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Recent advances in genomic sequencing allow a new paradigm in hormonal research, and a comparative genomic
approach facilitates the identification of receptors and signalling mechanisms for orphan ligands of the transforming
growth factor b (TGFb) superfamily. Instead of purifying growth differentiation factor 9 (GDF9) receptor proteins
for identification, we hypothesized that GDF9, like other ligands in the TGFb family, activates type II and type I
serine/threonine kinase receptors. Because searches of the human genome for genes with sequence homology to
known serine/threonine kinase receptors failed to reveal uncharacterized receptor genes, GDF9 likely interacts with
the known type II and type I activin receptor-like kinase (ALK) receptors in granulosa cells. We found that co-treatment
with the bone morphogenetic protein (BMP) type II receptor (BMPRII) ectodomain blocks GDF9 activity. Likewise,
in a GDF9-non-responsive cell line, overexpression of ALK5, but none of the other six type I receptors, conferred
GDF9 responsiveness. The roles of BMPRII and ALK5 as receptors for GDF9 were validated in granulosa cells using
gene ‘knock-down’ approaches. Furthermore, we demonstrated the roles of BMPRII, ALK3 and ALK6 as the recep-
tors for the orphan ligands GDF6, GDF7 and BMP10. Thus, evolutionary tracing of polypeptide ligands, receptors
and downstream signalling molecules in their respective ‘subgenomes’ facilitates a new approach for hormonal
research.
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Introduction

Advances in the sequencing of diverse genomes allow an
unprecedented opportunity to analyse the evolution of genes,
including polypeptide ligands and receptors. In the human
genome, many genes belong to distinct families because of their
derivation from a common ancestor gene. In addition to
sequence homology, these paralogous genes most often perform
similar functions. Identification of paralogous genes in distinct
families serves as the first step in building hypotheses for testing
the structure and function of previously uncharacterized genes.
Because ligand and receptor families have co-evolved, analyses
of the subgenomes of extracellular protein ligands and their
transmembrane receptors provide a new paradigm with which to

match orphan ligands with their cognate receptors (Leo et al.,
2002).

Transforming growth factor β (TGFβ) family ligands usually
initiate signalling by binding to type I and type II serine/threonine
kinase receptors, leading to the phosphorylation of Smad proteins
(Massague, 1998). Analysis of the human genome indicated the
presence of seven type I and five type II serine kinase receptors
(Manning et al., 2002). Owing to their common evolutionary ori-
gin, more than 30 related members of the TGFβ superfamily likely
interact with this limited set of receptors thereby activating Smad
proteins (Mazerbourg et al., 2005). In the present review, we will
summarize a genomic view of TGFβ superfamily ligands, their
receptors and downstream signalling pathways and the ovarian
functions of growth differentiation factor 9 (GDF9). Using a
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genomic approach, we will then describe the identification of the
type II and type I receptors for GDF9 and several related bone
morphogenetic protein (BMP) and GDF proteins.

The TGFb family ligands

The TGFβ superfamily of ligands is a group of more than 30 multi-
functional polypeptide growth factors that include TGFβ proteins,
activins/inhibins, BMPs, GDFs and others (Figure 1). These ligands
regulate cell proliferation, differentiation and apoptosis, which are
essential for embryonic development, organogenesis, bone forma-
tion, reproduction and other physiological processes (Chang et al.,
2002). They are synthesized as large precursor molecules that are

cleaved proteolytically by members of the subtilin-like proprotein
convertase (SPC) family and the BMP1/Tolloid-like proteinase to
release a C-terminal peptide of 110–140 amino acids (Kingsley,
1994; Massague, 1998; Constam and Robertson, 1999; Wolfman
et al., 2003; Ge et al., 2005). The large N-terminal prodomain of the
TGFβ ligand precursor is a key determinant in regulating the secre-
tion and processing of these ligands (Thomsen and Melton, 1993;
Constam and Robertson, 1999). In the case of TGFβ, BMP7,
BMP9, myostatin and GDF11, the propeptide and the mature
domain remain non-covalently associated after cleavage, resulting
in the secretion of a latent complex (Gray and Mason, 1990;
Bottinger et al., 1996; Hill et al., 2002; Brown et al., 2005; Ge et al.,
2005; Gregory et al., 2005).

Figure 1. Phylogenetic relationship of paralogous TGFβ/GDF/BMP ligands, as well as characterized receptors and signalling pathways for individual ligands. The
alignment of 35 TGFβ-related ligands was performed using the C-terminal region containing the cystine-knot structure, starting from the first invariant cysteine res-
idue. Phylogenetic analyses were performed based on multiple sequence alignment using the ClusterW algorithm (http://www.ch.embnet.org/software/
ClustalW.html) and the TreeView drawing software (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). Based on published literature [BMP6 (Ebisawa et al.,
1999); BMP7 (Yamashita et al., 1994; Liu et al., 1995); BMP2 and BMP4 (Koenig et al., 1994; Yamaji et al., 1994; Liu et al., 1995; Nohno et al., 1995; Rosenzweig
et al., 1995; Kawabata et al., 1998); GDF5 (Nishitoh et al., 1996); GDF6, GDF7 and BMP10 (Mazerbourg et al., 2005); GDF1 (Cheng et al., 2003); BMP3 (Daluiski
et al., 2001); GDF9 (Vitt et al., 2002; Kaivo-Oja et al., 2003; Roh et al., 2003; Mazerbourg et al., 2004; Kaivo-Oja et al., 2005); BMP15/GDF9b (Moore et al.,
2003); Nodal/BMP16 (Gritsman et al., 1999; Reissmann et al., 2001; Yan et al., 2001; Yeo and Whitman, 2001; Bianco et al., 2002); activin (inhibin beta) (Mathews
and Vale, 1991; Mathews et al., 1992; Carcamo et al., 1994; Attisano et al., 1996); BMP11/GDF11 (Oh et al., 2000); GDF8 (Rebbapragada et al., 2003); TGFβ
(Lin et al., 1992; Attisano et al., 1993; Franzen et al., 1993; ten Dijke et al., 1994a; Lux et al., 1999; Oh et al., 2000; Goumans et al., 2003); Lefty (Cheng et al.,
2004); inhibin α (Lewis et al., 2000); and AMH (Baarends et al., 1994; di Clemente et al., 1994; Clarke et al., 2001; Josso et al., 2001; Visser et al., 2001; Jamin
et al., 2002)], the type II and type I receptors as well as the intracellular signalling Smad proteins for individual ligands are listed. The ligands GDF9, GDF6, GDF7
and BMP10 under discussion in this review are highlighted. Betag, betaglycan. Reproduced with permission from Mazerbourg et al. (2005).
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Despite a low degree of sequence similarity (∼35%), the
C-terminal peptides of diverse TGFβ ligands share a conserved
structure with six cysteine residues known as the cystine knot (Vitt
et al., 2001), thereby allowing the formation of a common structural
scaffold (Scheufler et al., 1999; Thompson et al., 2003). In most li-
gands, an extra cysteine is present and engaged in an intermolecular
disulphide bond that is necessary for the assembly of homo- or he-
terodimers. For ligands such as GDF9 and BMP15, both of which
are missing the extra cysteine, homodimers are likely non-covalently
associated. Although the structural scaffold of different monomers
is conserved, analyses of the crystal structures of their dimerized
forms showed unique conformational arrangements for TGFs,
activins and BMPs (Scheufler et al., 1999; Thompson et al., 2003).
TGFβ2, TGFβ3, BMP2 and BMP7 dimers have an extended sym-
metric arrangement described as an ‘open form’, whereas activin
dimers have a compact folded-back conformation described as a
‘closed form’ (Thompson et al., 2003). Specific ligand dimers with
distinct patterns of surface charge and hydrophobicity likely lead to
differential interactions with the cell-surface receptors.

The TGFb family of ligands interacts with a limited 
number of serine/threonine kinase receptors

The molecular signalling pathways for several ligands of the
TGFβ superfamily (TGFβ, activins, BMP2 and BMP7) have been

investigated intensively. Members of the TGFβ superfamily were
shown to initiate signalling by assembling serine/threonine kinase
receptor complexes that activate downstream Smad transcription
factors (Kawabata et al., 1998; Massague, 1998; Figure 2). The
receptor serine/threonine kinase family in the human genome
comprises 12 members (Figure 3; Manning et al., 2002). There are
five type II serine–threonine kinase receptors: the BMP receptor
type II (BMPRII), the anti-mullerian hormone receptor type II
(AMHRII), the TGFβ receptor type II (TGFRII) and the activin
receptors type II (ActRIIA and ActRIIB) (Figure 3). In addition,
there are seven type I receptors designated as activin receptor-like
kinases (ALKs) (ten Dijke et al., 1993; Figure 3). Both types of
receptors consist of ∼500 amino acids and are organized into an
amino terminal extracellular ligand-binding domain with 10 or
more cysteines, a transmembrane region and a carboxyl terminal
serine/threonine kinase domain. Type II receptors have autophos-
phorylation activity (Lin et al., 1992; Mathews and Vale, 1993;
Wrana et al., 1994; Attisano et al., 1996). After forming a com-
plex with the ligand, the type II receptor phosphorylates the type I
receptor at a glycine- and serine-rich motif (the GS domain) just
upstream of the C-terminal kinase domain. The phosphorylation of
the GS domain activates the type I receptor kinase, leading to the
phosphorylation of downstream R (receptor) Smad proteins
(Wrana et al., 1994; Wieser et al., 1995; Souchelnytskyi et al.,
1996; Figure 2). Structural data on the TGFβ ligands and their

Figure 2. Schematic representation of the signalling pathways for the TGFβ family ligands. The dimeric ligands bind to two types of serine/threonine receptors
namely type I and type II receptors. Formation of the tetramer receptor (two type I and two type II) allows phosphorylation of the type I receptor by the type II
receptor on the GS domain, resulting in the activation of the type I receptor kinase. Type I receptors specifically recognize and phosphorylate Receptor-Smads
(R-Smad). Phosphorylated R-Smads, in turn, associate with a common (Co)-Smad, Smad4. The complexes of R-Smads/Smad4 translocate to the nucleus and interact
with specific DNA motifs. However, effective binding to particular gene regulatory sites is enabled and modulated by diverse DNA-binding factors and transcriptional
co-activators or co-repressors.
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receptor complexes support a model of oligomeric receptor assem-
bly that does not involve a direct receptor–receptor interaction
(Kirsch et al., 2000; Greenwald et al., 2003). Furthermore, two
general modes of ligand binding have been described. One mode
involves direct ligand binding to the type II receptor that then
guides the ligands into an orientation that is competent to interact
with type I receptors. For example, TGFβ and activin form a complex
with the type II receptor and recruit the type I receptor (Mathews and
Vale, 1991; Wrana et al., 1992; Attisano et al., 1996). In contrast,
both type I and type II receptors are needed for the binding of sev-
eral BMP ligands. In these cases, high-affinity ligand binding was
detected only when both type I and type II receptors are co-
expressed (ten Dijke et al., 1994b; Rosenzweig et al., 1995).

For some ligands, access to the receptor is controlled by mem-
brane-anchored proteins that act as accessory receptors or co-
receptors. The membrane-anchored proteoglycan betaglycan, also
known as the TGFβ type III receptor, mediates TGFβ binding to
the type II receptor (Brown et al., 1999). Recently, betaglycan was
identified further as a co-receptor that increases the affinity of
inhibin for the activin and BMP type II receptors (Lewis et al., 2000;
Wiater and Vale, 2003). Endoglin is another accessory receptor
for the binding of TGFβ to ALK1 (Cheifetz et al., 1992; Lebrin
et al., 2004). The secretory protein, cripto, mediates the binding of
nodal and GDF1 to activin receptors (Yeo and Whitman, 2001;

Cheng et al., 2003). Recently, the glycophosphatidylinositol (GPI)-
anchored proteins of the repulsive guidance molecule (RGM)
family, Dragon and RGMa, have been shown to be co-receptors of
BMP2 and BMP4 (Babitt et al., 2005; Samad et al., 2005).

Two downstream Smad signalling pathways

The intracellular TGFβ signalling mediators are a group of phylo-
genetically related proteins, the Smads (Attisano and Tuen
Lee-Hoeflich, 2001). The first member of this family is Mad
(mothers against decapentaplegic), which was identified from
genetic screens in Drosophila melanogaster (Sekelsky et al., 1995).
Initial evidence that Smads function downstream of TGFβ receptors
was provided by the ability of Mad mutations to inhibit signalling
by the Drosophila BMP homologue (decapentaplegic) (Hoodless
et al., 1996; Wiersdorff et al., 1996). Three MAD homologues were
identified in Caenorhabditis elegans and called sma-2, sma-3 and
sma-4 (Savage et al., 1996). Vertebrate homologues of sma and
MAD were called Smad, as a contraction of the invertebrate
gene names (Derynck et al., 1996). Smad proteins are divided into
three structural domains (Attisano and Tuen Lee-Hoeflich, 2001).
The N-terminal MH1 domain exhibits sequence-specific DNA-
binding activity, except in the major splice form of Smad2, which
contains an insert that prevents DNA binding. The C-terminal MH2
domain is involved in the interaction with the type I receptor and in
the formation of the Smad complexes. The intermediate domain is
divergent among Smads. It contains multiple sites of phosphoryla-
tion and allows specific crosstalk with other signalling pathways.

Functional studies have demonstrated that Smads can be
grouped into three subfamilies: the receptor-regulated Smads
(R-Smads), the common Smad (Co-Smad) and the inhibitory
Smads (I-Smads). The R-Smads are phosphorylated by the type I
receptor kinases on a conserved carboxyl terminal SSXS motif.
ALK1, ALK2, ALK3 and ALK6 phosphorylate Smad1, Smad5
and Smad8, whereas ALK4, ALK5 and ALK7 phosphorylate
Smad2 and Smad3 (Figure 3; Kretzschmar and Massague, 1998;
Chen and Massague, 1999; Watanabe et al., 1999; Jornvall et al.,
2001). R-Smads form heteromeric complexes with the Co-Smad,
Smad4. Smad4 is a shared partner of the R-Smads and is not phos-
phorylated in response to ligands. The activated Smad complexes
are translocated into the nucleus and, in conjunction with other
nuclear co-factors, regulate the transcription of target genes (Figure
2). Smad transcription factors bind DNA on promoter sequences
defined as Smad-binding element (SBE). The minimal SBE
sequence for Smad1, Smad3 and Smad4 contains only four base
pairs 5′-AGAC-3′ (Yingling et al., 1997; Dennler et al., 1998; Shi
et al., 1998; Zawel et al., 1998; Johnson et al., 1999). Smads also
have been reported to bind to G/C-rich sequences (Kim et al.,
1997; Labbe et al., 1998; Ishida et al., 2000). Specific Smad3 or
Smad1/5/8-response elements have been identified in the pro-
moter of target genes and used for constructing luciferase reporter
genes activated selectively by TGFβ family members (Dennler
et al., 1998; Kusanagi et al., 2000; Jornvall et al., 2001; Reissmann
et al., 2001; Korchynskyi and ten Dijke, 2002). The consensus
sequence of the promoter of the CAGA, BRE and GCCG reporters
was derived from the TGFβ-induced plasminogen activator inhibi-
tor type I gene (Dennler et al., 1998), the BMP-induced mouse
gene, inhibitors of differentiation (Id) (Korchynskyi and ten Dijke,
2002) and the Mad-binding site in Drosophila BMP-like ligand

Figure 3. Phylogenetic relationship of the type II and type I serine/threonine
kinase receptors. Phylogenetic analyses of all known human serine/threonine
kinase receptors were performed based on multiple full-length sequence align-
ment using the ClusterW algorithm (http://www.ch.embnet.org/software/
ClustalW.html) and the TreeView drawing software (http://taxonomy.zool-
ogy.gla.ac.uk/rod/treeview.html). Smad proteins involved in the signalling
pathway associated with individual type I receptors are indicated. The Gen-
Bank accession numbers for individual human receptor protein sequence are
BMPRII, NP_001195; AMHRII, Q16671; TGFRII, NP_001020018; ActRIIB,
NP_001097; ActRIIA, NP_001607; ALK1, NP_000011; ALK2, NP_001096;
ALK3, NP_004320; ALK6, NP_001194; ALK4, NP_004293; ALK5,
NP_004603; ALK7, AAM93495.
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decapentaplegic responsive genes (Kusanagi et al., 2000), respec-
tively. Because Smads bind DNA with low affinity and low specif-
icity, they require co-operation with other sequence-specific
binding factors to interact efficiently with promoters of target
genes. Indeed, both the MH1 and MH2 domains interact with many
proteins in the nucleus (Massague, 2000; Massague and Wotton,
2000; ten Dijke et al., 2000; Wrana, 2000). The Smad-interacting
transcription factors dictate the precise response to ligands in dif-
ferent cell types and in co-operation with other signalling pathways
(Derynck and Zhang, 2003; Shi and Massague, 2003).

In addition to R-Smads and Co-Smads, I-Smads (Smad7 and
Smad6) form a distinct subclass of Smads that antagonize TGFβ
signalling transduction. Although I-Smads contain a C-terminal
MH2 domain, their N-terminal region has low similarity with the
canonical MH1 domain. Smad7 stably interacts with all activated
type I receptors to prevent R-Smad activation and downstream
transcriptional modulation (Hayashi et al., 1997; Nakao et al.,
1997a; Itoh et al., 1998; Souchelnytskyi et al., 1998). In contrast,
Smad6 specifically competes with R-Smad1 for complex forma-
tion with Smad4, thus preferentially inhibiting the BMP pathway
(Hata et al., 1998; Souchelnytskyi et al., 1998; Ishisaki et al., 1999).

Based on a genomic analysis of the entire repertoire of TGFβ/
BMP/GDF ligands (33 ligands) (Chang et al., 2002; Manning
et al., 2002; Figures 1 and 3), the TGFβ family members activate
only two major intracellular signalling pathways characterized by
the activation of the two different groups of intracellular Smad
proteins, Smad1/5/8 and Smad2/3. As shown in Figure 1, TGFβ
and activin interact with their respective type II receptors, fol-
lowed by the activation of the type I receptors, ALK1 or ALK5
and ALK4, respectively. This, in turn, leads to the phosphoryla-
tion of the downstream Smad3 and Smad2 proteins (Macias-Silva
et al., 1996; Nakao et al., 1997a,b). The stimulation of the CAGA
promoter by these ligands is mediated by the Smad3 and Smad4
proteins (Dennler et al., 1998). In contrast, BMP2 binds to the
type II receptors, BMPRII and ActRIIA, and the type I receptors,
ALK3 and ALK6, leading to the activation of Smad1, Smad5 and
Smad8 (Koenig et al., 1994; Yamaji et al., 1994; Liu et al., 1995;
Nohno et al., 1995; Rosenzweig et al., 1995; Kawabata et al.,
1998; Massague, 1998). In addition to interacting with these BMP
receptors, BMP6 and BMP7 also can signal through ALK2
(Yamashita et al., 1994; ten Dijke et al., 1994b; Liu et al., 1995;
Macias-Silva et al., 1998; Ebisawa et al., 1999). This subfamily of
BMP ligands activates the intracellular factors Smad1, Smad5 and
Smad8 followed by the stimulation of the BRE and GCCG pro-
moters (Kusanagi et al., 2000; Korchynskyi and ten Dijke, 2002;
Monteiro et al., 2004). It is apparent that combinatorial uses of a
limited number of type I and type II receptors lead to differential
Smad activation by the large number of ligands. Because many of
the BMP and GDF proteins remain orphan ligands, we hypothe-
sized that these ligands are likely to interact with the limited
number of receptors to activate the two major downstream signal-
ling pathways. We focused on GDF9 and several related orphan
ligands (GDF6, GDF7 and BMP10) and identified their receptors
and downstream signalling pathways using a genomic approach.

The role of GDF9 in the ovary

The expression of GDF9 mRNA and protein is confined to the
oocyte of primary and larger follicles in rats (Hayashi et al., 1999;

Jaatinen et al., 1999), mice (McGrath et al., 1995; Dong et al.,
1996) and humans (Aaltonen et al., 1999). In sheep, goats and
cows, GDF9 mRNA is found in primordial follicles as well (Bod-
ensteiner et al., 1999). Mutant mice with a deletion of the GDF9
gene as well as sheep homozygous for GDF9 gene mutations have
demonstrated the important role of this oocyte factor in the stimu-
lation of early follicular growth (Dong et al., 1996; McNatty et al.,
2004). Furthermore, Vitt et al. (2000b) have shown that recom-
binant GDF9 is able to stimulate initial follicle recruitment in vivo.
In contrast to FSH, which mainly stimulates pre-antral follicular
growth (McGee et al., 1997), GDF9 treatment increases the
number of primary and small pre-antral follicles (Vitt et al.,
2000b). Moreover, in vitro treatment with GDF9 promotes the sur-
vival as well as the progression of human follicles to the secon-
dary stage in organ culture (Hreinsson et al., 2002). GDF9 appears
to be essential for folliculogenesis at the primary pre-antral follicle
transition. However, follicular development progresses up to the
pre-antral stage in inhibin a/GDF9 double-null mice, suggesting
that inhibin α mediates the optimal actions of GDF9 in vivo (Wu
et al., 2004).

Experiments with recombinant GDF9 have shown that GDF9
regulates granulosa cell function in small antral and pre-ovulatory
follicles. In studies using cultured granulosa cells, GDF9 promotes
granulosa cell proliferation as reflected by increases in thymidine
incorporation (Vitt et al., 2000a). GDF9 stimulates basal estradiol
synthesis in differentiated and undifferentiated granulosa cells and
stimulates basal progesterone synthesis in differentiated granulosa
cells (Elvin et al., 1999a; Vitt et al., 2000a). In contrast, treatment
with GDF9 inhibits FSH-induced estradiol and progesterone syn-
thesis as well as LH receptor expression (Vitt et al., 2000a).
Another important function of GDF9 is the suppression of Kit li-
gand expression in granulosa cells (Joyce et al., 2000), consistent
with findings showing Kit ligand overexpression in GDF9-null
mice (Elvin et al., 1999b). Similarly, the primary follicles of
GDF9-null mice demonstrated an up-regulation of inhibin α subu-
nit (Elvin et al., 1999b). Data on the effect of GDF9 on granulosa
cell expression of inhibin subunits in vitro are more controversial.
Indeed, in mouse granulosa cells of pre-ovulatory follicles, Varani
et al. (2002) showed that GDF9 increased inhibin βB, but not
inhibin α, subunit expression. These results contrast with data
obtained with granulosa cells from rat pre-antral/antral follicles or
human luteinized follicles (Hayashi et al., 1999; Kaivo-Oja et al.,
2003; Roh et al., 2003). Treatment with GDF9 stimulated inhibin
α- and β-subunit expression in rat granulosa cells, and both
inhibin A and inhibin B production in rat and human granulosa
cells (Hayashi et al., 1999; Kaivo-Oja et al., 2003; Roh et al.,
2003). This discrepancy could be explained by species differences
and by changes in the sensitivity of granulosa cells to GDF9 at dif-
ferent follicular stages.

The importance of GDF9 on theca cell function is still unclear.
In primary cultures of theca cells, treatment with GDF9 augments
androstenedione production (Solovyeva et al., 2000). In vivo
injection of GDF9 led to an increase in the ovarian content of the
theca cell marker, cytochrome P-450 17, 20 lyase (CYP17) (Vitt
et al., 2000b). Furthermore, in GDF9-null mice, the follicular
theca layer is absent (Dong et al., 1996). This was confirmed by
the absence of expression of selective theca cell markers such as
CYP17, LH receptor and c-kit mRNA (Elvin et al., 1999b). How-
ever, Wu et al. (2004) suggest that GDF9 could indirectly induce

Downloaded from https://academic.oup.com/humupd/article-abstract/12/4/373/2182396/Genomic-analyses-facilitate-identification-of
by Stanford University Libraries user
on 19 September 2017



S.Mazerbourg and A.J.W.Hsueh

378

theca cell recruitment in vivo, through changes in ovarian inhibin
α expression.

GDF9 is a modulator of the peri-ovulatory responses in the
ovary, and treatment with GDF9 induces cumulus cell expansion
(Elvin et al., 1999a). Although some data suggest that GDF9 is not
the only cumulus expansion-enabling factor (Dragovic et al.,
2005), the importance of GDF9 in cumulus expansion has been
confirmed by using RNA interference (Gui and Joyce, 2005). This
controversy has been recently discussed by Pangas and Matzuk
(2005). GDF9 regulates cumulus cell gene expression and sup-
presses the expression of genes normally found in mural granulosa
cells (Elvin et al., 1999a). Treatment with GDF9 induces the
expression of hyaluronan synthase 2, steroidogenic acute regulator
protein (StAR), prostaglandin endoperoxide synthase 2 (Ptgs2),
EP2 (PGE2 receptor; Elvin et al., 2000), pentraxin 3 (Varani et al.,
2002), tumour necrosis factor-induced protein 6 (Varani et al.,
2002), peroxiredoxin 6 (Leyens et al., 2004) and gremlin (Pangas
et al., 2004). In contrast, GDF9 treatment inhibits LH receptor and
urokinase plasminogen activator expression (Elvin et al., 1999a).
The regulation of the expression of different ovarian genes by
GDF9 is summarized in Table I.

Identification of GDF9 receptors and downstream 
signalling pathway

GDF9 belongs to the TGFβ superfamily (Figure 1). Phylogeneti-
cally, it is placed between the BMP2/4/6/7/8 and the activin/TGFβ
subgroups of ligands but with a closer relationship to the BMPs
(Newfeld et al., 1999; Vitt et al., 2002). Instead of performing
GDF9 binding assays and purifying the GDF9 receptor proteins
from granulosa cells for their identification, we hypothesized that
GDF9, like other ligands in the same family, likely activates the
limited number of known serine/threonine kinase receptors in the
genome. To identify the type II receptor for GDF9, (Vitt et al.,
2002) used the soluble form (the ectodomain of the receptor fused
to the Fc-binding region of human IgG) of the type II receptors,
BMPRII and ActRIIA, to study potential interactions with GDF9.
Of interest, the stimulatory effects of GDF9 on granulosa cell
proliferation were completely blocked, following co-incubation
with the extracellular domain of BMPRII. Similarly, the BMPRII

ectodomain was capable of blocking the inhibitory effect of GDF9
on FSH-induced progesterone production. In addition, direct inter-
actions between GDF9 and BMPRII were demonstrated by co-
immunoprecipitation of GDF9 with the ectodomain of BMPRII
(Vitt et al., 2002), whereas ActRIIA was only minimally efficient
in binding GDF9. Furthermore, the suppression of endogenous
BMPRII biosynthesis using an antisense RNA approach com-
pletely blocked the stimulatory effects of GDF9 on the prolifera-
tion of rat granulosa cells in vitro (Vitt et al., 2002). These results
showed that BMPRII is a receptor essential for GDF9 signalling in
granulosa cells.

BMPRII has been demonstrated to mediate the actions of
BMP2, BMP4, BMP6 and BMP7 through interactions with the
type I receptors ALK2, ALK3 and ALK6 (Koenig et al., 1994;
Yamaji et al., 1994; Liu et al., 1995; Nohno et al., 1995; Rosenzweig
et al., 1995; Kawabata et al., 1998; Massague, 1998). To identify
the type I receptor for GDF9 in granulosa cells, we took advantage
of the availability of different promoter-luciferase constructs for
analyses of downstream pathways of the TGFβ family ligands.
The CAGA promoter is known to be activated by the TGFβ/
activin pathway mediated by Smad3 (Dennler et al., 1998),
whereas the activation of BRE and GCCG promoters is mediated
by Smad1 and 5 (Kusanagi et al., 2000; Korchynskyi and ten
Dijke, 2002; Monteiro et al., 2004). We transfected individual
promoter-reporter constructs into cultured granulosa cells and
found that GDF9 treatment induced the activation of the CAGA
promoter, but not the BRE or GCCG promoters, in rat granulosa
cells (Mazerbourg et al., 2004). Similar results also were found for
human granulosa cells (Kaivo-Oja et al., 2005). Co-transfection
with Smad7, but not Smad6, led to the suppression of the GDF9
stimulation of the CAGA promoter, confirming that GDF9 signal-
ling does not involve the BMP-responsive pathway mediated by
Smad1, Smad5 and Smad8. We further demonstrated that treat-
ment with GDF9, like activin, increased the level of phospho-
Smad3 and phospho-Smad2 in rat and human granulosa cells
(Kaivo-Oja et al., 2003; Roh et al., 2003; Mazerbourg and Hsueh,
2003).

Following the identification of the downstream pathway for
GDF9 in granulosa cells, we selected a cell line with minimal
responsiveness to GDF9 but containing BMPRII to search for the

Table I. List of the genes up- or down-regulated by GDF9 in theca, granulosa and cumulus cells

CYP17, cytochrome P-450c17α; EP2, prostaglandin E2; Ptgs2, prostaglandin endoperoxide synthase 2; StAR, steroidogenic acute regulator protein; TNF, tumour
necrosis factor.

Up-regulated Down-regulated

Theca cells CYP17 (Vitt et al., 2000b) Kit ligand (Joyce et al., 2000)
Granulosa cells Urokinase plasminogen activator (Elvin et al., 1999a) LH receptor (Elvin et al., 1999a; Vitt et al., 2000a)

Inhibins a, bA, bB (Kaivo-Oja et al., 2003; Roh et al., 2003) Inhibin a (Elvin et al., 1999b)
StAR (Elvin et al., 1999a)
TNF-induced protein 6 (Varani et al., 2002)

Cumulus cells Hyaluronan synthase (Elvin et al., 1999a; Gui and Joyce, 2005) LH receptor (Elvin et al., 1999a)
EP2 receptor (Elvin et al., 2000) Urokinase plasminogen activator (Elvin et al., 1999a)
Ptgs2 (Elvin et al., 1999a; Gui and Joyce, 2005)
Peroxiredoxin 6 (Leyens et al., 2004)
Pentraxin 3 (Varani et al., 2002)
TNF-induced protein 6 (Varani et al., 2002)
Gremlin (Pangas et al., 2004)
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type I receptor for GDF9. We overexpressed each of the seven
type I receptors in the minimally responsive COS7 cells and found
that the expression of ALK5, but not any other type I receptor,
conferred GDF9 activation of the CAGA promoter (Figure 4). We
further performed RNA interference experiments to conclusively
demonstrate the important role of ALK5 as the type I GDF9 rece-
ptor in granulosa cells (Mazerbourg et al., 2004). Our data sug-
gested crosstalk between the known BMPRII and ALK5 together
with downstream Smad3 and Smad2 proteins (Figure 1). Our fin-
dings are consistent with earlier reports showing the expression of
BMPRII, ALK5 and different Smad proteins by granulosa cells in
developing follicles (Sidis et al., 1998; Shimasaki et al., 1999; Qu
et al., 2000; Drummond et al., 2002; Xu et al., 2002). On the basis
of structural data on the TGFβ ligands and receptors complexes
supporting a model of co-operative oligomeric receptor assembly
with no direct interaction between the receptors (Greenwald et al.,
2003, 2004), we can hypothesize that GDF9 is first binding the
high-affinity receptor, BMPRII, thus enhancing the affinity to the
type I receptor, ALK5.

Although GDF9 and BMP15 are the closest paralogues, BMP15
was found to activate the Smad1/5/8 pathway through interaction
with BMPRII and ALK6 in rat granulosa cells (Moore et al.,
2003). The fact that paralogues could activate different pathways
is supported by the ability of TGFβ to stimulate both pathways
through binding to ALK1 or ALK5 depending on the cellular con-
text (Goumans et al., 2002). The use of distinct signalling path-
ways by GDF9 and BMP15 homodimers could explain their
unique roles in follicular development. However, GDF9 and
BMP15 could form homo- and/or heterodimers when produced in
the same cell in culture, likely through non-covalent interactions
(McPherron and Lee, 1993; Vitt et al., 2002; Liao et al., 2003).
The formation of the GDF9/BMP15 heterodimers could modify
their affinity for a given receptor complex and induce distinct
physiological responses (Aono et al., 1995; Suzuki et al., 1997;
Nishimatsu and Thomsen, 1998; Butler and Dodd, 2003). Simi-
larly, GDF7 has been shown to enhance the axon-orienting acti-
vity of BMP7 (Butler and Dodd, 2003) likely through the formation
of GDF7/BMP7 heterodimers. The ability of the heterodimer
GDF9/BMP15 to bind a receptor complex and activate the Smad
pathway remains to be demonstrated.

The signalling pathway of other orphan ligands: GDF6, 
GDF7 and BMP10

The present genomic approach to identify cognate receptors and
downstream Smad pathways for GDF9 can be applied to other
GDF/BMP orphan ligands. Based on sequence comparison of their
C-terminal cystine-knot domains, a subfamily of closely related
ligands including GDF5, GDF6, GDF7, BMP9 and BMP10 can be
identified (Figure 1). Among them, GDF6, GDF7 and BMP10 are
orphan ligands likely signalling through the same limited number
of type I and type II receptors. GDF6, also known as BMP13, is
important for joint and cartilage formation (Storm et al., 1994).
GDF7 (BMP12) is essential for the development of interneurons,
sensory neurons and the seminal vesicle (Storm et al., 1994; Lee
et al., 1998; Settle et al., 2001; Lo et al., 2005). In addition, BMP10
plays a role in heart development (Chen et al., 2004). We found
that all three ligands formed homodimers. They activate a BMP-
responsive promoter reporter (BRE) through the phosphorylation
of Smad1/5/8 in a pre-osteoblast MC3T3 cell line (Mazerbourg
et al., 2005). To identify the type I and type II receptors for GDF6,
GDF7 and BMP10, we used overexpression and RNA interference
approaches. In the minimally responsive COS7 cells, we individu-
ally overexpressed the seven type I receptors and identified ALK3
and ALK6 as candidate receptors for GDF6, GDF7 and BMP10
based on the stimulation of the BRE promoter. For the endo-
genous ALK proteins, our RT–PCR analyses indicated that ALK3,
but not ALK6, was expressed in MC3T3 cells, suggesting that
ALK3 is the type I receptor mediating GDF6, GDF7 and BMP10
signalling in this cell line. Indeed, transfection with the ALK3
small hairpin (sh) RNA suppressed GDF6, GDF7 and BMP10
stimulation of the BRE promoter. Using the same approach, we
induced gene silencing of two type II receptors, BMPRII and
ActRIIA, expressed by MC3T3 cells and involved in BMP2,
BMP7 and GDF5 signalling (Koenig et al., 1994; Nishitoh et al.,
1996; Macias-Silva et al., 1998). Because of the pronounced
inhibitory effects of BMPRII shRNA on GDF6, GDF7 and
BMP10 signalling, BMPRII is likely the preferential type II rece-
ptor for these three ligands (Mazerbourg et al., 2005). These data
demonstrated that GDF6, GDF7 and BMP10 signal through the
BMPRII/ALK3 receptor complexes in MC3T3 cells. However,
one cannot rule out the possibility that other cells may use a differ-
ent combination of the type I ALK3/ALK6 receptors and the type
II BMPRII/ActRIIA receptors for signal transduction.

Conclusion

The present approach provides a genomic paradigm for matching
paralogous polypeptide ligands with a limited number of evolu-
tionarily related receptors capable of activating unique down-
stream signalling proteins. Instead of the traditional single-gene
approach in hormonal research, the evolutionary tracing of
polypeptide ligands, receptors and downstream signalling mole-
cules in their respective subgenomes could allow the future pre-
diction of receptors and downstream signalling pathways for other
orphan ligands.
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Figure 4. Overexpression of ALK5 confers GDF9 responsiveness in COS7
cells. Cells were transfected with 500 ng of the CAGA reporter and 30 ng of
the plasmids encoding individual ALK proteins. Cells were incubated for 24 h
with or without GDF9. The relative luciferase activity was normalized based
on β-galactosidase activity. Modified with permission from Mazerbourg et al.
(2004). Copyright 2004, The Endocrine Society.
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