocytic/phagocytotic responses within the female (Suarez
2006). Consequently, in many species only a small proportion of the inseminated
sperm ever have the opportunity to encounter an egg. For example, of the 189
million sperm in a typical human ejaculate (Handelsman et al. 1984), only a few
thousand ever reach the oviduct (Suarez & Pacey 2006). In birds, typically fewer
than 2% of inseminated sperm even reach a female’s sperm-storage tubules
(Birkhead 1998b). However, this is not universal, as in some species females
can be highly efficient in their sperm use (Snook & Markow 2002).

p0060 Four non-mutually exclusive hypotheses have been proposed to explain the
evolution of a female reproductive tract that is selective on sperm (Birkhead et al.
1993); these in turn may explain the complex and evolutionarily dynamic nature
of EFIs. First, an environment that is selective on sperm may be a by-product of
safeguards against parasites, bacterial infections and other pathogens that may
enter the female reproductive tract, particularly at the time of mating. Second,
‘challenges’ to spermmay be adaptations to discriminate against sperm that have
abnormal morphology, weak motility or are otherwise unfit for fertilization.
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Third, high spermmortality and the consequent presence of few sperm at the site
of fertilization may benefit females by reducing the risk of polyspermy. Fourth,
conditions of the female tract may be sexually selected in two ways. (i) By posing
challenges to sperm, females may ensure that their eggs are fertilized by the ‘best’
sperm, or by sperm from the ‘best’ males (or are not fertilized by ‘poor’ sperm)
(see also Eberhard 1996; Birkhead 1998a; Section 7.5). (ii) Alternatively, sexual
conflict over paternity will favor male adaptations (e.g., seminal protein and
sperm traits) that increase the probability of a givenmale’s sperm being used over
those from other males. To the extent that male adaptations to bias paternity are
harmful to females, there will be selection for female adaptations that provide
resistance to them (Parker 1979; Holland & Rice, 1998; Chapman et al. 2003;
Arnqvist & Rowe 2005). The first and fourth hypotheses are especially
likely to drive rapid and pervasive diversification of EFIs, as both pathogen/host
interactions and sexual conflict traits can enter into arms races or perpetual
coevolutionary cycles.

p0070 Rapid evolutionary diversification of reproductive traits has largely been attri-
buted to sexually antagonistic coevolution (e.g., Arnqvist et al. 2000; Swanson
et al. 2001b). In practice, however, it is extremely difficult to discriminate this
process from more traditional, ‘cooperative’ models (e.g., good genes and run-
away sexual selection) for the evolution of reproductive traits (Pizzari & Snook
2003; Rowe et al. 2003; Arnqvist & Rowe 2005; Kokko et al. 2006). These
different selection pressures can be acting simultaneously to varying degrees and
differentially over time (Arnqvist & Rowe 2005). Conflict between the sexes
is expected to be ubiquitous among species that are not strictly monogamous
(Rice 1998), but so is cooperation between the sexes. For example, it may be
advantageous to females to use males as ‘hormone-delivery systems’ for control-
ling some aspects of their postmating physiology. The evolution in Drosophila
melanogaster ofmale seminal prteins (‘Acps’; see below) that stimulate oogenesis
and ovulation in females, for instance, maymean that females only produce large
numbers of eggs after mating when there will be sperm to fertilize them and/or
that males manipulate female reproductive physiology to their own benefit and
at a cost to females. Thus, cooperation and conflict are both likely to be potent
forces shaping the evolution of EFI traits.

s0040 7.1.3 Chapter goals

p0080 We have two goals: (1) to illustrate the pervasiveness of EFIs by discussing
different types and what is known about their underlying mechanisms and (2)
to consider the evolutionary significance of EFIs.We review evidence for (i) rapid
evolutionary diversification of EFI genes, (ii) correlated evolution of sex-specific
EFI traits (‘evolutionary EFIs’) and (iii) the relationship between genetic com-
patibility, male–female interactions and patterns of sperm precedence. We have
highlighted some of the interesting variation observed across animal taxa, but
rather than be exhaustive in our review, we have focused on providing detailed
descriptions of selected examples.
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p0090 We use the term ‘EFI’ for any modifications to ejaculate (or an ejaculate
subcomponent) form or function that are induced by the female reproductive
tract, and vice versa. ‘Evolutionary EFIs’ include genetic differentiation between
populations or species in ejaculate traits resulting from selection generated by the
female reproductive tract, and vice versa. Whenever sperm per se are known to
interact directly with the female reproductive tract, we use the term sperm–
female interactions (‘SFIs’). For the majority of phenomena, however, we prefer
the term EFI because the specific agent(s) of interaction are unknown. For
example, some seminal components can bind to sperm and in some cases can
later be cleaved off within the female to influence reproduction (e.g., Peng et al.
2005a). Such complex (and not widely investigated) sperm � seminal plasma �
female interactions frequently preclude discrimination of the more narrowly
defined SFIs from EFIs. It is important to note that these definitions exclude
many interesting interactions between the sexes, as well as sex-specific media-
tion, that impact fertilization success.

s0050 7.2 Types and mechanisms of ejaculate–female interaction

s0060 7.2.1 Ejaculate-induced modification of female gene expression

p0100 Components of the ejaculate can affect the molecular composition of the female.
By inducing or repressing particular gene expression or by modifying proteins
and other macromolecules, ejaculate components can convert a female from an
‘unmated’ to a ‘mated’ physiological, immunological and behavioral state. To
identify these effects, studies have been carried out to compare the transcrip-
tomes or proteomes of mated and unmated females.

p0110 In the fruit fly D. melanogaster, by 1–3 h postmating, physiological changes
are already apparent between mated and unmated females and sperm have been
stored. In one study, postmating changes in transcript level were detected in
about 13% of the transcriptome at this time, but almost all those changes
(1737/1783) were very small (i.e., less than twofold) (McGraw et al. 2004).
Members of many classes of genes showed such very small transcript level
changes upon mating. These classes represented a broad range of biological
functions: immune response (these were most of the genes with more
than twofold changes, and most were induced), energy metabolism (mostly
repressed), detoxification, proteolysis and odorant/pheromone binding. Mutant
and transgenic fly strains were used to tease apart the contribution of sperm,
seminal proteins and of other aspects of mating to the transcriptome changes
(McGraw et al. 2004). Of the 1783 genes whose transcript level differed between
mated and unmated females, 160 were modulated in response to Acps. Particu-
larly enriched among the latter were genes involved in immune response (see
Section 7.2.3). Another 540 genes were modulated in response to receipt of
sperm; these included metabolic genes (usually repressed), and genes involved
in detoxification and in proteolytic cascades. Sperm, Acps and, especially, non-
sperm non-Acp cues also induced expression of �50 transcription factors that
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could potentially mediate a later transcriptome-level response to mating. The
remaining mating-responsive genes were regulated by other aspects of mating
that could not be tested in those experiments (such asmechanical stimuli, contact
pheromones, energy expenditure, and non-Acp components of seminal fluid). In
another study, the transcriptomes of courted but unmated females were com-
pared to those of mated females (Lawniczak&Begun 2004). This study reported
fewer genes with changes, and themating-regulated genes they found overlapped
significantly with those of the larger study (some differences were likely due to
use of different microarray platforms and statistical analyses.)

p0120 These microarray experiments used whole females. Thus, they could have
missed changes in transcript levels that occurred in small groups of cells or only
in particular tissues, or genes regulated in opposite directions in different tissues.
Consistent with this prediction, a subsequent proteome- and transcriptome-level
study of the lower reproductive tract of female Drosophila (Mack et al. 2006)
detected genes that had been found in the whole-body analysis as well as genes
that were not detected in that analysis and might thus be regulated in the repro-
ductive tract only. That study also confirmed that gene expression changes are
small shortly (<3 h) after mating, despite the physiological changes that occur
during this time, but showed that at later postmating times (>6 h) there were
larger fold changes in the transcriptome.

p0130 Collectively, all of these studies suggest that initial changes in the physiology of
the mated female derive from posttranscriptional or posttranslational effects
on RNAs or proteins already present in the mature female. Later, large-scale
transcriptome/proteome changes extend or carry out subsequent steps in the
female’s response. This hypothesis still needs to be tested, by determining the
functions of some of the mating-regulated genes.

p0140 Consistent with these findings, coculturing of bovine oviductal epithelial cells
with sperm is reported to alter the profile of proteins secreted into the oviductal
fluid (Ellington et al. 1993b; see also Fazeli et al. 2004 for related mouse study).
Interestingly, proteins in some of the same classes are found in seminal fluid in
Drosophila (Mueller et al. 2004), consistent with the idea that the male provides
proteins that canmodulate female reproductive processes in addition to inducing
the female to synthesize proteins in these classes.

s0070 7.2.2 Ejaculate-induced modification of female reproductive physiology

p0150 Dramatic changes in female physiology and behavior that are induced by mating
are likely universal. Nevertheless, there is tremendous variation across taxa in
the sex-specific factors that interact to trigger these changes. For example, the
reduction in female receptivity to remating in the fowlGallus gallus domesticus
has been experimentally demonstrated to be entirely due to mounting by the
male and independent of insemination (Lovlie et al. 2005). In contrast, mating-
induced changes appear solely attributable to the action of Acps in one species
of mosquito, Aedes aegypti (Craig 1967; Fuchs et al. 1968), and have been
attributed to the act of the spermathecae filling with sperm in another species,
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Anopheles gambiae (Klowden 2001, 2006). Finally, in D. melanogaster (as
detailed above and below) both Acps and sperm are responsible for the changes
females undergo.

p0160 Males provide the female with a suite of proteins and other molecules in the
seminal fluid (Poiani 2006). For example, in D. melanogaster, 112 seminal
proteins expressed in the male’s accessory glands have been identified to date
(Swanson et al. 2001a; Ravi Ram & Wolfner 2007). Other reproductive tract
tissues and glands (the ejaculatory duct, ejaculatory bulb) also make seminal
proteins (Gilbert et al. 1981; Cavener & MacIntyre 1983; Ludwig et al. 1991;
Samakovlis et al. 1991; Lung & Wolfner 2001). A comprehensive EST screen
and other screens identified �80% of the Acps (DiBenedetto et al. 1987;
Monsma & Wolfner 1988; Simmerl et al. 1995; Wolfner et al. 1997; Swanson
et al. 2001a; Walker et al. 2006). Annotation and comparative structural
modeling of their predicted proteins identified potential functional families
to which Acps belong (e.g., Mueller et al. 2004, 2005). Approximately 40% of
D. melanogaster Acps appear to be peptide hormones or their prohormonal
precursors (Mueller et al. 2004, 2005). The other �60% of Acps fall into pre-
dicted functional classes: proteolysis regulators (proteases and their inhibitors),
lipases, cysteine-rich secretory proteins (CRISPs), antioxidants, and antimicro-
bial peptides (Mueller et al. 2004). In addition, D. melanogaster ejaculate
contains two enzymes from the ejaculatory duct (esterase 6 and glucose
dehydrogenase) that assist in sperm storage (Gilbert et al. 1981; Cavener &
MacIntyre 1983; Iida & Cavener 2004) and an abundant ejaculatory bulb pro-
tein, PEB-me, which is a constituent of themating plug (Ludwig et al. 1991; Lung
&Wolfner 2001). Insect males also transfer other small molecules to females in
the ejaculate: Drosophila males transfer lipids (e.g., Butterworth 1969; Brieger
& Butterworth 1970) and phosphorus (Markow et al. 2001), and Aedes
mosquito and male moths transfer juvenile hormone (Shirk et al. 1976; Shirk
et al. 1980; Klowden & Chambers 1991; Borovsky et al. 1994).

p0170 Tissue targets for 16 Acps have been determined by immunostaining or by
incubating sectioned females with labeled Acp (Monsma et al. 1990; Bertram et
al. 1996; Lung & Wolfner 1999; Heifetz et al. 2000; Ottiger et al. 2000; Ding et
al. 2003; Ravi Ram et al. 2005). Interestingly, each Acp has a unique set of target
tissues: for example, the sperm-storage organs (Bertram et al. 1996; Bloch Qazi
et al. 2003; Ravi Ram et al. 2005) and the ovary base (Heifetz et al. 2000; Ravi
Ram et al. 2005). In addition, about half of Acps leave the female’s reproductive
tract to enter the circulatory system (Monsma et al. 1990; Lung&Wolfner 1999;
Ravi Ram et al. 2005), and one of those has been shown to be capable of binding
to the female’s brain cells (Ottiger et al. 2000; Ding et al. 2003).

p0180 Genetic experiments in D. melanogaster have shown that Acps affect the
female’s physiology and behavior. Relative to normal matings, female mated
tomales lacking Acps fail to (i) increase their production, ovulation and laying of
eggs (Kalb et al. 1993), (ii) store sperm at normal levels, and the few (�10%)
sperm they do store are utilized at lower than normal rates (or not at all) for
fertilization (Tram &Wolfner 1999; Xue & Noll 2000), (iii) become refractory
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to male courtship (Kalb et al. 1993; Xue & Noll 2000) and (iv) increase food
intake (Carvalho et al. 2006). Sperm competition also is influenced by receipt of
Acps by females (Harshman & Prout, 1994). Finally, Acps shorten female life-
span (Chapman et al. 1995; Wigby & Chapman 2005). Typically, Acps are only
detectable within the female for several hours after mating, and their effects are
transient, lasting for only 1 day (Monsma et al. 1990; Bertram et al. 1996; Ravi
Ram et al. 2005). Some effects do persist longer, however (e.g., egg-laying and
receptivity changes can persist for up to 2 weeks; Manning 1962). It is believed
that stored sperm either trigger the continuation of these changes on their own
through neural channels, as in Anopheles or in some Lepidoptera (Sugawara
1979; Klowden 2006) or by carrying and slowly releasing an Acp over time
(shown for at least one Drosophila Acp; Peng et al. 2005a).

p0190 In some cases, specific insect seminal proteins have been shown to mediate
particular postmating effects in females. For example, in D. melanogaster,
experiments in which Acps are knocked out by mutation or knocked down by
RNAi (Hannon 2002) in males or ectopically expressed in, or injected into,
unmated females, have begun to elucidate Acp functions. Three examples are:

(i)p0200 The sex peptide (Acp70A) is a peptide hormone that appears to act from the circu-
latory system to induce oogenesis (Chen et al. 1988; Soller et al. 1997, 1999),
stimulate postcopulatory feeding (Carvalho et al. 2006), decrease receptivity (Chen
et al. 1988) and induce the transcription of some immune-response genes (Peng et al.
2005a). It has been implicated in the cost-of-mating (Wigby & Chapman 2005). In
vitro, sex peptide can increase the production of a form of juvenile hormone (JHB3)
by corpora allata (Moshitzky et al. 1996; Kubli 2003; Swanson 2003).

(ii)p0210 The prohormone ovulin (Acp26Aa) targets to the base of the ovaries and causes
increased ovulation (Herndon & Wolfner 1995; Heifetz et al. 2000, 2005). Some
ovulin also enters the female’s circulatory system to go to sites as yet unidentified
(Monsma et al. 1990; Lung & Wolfner 1999). Ovulin is cleaved three times within
the reproductive tract (Monsma et al. 1990; Park & Wolfner 1995). Two of the
resulting forms, including one with a short region of sequence similarity to amollusk
egg-laying hormone, can each independently induce female Drosophila to ovulate
(Heifetz et al. 2005).

(iii)p0220 Acp36DE is a large glycoprotein that is essential for sperm entry into the sperm-
storage organs (Bertram et al. 1996; Neubaum & Wolfner 1999a). Acp36DE binds
to sperm and enters storage with them (Bertram et al. 1996; Bloch Qazi & Wolfner
2003), but the nature and function of this binding, as well as the means by which it
influences sperm storage, are unknown.

s0080 7.2.3 EFI and female immune response

p0230 Any female response to invasion by microbes during mating must be carefully
regulated to avoid prematurely attacking non-self proteins (e.g., seminal pro-
teins) and cells (e.g., sperm) that are essential for fertility. Evidence suggests
that seminal proteins modulate the female’s immune response, both positively
and negatively (e.g., Robertson et al. 2003; Fedorka et al. 2004, 2007; Fedorka
& Zuk 2005; Lawniczak et al. 2007; but see Schwarzenbach et al. 2005).
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Male reproductive tracts of diverse taxa (e.g., rats, humans,Drosophila) synthe-
size peptides thought, or known, to have antimicrobial activity (Samakovlis et al.
1991; Li et al. 2001; Lung et al. 2001; Yamaguchi et al. 2002). These peptides
could protect the female’s reproductive tract and/or the male’s sperm from
microbes introduced during mating or from resident microbes whose growth
was stimulated by sugars or other molecules in the ejaculate. They could also
protect laid eggs or young from infection (Marchini et al. 1991, 1997). In
addition, Acps and sperm have each been shown in Drosophila to induce the
expression of eleven antimicrobial peptide genes in females (and to repress two
others) (McGraw et al. 2004; Peng et al. 2005b). Finally, several ejaculate
proteins, identified in diverse taxa (e.g., hamster, mouse, rat, Drosophila),
may be protective against redox damage to the female tract or to the sperm
(Perry et al. 1993; Vernet et al. 1996; Chen et al. 2002; Mueller et al. 2004).

s0090 7.2.4 Ejaculate-induced modification of female reproductive tract
conformation

p0240 The female reproductive tract in many organisms undergoes changes in confor-
mation after mating. These changes have the potential to facilitate the movement
of sperm, or their storage, and the movement of eggs. In a few cases, ejaculate
components have been shown to play a role in these changes.

p0250 In Drosophila, mating induces a series of stereotyped changes in the shape of
the female’s reproductive tract (Adams & Wolfner 2007; Figure 7.1). Prior to
mating, the lumen of the reproductive tract is tightly closed and a flap of tissue
covers the openings to the sperm-storage organs. After mating, the lumen opens
and straightens and the flap of tissue is moved away from the openings to the
storage organs. Induced muscle contractions may also push the mass of sperm
toward the sites of storage. Acps trigger these changes, whereas sperm do not.

p0260 An analogous reproductive process occurs when an hermaphroditic snail stabs
its sexual partner with a calcareous ‘love dart’. The dart is fired toward the end of
courtship, prior to copulation. It has no impact on either the decision to copulate
or the size of the ensuing sperm donation (Adamo&Chase 1988; Chase&Vaga
2006). However, snails with good aim more than double the average number
of donated sperm stored by the recipient (Rogers & Chase 2001; Chase &
Blanchard 2006) and correspondingly increase their paternity when competing
against an unsuccessful shooter (Landolfa et al. 2001; Rogers & Chase 2002).
These effects are mediated by an allohormone (likely a peptide) transferred in
mucus coating the dart (Koene & ter Maat 2001). In the brown garden snail,
Cantareus aspersus, 99.98% of sperm transferred is digested by enzymes within
the bursa copulatrix of the recipient (Rogers & Chase 2001). In vitro experi-
ments revealed that the dart’s mucus induces muscle contractions that reconfig-
ure the copulatory canal by closing off the tract leading to the bursa and making
the spermathecal sacs more accessible to sperm (Koene&Chase 1998). A similar
use of allohormones may take place when the hermaphroditic earthworm
Lumbricus terrestris uses its numerous copulatory setae to pierce its partner’s
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skin and inject a substance from its setal glands (Koene et al. 2005). This manner
of delivery may have been favored as an alternative to the delivery of seminal
fluid in order to access critical anatomical structures that semen cannot contact
(Chase & Blanchard 2006) or because there are advantages of inducing the
physiological responses prior to the transfer of ejaculate.

p0270 Ejaculate components can also produce more extreme conformational
changes via the formation of mating plugs. These plugs can occlude the
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f0010 Figure 7.1 Seminal proteins can trigger dramatic changes in the conformation of the
lower reproductive tract of wild type (Oregon R) Drosophila melanogaster females.
(a) At the start of ejaculate transfer, the uterus (Ut) is contracted and forms a loop at the
specialized vaginal intima (Miller 1950; SVI). In addition, the uterus is bent laterally above
the SVI such that, in the drawing, the SVI and vagina (Vag) appear to project toward the
reader at a 45� angle to the plane of the page.Within the anterior uterus (AU), the oviduct
valve flap (OVF) is curled posterio-ventrally, covering the openings to the spermathecal
ducts (filled arrowhead; note that only the AU and common oviduct (CO) are shown in
cross section in this drawing, the rest of the reproductive tract is shown only from the
exterior). (b) During the later stages of sperm storage, the uterus is fully expanded and
turgid. In the anterior uterus, the pre-oviduct space (POS) forms between the anterior
portion of the papillate elevation (Miller 1950; PE), the anterior uterus projection (AUP),
and the oviduct valve flap, which has uncurled. In this drawing, for clarity, the oviduct
valve (OV) is shown open, although in most instances the OVF contacts a ridge in the
dorsal oviduct wall (*) just above the openings to the spermathecal ducts, closing the OV.
The dashed line denotes the margin between the uterus and Vagina. An, anus; GLB,
gonopod long bristle(s); GP, gonopod plate; M144, muscle 144 (Miller 1950) attached
to the SVI; St, spermatheca; SR, seminal receptacle; UD, uterine dome; Vul, vulva. (The
female accessory glands, or parovaria, have been omitted from these drawings. Drawings
by Anthony Yori.) Reproduced with permission from Adams and Wolfner (2007).
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reproductive tract or change its shape in ways that prevent subsequent mating or
sperm entry/storage (insects: Thornhill & Alcock 1983; mammals: Dewsbury
1988). Interesting in this regard are the semenogelins, which are abundant
seminal proteins of primates (Lilja et al. 1989). Semenogelins initially form a
coagulum in the ejaculate, and are the major components of the mating plug
(Roussel & Austin 1967; Peter et al. 1998). Subsequently, they are cleaved by
kallikrein-3 (also called prostate specific antigen, PSA) in the ejaculate (Lilja
1985). Semenogelin I has also been shown to inhibit sperm motility and capac-
itation (Robert & Gagnon 1999; de Lamirande et al. 2001). Mating plugs
may also facilitate the movement of sperm into storage by serving as a scaffold
along which sperm can migrate (Bairati & Perotti 1970; Polak et al. 2001).
Mechanisms underlying mating plug formation have not been well studied,
but may frequently include an interaction between conditions or molecules in
the female and ejaculate molecules from the male.

s0100 7.2.5 EFIs mediating sperm transport

p0280 Even in externally fertilizing species, SFIs may mediate the ability of sperm to
reach eggs. For example, the sperm of salmonids swim faster and live signifi-
cantly longer in the presence of ovarian fluid, which is present in a spawn
(Lahnsteiner 2002; Turner&Montgomerie 2002). It seems likely that structural
complexity of the female tract and the protracted survival of sperm, relative to
the aqueous environment of external fertilization, will enhance the scope for
complex EFIs and SFIs impacting sperm motility and transport. Three relevant
interactions have been demonstrated: (1) seminal plasma can alter the penetra-
bility of mucus within the female tract in mammals; (2) seminal plasma can
induce contraction of reproductive tract muscles that facilitate sperm transport;
and (3) sperm surface proteins (or other components) may interact with the
female tract to influence sperm transport.

p0290 In the case of vaginally inseminating mammals (e.g., humans, cattle), sperm
rapidly enter the cervical canal, where they encounter large volumes of cervical
mucus. There is evidence from humans that components of seminal plasma facil-
itate penetration of sperm into cervicalmucus (Overstreet et al. 1980). Despite this
facilitation, however, sperm that cannot swim properly are less successful at
penetrating themucus and thus themucusmay serve to select for vigorouslymotile
sperm (Hanson & Overstreet 1981; Barros et al. 1984; Katz et al. 1990, 1997).

p0300 Once past the cervix, mammal sperm must traverse the uterus. There is
evidence for some species that seminal plasma components, including prosta-
glandins, stimulate uterine contractions capable of transporting sperm rapidly
through the uterus (e.g., Claus 1990; Crane & Martin 1991; Fouchecourt et al.
2002; Langendijk et al. 2005; similarly, for insects see Loher et al. 1981; Stanley
2006). Because coitus induces infiltration of the uterine cavity by leukocytes,
which have been observed phagocytizing uterine sperm in mice, rats and rabbits
(Austin 1957; Bedford 1965), rapid transport of sperm through the uterus is
advantageous.
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p0310 InDrosophila, Acps also regulatemuscle contraction of the female reproductive
tract during sperm storage (Adams & Wolfner 2007) and ovulation (Heifetz &
Wolfner 2004). The insect female tract is rich in vesicles that can contain neuro-
modulators (Heifetz & Wolfner 2004), and at least one such neuromodulator
(i.e., octopamine) can modify muscle contraction in oviducts of cockroaches,
grasshoppers and Drosophila (Orchard & Lange 1985; Bamji & Orchard
1995; Lee et al. 2003; Monastirioti 2003; Cole et al. 2005; Middleton et al.
2006). Receipt of Acps regulates the release of the contents of vesicles at nerve
termini that innervate the reproductive tract (Heifetz &Wolfner 2004), stimulat-
ing release of their contents in some regions and inhibiting their release in others.
This interactionmay underlie the muscle contractions that lead to conformational
changes (Adams & Wolfner 2007). Receipt of sperm also can, independently,
modulate release of some vesicles (Heifetz & Wolfner 2004), although sperm do
not trigger the large-scale muscular contractions (Adams & Wolfner 2007).

p0320 Biochemical SFIs can also be critical for successful sperm transport. For
example, despite having spermwith normal morphology andmotility, male mice
that lack fertilin b (Cho et al. 1998), testis-specific angiotensin-converting
enzyme (ACE) (Krege et al. 1995; Hagaman et al. 1998) or calmegin (Ikawa
et al. 1997; Yamagata et al. 2002) are infertile because their sperm cannot pass
through the uterotubal junction. Fertilin b is normally localized on the plasma
membrane overlying the acrosome on mature sperm from wild-type males (Cho
et al. 1998). There is evidence that ACE has an enzymatic effect on the surface
of maturing sperm in the testis that somehow enables them to pass through
the uterotubal junction (Metayer et al. 2002). Similarly, there is evidence that
calmegin is a chaperone protein that operates during spermatogenesis in the testis
to ensure the proper folding and transport of proteins to the sperm plasma
membrane. The inability of the sperm of all three mutant mice to pass through
the uterotubal junction indicates that specific sperm surface proteins are required
to gain access to the oviduct. The role of calmegin in enabling sperm to pass into
the oviduct was examined using chimeric males that produced an equal mixture
of sperm with wild-type and disrupted calmegin genes. When these males were
mated with wild-type females, the presence of wild-type sperm did not ‘rescue’
the null mutant sperm, as onlywild-type sperm could be foundwithin the oviduct
(Nakanishi et al. 2004). Thus, proteins on the sperm surface do not appear to
assist passage by signaling the uterotubal junction to open; rather, it is likely that
a particular (set of) surface protein(s) is required by each sperm in order to pass
through the junction (Nakanishi et al. 2004).

p0330 SFIs of the kind described abovemay bewidespread. For example, the removal
of surface-associated proteins from chicken sperm brought about no detectable
change in their viability or motility, but impeded the ability of the sperm to
migrate through the chicken vagina (Steele & Wishart 1996a, 1996b). Various
experimental treatments to remove surface proteins severely limited the ability of
sperm to reach the infundibulum or the sperm-storage tubules (SSTs) located in
the uterovaginal junction following intravaginal insemination. However, the
treated sperm performed these functions as well as untreated control sperm
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following insemination directly into the uterovaginal region (Steele & Wishart
1996a, 1996b). Additionally, in the compound ascidian,Diplosoma listerianum,
the female oviduct has been shown to ‘assess’ sperm surface proteins and block
passage of genetically incompatible sperm to the ovary (Bishop 1996; Bishop et al.
1996). At a localized region of the oviduct, those sperm sharing self-recognition
markers with the maternal tissue are removed via immune-like phagocytotic pro-
cesses (Bishop 1996; Bishop et al. 1996). It is noteworthy that this system also
serves to bias fertilization against sperm of unrelated males presumably sharing
the recognition markers (Bishop et al. 1996) and, remarkably, in favor of sperm
of genotypes that are underrepresented in the population (a ‘rare male effect’;
Pemberton et al. 2003). Finally, Watnick et al. (2003) postulate SFI as the reason
why D. melanogaster males bearing a null mutation for the polycystin-2 homo-
logue PKD2 (amo) gene exhibit nearly complete sterility. The amo males trans-
ferred normal amounts of motile sperm to females, but mutant sperm failed either
to enter or to remain stored within the females’ sperm-storage organs (Gao et al.
2003; Watnick et al. 2003).

s0110 7.2.6 EFIs mediating sperm storage and utilization

p0340 Females ofmost species possess one ormore specialized organs for storing sperm,
typically referred to as a spermatheca (general reviews: Walker 1980; Birkhead
&Møller 1993; Eberhard 1996;Neubaum&Wolfner 1999b). As a consequence
of storage within these specialized organs, sperm may survive within females for
as long as 10 weeks in some birds (typically about 10 days; (Birkhead &Møller
1992a, 1993), for months and perhaps as long as a year in internally fertilizing
frogs (Sever et al. 2001, 2003), for several years in reptiles (Olsson & Madsen
1998), for months to years in some sharks (Pratt 1993), and typically for weeks
or months in many insects (Parker 1970), though some ants hold the record of
approximately 30 years (Pamilo 1991).

p0350 Marsupial mammals (and some insectivores) have distinct sperm-storage
structures in the form of tubules or saccules in the oviduct (sperm in these taxa
do not bind to the female epithelium; see below). Eutherian mammals present an
exception to the general rule of specialized female sperm-storage organs, with
females lacking a spermatheca and sperm usually surviving within the female for
only a few days (Gomendio et al. 1998; note that bats are an exception, with
sperm surviving up to 198 days in some species: Racey & Entwistle 2000).

p0360 Because prolonged sperm storage uncouples copulation and fertilization,
variation among species in female sperm-storage attributes bears an integral
relationship with variation in numerous other aspects of breeding biology and
ecology. Prolonged survival of sperm, combined with multiple mating by
females, facilitates postcopulatory sexual selection (Parker 1970; Smith 1984;
Birkhead &Møller 1998b; Simmons 2001; Arnqvist 2004; see Chapter 6 of this
volume). Prolonged sperm storage also necessitates EFIs, as the female must
provide protection and nutrition to sperm. The spermathecae of virtually all
taxa have associated specialized secretory glands or cells (e.g., Fritz & Turner
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2002). Although not yet well understood, spermathecal secretions have been
demonstrated to contain various sugars, glycoproteins and antioxidants that
interact with sperm membranes and likely contribute to sperm maturation and
survival (e.g., Davey&Webster 1967; Alumot et al. 1969; Giuffrida et al. 1996;
Uhl 1996;Weirich et al. 2002; Collins et al. 2004; Klenk et al. 2004). Non-sperm
components of the ejaculate can also be critical for complete or efficient sperm
survival while stored within the female (e.g., Tram & Wolfner 1999; Xue &
Noll 2000).

p0370 In numerous cases, sperm are found to interact intimately with epithelial cells
lining the female’s reproductive tract. One of the more spectacular examples is
found in scale insects. Despite females having a specialized spermatheca in
which sperm may be stored for several days, the sperm eventually migrate up
the oviducts and then are again stored within specialized ‘vestibule cells’ until
oocytes have completed meiosis. Mated females possess one vestibule cell per
mature ovariole, and each vestibule cell may contain more than one spermato-
zoon. Within the cell, the sperm are wrapped around, and can be observed
swimming around, the cell’s nucleus (Figure 7.2d; Robison 1970; see Chapter
13 of this volume for discussion of possible evolutionary significance). Similarly,
Pijnacker and Drenth-Dephuis (1973, as cited in Thomas & Zeh 1984) present
evidence that, in a spider mite, the sperm enter cells lining the wall of the seminal
receptacle and then are transported to the hemolymph, from which they arrive
at the ovaries.

p0380 Whereas sperm entry into female somatic cells appears to be a rare phenom-
enon, there are numerous examples of sperm either binding to or becoming
embedded within female epithelial cells. Examples include the polychaete worm
Spirorbis spirorbis (Figure 7.2c; Daly & Golding 1977; Picard 1980), the
gastropod snail Cochlostoma montanum (Giusti & Selmi 1985), the brooding
clam Mysella tumida (Figure 7.2e and f; Ó Foighil 1985), the isopod crustacean
Porcellio laevis (Longo et al. 1998), the hard tick Dermacentor andersoni
(Brinton et al. 1974), the tailed frog Ascaphus truei (Sever et al. 2001), the garter
snakeThamnophis sirtalis (Hoffman&Wimsatt 1972) and a variety of eutherian
mammals (below). In the case of the clam M. tumida, fertilization and brooding
of young takes place within the suprabranchial chamber. After entering a female
clam, sperm adhere to the gill lamellae by interdigitation of sperm acrosomal
microvilli with gill epithelium microvilli (Figure 7.2e and f; Foighil 1985).

p0390 The physiological details of sperm–female binding have been the subject
of intense study in eutherian mammals, for which sperm collect in the uterus,
uterotubal junction and/or caudal isthmus of the oviduct (the ‘sperm reservoir’;
Figure 7.2a and b; Yanagimachi & Chang 1963; Racey et al. 1987; Suarez 2003).
Sperm are held in the reservoir by binding to the epithelium lining the lumen.
Motile sperm have been observed to bind by their heads to the apical surface of
the oviductal epithelium in cattle (Figure 7.2a; Suarez et al. 1990), mice (Suarez
1987), hamsters (Smith & Yanagimachi 1991), pigs (Suarez et al. 1991), horses
(Thomas et al. 1994), and dogs (Petrunkina et al. 2004) and in the uterus and
uterotubal junction in bats (Figure 7.2b; Racey & Potts 1970; Racey 1979;
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f0020 Figure 7.2 Sperm can interact intimately with the epithelia of the female reproductive
tract while in storage across diverse taxa.
(a) Scanning electron micrograph (SEM) of bovine sperm cell associated with the cilia of
the mucosal epithelium of the oviductal isthmus (bar = 1 mm). (b) Transmission electron
micrograph (TEM) of sperm embedded by their heads to the uterine epithelium from a
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Andreuccetti et al. 1984; Racey et al. 1987). Binding involves carbohydrate recog-
nition; that is, proteins coating the sperm head recognize carbohydrate moieties on
the surface of the oviductal epithelium (DeMott et al. 1995; Lefebvre et al. 1997;
Green et al. 2001). Sperm fertility and motility are maintained longer in vitro if
the sperm are incubated with oviductal epithelium (cattle: Pollard et al. 1991;
Chian& Sirard 1994; pig: Suarez et al. 1990; horse: Chian& Sirard 1994; human:
Kervancioglu et al. 1994; and dog: Kawakami et al. 2001), suggesting that the
female reproductive tract provides substances that maintain sperm viability.

s0120 7.2.7 Female reproductive tract-induced modification of the ejaculate

p0400 Across a diversity of taxa, it is common for sperm to undergo biochemical,
structural and/or behavioral modification within females. These changes may
represent the completion of sperm maturation, activation of motility and/or
modifications necessary to become fertilization competent. It is likely that con-
ditions encountered by sperm within the female or, more commonly, specific
female-derived molecules are the agent of change. However, the molecular
mechanisms responsible for the modifications have been not been explored in
most cases, and are universally unknown.

p0410 Among arthropods, sperm modification (sometimes referred to as
‘capacitation’, but see definition below for mammals) within the female is com-
monplace. Herewe describe only a few ofmyriad interesting examples. In spiders
and most other chelicerates, the sperm at insemination are quiescent and rolled
into balls, with each sperm (or synspermia) surrounded by a secreted sheath
(Figure 7.3b; Alberti 1990; Baccetti 1970; Michalik et al. 2004). After a variable
number of days, the sperm capsule is lysed and the sperm flagellum unravels and
becomes motile (Brown 1985). Although the activational triggers have not been
identified, they are believed to be secretions from the female’s spermathecal glands
(Brown 1985; Eberhard & Huber 1998; Uhl 2002; Berendonck & Greven 2004).
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hibernating Pipistrellus kuhli bat. Inset: longitudinal section of sperm head interacting
with uterine cell. The tip is included in a plica of the cell surface, and plasmamembrane at
tip appears fused with membrane of uterine cell granule. (c) TEM of sperm heads embed-
ded in cells at the base of the spermatheca in the polychaete worm Spirorbis spirorbis
(bar = 1 mm); a, sperm acrosome; d.p., digitate processes from sperm head; m.p., sperm
midpiece with flagellum and mitochondria; s.p., spermathecal cell cytoplasm. Inset: TEM
showing areas of specialized contacts between sperm and spermathecal cell membrane
with scalariform junctions (*) (bar = 0.5 mm). (d) Phase contrast micrograph of single
sperm cell coiled around the nucleus of a specialized cell (vestibule cell) in the female
reproductive tract of the scale insect, Parlatoria oleae. (e) SEMof sperm heads attached by
acrosomal end to abfrontal gill epithelium (AF) in the brooding clam Mysella tumida
(bar = 5 mm) and (f) TEM of median longitudinal section through acrosomal vesicle.
Sperm cell microvilli are apparent as extensions of the plasmalemma (arrow) where it
comes into proximity with underlying acrosomal vesicle (bar = 0.4 mm). Adopted with
permission from (a) Lefebvre et al. (1995); (b) Andreuccetti et al. (1984); (c) Daly and
Golding (1977); (d) Robison (1970); (e and f) Foighil (1985).
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f0030 Figure 7.3 Sperm frequently undergo modification within the female reproductive tract.

(a) Illustration of sperm of the fungus gnat, Sciara coprophila, from the testis (top) and
following 2 days of storage within the female spermatheca (bottom). (b) A synspermium
(sperm capsule containing syncytial spermatozoa) of the spider Segestria senoculata. Note
bases of three (of four) axonemes. Within the female’s spermatheca, the secretion sheath
(SESH) is digested, the sperm unravel and become motile; N, nucleus. (c) SEM of the
discoidal sperm structures from the deferent ducts of males of the collembolan Allacma
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In a primitively wingless insect – the jumping bristletail Machilis distincta (order
Archeognatha), sperm enter the female in an immotile state with the flagellum
bent like a hairpin within a common plasma membrane (Figure 7.3d). It is only
within the spermatheca that the sperm unfold and become motile (Dallai 1972 as
cited in Jamieson et al. 1999). In another group of primitively wingless insects
(order Collembola), sperm within spermatophores are coiled into flattened
ellipsoids that surround a central extracellular cavity filled with a dense material
(Dallai et al. 2003). During transformation within the female’s spermatheca, the
extracellular material is released as the sperm are transformed into filiform,
motile cells (Figure 7.3c). Dallai et al. (2004) postulate that the membrane
surrounding the central extracellular cavity is specialized for receiving and trans-
muting the signal from the female that induces transformation. In ticks, sperma-
tid development is arrested inmales.Within the female, the sperm essentially turn
inside out, resulting in a doubling of length in some species, and development of
the capacity for motility and penetration (Feldman-Muhsam & Filshie 1979;
Oliver 1982).

p0420 One of the more remarkable examples of sperm capacitation within females
takes place in the fungus gnat Sciara coprophila, which also exhibits one of the
most bizarre forms of sperm ultrastructure (Phillips 1966, 1970). Whereas the
flagellum of most insect sperm have a 9 + 9 + 2 axonemal structure (i.e., nine
accessory tubules, nine doublets and two central microtubules; Jamieson et al.
1999), the axoneme of S. coprophila consists of approximately 70 doublet
microtubules, each with an associated singlet tubule, arranged in a spiral. In
addition, there is only a single mitochondrial derivative, which extends most of
the length of the sperm. The largest portion of the derivative (and indeed of the
entire cell) is a large homogenous mass of proteinacious material (Figure 7.3a,
top). After arriving in the female’s spermatheca, the sperm slough off this homo-
geneous material, along with the mitochondrial cristae (Figure 7.3a, bottom), so
that this material occupies most of the volume of the spermatheca (Makielski
1966; Phillips 1966). The function and fate of this material inside the female is
unknown. In addition, the crystalloid component of the mitochondrial derivative
that is retained by the sperm is repositioned, and the axoneme uncoils and
subsequently recoils into a spiral that is the mirror image of the arrangement
observed in sperm from the testes (Figure 7.3a). Finally, the transformed sperm
remain in an inactive state within the spermatheca until (it is presumed) the female
activates them immediately prior to oviposition (Phillips 1966).
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fusca. The flagellum forms almost three complete loops around the periphery (arrow-
heads) that surrounds an extracellular cavity filled with dense material (em). A long,
slender peduncle emerges from the acrosome of each sperm. Within the female, the
peduncle is lost and the sperm unrolls, releasing the extracellular material. (d) Sperm of
jumping bristletail,Machilis distincta, from female spermatheca but prior to transforma-
tion. Adopted with permission from (a) Phillips (1966); (b) Alberti (2000); (c) Dallai et al.
(2003); (d) Dallai (1972).
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p0430 Sperm capacitation and hyperactivationwithin females is apparently universal
among mammals (Suarez 2003). Capacitation involves changes in the plasma
membrane, such as loss of proteins and cholesterol, which prepare sperm to
undergo the acrosome reaction and fertilize oocytes. Hyperactivation is a change
in the pattern of flagellar beating that involves increased flagellar bend amplitude
and, usually, increased asymmetry of the beat (Ho & Suarez 2001; Suarez & Ho
2003; see Chapter 5 of this volume). It has been postulated that both of these
modifications are interrelated with sperm binding to, and release from, the oviduc-
tal epithelium (Suarez 2006). Specifically, observations indicate that capacitation-
induced changes in the sperm head surface are responsible for reduction of binding
affinity with the epithelium, and hyperactivation provides the force necessary for
the bound sperm to detach from the epithelium (Smith & Yanagimachi 1991;
DeMott & Suarez 1992; Lefebvre & Suarez 1996; Suarez & Ho 2003).

p0440 Although the specific mechanisms triggering capacitation and hyperactivation
are unknown, SFIs involving factors secreted by the female epithelium are likely
candidates. Oviduct-specific proteins and glycoproteins have been demonstrated
to bind to sperm in brushtail possum (Sidhu et al. 1999a), hamster (Boatman &
Magnoni 1995), sheep (Sutton et al. 1984), horse (Ellington et al. 1993b), bull
(McNutt et al. 1992; King & Killian 1994; Lapointe & Sirard 1996; Lapointe
et al. 1998) and humans (Lippes &Wagh 1989). Moreover, factors in oviductal
fluid enhance capacitation of sperm in vitro in the brushtail possum (Sidhu et al.
1999a, 1999b), the tammar wallaby (Sidhu et al. 1998), bull (Chian et al. 1995;
Mahmoud & Parrish 1996), horse (Ellington et al. 1993a) and humans (Zhu
et al. 1994).

p0450 Sperm are not the only ejaculatory component to undergomodification within
the female. In Drosophila, at least three Acps (ovulin, Acp36DE and the sex
peptide (Acp70A); Monsma & Wolfner 1988; Park & Wolfner 1995; Bertram
et al. 1996; Peng et al. 2005a) are modified within the female, in this case by
proteolytic cleavage. This modification requires contributions from both female
andmale (in addition to the Acp that is the target of themodification). Processing
of ovulin and Acp36DE requires an Acp that is a predicted protease in the astacin
family (Ravi Ram et al. 2006). Although this protease is made in the same tissue
as both of its target Acps, it does not cleave these Acps until they have reached the
female (Ravi Ram et al. 2006). Cleavage of Acps within a female could serve to
activate an otherwise inactive molecule, or could be degradational, perhaps to
limit the time that the Acp is present. For ovulin, some data suggest an activa-
tional role for the cleavage: ovulin’s primary structure resembles that of a known
prohormone (ELH: Scheller et al. 1982; Kaldany et al. 1985) to which it also has
a very short region of sequence similarity (Monsma & Wolfner 1988; Heifetz
et al. 2000). The two fragments of ovulin that are released by its cleavage each
can stimulate ovulation (Heifetz et al. 2005).

p0460 Drosophila sex peptide also appears to undergo cleavage within the mated
female. Sex peptide’s C terminal half has been shown to be the active portion
inducing changes in female egg productivity and receptivity (Schmidt et al.
1993). Peng et al. (2005a) showed that upon entry into the female, some sex
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peptide is bound to the sperm. Over several days, the C terminal region of the
peptide gradually disappears from the sperm (Peng et al. 2005a). This observa-
tion and the observation that stored sperm are needed for the persistence of
several postmating changes in females (Manning 1962, 1967), are consistent
with a hypothesis that the C terminal region of sex peptide is released intact
from sperm and can then enter the circulatory system of the female. Such ‘slow
release’ of sex peptide from a protected storage would allow the effect of sex
peptide to persist for several days after mating (free Acps are usually degraded in
the female’s reproductive tract within hours; Monsma et al. 1990; Bertram et al.
1996; Ravi Ram et al. 2005). Mutation to prevent cleavage releasing the
C-terminal piece of sex peptide from the sperm eliminates the long-term persis-
tence of sex peptide effects on egg production and remating (Peng et al. 2005a).

s0130 7.3 Rapid evolutionary diversification of ejaculate–female
interaction traits

p0470 It is intuitive that sperm biochemistry, physiology and morphology correlate
with the biology of fertilization (Franz�en 1956; see Chapter 3 of this volume).
For internally fertilizing species, the female reproductive tract is the principal
selective environment for mature sperm. Were this environment evolutionarily
static, sperm and other ejaculatory components would be expected to achieve
some optimal design that maximizes fertilization efficiency and success. How-
ever, if the female reproductive tract is evolutionarily dynamic, then sperm and
seminal proteins may be as well. Likewise, postcopulatory sexual selection,
which may derive in part from antagonistic interactions with other males (or
their sperm) and/or the female, may place a selective premium on evolutionary
innovation of ejaculate characteristics (Arnqvist &Rowe 2005). Here we review
evidence that ejaculate and female tract traits likely to participate in EFIs are
rapidly divergent.

s0140 7.3.1 Ejaculatory proteins

p0480 Seminal proteins as a class exhibit remarkable evolutionary dynamics. Although
functional classes of seminal proteins appear to be conserved across organisms,
the primary sequences of a surprisingly high number of seminal proteins show
rapid evolutionary change (e.g., Wyckoff et al. 2000; Swanson et al. 2001a;
Swanson & Vacquier 2002; Jensen-Seaman & Li 2003; Dorus et al. 2004).
For example in Drosophila, gene sequences of �17% of Acps show character-
istics of positive selection (regions with dn/ds > 1 see Chapters 8 and 11) when
compared between the closely related species D. melanogaster and D. simulans
(2–3 My apart) (Swanson et al. 2001a; Mueller et al. 2005), a percentage far
higher than that of nonreproductive genes between these species (Swanson et al.
2001a). There is also evidence that there are a fewAcps found inD. simulans that
are not in D. melanogaster (Swanson et al. 2001a; Begun & Lindfors 2005;
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Mueller et al. 2005). Analogous rapid evolution of Acps has been shown for
sisterDrosophila species in the repleta group (Wagstaff & Begun 2005). Moving
yet further away in evolutionary time, 42% of D. melanogaster Acps have
no apparent ortholog in D. pseudoobscura (�30 My from D. melanogaster)
(Mueller et al. 2005) and orthologs in the honeybee,Apismellifera, are extremely
rare (Collins et al. 2006). Consistent with rapid between-species evolution, there
is also evidence that several Acps have experienced recent directional, or balanc-
ing, selection within species (Aguad�e et al. 1992; Cirera & Aguad�e 1997, 1998a,
1998b; Tsaur & Wu 1997; Tsaur et al. 1998; Aguad�e 1999; Begun et al. 2000;
Swanson et al. 2001a; Holloway& Begun 2004; Kern et al. 2004; Stevison et al.
2004; Begun & Lindfors 2005; Mueller et al. 2005; Schully & Hellberg 2006).
Signs of positive selection are also seen for some Acps in the field cricket (Andr�es
et al. 2006).

p0490 Although an unusually high proportion of Acps show signs of rapid evolution,
this is not characteristic of all Acps. For example, the sex peptide, which was
discussed earlier as eliciting several postmating responses inDrosophila females,
appears to be conserved both at the sequence level and in bioassays, although in
one Drosophila lineage there is evidence of adaptive divergence following gene
duplication (Cirera & Aguad�e 1997, 1998a, 1998b). For example, injecting
Drosophila melanogaster sex peptide into female Helicoverpa armigera moths
suppresses sex pheromone production (Fan et al. 1999, 2000) and can stimulate
juvenile hormone synthesis by those moths (Fan et al. 1999) (analogous to the
stimulation of JHB3 synthesis in corpora allata of D. melanogaster, by sex
peptide in vitro; Moshitzky et al. 1996). Moreover, molecules with immunore-
activity to sex peptide are found in male accessory glands of H. armigera
(Nagalakshmi et al. 2004).

p0500 Rapid evolution of some seminal proteins is also seen in mammals. For exam-
ple, the sequence of semenogelin genes in primates shows unusual evolutionary
characteristics (e.g., Wyckoff et al. 2000; Jensen-Seaman & Li 2003; Kingan
et al. 2003; Dorus et al. 2004). First, there is evidence of selective sweeps at
semenogelin in some lineages, suggesting that certain alleles of semenogelins were
advantageous. Second, the SEMG2 gene of primates (which encodes semenogelin
II) evolves rapidly in some lineages, particularly so in lineages with the highest
levels of promiscuity or polyandry (e.g., chimpanzees). This pattern suggests
semenogelin function may be important in sperm competition – consistent with
the biochemical role of the semenogelin in mating plugs (see Section 7.2.4).

s0150 7.3.2 Sperm proteins

p0510 Sperm proteins include a relatively large fraction that appears rapidly divergent
(see Chapter 11 of this volume). For example, comparison between mouse and
human tissue-specific orthologs found that sperm-specific proteins evolve more
rapidly, with larger changes in protein size, than genes expressed in most other
tissue types (Torgerson et al. 2002). In addition, X-linked sperm proteins were
found to have an average nonsynonomous mutation rate almost twice as high as
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autosomal sperm genes, a pattern not found for genes expressed specifically in
somatic cells types (Torgerson & Singh 2003). A study of positively selected
genes in the genomes of human and chimpanzees reports ‘the group of genes that
show the strongest evidence for positive selection also includes a surprising
number of genes . . . involved in spermatogenesis . . . [and] . . . genes withmaximal
expression in the testis tend to be enrichedwith positively selected genes’ (Nielsen
et al. 2005). Examination of sperm-specific protamine genes in primates has
found further evidence of positive Darwinian selection (Rooney & Zhang
1999; Wyckoff et al. 2000). Studies of Drosophila also reveal a number of
examples of rapid sperm protein evolution (see Chapter 11 of this volume).
However, our understanding of EFIs and in particular their underlying mechan-
isms, inmost cases, is insufficiently resolved to knowwhether any of these studies
just described address EFI-relevant proteins.

p0520 One interesting study does however specifically implicate divergence of sperm
proteins that interact with the female reproductive tract. As discussed above (see
Section 7.2.5), the removal of surface-associated proteins from chicken sperm
impeded their ability to migrate through the chicken vagina (Steele & Wishart
1996a, 1996b). Evidence that these sperm-associated proteins are rapidly diver-
gent comes from a similar analysis of heterospecific SFI. Turkey sperm exhibit
similar morphological features and motility characteristics to chicken sperm, yet
have a distinct surface antigenicity (Steele & Wishart 1992). When untreated
turkey sperm were artificially inseminated into the vagina of chicken hens, they
failed to reach infundibulum andwere only occasionally found within the SSTs. By
contrast, when inseminated directly into the uterovaginal junction, turkey sperm
were able to populate the SSTs as well as chicken sperm (Steele & Wishart 1992).

s0160 7.3.3 Other EFI mediators

p0530 Rapid evolution has also been found in carbohydrate binding groups. As
described above for eutherian mammals (see Section 7.2.6), sperm binding to
oviductal epithelium involves carbohydrate recognition. Although carbohydrate
involvement in sperm binding appears widespread, the particular carbohydrate
moiety involved varies among species (Dobrinski et al. 1996; Lefebvre et al.
1997; Green et al. 2001; Wagner et al. 2002).

p0540 The proteins responsible for binding bull sperm to oviductal epithelium have
been identified as three closely related members of the bovine seminal plasma
protein family (BSP). The three BSPs are secreted by the seminal vesicles and coat
the heads of sperm during ejaculation. Each alone can bind sperm to the epithe-
lium and extend the lifespan of sperm incubated with epithelial membranes
in vitro (Gwathmey et al. 2006). Homologues have been identified in several
eutherian mammals, although in some cases BSPs are synthesized by the epidid-
ymis rather than the seminal vesicles (Fan et al. 2006; Lefebvre et al. 2007). The
divergence of carbohydrate binding specificities of sperm as well as the diver-
gence of the BSP homologues implies divergence of sperm proteins that interact
with the oviduct (Fan et al. 2006; Lefebvre et al. 2007).
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f0040 Figure 7.4 There is a widespread pattern of coevolution between sperm morphology
and female reproductive anatomy, illustrated here for sperm length and female seminal
receptacle (SR) length among Drosophila species.
(a) Female reproductive tracts of D. pseudoobscura (left), which has a short seminal
receptacle (SR; 0.41 mm) and short sperm (0.36 mm), and D. bifurca, which has the
longest known SR (81.67 mm) and sperm (58.29 mm). (b) SEM of single D. bifurca
spermatozoon dissected from amale’s seminal vesicle, where sperm are individually rolled
into compact balls; photo by R. Dallai. (c) An experimental evolution study with D.
melanogaster reveals that the advantage to males of producing relatively long sperm
(i.e. higher P2) increases with female SR length (results of three experimental replicates
shown; open squares, short-sperm selection line males; open circles, control-sperm selec-
tion linemales; solid squares, long-sperm selection linemales). (d) Experimental evolution
for increased SR length consistently drives evolution of sperm length across two experi-
mental replicates (a and b) inD.melanogaster (open squares, short-SR selection line; open
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s0170 7.3.4 Sperm morphology

p0550 Spermatozoa are the most diverse cell type known, exhibiting dramatic
evolutionary divergence in form in nearly all taxa. Because sperm diversity and
diversification is covered in depth in Chapters 3 and 6 of this volume, we here
only briefly address sperm length evolution in the genus Drosophila, because it
has been the subject of a detailed investigation of the coevolution of sex-specific
EFI traits (Figure 7.4; see Section 7.4). The sperm flagellum is more variable
amongDrosophila species than it is in the remainder of the animal kingdom. The
sperm of D. bifurca are 58,290 � 670 mm long (see Figure 7.4b; Pitnick et al.
1995b), which is over 400 times longer than those of D. obscura (long sperm
morph are 139 � 19 mm; (Joly & Bressac 1994). Comparative/phylogenetic
analysis reveals that gigantic sperm have evolved independently numerous times
(Pitnick et al. 1995a). In addition, sperm length divergence in nature can be
sufficiently rapid to be diagnostic of different geographic populations within
Drosophila species (Figure 7.4e; Snook 2001; Miller et al. 2003; Pitnick et al.
2003). Finally, evidence for the evolutionary liability of sperm length in
Drosophila comes from an experimental evolution study that showed that this
trait responds quickly and dramatically to selection (Miller & Pitnick 2002).

s0180 7.3.5 Female reproductive tract morphology

p0560 Female reproductive tract morphology also appears to be rapidly divergent. This
is particularly true for spermathecae and their ducts and glands, which can vary
among species in virtually every attribute, including size, number, shape and
structure (as well as in the biochemical environment within the spermathecae;
e.g., Sever & Brizzi 1998). In some cases, females may even have more than one
kind of sperm-storage organ (e.g., Pitnick et al. 1999; Presgraves et al. 1999).
Within sperm-storage organs, there can be considerable substructure (e.g., Eber-
hard&Huber 1998; Beese&Baur 2006; Pattarini et al. 2006). As a result, sperm
are frequently found to be highly organized in their distribution and orientation
within the female organ(s) (e.g., Burger et al. 2006a, 2006b; Pattarini et al.
2006). Sperm of different males may further be differentially stored within
different spermathecae (Otronen et al. 1997; Snow & Andrade 2005). Here
we first describe some of the broadscale variation among a few taxa, and
then discuss the few detailed studies of diversification in female spermathecal
morphology among closely related species.

p0570 Baur (1998) describes the enormous variation observed among terrestrial
pulmonate snails in the structure and morphology of the spermatheca,

ISBN: 978-0-12-372568-4; PII: B978-0-12-372568-4.00007-0; Author: Birkhead; Document ID: 00007; Chapter ID: c0070

circles, control-SR selection line; solid squares, long-SR selection line; bars = 1S.E.).
(e) Sperm-SR coevolution occurs rapidly in nature, as indicated by variation among eight
geographic populations of D. mojavensis (bars = 1S.E.). (f) This same pattern is found at
the macroevolutionary level, illustrated here for 46 species, after controlling for allometry
and phylogeny. Adoptedwith permission from (a and f) Pitnick et al. (1999); (b) Bjork and
Pitnick (2006); (c and d) Miller and Pitnick (2002); (e) Pitnick et al. (2003).
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fertilization chamber and sperm-digesting organ. In female Trigonephrus gypsi-
nus, sperm are stored within a ‘fertilization pouch’ that has no compartmental-
ization. In contrast, the pouch is divided into a separate spermatheca and
fertilization chamber in other species. Further, the number of separate compart-
ments or ‘spermathecal tubules’ within the spermatheca varies among species,
with Oxychilus draparnaudi having one, Succinea putris having two, and
Drymaeus papyraceus having 34.

p0580 Most spiders have a pair of one- or two-chambered spermathecae that have
been characterized as having one of two generalized morphologies (Austad
1984). Haplogyne spiders are characterized as having ‘cul-de-sac’ spermathecae,
with a single duct connecting the sperm-storage organ to the vagina. Entelegyne
spiders are characterized as having ‘conduit’ spermathecae bearing two separate
ducts, one for sperm entry into the spermatheca and a separate duct by which
sperm leave for fertilization. Spider female reproductive tracts are notorious for
their complexity and between-species variability, however, and comparative
analyses indicate that female spider reproductive tract anatomy deviatesmarked-
ly from any generalized expectation (Uhl 2002; Huber 2005; Burger et al.
2006b). There can also be great variation in spermathecae number. For example,
female Liphistius spiders can have up to 40 spermathecae, and females in some
mecysmaucheniid spider species have been found with up to 100 spermathecae
(Eberhard 1985). In addition, other spider species possess an additional kind of
sperm-storage organ having distinctly different glandular tissue (Uhl 2000).

p0590 Female birds store sperm within numerous long, thin blind-ended tubules
found in the epithelium lining the junction of the uterus and the vagina. These
sperm-storage tubules can be as short as 130 mm in the cedar waxwing and as
long as 1000 mm in the turkey Meleagris gallopavo. There are also distinct
species differences in the number of SSTs (from 500 to 20 000), the extent of
tubule branching and in general shape (SSTs can be straight-walled, ‘bud’
shaped, or a series of sequential, interconnected buds) (Bakst 1987; Shugart
1988; Birkhead & Møller 1992b).

p0600 Some of the most comprehensive studies to date of variation among closely
related species in their sperm-storage organ morphology has been in insects,
particularly with robber flies (Asilidae; Figure 7.5a–f), carabid beetles (Liebherr
&Kipling 1998), predaceous diving beetles (Dytiscidae; Figure 7.5g–k) and fruit
flies (Drosophilidae; Figure 7.4). All Drosophila have a pair of spheroid sper-
mathecae surrounded by a secretory, cellular envelope, each with a separate,
slender and relatively short duct arising from the anterodorsal uterine wall. In
addition, all Drosophila and certain other families of acalyptrate flies have
evolved a second kind of organ specialized for sperm storage, the seminal recep-
tacle (SR), which is a slender, blinded-ended tubule arising from the anteroven-
tral uterine wall (Figure 7.4a; Nonidez 1920; Sturtevant 1925, 1926). Among
Drosophila species, SR length varies from 0.23 to 81.67 mm (Joly & Bressac
1994; Pitnick et al. 1999). Like sperm length, SR length inDrosophila responds
dramatically to selection (Miller et al. 2001; Miller & Pitnick 2003) and evolves
so rapidly in nature that length of this organ is diagnostic of different geographic
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populations within a species (Figure 7.4e; Miller et al. 2003; Pitnick et al. 2003).
In addition, a study including 113 species found the paired spermathecae to be
structurally vestigial with loss of sperm-storage function in 34% of species, the
consequence of an estimated 13 independent evolutionary events. By contrast,
only a single evolutionary loss of SR use was found (Pitnick et al. 1999).

p0610 Whereas females of nearly all robber flies have three spermathecae (some have
only two), with all three typically of the same form (but see, e.g., Figure 7.5d),
there is extraordinary among-species variation in nearly all aspects of spermathe-
cal form (Figure 7.5a–f). In his beautifully illustrated monograph describing
the spermathecal morphology of approximately 260 species from 85 genera,
Theodor (1976) concludes: ‘the differences are so marked in most cases that they
are apparently of specific rank’.

p0620 An astonishing level of variation in female reproductive tracts, with substan-
tive species-level differences indicative of rapid diversification, has also been
found among dytiscid beetles and their relatives. Hundreds of species have been
examined in detail, along with numerous outgroups (Mazzoldi 1996; DeMarzo
1997; Miller 2001; Miller et al. 2006). Across the family, there are very different
states of overall configuration of the female reproductive tract, and numerous
structures were found to discriminate among closely related species. There were
extensive and complicated differences in shape and size of the bursa (including its
absence) and the spermatheca, in addition to the spermathecal and fertilization
ducts (Figure 7.5g–k). Staggering variation among species was also found for the
presence, absence, number and size of secretory glands occurring on the sper-
matheca, receptacle, spermathecal duct and/or fertilization duct (Miller 2001;
Miller et al. 2006). As described in Chapter 3 of this volume, it is noteworthy that
dytiscid beetles also display some of the greatest within-family variation in sperm
form and function ever identified (D. M. Higginson and S. Pitnick, unpublished
data).

p0630 A variety of selection pressures likely contribute to diversification of sperm-
storage organ morphology (Pitnick et al. 1999). Primary among these are sexual
selection on females to control paternity, alternative responses to such selection
and coevolution with interacting male traits (see Section 7.4; Walker 1980;
Austad 1984; Eberhard 1985, 1996; Siva-Jothy 1987; Birkhead et al. 1993;
Keller & Reeve 1995; Hellriegel & Ward 1998; Pitnick et al. 1999; but see
Thomas & Zeh 1984, p. 209 for discussion of macrochelid mites). Postulating
that the complexity and apparent selectivity of the female reproductive tract has
arisen to challenge males (or more accurately, their ejaculates) as a form of
cryptic female choice, Eberhard (1996, pp. 338–342) predicted that insemina-
tion ducts should be longer than fertilization ducts, when separate ducts are
present, and tested this prediction with entelegyne spiders. He found insemina-
tion ducts to be longer in 314 species, shorter in 40 and of equal length in 6.
Unfortunately, with few exceptions (e.g., Siva-Jothy 1987; Gack & Peschke
1994; Miller & Pitnick 2002; Pattarini et al. 2006), the functional relationship
between female reproductive morphology and sperm precedence pattern is
unknown for any species.
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s0190 7.4 Correlated evolution of ejaculate–female interaction
traits

p0640 As described above, numerous (but not all) sperm, seminal fluid and female
reproductive tract traits believed to participate in EFIs have been shown to evolve
rapidly. Confirmation of EFIs, and evidence of their evolutionary significance,
would come from demonstration that the interacting male and female traits
exhibit correlated evolution across species. Such a pattern could result from
selection acting on one sex only, followed by compensatory evolution by the
other sex. For example, females could evolve changes in their reproductive tracts
due to life history selection and ejaculates would evolutionarily track such
changes. Alternatively, interacting ejaculate and female traits could mutually
generate selective pressure on one another, resulting in a coevolutionary process
(Andersson 1994; Arnqvist & Rowe 2005).

p0650 In most cases, only one of the participating traits (typically the male) in an EFI
has been identified. For example, the Drosophila seminal fluid protein ovulin
(see Section 7.2.2) might act directly on targets in the reproductive tract, as it
binds to sites at the base of the ovaries (Heifetz et al. 2000). However, the female
receptor for ovulin, or any other male-derived molecule, has not yet been identi-
fied. Hence, it is not yet possible to perform molecular evolutionary analyses to
ascertain whether these EFI traits exhibit correlated evolution in the manner of a
signal-receiver system. The only putative EFI traits for which we currently can
conduct such analyses involve interacting morphologies of female sperm-storage
organs and either sperm or spermatophores. In addition to these studies, we
describe experimental evidence of reproductive failure in crosses between diver-
gent populations or species, which provide indirect evidence for evolutionary EFIs.

p0660 An evolutionary EFI has been beautifully illustrated for the sperm-storage
system of the rove beetle, Aleochara curtula (Gack & Peschke 1994; F€orster
et al. 1998). As for the majority of species, the phallus of male A. curtula cannot
directly access the female’s spermatheca (Eberhard 1985). However, males of
this species have evolved a novel mechanism to displace resident sperm from
within the spermatheca (Figure 7.6). Within the female, the ejaculate forms a
spermatophore consisting of a rigid sperm sac and at least seven different layers
of secretions (F€orster et al. 1998). While still in copula, a dramatic transforma-
tion of the spermatophore begins, probably driven by osmotic processes. From
the sperm sac, a primary tube emerges, which the male guides up the female’s
spermathecal duct using his endophallus (Gack & Peschke 1994). After mating
concludes, the tube continues to grow. At the distal end of the spermathecal duct,
the tube encounters and pushes through a narrow valve. Once inside the sperma-
theca, the end of the tube bursts and a secondary tube emerges through the rupture.
The secondary tube continues to elongate, doubles back on itself after reaching
the end of the spermatheca, and then inflates until it fills most or all of the organ.
Suddenly, liquid containing densely packed spermatozoa rushes up through the
tube and fills the swelling balloon. The female then actively contracts her
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f0060 Figure 7.6 Coevolution of spermatophore physiology and spermathecal morphology in
the rove beetle, Aleochara curtula.
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spermathecalmuscle causing two sharp, opposing, sclerotized spermathecal ‘teeth’
to shear though the wall of the balloon. Expansion and subsequent rupture of the
balloon cause any sperm from previous matings to be backflushed through the
valve and down the spermathecal duct (Gack&Peschke 1994; F€orster et al. 1998).

p0670 A very different kind of evolutionary EFI involves the coevolution of sperm
length and female sperm-storage organ morphology. Across diverse taxa, the
total length of sperm exhibits correlated evolution with the dimension of the
female sperm-storage organs and/or their ducts. Sperm length positively covaries
with the length of the spermatheca in featherwing beetles (Dybas & Dybas
1981), with SR length in fruit flies (Figure 7.4e and f; Pitnick et al. 1999,
2003), with SR and spermathecal duct length in stalk-eyed flies (Presgraves et
al. 1999), with spermathecal duct length in dungflies (Minder et al. 2005) and in
moths (Morrow & Gage 2000), and with SST length in birds (Briskie and
Montgomerie 1992; Briskie et al. 1997). The extreme example of the evolution-
ary consequences of such correlated evolution is found in the fruitflyD. bifurca,
in which males produce nearly 6 cm long sperm (Pitnick et al. 1995b) and
females have 8 cm long SRs (Pitnick et al. 1999; see Figure 7.4a and b).

p0680 The interpretation that sperm length and sperm-storage organ length coevolve
is supported by an experimental evolution study withD. melanogaster, in which
males with relatively short or long sperm were competed within females with
relatively long or short SRs. Differential male fertilization success was largely
determined by an interaction between sperm and SR length, such that the fitness
advantage to males of producing relatively long sperm increased with increasing
SR length (Figure 7.4c). Consistent with this result, evolutionary increases SR
length were independently found to drive the evolution of sperm length (Figure
7.4d;Miller&Pitnick 2002). Subsequent experiments established that the length
of competing sperm interact with the female tract to determine the probability of
occupying a unique region of the organ from which sperm for fertilization are
likely to come (Pattarini et al. 2006). Examination of geographic populations of
D.mojavensis, thought to represent incipient species (Markow&Hocutt 1998),
suggests similar coevolution is occurring in natural populations (Figure 7.4e;
Pitnick et al. 2003). The experimental evolution studies further demonstrated
substantive development time and longevity costs to females of having a rela-
tively long SR (Miller & Pitnick 2003); the selective benefits to females under-
lying the evolution of long sperm-storage organs remains a mystery.

p0690 Indirect evidence of the correlated evolution of sex-specific EFI traits comes
from experimental demonstration that normal EFI-controlled reproductive
processes become dysfunctional in crosses between divergent populations. For
example, in some Drosophila species, non-sperm components of the ejaculate
trigger rapid secretion by the vaginal epithelium, resulting in an opaquemass that
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(a) The elongating secondary tube (st) of the spermatophore reaches the blind end of the
spermatheca and doubles back on itself; (b) the tube then balloons between the two
spermathecal spines; (c) micrograph taken just prior to balloon popping and releasing
sperm into the female organ. Adopted with permission from Gack and Peschke (1994).
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fills the uterus for several hours. Whether this mass is comprised of female- or
male-derived molecules, or a combination is not known, nor is the function of
the mass. Females do not oviposit or remate until this ‘insemination reaction’
subsides (Patterson 1946; Wheeler 1947; Lee 1950; Patterson & Stone 1952;
Alonso-Pimentel et al. 1994). Early experiments by Patterson (1947) and
Baker (1947) revealed that the insemination reaction, which usually persists
8–9 h in intraspecific matings, was larger and lasted longer in interspecific
matings, sometimes remaining for several days. Recent experiments with both
D. mojavensis and D. arizonae found insemination reactions to be consistently
larger and/or of longer duration in interpopulation relative to intrapopulation
matings. This pattern suggests rapid biochemical coevolution between the sexes
in this EFI, with independent trajectories in isolated populations (Knowles &
Markow 2001). Crosses between male and femaleD. mojavensis from different
geographic populations also implicates evolutionary EFIs influencing egg volume
(Pitnick et al. 2003).

p0700 Further evidence for evolutionary EFIs comes from studies of postmating/
prezygotic reproductive isolating mechanisms. Despite apparently normal
mating and insemination betweenmales and females of different species, or those
from genetically divergent populations, successful reproduction can be compro-
mised to varying degrees. Such ‘gametic isolation’ (Dobzhansky 1951)may occur
following a single heterospecific (or heteropopulation) insemination, or it may
only be evident when the ‘foreign’ sperm are competing for fertilization with
sperm from a conspecific (or native) male (e.g., Chang 2004). In the latter
circumstance – known as competitive gametic isolation or conspecific sperm
precedence – the widely observed pattern is for the sperm of the conspecific male
to fertilize the majority of eggs, irrespective of mating order (see Chapter 9 of this
volume). Demonstrations of competitive gametic isolation between geographic
populations within species indicate that putative EFI traits diverge and coevolve
rapidly (Brown & Eady 2001; Hosken et al. 2002; Pitnick et al. 2003; Fricke &
Arnqvist 2004; Ludlow & Magurran 2006).

p0710 Themechanisms underlying gametic isolation are poorly known inmost cases,
but are likely attributable to ejaculate–female incompatibilities arising as a
consequence of populations or species evolving independently of one another
(see Chapter 9 of this volume). For example, when queens of the honeybee, Apis
mellifera, were each inseminated with an equal number of sperm from drones of
either A. mellifera, A cerana, A. dorsata or A. florae, there were significant
differences among crosses in the number of sperm reaching the spermatheca, the
motility of sperm at 3 days and at 4 weeks after insemination and egg fertilization
rate. These differences were in accordance with the degree of species relatedness
(Phiancharoen et al. 2004). Similarly, in the ground crickets Allonemobius socius
and A. fasciatus, heterospecific sperm appear less motile than do conspecific
sperm within the female sperm-storage organs (Gregory & Howard 1994). In
the bruchid beetles Callosobruchus subinnotatus and C. maculatus, conspecific
sperm are better at displacing heterospecific sperm from the female’s spermatheca
(Rugman-Jones & Eady 2007). Finally, conspecific sperm precedence between
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D. simulans andD.mauritiana appears to involve complex sperm � Acp � female
interactions (Price et al. 2000). The mechanisms of gametic isolation are expected
to be heterogeneous across study systems, given that any compromise in the
biochemical, physiological, morphological and/or behavioral basis of insemina-
tion, sperm migration, sperm storage, sperm viability and/or fertilization may
render foreign sperm less competitive (see Chapter 9 of this volume).

s0200 7.5 Genetic compatibility, male–female interactions and
sperm precedence

p0720 Investigations of two separate yet possibly related phenomena are contributing
to an emerging realization that discerning EFIs will enhance our understanding
of the mechanisms underlying the maintenance of genetic variation and direc-
tional sexual selection in a diversity of taxa. These phenomena are (1) the
selective benefit of polyandry arising throughmale–female genetic compatibility,
(2) the extent to which complex genotypic interactions between the sexes
mediates differential male fertilization success.

p0730 Indirect selection can favor multiple mating by females if, as a consequence of
ejaculates from more than one male mixing within the female’s reproductive
tract, the ensuing mechanisms of postcopulatory sexual selection (see Chapter 6
of this volume) result in the best sperm fertilizing the female’s eggs. In fact,
numerous experimental studies have demonstrated that postcopulatory sexual
selection can enhance offspring viability (reviewed by Jennions & Petrie 2000;
Tregenza & Wedell 2000; Neff & Pitcher 2005; but see Brown et al. 2004).
Several alternative models have been proposed to explain how such an adaptive
process might work, with the difference among them being the definition of ‘best
sperm’.

p0740 According to the ‘sexually selected sperm hypothesis’, by creating a compet-
itive fertilization environment, females enhance the probability of fertilizing
their eggs with sperm frommales who are good at sperm competition, and hence
benefit by producing sons who are superior sperm competitors (Sivinski 1984;
Harvey & Bennett 1985; Curtsinger 1991; Keller & Reeve 1995).

p0750 Alternatively, according to the ‘good sperm hypothesis’, females accrue
indirect genetic benefits through positive covariation of sperm competitive
ability and male genetic condition (Sivinski 1984; Madsen et al. 1992; Yasui
1997). In support of this hypothesis, studies have found (i) a positive relationship
between males’ sperm competitive ability and the viability (i.e., development time,
survival) of their offspring in the yellow dung fly (Hosken et al. 2003) and the
marsupial Antechinus stuartii (Fisher et al. 2006), (ii) positive relationships
between male attractiveness or condition and sperm competitiveness in red deer
(Malo et al. 2005), guppies (Matthews et al. 1997; Evans et al. 2003; Locatello
et al. 2006) and Atlantic cod (Rakitin et al. 1999) and (iii) condition dependence of
ejaculate characteristics in a dung beetle (Simmons& Kotiaho 2002) and of sperm
offense ability inD. melanogaster (Amitin & Pitnick 2007; McGraw et al. 2007).
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p0760 A third explanation for the positive relationship between polyandry and
female reproductive success, however, has received much greater attention.
According to the ‘genetic compatibility hypothesis’, the best sperm are those
bearing haplotypes most compatible with the female genome (or those that
minimize genetic incompatibility) (Zeh & Zeh 1996, 1997; Jennions 1997;
Jennions & Petrie 2000; Tregenza & Wedell 2000; Neff & Pitcher 2005; Oh
& Badyaev 2006). Because this criterion will be female-specific, the relevant
genetic variation in fitness will be nonadditive (Neff & Pitcher 2005; Bjork
et al. 2007). Some of the strongest evidence in favor of the genetic compatibility
hypothesis comes from experiments examining the relationship between
inbreeding, an obvious source of genetic incompatibility, and male competitive
fertilization success. Fertilization bias to minimize inbreeding (or selfing) has
been convincingly shown to occur inmice (Wedekind et al. 1996), the sand lizard
Lacerta agilis (Olsson et al. 1996), the field cricketGryllus bimaculatus (Bretman
et al. 2004; Tregenza &Wedell 2002), the fruitflyD. melanogaster (Mack et al.
2002), the soil nematode Caenorhabditis elegans (LaMunyon & Ward 1995,
1997) and the compound ascidianDiplosoma listerianum (Bishop 1996; Bishop
et al. 1996). The mechanism(s) underlying this effect are unknown for L. agilis,
G. bimaculatus and D. melanogaster. In the sequentially hermaphroditic
(i.e., sperm are produced prior to irrevocably switching to egg production) and
typically self-fertilizing C. elegans, the sperm of males outcompete self-sperm
(males areXO, the result of a rare nondisjunction event, and hermaphrodites will
mate with males). This effect is attributable to male sperm being larger, faster
and hence superior to ‘self-sperm’ in occupying the anterior end of the sperma-
theca, rather than to EFIs (LaMunyon &Ward 1995, 1997). In the mouse, non-
random fertilization has been demonstrated with respect to the MHC (major
histocompatibility complex) genotype of males, but appears to be mediated by
sperm–egg interactions (Wedekind et al. 1996; EFIs not examined; see Chapter 8
of this volume). Finally, in D. listerianum, biased fertilization has definitively
been demonstrated to involve EFI (see Section 7.2.5).

p0770 An alternative approach to examine the influence of genotypic interactions
between the sexes on fertilization bias has been to use factorial crossing designs
to partition variation among sources contributing to competitive male fertiliza-
tion success. In an early study, Zimmering and Fowler (1968) compared
the efficiency of sperm use by females after D. melanogaster males from an
Oregon-R strain had mated either to Oregon-R or yellow strain females. They
concluded: ‘. . . the proportion of non-functional sperm [is] determined in the
female and results from an interaction between the genotype of the female and
the genotype of the sperm’.More recently,Wilson et al. (1997) took advantage of
familial relatedness to partition sources of variation in the proportion of progeny
sired by the second of two males following remating by the female (P2) in the
cowpea weevil, Callosobruchus maculatus. Successive episodes of sperm com-
petition between the same twomales resulted in a consistent outcome only when
the successive females were genetically similar (i.e., full sisters). Likewise, P2 was
only consistent among full sisters when they were both mated to genetically
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similar male pairings. Another study of sperm precedence usedD. melanogaster
lines rendered homozygous for X, second and third chromosomes to demon-
strate the presence of polymorphic female genes affecting P2 (Clark & Begun
1998). The authors recognized that ‘genetic variation of this type is completely
neutral in the absence of pleiotropy or interaction between variation in the
two sexes’. Clark et al. (1999) followed up with an analysis of pairwise P2
experiments among six different isogenic lines, which demonstrated significant
male–female interactions on P2. A similar result was obtained using different
wild-type strains of the flour beetle, Tribolium castaneum (Nilsson et al. 2003).
Recently, Bjork et al. (2007) used an outbred D. melanogaster population with
natural genotypic variation to quantify the extent ofmale–female andmale–male
interactions on both P2 and P1 (the proportion progeny sired by the first of two
males following remating by the female). They found the pattern of sperm
precedence to be statistically repeatable only when each male competed against
the same rival male and within the same female. Repeatability of P1 and P2
declined significantly when the rival male stayed the same but the female chan-
ged, and they disappeared whenmales competed each time against different rival
males within different females.

p0780 These male–female interactions have been interpreted to be a consequence of
complex EFIs (and male–male interactions). Such interactions are predicted to
generate a pattern of nontransitivity among males in their sperm competitive
ability (Clark et al. 2000), in a manner comparable to the ‘rock-paper-scissors’
game (Maynard Smith 1982). This prediction has been supported by a study
using chromosome-extracted lines of Drosophila (Clark et al. 2000) and by an
assay of fertilization success following artificial insemination of mixed male
ejaculates in domestic fowl (Birkhead et al. 2004). Nontransitivity of sperm
competition success should theoretically increase the opportunity for polymor-
phism in genes that influence the EFIs (Prout & Bunndgaard 1977; Clark et al.
1999, 2000).

s0210 7.6 Conclusions and future directions

p0790 In this chapter, our goal was to bring together evidence for mechanistic and
taxonomic diversity of EFIs in order to encourage investigators to expand the
arena in which they consider reproductive biology. It was not our goal to test the
extent to which EFIs are important or pervasive, because EFIs have not been
sufficiently studied to permit such evaluation. Thus, we made no attempt to
determine the contribution of EFIs to reproductive success relative to the con-
tribution of, say, among-male variation in traits that do not involve interaction
with the female (e.g., Pattarini et al. 2006).

p0800 In contrast to processes contributing to differential malemating success (Wiley
& Poston 1996), there is still debate over the relative contributions of male–male
competition (i.e., sperm competition) and (cryptic) female choice, in determining
differential male fertilization success (Gowaty 1994; Eberhard 1996; Birkhead
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1998a; Pitnick & Brown 2000; Simmons 2001). However, evidence reviewed
here indicates that EFIs can be complex and females can influence everything
from the number of sperm transferred to sperm motility, storage and survival.
Variation among males in the ability of their ejaculates to interact with the
female is likely to be a ubiquitous determinant of competitive fertilization success
in internally fertilizing species. We therefore agree with Eberhard (1996, 1998,
2000) that distinguishing between sperm competition and cryptic female choice
presents a false dichotomy in most cases, and we equate any distinction made
between them to that applied to passive versus active female choice (Parker 1983;
Sullivan 1988). When referring to both process and mechanisms, we encourage
usage of the more comprehensive expression ‘postcopulatory sexual selection’
over the more ambiguous terms ‘sperm competition’ and ‘cryptic female choice’.

p0810 Distinguishing between alternative models for the evolution of female prefer-
ences is notoriously difficult (Bradbury & Andersson 1987; Rowe et al. 2003;
Arnqvist & Rowe 2005; Kokko et al. 2006). Detailed knowledge of the mechan-
isms by which males and females interact may be pivotal to any empirical
exploration of alternative scenarios for the evolution of sexual traits (Rowe &
Day 2006). Experimental evolution and phenotypic engineering approaches
applied to traits known to mediate interactions between the sexes can then be
used to perturb the system while examining sex-specific fitness consequences.
EFIs provide good candidates for such analyses (e.g., Chapman et al. 1995; Rice
1996; Hosken et al. 2001; Miller & Pitnick 2002; Bjork & Pitnick 2006).

p0820 Increased knowledge of EFIs will also have direct, applied applications.
Approximately 25–30% of human couples exhibit ‘unexplained infertility’ (see
Chapter 15 of this volume; also Garcia-Gonzalez 2004). Because some of these
cases are likely to involve some incompatibility in terms of EFI, a more compre-
hensive understanding of EFIs might lead to better diagnostics and novel treat-
ments for human infertility. In addition, intracytoplasmic sperm injection (ICSI),
in which a single sperm (often aspirated from the male’s testis) is injected into an
egg, is now widely practiced. This technique circumvents any ‘selection’ among
sperm imposed by the female tract and any female-induced modification of
sperm (Cummins& Jequier 1995; see Chapters 5 and 15 of this volume). Knowl-
edge of both proximate and ultimate aspects of EFIs should be part of any
comprehensive medical and ethical evaluation of such techniques. Similarly,
assisted reproduction technologies are increasingly being employed in compre-
hensive plans to rescue threatened and endangered species (see Chapter 14 of this
volume). Comparative knowledge of EFIs may improve the success of these
endeavors.

p0830 We are excited about recent genomic and proteomic approaches to investigate
EFIs (Fazeli et al. 2004; McGraw et al. 2004; Lawniczak & Begun 2004;
Georgiou et al. 2005; Mack et al. 2006). Great advances are likely to come
from comparative analyses across closely related species, particularly if coupled
with assays involving hybrid (particularly artificial) inseminations. Recent
advances in whole-cell proteomics, exemplified by the recent publication of
the D. melanogaster sperm proteome (Dorus et al. 2006; see Chapter 11 of this
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volume), are also likely to dramatically improve our understanding of EFIs. An
example of an approach that may be fruitful in this regard would be to compare
proteomes among purified samples of sperm: (i) isolated from male seminal
vesicles (thus not exposed to most seminal fluid proteins); (ii) isolated from
seminal vesicles and then mixed, in vitro, with secretions of male reproductive
tract glands; and (iii) isolated from female sperm-storage organs (thus exposed to
male seminal fluid proteins and subsequent opportunity for modification within
the female reproductive tract). There would be much to learn from including
among-species experiments of treatments (ii) and (iii) (i.e., hybrid mixing of
sperm and Acps and hybrid inseminations) in such an endeavor. These com-
parisons would identify proteins from male glands and from the female repro-
ductive tract that become associated with sperm, and modifications to sperm
proteins that result from exposure to seminal fluid and/or female reproductive
tract proteins. Identification of the female receptors or female-derived proteins
that target or serve as targets of specific male-derived proteins, coupled
with evolutionary analyses to determine whether the sex-specific interactants
coevolve, would also present a great advance. Another promising endeavor
would be to quantify within-population variation in both male and female
EFI traits, particularly if such knowledge could be applied to discerning the
mechanisms by which male–female interactions impact sperm precedence.
Finally progress will also come from comparative studies of sperm behavior
across species differing in design of the female reproductive tract. Although
sperm motility has been widely investigated in vitro, relatively little is known
about sperm flagellar motion and other sperm behavior within females (see
Chapter 5 of this volume).
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