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In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte

precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane
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protein, exerting multiple roles in the CNS including intracellular signaling within the OPC,

with effects on migration, cytoskeleton interaction and target gene regulation. It has been

recently shown that the extracellular region of NG2, in addition to an adhesive function,

acts as a soluble ECM component with the capacity to alter defined neuronal network

properties. This region of NG2 is thus endowed with neuromodulatory properties. In order

to generate biologically active fragments yielding these properties, the sequential cleavage

of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is

stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments

which all have been associated with distinct biological functions. Here we summarize

these functions, focusing on recent discoveries and their implications for the CNS.

This article is part of a Special Issue entitled SI:NG2-glia(Invited only).

This article is part of a Special Issue entitled SI:NG2-glia(Invited only).

& 2015 Published by Elsevier B.V.
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1. Origin and structure of the NG2
proteoglycan

The NG2 proteoglycan is coded by the CSPG4 gene and belongs
to the protein family of chondroitin sulfate proteoglycans
(CSPGs). NG2 was first discovered in 1977 in a screen for
neuronal and glial antigens in the rat (Stallcup, 1977). Homologs
have been reported so far from mouse (Niehaus et al., 1999;
Schneider et al., 2001; Stegmuller et al., 2002), human (Pluschke
et al., 1996) and drosophila (Estrada et al., 2007; Schnorrer et al.,
2007). Oligodendrocyte precursor cells (OPC) express the NG2
protein, while it is absent from other neural cells such as
neurons (Clarke et al., 2012; Karram et al., 2008), astrocytes
(Huang et al., 2014; Zhu et al., 2008) and resident microglia
(Moransard et al., 2011). Within the oligodendrocyte lineage
NG2 is down-regulated with ongoing differentiation of OPC into
myelinating mature oligodendrocytes (De Biase et al., 2010;
Kukley et al., 2010; Nishiyama et al., 2009). OPC are thus the
exclusive source of NG2 amongst neural cells. OPC make up a
stable cell population at all stages of development in gray and
white matter, in the adult mammalian brain they make up
around 5% of total neural cells (Dawson et al., 2003; Gallo et al.,
2008). In addition to expression within the normal CNS, NG2 is
expressed by populations of glioma cells, including the most
aggressive glioblastoma (Al-Mayhani et al., 2011; Chekenya
et al., 2008; Persson et al., 2010). Interestingly, OPC have been
identified as constituting the cells of origin for gliomas (Liu
et al., 2011) and NG2 seems to play an important role in
likelihood for an OPC to became a tumor cell (Sugiarto et al.,
2011). Subpopulations of pericytes, cells of the vascular system,
also express NG2 (Ozerdem et al., 2002; You et al., 2014).

NG2 is a type-1 membrane protein with a protein core of 252
kD molecular weight (MW), the glycosylated form that is
extractable from in vivo neural samples has a MW of 300 kD
and exhibits a broad band pattern around this size on SDS gels,
typical for a glycoprotein containing complex sugars. Glycosyla-
tion of the extracellular part yields one confirmed glycosami-
noglycan (GAG-) chain (O-glycosylation) (Stallcup and Dahlin-
Huppe, 2001), with several predicted N-glycosylation sites
(Nishiyama et al., 1991). The extracellular part of 2200 amino
acids (aa), makes up over 95% of the protein, while the
transmembrane (TM) domain comprises 21 aa and the intracel-
lular part 77 aa. Two N-terminal Laminin Neurexin Sex-Hormone
Binding Globulin (LNS) domains represent conserved protein
domains which recently have been shown to exhibit neuromo-
dulatory properties (Sakry et al., 2014). These NG2 LNS domains
are conserved throughout species from humans to drosophila
(Rudenko et al., 2001). In the ensuing text we focus on summar-
izing functions of the intracellular part of NG2 including the
binding partners, as well as novel functions of the extracellular
part of NG2. We first provide an overview of the latest dis-
coveries related to proteolytic processing of NG2, as this is
essential to yield the biological functions of the protein.
314
315
316
317
318
319
2. Cleavage of NG2

Soluble forms of the NG2 ectodomain extractable from tissue
with salt solutions (290 kD and 275 kD) were initially reported
Please cite this article as: Sakry, D., Trotter, J., The role of the
Research (2015), http://dx.doi.org/10.1016/j.brainres.2015.06.003
in 1995 (Nishiyama et al., 1995) and confirmed by others
(Deepa et al., 2006; Morgenstern et al., 2003). We recently
showed that the full-length (FL) NG2 protein (300 kD) is
processed sequentially by the α-secretase ADAM10 and sub-
sequently by the γ-secretase complex Fig. 1. Both these
enzymes are expressed by OPC. α-secretase cleavage leads
to an ectodomain of around 290 kD which can be released
from the cell and a matching c-terminal fragment (CTF) of 12
kD. The membrane-bound CTF can be further processed by
the γ-secretase complex releasing the intracellular part from
the membrane stump: this released intracellular domain is
termed the ICD (8.5 kD) (Sakry et al., 2014). Similar cleavage
cascades are known for other type-1 membrane proteins such
as Notch, N-Cadherin, Neuroligin, L1 or APP, involving the
same or similar proteases. The NG2 FL, the ectodomain, the
CTF and the ICD are the major forms of NG2 known to date.

A new focus was given to the biological relevance of these
cleavage events when it was shown that α-secretase mediated
cleavage of neuronal surface proteins such as neuroligin-1 and
N-cadherin was stimulated by neuronal activity (Malinverno
et al., 2010; Suzuki et al., 2012). We have recently shown that
NG2 cleavage by α- and γ-secretases occurs constitutively and
can be increased by neuronal activity acting on OPC (Sakry
et al., 2014). This is especially interesting since OPC are unique
glia entering into synaptic contact with the neuronal network
in all major areas of the brain (Bergles et al., 2000; Jabs et al.,
2005; Kukley et al., 2008; Mangin and Gallo, 2011). This implies
that NG2 cleavage-dependent functions can be modulated by
the neuronal network (Sakry et al., 2014). An important
unresolved question for all such cleavage events is the
mechanism of activation of the α-secretase (Sonderegger and
Matsumoto-Miyai, 2014).

OPC are likely to play multiple complex roles in different
types of CNS lesion, which are at present incompletely
understood. It has been established that together with micro-
glia OPC constitute the cellular response of resident CNS cells
within the first few days after injury (Buffo et al., 2005; Dimou
et al., 2008). The response of OPC to lesions involves
increased proliferation, migration and differentiation
(Simon et al., 2011) and has largely been interpreted as a
response of the oligodendrocyte lineage to damage of myelin;
little is known about their role in the glial scar (Buss et al.,
2009; Honsa et al., 2012; Vadivelu et al., 2015). Furthermore
OPC have been associated with injury-dependent increase of
NG2 cleavage from the OPC (Jones et al., 2002; Levine, 1994;
Morgenstern et al., 2003). Some studies report identified
microglia with NG2 surface staining which is sometimes
purported to be lesion-dependent expression of NG2 by
microglia (Jones et al., 2002; Zhu et al., 2012), but may in fact
be bound OPC-derived NG2 ectodomain. A detailed lineage-
tracing study reported that CNS resident macrophages
(microglia) do not express NG2 while invading macrophages
from the blood can be NG2-positive (Moransard et al., 2011).
3. Intracellular functions of the NG2
proteoglycan

The intracellular part of NG2 (77 aa) can be cleaved by
γ-secretase activity yielding the NG2 ICD (Sakry et al., 2014).
NG2 proteoglycan in OPC and CNS network function. Brain
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Fig. 1 – The role of the OPC-expressed NG2 protein in the CNS. The type-1 membrane protein NG2 (300 kD) is located at the
OPC surface. Sequential cleavage of NG2 by α- and γ-secretases, leads to a released ectodomain (around 290 kD) and
membrane bound c-terminal fragment (CTF, 12 kD). The CTF can then be further processed by the γ-secretase releasing the so
called ICD (intracellular domain of 8.5 kD). Activity of the α-secretase ADAM10 on NG2 can be increased by electrical activity of
the neuronal network via the neuron–glia synapse. The CTF and ICD modulate expression of the secreted enzyme PTGDS,
which has reported neuromodulatory functions and has recently been shown to be expressed by OPC in an NG2-dependent
manner. The LNS domains of the NG2 ectodomain alter defined glutamatergic synaptic properties of neuron–neuron
synapses.
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This region of the protein contains two phosphorylation sites,
Thr-2256 and 2314, the first is a target for PKCα and the
second for ERK (Makagiansar et al., 2007). The C-terminus
contains a PSD95/DiscsLarge/Zho1 (PDZ) binding motif
(QYWV). Binding partners are to date the thirteen PDZ
domain containing scaffolding protein Mupp1 (Barritt et al.,
2000), Syntenin, a cytoplasmic adapter whose interaction
with NG2 is important for migration of OPC (Chatterjee
et al., 2008) and the synaptic protein GRIP1 which binds the
AMPAR subunit GluR2 together with NG2 on OPC (Stegmuller
et al., 2003). We have observed that NG2 also binds to the
serine protease OMI/HtrA2, localized in the intermembrane
space in mitochondria. This molecule plays a role in apopto-
sis induction and we suggest that sequestration of the
protease may help protect OPC from apoptosis-inducing
stress. (Maus et al., unpublished results).

Recently a complex signal pathway resulting in directed
migration of OPC in response to gradients of FGF or PDGF-aa
has been reported (Biname et al., 2013). In this study FGF-
dependent polarization of OPC was altered in cortical lesions of
mice lacking the NG2 protein (NG2-KO mice, (Karram et al.,
2008)). The underlying cellular signal cascade within the OPC
has been shown to involve Rac/Rho dependent phosphorylation
of the intracellular region of NG2, reviewed by Biname (2014).

The NG2 CTF and ICD influence target gene expression in
OPC. The enzyme PTGDS catalyzes the conversion of prosta-
glandin H2 to the neuromodulatory form prostaglandin D2.
PTGDS has been shown to be expressed and released by mature
oligodendrocytes and the meninges (Taniike et al., 2002) and
recently shown to be additionally expressed by OPC (Sakry
Please cite this article as: Sakry, D., Trotter, J., The role of the
Research (2015), http://dx.doi.org/10.1016/j.brainres.2015.06.003
et al., 2015). In OPC, the level of PTGDS expression is modulated
by the NG2 CTF and ICD, as well as by a complete lack of NG2
(Sakry et al., 2015). Interestingly expression of high levels of the
NG2 ICD in OPC after transfection results in localization of the
ICD into the nucleus, suggesting a potential regulatory function
in gene expression (Sakry et al., 2015). CNS PTGDS levels have
been shown to be increased in lesions of the human demyeli-
nating disease Multiple Sclerosis (MS) (Chabas et al., 2001) and
neurological disorders (Marin-Mendez et al., 2012), in MS lesions
PTGDS can be additionally expressed by astrocytes (Kagitani-
Shimono et al., 2006). Taken together, OPC can thus be seen as
an additional cellular source of PTGDS expression in the CNS
and OPC contribute to the neuromodulatory functions of PTGDS
in an NG2-dependent manner. Interestingly in the PNS, PTGDS
is reported to be expressed by DRG neurons where the neur-
egulin I ICD influences expression levels (Trimarco et al., 2014).
4. Extracellular functions of the NG2
proteoglycan

NG2 has been postulated as a cell adhesion molecule for quite
some time. This has been strengthened by the observation
that the extracellular region between the TM domain and the
LNS domains binds to collagen V and VI and integrins (Fukushi
et al., 2004; Tillet et al., 1997); thus NG2 functions as a cell-
surface anchor within the extracellular matrix (ECM). Other
family members of the chondroitin sulfate proteoglycan
(CSPG) family such as brevican are secreted proteins with
defined roles within the ECM (Deepa et al., 2006; Frischknecht
NG2 proteoglycan in OPC and CNS network function. Brain
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et al., 2014). ECM integrity is important for AMPAR signaling at
synapses influencing lateral diffusion of the receptor and
consequently synaptic signal propagation (Frischknecht
et al., 2009).

Interestingly, the two NG2 N-terminal LNS domains
(which so far lack a binding partner) are similar to the LNS
domains of the neuronal synaptic adhesion proteins the
neurexins (NX), here they are responsible for binding to the
interaction partners the neuroligins (NL) (Aoto et al., 2013;
Ichtchenko et al., 1995; Ichtchenko et al., 1996; Krueger et al.,
2012) as well as LRRTMs, Calsyntenins, Cerebellin, dystrogly-
can, and neurexophilins (Ko et al., 2009; Linhoff et al., 2009;
Petrenko et al., 1996; Pettem et al., 2013; Sugita et al., 2001;
Uemura et al., 2010). NL–NX interaction is an essential for
forming and maintaining chemical synapses of the neuronal
network (Krueger et al., 2012). Mutations within the NX LNS
domains have been related to severe synaptic phenotypes
found in human patients with neural diseases such as autism
spectrum disorder (ASD) (Sudhof, 2008). The sequence con-
servation of LNS domains between laminins and neurexins is
around 20–25% together with high functional similarities of
the 3-dimensional structure (Rudenko et al., 1999; Rudenko
et al., 2001). The NG2 LNS domains are no exception here:
they show highest sequence similarities of up to 26% with the
LNS domains of neurexins.

As discussed above, the NG2 extracellular region can be
released by the activity of the α-secretase ADAM10 into the
ECM, and is thus regarded as a soluble 290 kD NG2 ectodomain
(Sakry et al., 2014). This cleavage from the OPC surface occurs
constitutively, is increased in an activity-dependent fashion
and elevated in response to lesion. The question thus posed is:
what is the biological function of the NG2 ectodomain in its
soluble form as it can be extracted from the ECM? We recently
showed that the two LNS domains of the NG2 ectodomain
modulate synaptic AMPAR currents and kinetics of pyramidal
neurons within the rodent somatosensory cortex, suggesting
an influence on subunit composition of the AMPAR (Sakry
et al., 2014). The AMPAR-phenotype observed in this neuronal
population in mice lacking NG2 (NG2-KO mice) can be rescued
by incubation of brain slices with a recombinant protein
containing solely the two NG2 LNS domains. Furthermore, in
NG2-KO mice reduced NMDAR-dependent LTP is observed
within the same neuronal population as a consequence of
the altered AMPAR and NMDAR currents. NG2-KO mice exhibit
a postsynaptic phenotype which is regulated by the NG2 LNS
domains, while presynaptic characteristics such as the paired-
pulse ratio remain unchanged (Sakry et al., 2014). Thus the NG2
LNS domains regulate postsynaptic signaling and modulate
glutamergic signaling of the neuronal network. Interestingly in
NG2-KO mice behavioral differences compared to wild-type
littermates have been observed in tests related to integration of
sensory input. In particular, a test based on the response of the
auditory system (acoustic startle response, paired-pulse-ratio)
showed abnormalities in NG2-KO mice (Sakry et al., 2014)
similar to those observed in patients with schizophrenia.

Subpopulations of pericytes express NG2. A contribution
of NG2-expressing pericytes of the vascular system to the
described ectodomain effects cannot be completely excluded
but is likely to play if at all, a minor role. Pericytes ensheathe
the endothelial cells making up blood vessels. It is not known
Please cite this article as: Sakry, D., Trotter, J., The role of the
Research (2015), http://dx.doi.org/10.1016/j.brainres.2015.06.003
so far if and how efficient pericytes can release protein
factors through the other layers of the blood-brain-barrier
into the ECM of the CNS. Cleavage of OPC NG2 has been
shown in acute slices, primary OPC (pOPC) and an OPC cell-
line (Sakry et al., 2014), our pOPC culture lacks pericytes
(Sakry et al., 2015). Furthermore in slices and pOPC NG2
cleavage is increased by neuronal activity and glutamate
(Sakry et al., 2014), as far as is known pericytes do not
respond to network activity nor receive synaptic input from
neurons.

Recent analysis of the response of the NG2 KO mice to
lesions also suggests that the loss of NG2 has effects beyond
the neuronal network and that cytokine production by neural
and immune cells may also be influenced by the lack of NG2.

Even though we know very little at present about the exact
molecular mechanism underlying the modulation of neuro-
nal signaling by the two NG2 LNS domains, these results
show that the release of NG2 ectodomain (including the LNS
domains) is under the control of the neuronal network via
activity-dependent cleavage in OPC, initiated at their so
called “neuron–glia” synapses (Bergles et al., 2010; Mangin
and Gallo, 2011; Sakry et al., 2011). In response, the neuronal
network is regulated by the released NG2 ectodomain. These
novel results have introduced a new paradigm: a feedback
mechanism (neuron–glia–neuron) integrating OPC as a glial
cell population within the neuronal network (Sakry et al.,
2014) as originally hypothesized in (Sakry et al., 2011).
5. Summary

Recent studies focused on the NG2 protein have revealed a
defined role of NG2 in brain homeostasis. This includes
intracellular functions within the OPC including modulation
of migration, target gene expression and AMPAR clustering.
The first two functions of NG2 seem to be of particular
importance in lesioned brain tissue. Cleavage of the full-
length NG2 protein by α- and subsequently γ-secretase
activity turns out to be a core aspect, as the cleavage
fragments (ectodomain, CTF, ICD) exhibit defined roles within
the CNS. The fact that increased α-secretase mediated NG2
cleavage is modulated by neuronal activity is especially
interesting as it integrates NG2-expressing OPC into the
neuronal network. The story becomes even more exciting,
since the released NG2 ectodomain, specifically the two LNS
domains, are able to modulate excitatory neuronal synapses;
thus, introducing a neuron–OPC–neuron feedback loop within
the CNS.
6. Outlook

Future studies are aimed at defining the biological roles of the
NG2 intracellular cleavage fragments CTF and ICD within the
OPC. These are likely to include a nuclear function of the NG2
ICD and defined roles of the CTF and ICD in target-gene
regulation.

NG2-dependent expression of PTGDS by OPC especially in
CNS diseases like MS, needs further investigation as well.
NG2 proteoglycan in OPC and CNS network function. Brain

http://dx.doi.org/10.1016/j.brainres.2015.06.003
http://dx.doi.org/10.1016/j.brainres.2015.06.003
http://dx.doi.org/10.1016/j.brainres.2015.06.003


Q6

BRES : 44291

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

b r a i n r e s e a r c h ] ( ] ] ] ] ) ] ] ] – ] ] ] 5
The neuromodulatory function of the two LNS domains of
the NG2 ectodomain evoke questions as to the identity of
possible neuronal binding partners and an explanation of the
effects on AMPA receptor characteristics, as well as detailed
further characterization of the involved neuronal networks. A
role in excitatory/inhibitory homeostasis of the neuronal net-
work has already become apparent as the LNS domains
increase synaptic transmission at excitatory synapses on pyr-
amidal neurons within the somatosensory system. Further-
more, since a lack of the NG2 LNS domains was linked to
altered animal behavior similar to that found in human
diseases with known excitatory/inhibitory misbalance such as
schizophrenia, a link to other neurological disorders involving
excitatory/inhibitory misbalance is very likely. It is also possible
that NG2-expressing gliomas may influence the surrounding
neuronal networks by the mechanisms described above.
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