Conference paper Open Access

Asymmetry in Energy-Harvesting Wireless Sensor Network Operation Modeled via Bayesian Games

Gindullina, Elvina; Badia, Leonardo


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/b71f2685-151b-4b76-bf30-40b9f1676592/07974348.pdf"
      }, 
      "checksum": "md5:8f983eeea1bc7eb1f5b1462a7cd77780", 
      "bucket": "b71f2685-151b-4b76-bf30-40b9f1676592", 
      "key": "07974348.pdf", 
      "type": "pdf", 
      "size": 83114
    }
  ], 
  "owners": [
    32758
  ], 
  "doi": "10.1109/WoWMoM.2017.7974348", 
  "stats": {
    "version_unique_downloads": 55.0, 
    "unique_views": 52.0, 
    "views": 55.0, 
    "version_views": 55.0, 
    "unique_downloads": 55.0, 
    "version_unique_views": 52.0, 
    "volume": 4654384.0, 
    "version_downloads": 56.0, 
    "downloads": 56.0, 
    "version_volume": 4654384.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/WoWMoM.2017.7974348", 
    "latest_html": "https://zenodo.org/record/1000480", 
    "bucket": "https://zenodo.org/api/files/b71f2685-151b-4b76-bf30-40b9f1676592", 
    "badge": "https://zenodo.org/badge/doi/10.1109/WoWMoM.2017.7974348.svg", 
    "html": "https://zenodo.org/record/1000480", 
    "latest": "https://zenodo.org/api/records/1000480"
  }, 
  "created": "2017-10-02T08:06:44.514518+00:00", 
  "updated": "2020-01-20T15:28:16.718036+00:00", 
  "conceptrecid": "1000479", 
  "revision": 6, 
  "id": 1000480, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/WoWMoM.2017.7974348", 
    "description": "<p>We consider the management of an energy harvesting wireless sensor network, inspired by game theory so as to obtain a distributed multi-agent operation. In particular, we focus on asymmetries in the nodes energetic capabilities, and how do they impact on the resulting performance. We frame the problem as a repeated Bayesian game with asymmetric players and incomplete information, where also the private information available at each node is asymmetric. We find out that instead of a proportionally fair resource utilization, such a situation ends up in an even more unbalanced situation, which leads to an inefficient management where certain nodes are utilized beyond their fair share. Future research directions are identified so as to recover information about asymmetries from the strategic gameplay of the sensors and thus enable a better management.</p>", 
    "license": {
      "id": "CC-BY-NC-ND-4.0"
    }, 
    "title": "Asymmetry in Energy-Harvesting Wireless Sensor Network Operation Modeled via Bayesian Games", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1000479"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1000480"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "675891", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::675891"
        }, 
        "title": "Sustainable CellulAr networks harVEstiNG ambient Energy", 
        "acronym": "SCAVENGE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Wireless sensor network", 
      "Energy harvesting", 
      "Battery management", 
      "Bayesian games", 
      "Repeated games"
    ], 
    "publication_date": "2017-07-13", 
    "creators": [
      {
        "affiliation": "University of Padova", 
        "name": "Gindullina, Elvina"
      }, 
      {
        "affiliation": "University of Padova", 
        "name": "Badia, Leonardo"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
55
56
views
downloads
Views 55
Downloads 56
Data volume 4.7 MB
Unique views 52
Unique downloads 55

Share

Cite as