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Abstract

We present a text classification task arising in the biocuration of cellular chemical reactions when
searching for curatable literature. We explore the suitability of various NLP and ML methods for this
task. In summary, while fine-tuned domain-specific language models show the best results, random
forests are nearly as good, with a much lighter computational footprint.

Introduction

The natural strategy to automatize biocuration[1] is to apply natural language processing (NLP) meth-
ods on the full text of papers (e.g. [13]). This way, the claims and the type of evidence supporting them
can be extracted. The problem is that only a certain percentage of papers are published in a way that
allows bulk download of their full text. When we write this, even abstracts are available in bulk only from
about 60 percent of molecular biology papers. This lamentable situation renders automatic curation
efforts incomplete and causes the loss of essential information. Manual curation, on the other hand,
has to deal with shortcomings of literature search engines, like not being able to filter for papers from
specific fields and incomplete results because of missing entity synonyms. To cope with information
overflow, biocurators develop the intuition to see from the title alone if a paper is, e.g., an experimental
molecular biology paper, when confronted with search engine results. Sifting through thousands of
titles in the course of a project still needs to be more sustainable and should be automatized.

The Reactome Knowledgebase[7] provides manually curated molecular details across a broad
range of physiological and pathological biological processes in humans, including hereditary and ac-
quired disease processes. Reactome biocurators look for a specific subset of scientific papers to use
as references to their work. When using a search engine for scientific papers, searching for a pathogen
finds epidemiological, clinical, pharmacological, and molecular/structural biology works. The latter also
include evolutionary biology and pure computational papers, which are ”uninteresting” from a curator’s
standpoint. Clinical and pharmacological works get mixed in the results even when searching for spe-
cific proteins. Such classification tasks could be solved using domain identification methods. Domain
identification of scientific texts has been attempted frequently, most successfully using large language
models (e.g. [16]).

Perspective of Reactome curators: what is an interesting paper?

Reactome annotation of molecular reactions is evidence-based[7]. Evidence comes from molecu-
lar biology and biochemistry lab experiments and observations. Scientists communicate such results
through scientific articles, which Reactome curators then reference. However, there is no easy way
to know from the title if a paper belongs to the experimental (our label: EXP) type. Many scientific
papers focus on pharmacology (which we label as DRUG) and include antibodies that Reactome does
not curate. Finally, review articles on experimental results are also ’interesting’ to curators. To label
a paper as ’interesting/’uninteresting’ an algorithm doesn’t need to find the actual research theme or
scientific domain, just whether the paper is ’interesting,’ which combines domain inclusions and ex-
clusions. Since there is no database associating all existing and new articles to various academic
domains, direct classification of membership to the ’interesting’ set is more efficient than the imple-
mentation of a general domain identifier. In this report, we explore this task by using different natural
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language processing (NLP) and machine learning (ML) methods on the title and a summary (so-called
”TLDR”[3]), both of which are available from Semantic Scholar for >90 percent of biomedical articles.

Methods

Annotating the data

We annotated 32,837 academic papers that were selected using citation snowballing[11][21] focused
on rotavirus (ROTV), respiratory syncytial virus (RSV), and dengue virus (DENV). A certain percentage
of papers were about different, adjacent subjects, enriching the sets with other-viral and non-viral
topics. The collection includes review articles. Annotation consists of a label with three possibilities:
EXP, DRUG, OTHER. Annotated data is available as lists of maps in JSON format; see the Open Data
section.

In the later preprocessing, we reduce the label to a binary decision between EXP and DRUG +
OTHER. We merged the ROTV and RSV sets into the training set, and the DENV set served as the
test set. Table 1 shows statistics of training and test data.

Dataset Size #TLDR #Reviews #EXP
ROTV 10,222 92% 23% 40%
RSV 13,139 94% 26% 39%

ROTV+RSV 22,995 93% 24% 39%
DENV 8,678 94% 16% 24%

Table 1: Dataset stats.

Preprocessing

Using CoreNLP[14], we tokenized, lemmatized, and part-of-sentence tagged all text (title and TLDR),
discarding determiners, prepositions, and coordinating conjunctions. Our software concatenated Title
and TLDR (if available), and in the case of review articles, appended the string ”Review.” Table 2 shows
three random examples.

Before preprocessing After preprocessing
A multifunctional nanoparticle as a prophylactic
and therapeutic approach targeting respiratory
syncytial virus

multifunctional nanoparticle prophylactic ther-
apeutic approach target respiratory syncytial
virus

A murine model for oral infection with a pri-
mate rotavirus (simian SA11). Simian rotavirus
SA11 was shown to replicate in the gastroin-
testinal tracts of infant mice after oral inocula-
tion, and clinical symptoms, histopathological
changes in the small intestinal mucosa, and the
type-specific humoral immune response were
all characteristic of rotav virus-induced gas-
troenteritis.

murine model oral infection primate rotavirus (
simian sa11 ) simian rotavirus sa11 be show
replicate gastrointestinal tract infant mouse oral
inoculation , clinical symptom , histopathological
change small intestinal mucosa , type - specific
humoral immune response be characteristic ro-
tav virus - induce gastroenteritis

A murine model of dengue virus infection in
suckling C57BL/6 and BALB/c mice. Three-day-
old C57BL/6 mice intraperitoneally infected with
DENV-2 NGC were more susceptible to infec-
tion than BALB/c mice, showing increased liver
enzymes, extended viremia, dissemination to
organs and histological alterations in liver and
small intestine.

murine model dengue virus infection suckling
c57bl / 6 balb / c mouse three - day - old c57bl /
6 mouse intraperitoneally infect DENV - 2 NGC
be more susceptible infection balb / c mouse ,
show increase liver enzyme , extend viremia ,
dissemination organ histological alteration liver
small intestine

Table 2: Preprocessing examples. The title is set in italics. All three examples fall in the ’uninteresting’
category.
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ML methodology

One-hot encoding as input to random forests

Training and test sets served as input for ML methods. To establish a baseline, we first trained random
forest decision trees on raw bags of words, using the standard implementation from Yggdrasil[9] with
a maximum number N of 300 trees. We used automatic tuning to optimize random forest models. In
other attempts, we added the most common bigrams to the bags, also the default preprocessing style
for LDA embeddings (see below).

Similarity measures

We saved sentence embeddings of the training set from BioSentVec[5], and compared embeddings
of the test set by cosine distance, with the label of the most similar training embedding becoming the
prediction. This method was also applied to just the paper titles.

Vector embeddings as input to random forests

Sentence embeddings take the whole text (which consists of the paper title and, in most cases, the
TLDR, see above) as input and produce an N-dimensional vector as output. We applied a version of the
Universal Sentence Encoder[4] for embedding the whole text as input to the already mentioned random
forest. In addition, we tried the specialized biomedical sentence embeddings PubMedBERT[6][8] and
BioSentVec. With PubMedBERT, we used the original texts and preprocessed strings for comparison.

Another type of embedding of whole texts used in NLP is Latent Dirichlet Allocation (LDA, [2][10]).
We explored this method with its implementation in Python as part of the gensim package[18]. LDA
constructs several topics from the corpus and associates test input with these topics through proba-
bilities. The output of LDA applying test text to 10 to 100 topics of the training set served as input to
random forests.

Fine-tuning of language models

Instead of just adding a random forest backend to sentence embeddings, we used the SetFit[20]
methodology to fine-tune embeddings and to train a neural net classification layer simultaneously.
Sentence transformers fine-tuned included paraphrase-MiniLM-L3-v2[19]
and menadsa/S-BioELECTRA[12].

ML pipeline frameworks and hardware

The Yggdrasil random forest implementation requires TensorFlow[15], while BioSentVec and SetFit
use spaCy[17]. The embedding plus random forest pipelines were easily trained within an hour on a
quad-CPU Intel machine with 32 GB of RAM, without a graphics card. Fine-tuning pipelines, however,
needed a machine helped by a V100 GPU.

Results

The table below summarizes the results of applying various methodologies. The optimal cutoff was
found by maximizing the F1-value.

Discussion

The literature shows that domain-specific sentence embeddings are superior to general-purpose em-
beddings. We started experimenting with one-hot encoding our text as input to random forests and
expected to get a base result on which sentence embeddings would improve. The results show a
clear improvement with increasing complexity of the models used. However, only the most complex
BioElectra model could improve slightly on our baseline random forest, which is surprising and needs
explanation. It is plausible that the human curator applies simple rules when categorizing text on-the-
fly, and that a decision tree can pick up such rules easier from a one-hot encoding than from a sentence
embedding. Only with sufficient depth can neural nets model such inherently logical knowledge. Since
the random forest implementation by Yggdrasil is also very fast, we see no gain in using large language
models in the implementation of our forthcoming biocuration literature search application.
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Cutoff Acc. Prec. Recall F1

RF one-hot, 300 trees 0.55 92.3 86 84 85
same, auto-tuned 0.55 91.8 85 83 84
same, with bigrams, 1000 trees 0.55 91.6 83 85 84

Universal Sentence Encoder + RF 500 trees 0.5 84.9 69 76 72
PubMedBERT + RF 500 trees 0.4 89 76 81 78.5
BioElectra + RF 1000 trees 0.5 90.7 80 86 83
BioSentVec + cosine 58 80 67
BioSentVec + RF 500 trees 0.5 89.6 79 81 80
LDA + RF 1000 trees 0.6 85 70 73 71.5

paraphrase-MiniLM-L3-v2 fine-tuned 0.85 89.5 76 88 81.3
S-BioELECTRA fine-tuned 0.6 92.8 84 89 86.4

Open data

All project files are available from https://osf.io/hpf24/ and [https://github.com/rwst/LitBall-training].
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