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Abstract

In recent years a number of deep learning models have been developed to convert

tapped rhythmic ideas into fully-voiced, dynamic drum performances. This mas-

ter thesis extends the research by introducing a number of controllable features,

namely Density, Intensity and Genre, allowing users to meaningfully augment the

output whilst retaining the core rhythmic pattern identity. Our proposed models

are comparatively small, enabling real-time usage on modern laptops. After trial-

ing a number of methodologies and hyperparameters, we introduce our final model:

VAEDER (Variational Autoencoder for Disentangled Expressive Rhythms). In ad-

dition to the model development, we introduce a number of open-source software

packages that allow researchers to quickly deploy symbolic generation models into

Digital Audio Workstations. We hope that this will enable a new level of partici-

pation and collaboration between researchers and musicians in the field of artificial

intelligence for music generation.

Keywords: Drum generation, tap2drum, symbolic music generation, deep learning





Chapter 1

Introduction

This master thesis is dedicated to the creation and deployment of a rhythm-generation
system that can empower musical creativity in both studio and live-performance en-
vironments. To achieve this, we build upon the works of GrooVAE[1] and GrooveTransformer[2]
with the objective of improving musical controllability of the outputs. Specifically,
our model allows users to specify the density, intensity and genre - enabling them to
sculpt the rhythms to their bespoke artistic requirements. This research serves as
an opportunity to advocate for human-in-the-loop development processes for gener-
ative AI. In addition to the system itself, we propose several methods to more easily
deploy symbolic deep-learning models, with the hopes that our work will contribute
to a more robust feedback cycle between researchers and musicians.

We invite you to watch a short video demonstrating VAEDER:

https://youtu.be/v6VtPNv7cXI?feature=shared

The model code, pre-trained checkpoints, and evaluation tools are available here:

https://github.com/behzadhaki/GrooveTransformer

A selection of MIDI and audio renderings can be accessed here:

https://github.com/behzadhaki/GrooveTransformer/tree/dev/VAE_Control_Classifiers/

demos/vaeder

1.1 Motivation

We have a deep love and fascination with rhythm, as it is one of the most universal
elements of music. Cultures around the world have developed incredible rhythmic
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systems, each with their own distinctive patterns and rules. Nearly every modern
musical genre is built upon a rhythmic foundation, from the swing of jazz to the
double kick drum in heavy metal.

Symbolic music generation systems, which are further defined in section 2.2, pro-
vide an exciting frontier to further explore the endless possibilities of rhythm. As
they deal with representations of sounds, symbolic AI models are often lightweight,
require less training data, and can be deployed directly in music-creation software
environments.

We believe that, in order for such models to become a valuable part of a musician’s
toolkit, they should be controllable. Many models, such as the aforementioned
GrooVAE[1] and GrooveTransformer[2] have a one in, one out system; if the output
does not meet your needs, the only option is to re-generate, perhaps dozens of times,
in the hopes of stumbling upon something more desirable. Simply put, one cannot
just say, "do that again, but a bit quieter".

The central motivation of this thesis is to create a rhythm generation model that
is meaningfully controllable in order to increase its practical application for music
creation tasks. Creatively speaking, we hope that such a model is joyful to interact
with, and can provide threads of inspiration which can be woven into a greater
compositional tapestry. As opposed to replacing creativity, we wish to provide a
new medium of exploration.

Throughout the research and development process, we discovered a consistent bar-
rier: deployment. Interacting with existing symbolic models often required hours
of troubleshooting old code notebooks, or downloading cherry-picked files. As we
wanted to give musicians the opportunity to interact with our own model, we had
to spend a significant portion of time developing a multi-threaded C++ application.
We believe that the time and technical proficiency needed is preventing a number
of existing models from being shared with creative communities.

With the above in mind, we developed a secondary motivation for this thesis: mak-
ing deployment easier. We hope that, by developing and releasing a number of
open-source tools, our work will provide beneficial to other researchers working on
symbolic generative AI tasks.

We also just want something fun to jam with.
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1.2 Objectives

We aim to develop a deep-learning model that can consistently provide appealing
rhythmic ideas whilst allowing a user to fine-tune its outputs. We also wish to
deploy this model in Digital Audio Workstations (DAW) and make it easier for
future researchers to deploy their own models. Therefor the research conducted
throughout the thesis has two concrete objectives:

Disentanglement When collaborating with musicians it is often helpful to ’nudge’
their creations; picture a conductor who directs her string section to play "a
little softer", or a jazz guitarist who asks the drummer to play "with more syn-
copation". These instructions presume that the next iteration will be similar
to the previous performance, albeit with a minor modification to the intended
metric. We aim to develop a musically-controllable rhythm generation system
which mimics this feedback-loop by creating a feature-invariant latent space,
a concept that is further described in 2.3.

Deployment We acknowledge that it is technically difficult to deploy deep-learning
models in the environments that musicians are accustomed to, namely DAWs.
With the recent explosion of generative AI systems there has been a growing
acknowledgement that researchers need to actively incorporate the feedback
from non-technical end-users throughout all stages of development. Among
other things, this can help with the mitigation of serious issues such as bias,
harmful content, and economic displacement. We therefor present several
systems to more easily deploy symbolic models directly into modern DAWs,
with the hope that they will lead to more dialogue between researchers and
musicians.



Chapter 2

State of the Art

The work of this thesis builds upon a rich history of research and design in com-
putational systems for symbolic music generation. The advent of deep learning
in particular has allowed for better modeling of intricate temporal relationships,
a capacity that is critical to the domain of music. While the goals, methods and
implementation details are widely varied, there has been a consistent increase in
complexity and output capability. In this state of the art, a brief overview of the
most relevant architectures will be presented, followed by a review of the most recent
advances of score and performance generation systems, and finally, a deep-dive into
proposed methods of controllability for deep learning models.

2.1 Architectures

As the goals of deep learning research have grown in complexity and size, a number
of architectures have been proposed to address specific challenges. While this section
should not be viewed as a comprehensive review of all existing architectures, we hope
that it will provide a beneficial overview overview of the most commonly utilised
methods for constructing deep learning models for symbolic music generation tasks
in recent years, with particular focus on those that provide the building blocks of
the final model.

Feed Forward Networks

A neural network, the fundamental building block of deep learning models, utilises
linear regression to model the relationship between a scalar variable y and one
or more input variables, which can be represented as a vector x. In multivariate

4
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regression, the modeled output h(x) can be represented as:

h(x) = b+Wx

Here, b is is the bias vector, and W is the weight matrix. The configuration of
these weight and bias variables will determine the output of the model. Through
a process called backpropagation, we calculate the gradients of these variables with
regard to the loss (the difference between ground truths and predictions) and adjust
the variables accordingly. This process is run iteratively, gradually updating the
weights and biases with each calculation in an attempt to reach the global minimum
distance between y and h(x).

In order to formulate a typical feed forward network (FFN), an activation function,
such as Sigmoid, Tanh, or Rectified Linear Unit (ReLU) is applied to the output
of each node to introduce nonlinearity. It is then possible to chain together several
iterations of these calculations, as demonstrated in figure 1, with the intermediary
layers between the input and output nodes referred to as hidden layers.

Figure 1: An example of a feed forward network with two hidden layers. Reproduced
from [3].

Recurrent Neural Networks

Whilst a feed forward network can predict static models, its design prevents it from
modelling the dynamics of a system that has outputs that vary over time. This is
vital in contexts such as natural language processing (NLP) and music, where the
prediction of a single token should influence subsequent predictions. To this end,
the Recurrent Neural Network (RNN) allows us to compute temporal information
due to their autoregressive structure. In its most basic format, an RNN is an FFN
that continually re-feeds its previous hidden state as an input for the following
calculation. This means that, for time t, the models input will be xt as well as the
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previous hidden state of ht−1 in order to predict ot. This formulation allows it to
take the context of prior outcomes (as well as new inputs) into consideration of its
current calculation.

Figure 2: A typical RNN model, courtesy of Wikipedia.

Gated Recurrent Unit

Although the vanilla RNN is still a widely popular model, it often suffers from the
"vanishing gradient" problem. When sequence lengths are long (which is often the
case in musical contexts), the gradients that are back-propagated can often vanish
(become close to zero) or explode (become very large). This results in weight updates
that have negligible or harmful impacts. Thus, as sequence lengths grow, RNNs lose
the capability to learn meaningful representations of the data.

The Gated Recurrent Unit (GRU), which is visualized in figure 3, was proposed as
one solution to this issue. The GRU is an RNN with the addition of an Update
Gate z, which determines how much past information should be passed along to
future calculations, and a Reset Gate r which decides how much past information
to "forget".

Each gate is an FFN, with the calculations as follows:

zt = σ(Wz · [ht−1, xt] + bz

Figure 3: Standard GRU cell architecture. Reproduced from [4].
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rt = σ(Wr · [ht−1, xt] + br

The previous hidden states ht−1 are subsequently multiplied by these matrices in
separate operations, determining how much information is utilised in the current Ot

calculation, as well as for future operations. With these learnable gating operations,
the model is able to selectively discard information of low importance, thus helping
it retain quantitative focus on the most important elements in longer sequences.

Long Short-Term Memory

Similar to the GRU architecture above, Long Short-Term Memory (LSTM) net-
works are designed to improve on long-term dependency modelling. To accomplish
this, a continuous hidden state Ct is introduced, which can be understood as the
hidden state ht with further gating mechanisms. A typical LSTM cell architecture
is displayed in figure 4.

With each iteration, the cell takes inputs xt, ht−1 and Ct−1 and modifies them with
the following three gates:

• Forget Gate (f): Determines how much of the previous cell state Ct−1 should
be retained for current and future calculations.

• Input Gate (i): Determines how much the new candidate cell state C̃t, which
is a function of the current input xt and previous hidden state ht−1 should be
added to the previous hidden state Ct−1, thus transforming it into Ct.

• Output Gate (o): Determines which parts of the new cell state Ct should be
output as the hidden state ht, using xt and ht−1 to make this decision.

Figure 4: Standard LSTM cell architecture. Reproduced from [5].

The cell state C can pass through long sequences with relatively minor modifications
at each step, allowing it to retain a memory of the important elements. Whilst
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LSTMs typically offer the superior performance of the three architectures, they also
have the highest number of learnable parameters, thus requiring increased computing
power, more data and longer training runs.

2.1.1 Transformers

In the seminal work Attention is All You Need [6], the authors proposed a new net-
work, called the Transformer, which was initially designed for machine translation
tasks. The paper demonstrated state of the art performance in several translation
benchmarks by leveraging a new method called Self-Attention, in conjunction with
positional embeddings, to altogether remove the need for sequential processing. By
processing entire sentences at once the model benefits from parallelization and elim-
inates the long-term context issues detailed in the previous section.

Figure 5: The full transformer network with encoder and decoder networks. Figure from
[6].

Positional Encoding

The non-sequential architecture of Transformers means they possess no inherent
knowledge as to the position of a given element within a sequence. "The quick
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brown fox" could equally be processed as "Brown quick fox the". To solve this,
researchers add positional encoding values to each element at the beginning of the
process. These values are calculated with sine and cosine functions for even- and
odd-values, respectively.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Intuitively, this results in the model adding increasingly larger numbers to each
element, which is enough information for the model to infer the positions of these
elements.

It should be noted that efforts have been made to improve upon the standard Posi-
tional Encoding function, such as in [7], where the authors create relative positional
representations and a modified Relation-aware Self-Attention to better model the
relative distance between each element. This technique was further improved upon
in Music Transformer [8], which proposed that efficiently modelling relative posi-
tional distances is key to performance-generation systems. Whilst outside the scope
of this thesis, we see the application of alternative positional encoding functions in
the context of rhythm-generation tools as an exciting area for future research.

Self-Attention

The self-attention mechanism, also known as scaled dot-product attention, is the key
ingredient of Transformers. This mechanism operates by generating three distinct
matrices for a given set of input vectors: the query matrix Q, the key matrix K,
and the value matrix V . Each of these matrices is created by multiplying the input
vectors by their respective, learnable weight matrices. To determine the relevance
or "attention" between different elements in the sequence, the dot-product of Q and
K is calculated. This attention matrix is then divided by the square root of the
dimension of the key vectors dk (to prevent large values and unstable gradients) and
scaled with softmax between 0 through 1. The result is then multiplied with the
value matrix, thus creating an effective representation of the relevance of each other
element to a single element in the sequence. Formally, the self-attention mechanism
for a sequence is calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
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Multi-head Attention

Multi-Head attention is another key component which allows the model to selec-
tively focus different attention computations on various patterns in the data in
parallel. This is achieved by projecting the embeddings into N embedding spaces,
each forming an attention head. For each attention head, the Q, K and V matrices
are computed independently, and the attention mechanism is calculated. After the
Self-Attention is calculated (as per the equation detailed in the previous section) for
each head, each attention value is concatenated and linearly transformed to result
in the final output of the multi-head attention layer. Similar to how Convolutional
Neural Networks (CNNs) can learn to focus on different spatial details in an image,
Multi-Head Attention allows the model to focus on different features of the pattern,
such as the note selection, timing or velocities.

Encoder

Pictured on the left-hand side of Fig. 5, the encoder of a Transformer is a powerful
architecture within its own right. After embedding the sequence with positional
encodings, it is propagated through N layers. Each layer consists of two primary
elements: Multi-Head Attention and a standard Feed Forward Network. Residual
connections are added between each calculation stage, allowing some information to
pass through relatively unmodified, which solves the issue of vanishing gradients and
enables deeper networks. The process is repeated through N layers. The outputs
can provide a number of task-dependent functionalities: the Q and K vectors for
a decoder (as in the original paper), a fully-fledged output (as in [9]), or a set of
σ and µ matrices for sampling. The encoder is non-auto-regressive, which makes it
particularly applicable for real-time applications due to its faster inference speeds.

Decoder

The transformer’s decoder has the same basic structure as the encoder, but with an
additional sub-layer that performs multi-head attention over the encoder’s output.
The first multi-head attention layer, which is identical in design to that of the
encoder, is processed with a triangular mask that prevents the attention at element
i from attending to the Q, K and V values beyond i+1. This mimics auto-regressive
functionality, thus teaching the model to predict the next token with only knowledge
of the current and previous tokens. The output of the Masked Multi-Head Attention
sub-layer is understood as the V matrix, and combined with the Q and K outputs
from the encoder, fed through an additional sub-layer of Multi-Head Attention.
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Whilst the masking allows for parallelization during training, the inference process
of a decoder requires true auto-regression, in which each output is fed back as the
input for the next token. For rhythm-generation, it was hypothesized by [9] that a
transformer could make reasonable predictions with knowledge of all elements in the
sequence. Based upon these results, this thesis continues to utilise only the encoder
module, thus allowing for faster inference times and enabling real-time interaction.

2.1.2 Autoencoders

Autoencoders have become increasingly popular in generation tasks due to their
ability to learn latent representations of complex data. In its purest form, an au-
toencoder consists of an encoding function f(x) and a decoding function g(f(x)).
This middle layer, often referred to as the latent space, is created by ensuring that
the output dimensionality of f(x) is identical to that of the input to g(f(x)). The
goal of the autoencoder is to accurately reconstruct the original input x through
unsupervised training. One notable variation, the sparse autoencoder, is illus-
trated in figure 6. This design forces the model to learn a compressed representation
of the data by ensuring that the latent layer has a lower dimensionality than the
surrounding encoder/decoder layers.

Figure 6: A sparse autoencoder, reproduced from [10].

Variational Autoencoders

Variational Autoencoders (VAE) differ from vanilla Autoencoders by creating a vari-
ational distribution qϕ(z|x) from which to sample. Concretely, instead of producing
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a single z representation, the encoder, parametrized by ϕ, learns µ (mean) and
σ (standard deviation) vectors to represent a multivariate distribution. This intro-
duces an issue, as directly sampling a random variable prevents gradient calculation.
This is ameliorated with the reparameterization trick :

z = µ+ σ ⊙ ϵ

In which ϵ is randomly sampled from a normal distribution, thus removing the
stochastic element and making the operation differentiable. To encourage a more
functional latent space, a new loss function is introduced: the Kullback-Leibler (KL)
divergence between qϕ(z|x) and the prior p(z), which is typically a standard multi-
variate normal distribution, N(0, I). This KL divergence term serves as a regularizer
that encourages the learned distribution qϕ(z|x) to be close to the prior p(z). The KL
divergence is combined with a reconstruction loss from the approximate posterior
distribution to produce the final loss function:

L(θ, ϕ;x) = −Eqϕ(z|x)[log pθ(x|z)] + KL(qϕ(z|x)||p(z)) (2.1)

where θ represents the parameters of the decoder, ϕ represents the parameters of the
encoder, x is the input data, and z is the reparametrized latent variable. Intuitively,
the first half of the equation encourages the model to accurately reconstruct the
input, whereas the KL term in the second half is enforcing a regularized latent
space that provides more meaningful interpolations.

2.2 Deep Music Generation

2.2.1 Symbolic Generation Tasks

Broadly speaking, the goal of a symbolic music generation system is to create a rep-
resentation of sound, based on conceptually predefined features, which can later be
converted into audio through a separate process. Within this field, there are a large
variety of tasks, each posing its own particular set of challenges, data requirements,
and goals. A classification system by Ji et al.[11], detailed in figure 7, proposes four
types of generation categories: score, performance, audio and fusion.As the model
of this thesis is attempting to compose novel rhythms with natural characteristics,
this section will briefly detail the definitions and relevant research in both score and
performance generation task domains.



2.2. Deep Music Generation 13

Figure 7: Categorization of common symbolic music generation tasks, with examples of
each domain. Reproduced from [11].

Score Generation

In a score generation model the objective is generally to create or augment musi-
cal information that is similar to that which is read and performed by musicians.
Common tasks include generation ([12], [13], [14]) in which the model produces a
novel composition; in-painting ([15], [16]) where it inserts missing information; and
augmentation ([17], [18], [19]), in which the model transforms a pre-existing musical
idea. For the sake of brevity we simply wish to highlight a brief set of examples
here to contextualize the concept of score generation - for a more comprehensive
overview of recent models and techniques, we encourage the reader to refer to the
excellent work of [20].

Notably, score generation models do not provide detailed information on velocity
changes (dynamics) or micro-timing. As a result the outputs will often sound robotic
and subjectively less appealing to most listeners. It was highlighted in [21] that state
of the art deep learning models, such as Magenta’s MusicTransformer [8], do not
show tangible improvements over older generative techniques such as Markov-based
algorithms in subjective listening tests. We posit that in order for symbolic deep
learning techniques to become truly beneficial to the music-making community, it
is necessary to model the intricate temporal and dynamic attributes that arise from
a human performance. Imagine an image-generator that could only create 6 colors
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or a large language model that only uses nouns; by focusing symbolic research on
quantized musical information, we are placing limits on the creativity that can be
achieved.

Performance Generation

In contrast to the above, a performance model is designed to create more dynamic
symbolic representations by including detailed information on velocity and micro-
timing, components which can reasonably mimic the expressive nature of a human
performance. Effectively encapsulating these minute details is an area of active re-
search, and could provide a number of useful applications in the context of music
creation and live performance. [11] further subcategorizes these models into those
which render existing compositions into dynamic performances, such as CVRNN [22]
and Conditional Transformer Autoencoders [23], and those which compose an en-
tirely new musical idea. Significant advancements in this task-domain were made in
2018 with the release of both Music Transformer [8], which addressed the quadratic
memory limitations of transformers on long sequences by introducing a new relative
self-attention mechanism, and Transformer-NADE [24], which utilised a novel Note-
Tuple data representation to reduce the number of tokens needed to model long,
expressive performances.

Although further examples are provided in 2.2.2, it is noted by Ji et al. [11] that
there is not a significant quantity of research in this domain, and there exist many
exciting opportunities for future work. We further hypothesize that research in this
subdomain could provide some of the most musically-utilitarian models, which is
a guiding principal for the work of this thesis. To put it succinctly, our model is
designed to both compose and perform rhythmic ideas in order to provide appealing
accompaniments to musicians.

2.2.2 Rhythm Generation

Generating rhythms that can expressively accompany a track in a variety of styles
is an active area of research. As drums are often interacting with other instruments
in a piece of music, there are a number of proposals on how to accurately model the
complex relationships between drums and other inputs. Significant contributions
include [25], which utilises a convoluted gated Autoencoder to model a rhythmic
mapping code between two input signals, as well as [26] who propose a novelty
function to calculate whether a drum pattern should be repeating or improvising
when conditioned on a melodic accompaniment. In [27] it was demonstrated that
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by combining a Bidirectional LSTM encoder with a Transformer-based decoder,
researchers could generate drums conditioned on several accompanying tracks, as
well as contextual information such as time signature and tempo.

In 2019, the seminal model GrooVAE [1] was released, which utilised several Seq2Seq
LSTM architectures to create expressive drum performances. In addition to Human-
ization and Infilling, Gillick et al. proposed a novel Tap2Drum task, in which the
model can convert a monophonic tapped rhythm into a fully-voiced drum perfor-
mance. It was later demonstrated by [2] and [9] that a transformer architecture
achieves similarly dynamic results in Infilling and Tap2Drum tasks - and created
the foundations for the work of this thesis. Similarly, [28] used a TransformerXL in
conjunction with a novel tokenization method in order to model more expressive,
less-quantized drum patterns. We note that the models detailed thus far lack the
capability to alter their outputs subject to meaningful creative control mechanisms,
a key feature in bringing this technology into the modern music studio.

2.3 Controllability

The central question of this thesis revolves around how to reliably generate novel
rhythmic patterns that are subjectively aligned with a given set of user-augmented
control parameters. Within the context of developing machine learning applications
that are designed to empower the creative process (as opposed to replacing it), con-
trollability is a fundamentally necessary component; without it, musicians cannot
shape the outputs to meet their bespoke requirements. Within the broader domain
of symbolic music generation, controllability has become an increasing focus of re-
search, with a plethora of recent studies demonstrating promising results in a variety
of use-cases. For a broad perspective, we provide a general taxonomy of controllable
generation methods from [29] in figure 8.

A particularly influential work in this domain was Fader Networks [30], wherein the
authors proposed an Autoencoder architecture with Convolutional Neural Networks
(CNNs) to generate realistic images whilst providing users with faders (like a mixing
console) to control certain attributes. To achieve this, it is necessary for the encoder
to generate an accurate latent representation that is invariant to the chosen param-
eters. The decoder must be able to then process this latent code, embedded with
the specified parameters, into a realistic image. To achieve this they introduce a
discriminator tasked with predicting the attribute from the latent space. Its loss
function is therefore deployed in an adversarial fashion - the encoder is penalized in
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Figure 8: A taxonomy of controllable generation methods courtesy of [29]. Most methods
for symbolic music generation fall into categories b and c; Autoencoders that in which the
control parameters c are injected into the Decoder stage .

proportion to the accuracy of the discriminator’s capability to predict the attribute.
With this technique they were able to successfully generate attribute-invariant la-
tent representations that contained enough information for meaningful decoding, as
visualized in figure 9.

Figure 9: Fader Networks: By creating latent representations that are attribute-invariant,
the authors of [30] can construct images that retain a core identity while responding to
detailed control inputs.

In the musical realm, in 2017 it was demonstrated by [31] that it is possible to
create identity-preserving variations of pitch-class and note density on an original,
unconditional theme by constraining the latent space of a pre-trained LSTM VAE.
This was expanded upon by [32] which adds an attribute-specific regularization
loss function to the training objective, thus enabling manual modification of the
regularized dimension during inference. Whilst these early results were promising,
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in both cases the conditioning was performed on quantized, monophonic melodies
without subjective evaluations - thus making it difficult to determine their suitability
for artistic applications.

Figure 10: How a regularized latent space can translate to controllable music features.
(Top) The regularized dimension of rhythm complexity is gradually increased in [32]; (Bot-
tom) Disentanglement of rhythm and note density in [18].

Further techniques were proposed in [18], which utilised a Gaussian Mixture VAE
to perform disentanglement representation learning in conjunction with regularized
low-level symbolic music features. In addition to the decoder, the latent space vec-
tors are separately passed to a discriminator model (to ensure the low-level features
are present in the latent space) and a cluster inference model (to predict higher-
level features). By specifying and enforcing a number of musicologically-grounded
low-level features - rhythm density and note density - researchers could then ap-
ply semi-supervised learning to attach these to a controllable high-level attribute -
arousal. This provided several novel advancements in the field, enabling models to
map the relationship between several low-level features to higher-level descriptors,
as well as reducing the necessary amount of labelled training data.

The approach of disentangling control attributes in a VAE has already been demon-
strated in the context of rhythmic-generation tasks. In [33], the authors propose a
rhythm complexity parameter measurement, and subsequently construct a β-VAE
to disentangle the latent space. Detailed in figure 11, the researchers trained the
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Figure 11: The modified β-VAE model proposed by [33] for rhythm generation utilises
several additional loss functions to disentangle the control attribute. Illustration from the
original paper.

model to calculate and encode this measurement into a single element of the latent
space, zi whilst simultaneously disentangling it from the remainder of the vector z∗.
This is accomplished by adding an auxiliary loss function:

Lreg = MSE(fp(g), zi)

Where fp(g) is the the calculated complexity measure, and zi is the ith element
of the latent code z. Subsequently, an adversarial regressor is trained to estimate
the rhythm complexity on the elements of z∗ (those which should be disentangled),
and connect its loss function to the encoder with a gradient reversal layer (GRL).
This simultaneously encourages the encoder to put a high correlation between zi and
rhythm complexity whilst removing this information from the other elements. Al-
though this was demonstrated in objective evaluations to effectively regularize and
disentangle the control function, the model was exclusively trained on drum pat-
terns in a 4/4 meter, with 16th-note quantization, no micro-timing, and all velocity
information removed.

In a similar approach, the authors of [34] rely on a discriminator mechanism to
manually disentangle a number of calculated control-values from the latent space.
After encoding a monophonic melody, the model’s latent space is separately passed
to a multivariate discriminator, whose training function is designed to identify pre-
calculated characteristics such as amount of arpeggiation, pitch kurtosis, and rhyth-
mic value variability (among many others). The parameter vectors are then concate-
nated with the hidden state, thus enabling the decoder to draw upon this information
for accurate reconstruction of the target input. In contrast to [33], the Encoder is
not designed to make any prediction of the target attribute(s). Furthermore, by
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Figure 12: By utilising a multivariate discriminator in the latent space, [34] is able to
influence the output with several conditions simultaneously. Illustrations from the original
paper.

converting each attribute’s continuous value to a one-hot encoding and framing the
discriminators as a classification task, they are able to introduce multiple parameter
controls into a single model similar to [30].

Figure 13: The architecture of [23] combines the hidden states of two Music
Transformer[8] encoders prior to decoding in order to alter the style of an input melody
performance. Illustration from the original paper.

Recent work has been conducted to understand the potential benefits of combining
the self-attention capabilities of transformer modules with the information bottle-
neck produced by VAEs. For example, [23] uses a modified transformer network
in order to perform style transfer to piano performances; that is, re-processing a
melody in the style of another performer or composer. As a foundation, they utilise
an encoder and decoder from Music Transformer[8] (thus benefiting from relative at-
tention) to recreate an input melody, with an information bottleneck to ensure the
decoder is not simply copying the input. They separately train another (structurally-
identical) encoder to temporally identify the performance characteristics, the output
of which is then combined with the output of the first encoder (with either summa-
tion, concatenation, or tiling), and then fed to the decoder.
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Figure 14: The in-attention conditioning utilised by Musemorphose to achieve bar-level
attribute control. Illustration from [35].

While we have highlighted a number of methods to disentangle latent spaces, it is
also important to investigate techniques to then inject the desired parameters into
the decoder. In this regard, the authors of Musemorphose [35] experimented with
several methods of injecting bar-level conditioning mechanisms into a Transformer-
XL [36] decoder, demonstrating particularly strong results with a novel in-attention
conditioning technique. Detailed in figure 14, this was achieved by repeatedly re-
minding the decoder of the desired control signals by summing the embeddings with
the hidden states prior to each self-attention layer (except for the last one). This
decoder (which is intended to process the entire generation) is combined with a num-
ber of parallel bar-level transformer encoders, whose hidden states are concatenated
with two control-mechanism embeddings - rhythmic intensity and polyphony - and
then fed to the decoder via the aforementioned in-attention conditioning. This tech-
nique allowed the authors to create a style-transfer model with bar-level attribute
control, which enables musicians to sculpt dynamic control curves over the course
of a sequence generation.

In this section we have provided an overview of symbolic music generation systems,
with a specific emphasis on rhythm and controllability. It has been highlighted that
many of these models do not contain micro-timing or velocity information, limiting
their musical practicality. For the models that do render expressive performances,
they lack the capability for meaningful control inputs. We therefore aim to fill a
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specific yet important gap in the current research: a rhythmic generation model that
is both expressive and controllable.



Chapter 3

Methodology

In this thesis, we train a Transformer VAE on a repository of symbolic represen-
tations of drum performances. The dataset, architecture, training methods and
evaluation metrics will be detailed in the following sections. The code repository is
fully open source and can be accessed here.

3.1 Dataset

All training was conducted with the Groove MIDI Dataset (GMD)[1] by Google
Magenta. It contains roughly 13.6 hours of human performances, within 1,150 MIDI
files representing 22,000 measures. The ten drummers were recorded on a Roland
TD-111 electronic drum kit. While there are a number of large repositories with
rhythmic information, such as Lakh-MIDI[37], the majority of these provide only
score information with quantized timing and no velocity information, thus limiting
their suitability for training performance generative systems. The dataset contains
annotations specifying the drummer, genre and a "beat" or "fill" classification. We
further filter the GMD to train specifically on samples of 4/4.

3.1.1 Data Representation

In line with [1] and [2] we represent each drum loop with the "Hits, Velocities,
Offsets" (HVO) system. The HVO representation, which is visualized in figure 15,
divides time into discrete indices, with each drum voice assigned three elements:

1https://www.roland.com/global/products/td-11/
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https://github.com/behzadhaki/GrooveTransformer
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• Hit: (0 or 1) Whether a note is played at this time-step

• Velocity: (0.0 - 1.0) Velocity of the note, normalized

• Offset: (-0.5 - 0.5) Displacement of the timing from a perfectly quantized
center of 0.0

In our case, time is divided into four indices per quarter note (16th notes). The HVO
method allows for a careful trade-off between the granularity necessary for perfor-
mance systems and the quadratic memory complexity of Transformers in relation to
sequence length.

Figure 15: An example of the HVO representation for 3 of the 9 drum voices, reproduced
from [2].

3.1.2 Tapped Sequence

Our aim is to transform an unvoiced "tapped" sequence into a 9-voice drum kit
performance, defined as the Tap2Drum task in [1]. To accomplish this, we collapse
each training sequence into a single voice, as demonstrated in figure 16. In the case
of multiple voices on a given time index, we select the offset and velocity values
corresponding to the hit with the highest velocity. The model is then trained to
predict a fully-voiced drum pattern based on this tapped sequence by using the
reconstruction loss functions described in section 3.6.

This approach allows a trained model to take virtually any MIDI information as
input. For example, a piano melody that contains dozens of notes can be reduced to
a single tapped representation. This becomes an effective way to build the rhythm
generation model as an accompaniment device, where it can produce predictions
regardless of the input instrument type.
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Figure 16: Visualisation of a drum performance being converted to a tapped sequence,
reproduced from [2].

3.2 Control Parameters

We propose several metrics that are functionally beneficial from a musical perspec-
tive and can be quantitatively defined for unsupervised training.

Density

Density can be understood as the overall quantity of notes present in the perfor-
mance. An experienced drummer can alter the density of their performance while
retaining the core rhythmic identity in relation to fixed metrics such as genre and
accompanying parts. Modulating the density allows one to express certain emotional
indicators, such as a reduction in intensity or an imminent section change. Let H

represent the number of active hits in the pattern, T be the number of time-steps,
and Nv be the number of drum voices:

density =
H

T ∗Nv

(3.1)

Intensity

Intensity is calculated as the average of all velocity values within each rhythmic
pattern. Considering that velocity values are initially normalized between 0.0 - 1.0,
let V represent the sum total velocities of a given pattern:

intensity =
V

H
(3.2)

It has been noted that this may not correlate directly with a listener’s perception
of intensity; a single crash cymbal at medium velocity may induce a higher sense of
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Figure 17: Distribution of measured Density and Intensity values, before and after nor-
malization.

intensity than a kick or closed hi-hat at maximum velocity. As this thesis is more
focused on the methodology of disentanglement, we leave this tantalizing question
to the work of future research.

Drum patterns within the GMD have Density and Intensity values tightly clustered
around a small range. We therefore implement normalization on both continuous
values, to represent the lowest and highest values present as 0.0 and 1.0, respectively.
We detail in figure 17 the distribution of density and intensity values before and after
normalization.

Genre

We rely on the genre labels provided with the GMD and detailed in section 3.1. The
genre input is represented as a vector g which is sized in proportion to the number
of genres in the dataset. Each element of g corresponds to a single genre, and
we provide a mapping dictionary embedded within each model for easy reference.
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Whilst training g is encoded as a one-hot vector with the relevant element set to 1.
During inference it is possible to have multiple genre elements set to a value between
0− 1, which opens exciting creative use-cases of generating hybrid rhythms.

Figure 18: Distribution of genres in the Groove MIDI Dataset.

3.3 Model Architecture

The goal of VAEDER is to convert a tapped monophonic input rhythm into a fully-
voiced drum performance whilst incorporating a number of user-specified control
parameters. Our proposed architecture is a VAE, with Transformer encoders serving
as the backbone of both the encoding and decoding process. We provide a general
overview of the architecture in figure 19.

3.3.1 Encoder Layer

The encoder layer is tasked with taking the initial HVO input and creating a la-
tent representation. First, in the Encoder Input Layer the HVO matrix is ex-
panded through a learnable matrix Winput to dmodel, as well as a ReLU activation
and summed with a positional encoding per [6]. Subsequently, this processed input
is directed through the Encoder block, a composite of n successive layers of Trans-
former encoders. The resulting output of these layers, maintaining a shape of dmodel

is finally passed through the Latent Layer. In adherence to conventional VAE
methodology, it is projected by two learnable matrices, Wµ and Wσ to create the
mean and standard vectors. We then utilise the reparameterization trick to sample
from this multivariate space, generating the z latent vector for the Decoder.
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Figure 19: An overview of the VAEDER model architecture.

3.3.2 Decoder Layer

The goal of the decoder is to take the sampled z vector, as well as the desired
control parameters, and generate HVO logits that can be sampled into a MIDI
drum performance. This process begins with the Decoder Input Layer, which
combines z with the density, intensity and genre vectors with the Pre-Decoder
method described in section 3.5.1, resulting in a new latent matrix of Z ∈ Rt,d where
t is the number of discrete time indices (32 in our case) and d is the dimensionality of
the decoder model. We then process this through the Decoder In-Attention stage,
in which Z is summed with the parameter vector pin and fed through Transformer
Encoder layers as detailed in section 3.5.2. The output of this process is then
multiplied with output matrix Wout to produce our output logits HV O ∈ Rt,v×3 in
which v represents the potential number of voices in our modelled drum performance.
Thus, we have an element representing the Hit, Velocity and Offset for each voice.

In order to convert the logits into usable values, we split and process the H, V, and
O matrices through sigmoid layers. The hits, which can only be represented as 0 or
1, are calculated as a binary result of a threshold, typically set to 0.5. The offsets
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are reduced by 0.5 so as to constrain their range between -0.5 to 0.5.

3.4 Adversarial Networks

In an ideal model, the encoder is able to create a latent representation of a drum
pattern without any tangible information regarding the control parameters. This
introduces a paradox: with the reconstruction loss alone, the encoder is incentivized
to generate a descriptive z vector which will be decoded into an accurate ground-
truth recreation. Drawing upon the work of [30], [34] and [33] we introduce a system
of adversarial networks to penalize the encoder when it includes this information in
the latent space.

For each control parameter we create a corresponding adversarial network, which
is tasked with predicting the specified parameter p from z. All three parameters
are treated as classification tasks; for the continuous parameters of Density and
Intensity we quantize and convert the value to a one-hot encoding in a 10-element
vector. While we experimented with a number of methods, this approach proved
most reliable, as it ensured that the three networks would produce similar loss values.

Each model is composed of two hidden feed-forward layers that correspond in size
to the latent dimension (which is a tunable hyperparameter) followed by Tanh ac-
tivations. The output layer is an additional feed-forward layer that projects to n
classes with a sigmoid activation. The individual loss functions encourage these
models to make accurate predictions of their respective parameter from the latent
space, a task that is aided by an encoder that encodes significant information into
z. In a process detailed in 3.6, we combine the adversarial losses in a Gradient
Reversal Layer (GRL) and apply this to the encoder. Therefore, the encoder is now
incentivized to remove parameter information from the latent vector.

3.5 Parameter Injection

Assuming a properly disentangled latent space, it becomes necessary to inject the
parameter information into the Decoder. With little known research on disentangle-
ment for performance rhythm generation systems, we experiment with two methods
at separate stages of the decoding process, referred to as Pre-Decoder and Decoder
In-Attention.
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3.5.1 Pre-Decoder

We propose a novel method which can incorporate both continuous and categorical
control parameters into a disentangled vector z prior to decoding.

We first multiply z with a learnable matrix Wlatent ∈ Rt×(d−n) and transform it to
obtain a new matrix Z∗ ∈ Rt,(d−n) where t denotes the number of time indices, d is the
decoder model dimensionality and n is the number of parameters we wish to embed.
The continuous values of Density and Intensity are repeated by t steps, and the
categorical vector corresponding to Genre is multiplied through matrix Wgenre ∈
Rt. Each of these vectors has an additional dimension added, thus producing n

parameter matrices P ∈ Rt,1. We then concatenate our Z∗ matrix with the individual
parameter P matrices along the final dimension, producing the output matrix Z ∈
Rt,d for decoder processing. In the case of our model this is represented as:

Z = concat([Z∗;Pdensity;Pintensity;Pgenre]) (3.3)

Figure 20: Pre-Decoder method visualized.

3.5.2 Decoder In-Attention

We adopt a modified version of the in-attention method utilised by Musemorphose[35]
which is detailed in figure 21. We first concatenate the three parameters together,
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Figure 21: The Decoder In-Attention mechanism visualised. .

forming a new parameter vector p. This is then projected with a matrix Win ∈ Rd×pv ,
where pv is the number of continuous parameters summed with the number of cate-
gorical parameter values. This results in our in-attention parameter vector pin ∈ Rd.
We initially sum pin with the latent matrix Z (from the Pre-Decoder stage), the
output of which is then passed through a successive n number of Transformer en-
coder layers; prior to each layer, the initial pin is summed again with the previous
hidden state of Hn−1. Thus for each Transformer self-attention layer, the hidden
state is calculated as:

Hn = Transformer Self-Attention Layer(Hn−1 + pin) (3.4)

This can be understood as a type of residual network, where the attention heads are
continuously reminded of the parameter information at every layer.

3.6 Loss Functions

The loss functions used throughout training fall into three categories: Reconstruc-
tion, Regularization, and Adversarial.
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Reconstruction

The primary goal of the model is to accurately convert the tapped sequence into the
original 9-voice pattern. The method of obtaining a reconstruction loss is largely
inspired by [2] by dividing the calculation into three components:

Lrecon = Lhits + Lvelocities + Loffsets (3.5)

We utilise Mean Squared Error (MSE) for all three elements: Hits, Velocities and
Offsets. We expand on this by calculating a binary (9x32) mask for each HVO
matrix which corresponds to the Hits in the ground truth. This mask is multiplied
with the V and O matrices, thus elminating loss accumulation on indices that do
not corresponding with a hit. In other words, an incorrect velocity/offset predic-
tion is not penalized if there is no hit. The inclusion of this mask is treated as a
hyperparameter and listed in 3.7.

Regularization

We utilise a traditional KL term as described in 2.1.2 to calculate the regularization
loss Lreg as follows:

Lreg = −1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ) (3.6)

In which j is the dimensionality of the latent space and µ and σ are the mean
and standard deviation matrices, respectively. We further introduce a β scaling
factor, a common technique for disentanglement for generative AI systems. In several
experiments, we further modify the β value with a cyclical annealing schedule as
proposed in [38]. An example of this, in which you can visualize both the β scaling
factor and resultant Lreg is displayed in figure 22. The scaling factor and use of
cyclical annealing are both defined as experimental hyperparameters.

Adversarial

The adversarial networks are trained to accurately identify a target parameter from
the latent z. To address the challenge of working with both continuous (density,
intensity) and one-hot (genre) values, we treat all three as classification problems.
Similar to the approach described in [34] we convert both predicted and ground-
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Figure 22: Example of the cyclical annealing method from a training run, showing both
the scaling factor β and the resultant loss Lreg.

truth continuous elements into quantized one-hot encodings in a 10-element vector.
The loss of each parameter’s corresponding adversarial model is thus calculated as
the Binary Cross-Entropy between the parameter prediction f̂p from the latent z

and target parameter p.
Lparameter = BCE(p, f̂p(z)) (3.7)

Each model is trained independently on its own loss calculations, thus improving
its capability to accurately predict the given parameter. To create the adversarial
loss Ladv for the VAE encoder, we sum the three loss values, thus modeling a rep-
resentation of the total level of parameter information embedded within the latent
space:

Ladv = Ldensity + Lintensity + Lgenre (3.8)

VAE Loss

Detailed in figure 23, the final loss applied to the VAE is a combination of the
reconstruction loss (accuracy of predictions), regularization (meaningful distribution
of the latent space), and adversarial (minimize latent parameter information). The
adversarial loss is scaled with γ and applied as a Gradient Reversal Layer (GRL).
Whilst Lrecon is backpropagated through the full VAE network, Lreg and Ladv are
only applied to the Encoder layer.

LVAE = Lrecon + βLreg − γLadv (3.9)
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Figure 23: Visualisation of the full set of loss functions utilised in the model.

3.7 Hyperparameter Tuning

Transformers, VAEs and adversarial networks are all highly sensitive to minor ad-
justments in their hyperparameter settings. With each experiment we perform
sweeps wherein a large batch of models are trained with various hyperparameter
settings to understand the level of importance and optimal values of each element
in relation to final performance. We generally aim to isolate a small number of
elements as hyperparameters in each training round, allowing us to more accurately
identify correlations and levels of importance. This approach is done iteratively;
if we identify an optimal value for a given parameter in a training round, we will
anchor it to that value in the next round of experiments.

To facilitate this approach we use the library and API of Weights and Biases
(W&B)[39]. W&B allows us to specify hyperparameters and their respective ranges,
and analyze the results for each model. This enables the capacity to rapidly iterate
through a series of tests and pinpoint the most important set of hyperparameters
in regards to key indicators such as reconstruction accuracy, controllability, and KL
loss. For each training sweep, we link to a summary report, where you can view a
set of analyses as well as further details on individual models.

3.7.1 Analysis & Early Stopping

We utilise a number of analysis methods during the training process of each model to
determine the capabilities. We detail them here as they will be referenced through-
out chapter 4.
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Figure 24: An example of hyperparameter model training sweeps with W&B. Each line
represents a single model.

• Latent UMAP: Utilizing UMAP[40] dimensionality reduction, we create 2D
plots with ground-truth parameter data. This helps visualize the level of
disentanglement; tight clusters of identical values indicate that the encoder is
still embedding this information into z.

• Piano Rolls: We select a variety of test set examples, and provide them
as inputs to the model throughout training. In addition to ground truth
parameter data, we test different values of intensity and density, to visualize
how these values are impacting its predictions.

• Sørensen–Dice coefficient (DICE): A statistical measurement to deter-
mine the similarity between the test set and model predictions. A value of 1.0
indicates that predictions are identical to the ground truth. This serves as a
go-to metric for identifying reconstruction accuracy.

• Density/Intensity [value]: Every 20 epochs, we choose a single parameter
and value - e.g. [density 0.01]. We run the entire test set through the model,
using ground-truth control parameters but overriding our selected metric and
value. We then calculate the same metric from its predictions, and report
the averages. We provide values of 0.01 and 0.99 for density and intensity
separately. This helps us determine the spread of outputs; a high-quality
model can create accurate outputs at the extreme ends of the spectrum.

We provide savable checkpoints at each 20 epochs. Many models were prone to
overfitting or latent collapse later in their training runs. We aim to strike a balance
between control parameter accuracy and reconstruction (as measured by DICE)
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Figure 25: The evolution of a model’s latent space, color-coded with ground-truth density
labels. Epoch 0: The initialized state. Epoch 80: KL β introduced. Epoch 160:
Adversarial networks are engaged. Epoch 220: The selected checkpoint for evaluations.

when determing the optimal epoch. Therefor, early stopping used frequently, and
the specific epoch is detailed in each W&B report.

3.8 Deployment

We believe that generative AI will have profound effects, both positive and negative,
on creative communities. In order to encourage a more collaborative approach and
mitigate the harmful impacts of such technologies, it is crucial to involve artists in
the evaluation and discussion of such tools early in the development process. How-
ever, there are practical difficulties, as the software environments and skills required
to develop deep learning models differ greatly from those needed to implement tra-
ditional audio-creation tools. Audio software development requires knowledge of
topics such as multi-threading, real-time safe procedures, and inter-thread commu-
nication techniques - to name a few. We have heard from a number of researchers
that the time and domain-specific knowledge needed to deploy a symbolic model in
a C++ audio plugin is a massive barrier. We believe that this is one of the reasons
that a large proportion of music generation models cannot be utilised in a Digital
Audio Workstation (DAW).

We have developed and open-sourced a set of software tools intended to reduce this
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technical barrier. First we developed NeuralMidiFx, an audio plugin which can
host deep learning symbolic models directly within modern DAWs. In addition to
this, we released a Software Development Kit (SDK) in collaboration with Neutone
Inc.2 allowing researchers to wrap trained models into a more deployment-friendly
format. The combination of the SDK and plugin allows researchers to convert and
load their model into a musician-friendly format without getting bogged down in
the intricacies of audio software development. Together, these tools have allowed
us to take trained PyTorch model, and have them loaded in a DAW with realtime
performance and controllable parameters in less than ten minutes.

3.8.1 NeuralMidiFX Plugin

Modern audio production software typically functions in a centralized manner where
the producer is encouraged to continuously work in a single enviroment - the DAW.
To this end, the Virtual Studio Technology (VST) format, developed by Steinberg3,
allow developers to package software in an environment that directly connects to
modern DAWs. NeuralMidiFX4 is a VST3 plugin which allows for the deployment of
real-time deep learning models that work with MIDI data. By utilising the libtorch5

C++ API of PyTorch, researchers can serialize their models in a C++ format and
include them as a component of the plugin, thus bringing the model directly into
the music-creation environment.

Figure 26: One of our early Density models deployed by NeuralMidiFX within Ableton
Live for interactive testing.

A separate paper[41] detailing the plugin architecture and examples has been pre-
sented at the 2023 Artificial Intelligence Music Conference (AIMC). Developed with

2https://neutone.space/
3https://www.steinberg.net/technology/
4NeuralMidiFX documentation, instructions, and examples are available here.
5https://pytorch.org/cppdocs/

https://neuralmidifx.github.io/
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the JUCE6 framework, our plugin enables both real-time and offline inference mod-
els by providing a safe multi-threaded environment. We give the developers an easy,
modular environment that allows for rapid Graphic User Interface (GUI) prototyp-
ing, and a number of functions to access key information such as the tempo and
time signature.

Figure 27: NeuralMidiFX provides implementations for key tasks, such as data streaming,
User Interface generation and multi-threading.

3.8.2 NeutoneMIDI SDK

Throughout the development of NeuralMidiFX, we observed that one of the primary
challenges of integrating symbolic models within VST plugins was that of the data
format. In DAWs and plugins, MIDI messages are typically transmitted in their
original hex format, such as in fig. 28. On the other hand, symbolic models often
rely on various forms of tokenization, where each event is translated into a unique
integer (a token).

Figure 28: A typical MIDI message, transmitting a Note-On event of Velocity 100, from
[42].

There are a growing number of tokenization methods for MIDI data, such as REMI[43],
CPWord[44], and Octuple[45], each of which translates MIDI events differently. To
add to the confusion, a single tokenizer can have a number of configurable options;
e.g. one can utilize REMI with different timing sub-divisions. As a result of this, ac-
curately translating MIDI data to and from the format expected by a single model is

6https://juce.com/
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entirely dependent upon the tokenization parameters it was originally trained upon.
Implementing these bespoke conversions in a C++ environment has proven to be
both technically difficult and time-consuming.

Figure 29: Example of the REMI[8] (top) and CPWord[44] (bottom) tokenizations on an
identical MIDI passage. Borrowed with permission from Miditok[46].

To address these challenges, we collaborated with Neutone inc. to develop the
NeutoneMIDI SDK7 , which wraps a trained model, providing both MIDI-to-Token
and Token-to-MIDI translations. To increase the compatibility of NeutoneMIDI
with a variety of models, our SDK is built upon the tokenization formats used in
Miditok[46], which provides implementations for a variety of popular tokenization
methods.

Symbolic models often require some form of control input(s). To accomodate this
we provide functionality for a custom generate function. Researchers can specify
exactly what data they need - e.g. density, and how to utilize it within the context
of their model’s inference process. They can add any number of supported PyTorch
operations, thus enabling rapid prototyping of different sampling procedures, data
augmentation methods, latent space modulations, and more. NeutoneMIDI is in a
purely python environment, allowing researchers to trial these ideas without needing
to implement them in C++.

As a result of our collaboration, a researcher simply needs to provide their trained
model and a single JSON8 file (created by Miditok to specify tokenization parame-
ters), and the SDK will produce a wrapped model file that handles all tokenization
conversions in the style their model was trained upon. This file can then be deployed
in a C++ Plugin of their choice, such as NeuralMidiFX.

7https://github.com/QosmoInc/neutone_sdk/
8https://www.json.org/json-en.html

https://github.com/QosmoInc/neutone_sdk/
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We hope that by developing and open-sourcing both the NeuralMidiFX plugin and
NeutoneMIDI SDK, the process of deploying symbolic models into audio production
environments has become significantly easier. Both tools are in the early stages
of development, and we welcome community contributions and feedback to help
improve and expand upon their respective capabilities.



Chapter 4

Results & Evaluation

This thesis relied on an iterative methodology, in which we gradually added more
parameters and disentanglement techniques, which often introduced new complica-
tions and the need to re-optimize various hyperparameters. For the sake of brevity
we will briefly summarize the order of experiments, issues encountered, and results.
This culminated in a selection of five models, which all demonstrated promising
quantitative results. We then exposed them to an informal set of jam sessions, in
which we tested each model with a variety of inputs and control settings, to deter-
mine which single model had the most enjoyable predictions. The chosen model,
earthy-armadillo-149, was then identified as our base model, and subjected to a
series of ablation studies for final evaluations.

4.1 Model Selection

Parameter Injection

Prior to focusing on disentanglement, we aimed to identify the optimal way to inject
a single, continuous control parameter of density into our model. We experimented
with two separate methods, which were utilised at the encoder stage:

• 1D: The continuous density value is projected with matrix Wd ∈ R1,3 to
the same dimension of a single input timestep. This is concatenated at the
beginning of the input HVO tapped input, thus forming input matrix HV O ∈
R(t+1),3

• 2D: The method described in section 3.5.1, albeit with just the single control
parameter of density.

40
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In addition to the injection methods, we wanted to understand the optimal config-
uration for Lreg, specifically the scaling β value, the value of cyclical annealing, and
when to begin introducing the regularization loss.

We additionally tested several common hyperparameters, such as the number of
transformer layers, number of heads, and dimensions of the encoder and decoder
models. A full report on the hyperparameters and their results can be accessed
here1

Figure 30: W&B sweep to determine the effectiveness of 2D vs. 1D parameter injection
methods for Density. Highlighted models, all of which utilise the 2D method, had the
greatest balance of low and high density separation whilst maintaining favorable results
on reconstruction loss and DICE test-set evaluations.

We determined that the 2D method provided substantially better results; when ex-
posed to the density tests detailed in 3.7.1, there was consistently higher separation
on our 2D models. Additionally, the KL regularizer term, particularly when com-
bined with cyclical annealing, provided a surprisingly high degree of disentanglement
on its own. In line with similar research in symbolic music such as [35], [33] and
[34] our models tended to perform most optimally with a β value between 0.1 - 0.6.
Many models with higher values, such as the one highlighted in figure 31, resulted
in complete latent space collapse, where they would predict a generic rock groove
regardless of the inputs.

1https://api.wandb.ai/links/mmil_julian/tmoi1ctt

https://api.wandb.ai/links/mmil_julian/tmoi1ctt
https://api.wandb.ai/links/mmil_julian/tmoi1ctt
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Figure 31: Example of latent space collapse from brisk-sweep-74 which has a β of 1.13.
Regardless of the ground-truth (left), it always predicts a generic rock groove (right).

Adversarial Networks & Additional Parameters

We then implemented the remaining additional parameters of Intensity and Genre,
introduced the adversarial networks, and moved the 2D injection method into our
decoder. As is often the case with adversarial networks, we found them to be highly
sensitive to certain parameters, and required a great deal of tuning so as to provide
a meaningful impact on the encoder’s behavior without overpowering it. Based on
the results of the previous experiments, we kept β annealing activated and limited
the range of between 0.05 and 0.6.

A key discovery was that the adversarial networks needed a semi-structured latent
space before their predictions could improve. On the other hand, once Ladv was
introduced, Lrecon would typically flatten-out. We posit that the encoder focuses
primarily on hiding the parameters from z, and can make little improvements to its
reconstruction capabilities once the adversarial loss is applied. With these findings
we introduced a delay to the γ term similar to that of β, in order for the encoder and
adversarial networks to gain a degree of coherence prior to adversarial engagement.
We provide an example of LVAE loss in comparison to Ladv from one of our first
balanced training runs in figure 32. At epoch 50, we begin increasing γ, which
results in an increase in the individual adversarial network’s losses, and a flattening
of LVAE.

From our initial evaluation metrics it became apparent that Ladv was indeed encour-
aging the encoder to disentangle our control parameters from z beyond the levels
previously attained from regularization loss alone. As detailed in figure 33, most
models developed a tangibly higher degree of accuracy on both density and intensity
predictions after the adversarial loss was introduced. This was further confirmed by
our ablation studies in section 2.3.
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Figure 32: Sparkling-bird-129 was one of the initial models with balanced adversarial
networks. We disable the GRL for the first 50 epochs, and then linearly increase γ to the
maximum level.

Figure 33: One of the final models, classic-sweep-31, demonstrates the impact of GRL
loss on Density disentanglement. Here we provide the full test-set as input with a Density
setting of 0.01. As γ rises the measured density output rapidly decreases, reducing the
delta to the desired control value. The decoder is able to more accurately model the desired
density, as the encoder has learned to remove this information from the latent vector.
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Figure 34: The final W&B sweep, in which we trained a variety of models with adversarial
networks, KL regularization and in-attention decoders. Highlighted are the five models
chosen for the final round of evaluations.

Decoder In-Attention

With all three parameters present and the adversarial networks balanced, we intro-
duced the Decoder In-Attention mechanism. With Lreg and Ladv creating an in-
variant latent space, this would help remind the transformer layers of our intended
control parameters throughout the decoding process.

Additionally, from interactive sessions with our previous models, we identified po-
tential overfitting behavior. Specifically, predictions seemed highly sensitive to the
offsets and velocities of our inputs. Adjusting a single note by a few milliseconds
seemed to dramatically alter its outputs, which is not reflective of a real drum-
mer’s behavior. We therefore introduced two additional dropout measures, velocity
dropout and offset dropout, to reduce the model’s dependence on individual velocity
and offset values.

We found a substantial improvement after these additions; the models trained with
an In-Attention Decoder mechanism gained significant improvements in their capa-
bility to separate Density and Intensity values, whilst retaining their capability to
generate accurate recreations. We configured the decoder-type as a hyperparameter,
with the option of In-Attention or Standard - e.g. a traditional transformer encoder.
As such, we were able to clearly identify the impact the decoder in-attention injec-
tion method had on our parameter accuracies. You can view all of the models, and
their respective hyperparameters in this report.

Detailed in figure 35, the models trained with the in-attention decoder mechanism
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averaged a higher spread on intensity predictions. Simply put, higher intensity
values resulted in higher intensity outputs, and lower values created lower outputs.

Figure 35: Average predicted outputs for Low and High Intensity evaluations. Model’s
that utilised the Decoder In-Attention method typically produced a wider range of outputs
that were more closely aligned with the specified intensity.

From this sweep we chose five models that had high accuracy on both density and
intensity predictions, as well as high DICE scores; thus demonstrating strength in
both disentanglement and reconstruction. The models and their key hyperparame-
ters are detailed in table 1.

Name Decoder Beta enc d. model enc n. heads enc n. layers dec d. model dec n. heads dec nlayers latent dim.

elated-sweep-33 In-Attention 0.11 256 2 2 512 8 2 64
jumping-sweep-22 Standard 0.15 128 8 3 512 8 3 64
rose-sweep-43 In-Attention 0.48 256 2 4 1024 8 8 256
classic-sweep-31 In-Attention 0.19 128 8 2 512 8 6 256
revived-sweep-3 In-Attention 0.23 128 2 2 256 8 8 64

Table 1: Models selected for further musical evaluations.

Final Tuning

Using the deployment tools described in section 3.8, we loaded our chosen models
into Ableton live. We then created our own set of tapped inputs that covered
a variety of styles and tempos. For each model, we tested its ability to create
outputs at each combination of density and intensity values, as well as the genres
of rock, jazz, latin and hip-hop. Although informal, these evaluations proved highly
beneficial. For example, rose-sweep-43 had a DICE of 56% (relatively high), yet
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produced consistently ugly patterns, filled with strange voice selections, such as
repeating toms. It also had a poor density/intensity separation, and would often
get more dense as you reduced the control value. Revived-sweep-3, on the other
hand, provided decent results, but used a max-velocity kick drum regardless of the
intensity setting. It also rarely used the cymbals/rides, even when set to jazz mode.

Figure 36: (left) Ground truth, (right) Prediction. Classic-sweep-31 has a consistent
ability to accurately predict unseen rhythms.

After several hours of testing, we determined that classic-sweep-31 and jumping-
sweep-22 were the most fun and appealing. After directly comparing these two
models on a number of identical settings, it became apparent that classic-sweep-31
had provided more realistic outputs on the extreme control parameters (e.g. density
at 98% and intensity at 10%). Furthermore, it altered its velocity patterns more
drastically in response to genre inputs.

It was observed during these tests that none of the models were great at changing
their outputs in response to genre changes. Specifically, every drum groove sounded
vaguely rock-ish. We hypothesized this was due to the dataset; with rock accounting
for 31% of the GMD, it is harder for the model to learn the patterns of other genres.

4.2 Evaluations

In this section we will present the quantitative metrics used to make a final set of
evaluations on our baseline model. As is often the case with generative models,
objective metrics do not necessarily give a complete indication of the artistic quality
of the outputs. With that said, they still provide an overall indication of the model’s
capabilities, and provide targeted insights as to its weaknesses. We selected classic-
sweep-31 as our model, due to its high DICE score, accurate density and intensity
predictions, and appealing patterns throughout the interactive qualitative tests.
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Figure 37: The W&B sweep of our final evaluation models.

With no known baseline evaluations on controllable, expressive rhythm generation
modelling, we format our evaluations as an ablation study. With genre-adaptation
identified as a weakness of classic-sweep-31, we trained an identical model with a
genre-weighting tensor added, to account for the imbalance of genres represented in
the GMD. This sweep, called earthy-armadillo-149, has been identified as our base
model. We therefore present our ablation study models, which have key parameters
modified and removed to better understand their impact on reconstruction and
controllability in table 2. You may also view the full W&B report here.

Sweep Name Model Identifier KL Beta Adv. Gamma Decoder

earthy-armadillo-149 Base Model 0.185 0.1 In-Attention
fanciful-cherry-153 Higher Gamma 0.185 0.3 In-Attention
lazy-hedgehog-19 No In-Attention 0.185 0.1 Standard
zesty-river-160 No Adversarial or In-Attention 0.185 0 Standard
dry-rain-154 No KL, Adversarial or In-Attention 0 0 Standard

Table 2: Base model and variations for final evaluations.

4.2.1 Reconstruction

The primary objective of the model is to accurately convert a tapped pattern into
a drum performance. Here we will detail various quantitative evaluations and their
results to assess the overall reconstruction accuracy. It is important to recognize that
the model is a VAE, therefore placing an upper limit on its reconstruction accuracies.
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This is appealing from a musical standpoint, as it means that it will (almost) never
generate the same pattern twice. We further sub-categorize the section into two
parts: Hit metrics, to determine composition accuracy, and Velocity and Offset
metrics, to determine performance efficacy.

Figure 38: DICE test set results per model. This highlights the tension between disen-
tanglement and reconstruction quality; the baseline and high-gamma model have slightly
lower DICE scores.

Hit Accuracy

Provided the HVO tapped input, the model must calculate which drum voices are
active at a given time-step. Detailed in figures 39 are a series of metrics to analyze
the base model’s hit density prediction accuracy in relation to the test set ground
truth. Step density measures, per pattern, the number of time-steps with an active
hit as a ratio to the total time-steps. This measure is indifferent to voicing; as such
it provides a collapsed perspective on pattern density distributions. Number of
Instruments calculates the total number of voice-types active in a single pattern.
Our base model has a distribution that is nearly identical to the test set in both
metrics; this indicates a high capacity to estimate the general density and number
of voices present for a given pattern.

We present the Hit Prediction analyses in figure 40. Detailed are the distribution
of total predicted hits per pattern. True Predictions indicate that the correct voice
was predicted at the correct timestep, and False Predictions counts the number
of occurences when a hit was predicted for a voice and time that the ground truth
had silence. This analysis helps further visualize the overall density accuracy of the
model, as well as its capability to correctly predict which voice(s) are active at a



4.2. Evaluations 49

Figure 39: Base model predictions in comparison to the full test set. In both examples,
the ground truth is on the left, and predictions on the right. Top: Step density. Bottom:
number of instruments

given time. As evidenced through Total Predictions, the model’s output densities
are closely aligned with ground truth distributions, albeit with a number of incorrect
high-density (>60) patterns.

It is notable that there are a significant quantity of False Predictions, indicating
that the model is often predicting a hit of a given voice when it should be silence.
Considering the favorable density results, this likely points to a difficulty in voice
selection; for example, it may play a hi-hat when the ground truth has a snare. Some
degree of this is to be expected from a VAE given the sampling-based generation.
Figure 41 gives a single example of this, where the overall predicted density and
voice-types are similar, but the individual voicings are not aligned with the ground
truth.

Velocity & Offset Accuracy

In addition to hits, the model is tasked with humanizing its outputs by providing
Velocity and Offset values. Accurately capturing these nuances is key to the creation
of fun, engaging rhythmic ideas. In this section we will provide global metrics on the
velocity and offset accuracies. As these are also critical to conveying the difference
in various styles, we report a more detailed set of genre-specific metrics in section
4.2.2.

Detailed in figure 42 are the means and standard deviations of Hit, Velocity and
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Figure 40: Hit count distributions vs. ground truth for the base model.

Figure 41: (Left) Ground truth, (right) prediction. A piano roll visualization of the
base model predicting a test set pattern. While the overall density and voice selection is
similar, the voices used at a specific time index often differ from the ground truth.
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Offset losses on the training set for all models in our ablation study. This highlights
a recurring issue throughout the training processes. Namely, the models experience
a substantial improvement in the Hit and Velocity calculations, but almost no loss
reduction in the offsets. This was prevalent throughout all sweeps and experiments;
various measures were undertaken to improve it, such as the Velocity and Offset loss
masking detailed in section 3.6. Despite these attempts, the issue clearly persisted,
and provides an opportunity for future research.

Figure 42: The distribution of Hit, Velocity, and Offset train losses across all five evalu-
ation models. While Hit and Velocity losses would decrease, Offsets losses remained near
their initial values.

To measure our base model’s velocity prediction accuracies, we highlight in figure 43
the Polyphonic Velocity distributions on test set predictions. There is a notice-
able difference in the upper distributions, indicating that the model is missing some
higher-velocity predictions. This ties in to our observation that the models typically
struggled with upper-intensity parameter separations. Despite this discrepancy, the
distributions are still remarkably similar. This is in line with our perceptual evalu-
ations, where it was evident that a variety of soft and loud notes will be reasonably
predicted with each pattern.

In figure 44 we present a graphical evaluation, in which heat maps are plotted for
placement and velocities of kick, snare and closed hi-hat voicings for the full test
set. This allows us to visually inspect the distribution of velocities, per voice, to
understand the general accuracy of the model in its modelling of velocity distribu-
tions.
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Figure 43: Polyphonic Velocity distributions, with ground truths represented as blue and
predictions in orange. Left: Mean. Right: Standard Deviation

Figure 44: Velocity heat maps, ground truth and prediction comparisons for Kick, Snare
and Hi-Hat on the test split. Hotter colors indicate a high number of predictions in that
time and velocity.
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Figure 45: Polyphonic Offset distributions, mean (left) and standard deviation (right).
Blue represents the test set, and orange the predictions.

A high degree of accuracy in the test set velocity recreations is demonstrated. You
can see, for example, that the snare tends towards higher density values on the off-
beats, whereas quieter ghost snares are present on other timesteps. This behavior is
reconstructed to a high degree of similarity in our base model. On the hi-hats there
is a nearly uniform distribution of velocity values on each 8th-note, which provides
evidence that the model is generally capable of predicting velocities across the full
spectrum of values.

Finally, we report on the Polyphonic Offset ground truth and prediction distri-
butions of our base model in figure 45. This highlights a point of difficulty for
the model; the level of deviation is significantly lower, indicating more quantized
patterns. Whilst the ground-truth mean is slightly below 0, indicating drummer’s
tendency to play ahead of the beat, our model has a mean tightly clustered exactly
at 0. In addition, the standard deviation is noticeably smaller. Musically, this means
the model is not recreating accurate micro-timings, and is often skewing towards a
quantized set of rhythmic predictions.

This is particularly evident in genres such as jazz, which is detailed further in section
4.2.2.

The difficulty in predicting offsets was first documented in [2], and became evident
throughout our own training runs when the offset losses failed to reduce significantly.
We present this as a key finding and area of opportunity for further research. For
example, we hypothesize that a hierarchical model that separately predicts compo-
sition and performance tokens could provide tangible improvements. This is further
discussed in section 5.2.

4.2.2 Controllability

A properly disentangled model has a latent space that is invariant to the target con-
trol parameters, providing the decoder with enough information to make accurate
reconstructions without biasing its outputs against the control parameters. For ex-
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Figure 46: UMAP of our model with a heightened adversarial γ of 0.3 compared to the
base model. Left to right: Density, Intensity, Genre; zoom in for best detail.

ample, if the encoder provides significant information detailing Low Density, but the
user specifies High Density via parameter injections, the decoder will generally fail
to follow the density instruction. First, we utilise Uniform Manifold Approximation
and Projection (UMAP) dimensionality reduction to provide a visual inspection of
our model’s latent space. We then report separately on Density, Intensity and Genre
prediction accuracies.

Latent Maps

Using the UMAP python package [40] we perform dimensionality reduction of the
latent vector z. We provide as input to our target model the full test set, as well as
the ground-truth data on control parameters density, intensity and genre. We plot
each UMAP separately, so as to allow for detailed visual inspection of each control
element in regards to the latent space. In an ideal scenario, z will appear spread
out, with the control parameters evenly distributed throughout the space. Tight
clumps of a given metric, e.g. a singular genre, indicates that the encoder is still
providing this information to the decoder.

We can observe, for example, that there are examples of low/high density and in-
tensity measures spread through the distribution of fanciful-cherry-153 in figure 46.
This points towards a tangible impact on the encoder’s behavior from the adver-
sarial networks. On the genre chart (right), it is apparent that certain genres -
such as rock and funk have a wide distribution. Other genres, such as reggae and
afrobeat appear tightly clustered. This pattern appears throughout most UMAP’s,
and appears correlated to the distribution of genres in the GMD. In other words,
genres with a high number of training examples (rock) give the model a range of
examples to learn from, with low and high density/intensity ground truth patterns.
Genres such as reggae have a smaller number of examples, with a very similar set
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Figure 47: UMAP of the base model.

of characteristics, preventing z disentanglement.

For comparison we provide the UMAP of our base model in figure 47. With the
lower adversarial γ term it is evident that z is moderately less disentangled. Note,
for example, the visible partitioning between high and low densities, which is not
as defined in our higher-gamma model. You can also observe with certain genres,
such as Latin, a higher degree of clustering. For additional insight, we provide a
visualisation of our models with fewer disentanglement components in figure 48.
With the KL term, adversarial losses and in-attention decoder stripped out, we
can see a markedly higher degree of clustering. This provides an initial indication
that the techniques presented in the thesis are having a quantitative impact on the
encoder’s ability to separate control elements from the latent vector.

Density and Intensity

The metrics of density and intensity provide an excellent baseline for assessing con-
trol invariance due to their quantitative nature. Here, we will detail a variety of
assessments made to determine the model’s capability to adapt its outputs based
upon user input.

To gain a visual understanding of the distribution of outputs, we provide heatmaps
in figures 50 and 52. We create a Gaussian distribution of random numbers with
a mean of 0.5 and standard deviation of 0.15. In addition, we create a random
distribution of genres and randomly sample from z. We provide these as inputs to
our model for decoding and sampling. We then calculate the densities and intensities
of the predictions, using the same normalizing function as the training dataset.

It is apparent that our base model is following a similar distribution to that of
the input values. With that said, there is a noticeable discrepancy in the upper
intensities. The centroid of both density and intensity predictions is skewed to the
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Figure 48: Top: Model without adversarial components or in-attention decoder. Bot-
tom: Model without KL loss, adversarial components or in-attention decoder.

Figure 49: Piano rolls demonstrating the capability of earth-149 to respond to control
values. Both examples have the same input: (left) low density, high intensity. (right)
high density, medium intensity.
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Figure 50: Prediction intensities and densities heatmap. Left: Ground truth Gaussian
distribution of control parameter inputs. Right: Base model predictions.

Figure 51: Progression of density and intensity predictions over the course of training;
comparison of base model (pink) vs. no adversarial, no in-attention decoder variant (gray).
At epoch 100, there is a noticeable drop in low-density predictions, which correlates with
the activation of the adversarial networks.

lower values, particularly on the latter. This is aligned with our training metrics,
which indicated that all models had particular difficulty on generating high-intensity
patterns.

On the other hand, the models in figure 52 have a noticeably deteriorated perfor-
mance. The model that has only KL β as a disentanglement method outputs a wider
spread of parameters, demonstrating an existent but limited degree of relationship
between input and output. On the other hand, removing the β term resulted in a
heatmap that can only be described as a minimalist art piece, with no discernable
relationship to the Gaussian distribution.

We present in figure 53 the calculated accuracy for each model on low and high
densities and intensities. To calculate this, we choose a single parameter and value
to test; e.g. [density: 0.01]. We process the full test through the model, with the
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Figure 52: Calculated metrics on ablation test models. Left: No adversarial networks or
in-attention decoder. Right: No KL loss, adversarial networks or in-attention decoder.

specified parameter and value, and set the remaining parameters to their ground-
truth values. We plot the performance of each model per metric to gain a detailed
understanding their various capabilities and weaknesses. Additionally, we calcu-
late the average distance between target-output pairs. This is detailed in table 3
alongside DICE metrics, providing a holistic view of both reconstruction and control
performance.

We first observe that the base model has the highest performance on both den-
sity and intensity accuracy metrics, averaging 94% and 85% respectively. To our
surprise, the higher gamma model saw only a marginal improvement on intensity
accuracy, with slightly worse predictions on both high density and intensity tests.
This, along with a 2% lower DICE, leads us to conclude that there are diminishing
returns from the adversarial loss component. On the other hand, the three models
with reduced disentanglement showed weaker performance on nearly every metric.
By simply removing the in-attention decoder, we observed a 4% decrease in density
accuracies. As the introduction of adversarial networks and the novel in-attention
decoder mechanism are key contributions of this thesis, we see the 9% difference in
density performance as a promising indicator of their utility in controllable genera-
tion models.

Genre

We aim to develop a system that can translate an input tapped rhythm into a genre
specified by the user. Determining the effectiveness of such a system quantitatively
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Figure 53: Measured accuracy per model of low and high predictions on continuous
parameters.

Model Name Density Accuracy ↑ Intensity accuracy ↑ DICE ↑

Base Model 0.94 0.85 0.56
Higher Gamma 0.94 0.84 0.54
w/out In-Attention 0.90 0.82 0.6
w/out Gamma or In-Attention 0.85 0.83 0.59
w/out KL, Gamma or In-Attention 0.81 0.74 0.61

Table 3: Ablation study models to determine the impact of various disentanglement and
injection techniques on controllability and reconstruction accuracies.
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is difficult; unlike a parameter such as density, one cannot calculate how punk a beat
is. We therefore analyze a series of velocity heat maps to get a general understanding
of the model’s ability to shape its predictions per genre. We select two voices, snare
and hi-hat, as they are well represented across all genres. We analyze five genres in
an attempt to capture a diverse set of musical cultures: Rock, Latin, Jazz, Funk,
Afrobeat. We also highlight that jazz and Afrobeat make up just 8.4% and 5.2% of
the total dataset.

Figure 54: Base model snare velocity heat map genre.

We display the velocity heatmaps for snare predictions in figure 54, and closed hi-
hat in figure 55. In both examples, the model shows remarkable capability to adapt
its hit and velocity predictions in accordance with the given style. For example, on
Rock and Funk patterns, the snare typically has a high velocity on the secondary
beats (2, 4, 6, 8), whereas in Latin, the velocities are subdued. On the closed hi-hat,
we see a stronger emphasis on the off-beats in jazz and Latin patterns, whereas funk
and rock place greater importance on the downbeats. This provides evidence that,
in terms of velocities, our base model is changing its predictions based upon the
input pattern.
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Figure 55: Base model closed hi-hat velocity heat map per genre.

Further analysis is provided in figure 56, which details the polyphonic velocity pre-
diction distribution means for Latin, funk, rock and jazz. Similar to the global
evaluations, the model has a lower centroid. This means that generally it is pre-
dicting lower velocities. Nonetheless, the overall shape of the distribution is quite
similar to the ground truth in all four genres, with rock and funk have a particularly
accurate representations.
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Figure 56: Base model polyphonic velocity distributions per genre, with ground truth on
the left and predictions on the right.

Finally, in figure 57 the polyphonic offset standard deviation is detailed for the same
four genres. It is notable that the model has a significantly smaller spread and lower
centroid in all four examples. In line with the global evaluations, this indicates
that the predicted rhythmic patterns are more quantized and have significantly less
micro-timing variety throughout. Thus, the model’s general difficulty in predicting
micro-timing information is interfering with its capability to create distinguishable,
style-specific rhythmic patterns. In our listening tests, this was particularly apparent
in genres such as jazz, where micro-timing is critical providing a sense of swing.

Figure 57: Base model polyphonic velocity distributions per genre, with ground truth on
the left and predictions on the right.
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Conclusions & Future Work

5.1 Conclusions

In this thesis we presented VAEDER, a symbolic music generation model that con-
verts tapped inputs into drum grooves whilst adhering to user parameters of den-
sity, intensity, and genre. To achieve this, we combined a transformer-based VAE
architecture with several disentanglement and parameter injection techniques. More
specifically, we trained an array of adversarial classification networks, which in tan-
dem with the β-scaled regularization loss, provided a latent vector z that is moder-
ately invariant to our target parameters. We subsequently inject these parameters,
first with a Pre-Decoder layer, and then a modified In-Attention transformer de-
coder layer. Ablation studies have demonstrated that every one of these methods
contributes to an increased performance on parameter adherence.

In addition to the model itself, we developed and open-sourced a VST3 Plugin,
NeuralMIDIFX, as well as the NeutoneMIDI SDK. These tools allow researchers in
the symbolic music domain to quickly wrap and deploy their models directly into
DAWs. As these tools came to fruition, we experienced first-hand how quick and
easy it is to utilise them; once we had a new batch of models trained, we were able
to deploy dozens of them in Ableton within an hour. As noted throughout our eval-
uations, music generation tools (both symbolic and audio) are notoriously difficult
to quantitatively assess; we often found promising models turned out to produce
musical rubbish. These tools provide a quick and painless approach to deployment,
allowing both ourselves and future researchers to actually use the models, and share
them with others for qualitative evaluations.
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5.1.1 Cultural Implications

It is impossible to avoid the feeling that this thesis was conducted at a pivotal
moment. One year ago, when we began to propose ideas for a new rhythmic gen-
erative system, tools such as ChatGPT and Stable Diffusion were not yet publicly
released. Since then people have become both enamored and terrified with the ca-
pabilities that these models demonstrate. It is only a matter of time before AI with
comparable fidelity is developed for the musical realm.

Subjectively, we have observed that many discussions around such tools focus on
two objectives: replacing artists and/or making music easier. In other words -
saving cost and time. We echo the concerns of the authors of Anticipatory Music
Transformer[47] in regards to the economic implications on labor markets for creative
work, the potential for further cultural homogenisation, and the uncertainty around
legal frameworks. We have spoken to many friends and artistic collaborators who
are both afraid of and angry at the type of technologies being developed. They have
a serious and grounded fear that large-scale music generation systems will wipe out
many of the current financial opportunities that exist for creatives.

Like most revolutionary technologies, generative AI systems will have both positive
and negative impacts. We harbor concerns about the sizable financial incentives that
might favor the negative aspects, specifically the tools engineered to marginalize or
altogether eliminate artists from the creative process.

Our aspiration with this thesis was to offer a proposition for an alternative approach,
showcasing to researchers and musicians alike the potential of deep learning models
to become an invaluable resource to creative communities. By developing a model
that requires fine-grained control, and works best in an existing audio production
environment, we believe that VAEDER is more akin to an 808 drum-machine than
a powerful LLM.

5.2 Limitations & Future Work

The VAEDER model was not without its limitations, both technical and artistic,
and we wish to summarize them here, as well as potential areas of future research.

Microtiming

Similar to [2] and [9] our models consistently struggled to learn offset information.
This was first noted as the offset losses never decreased by a tangible amount, and
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confirmed throughout our evaluations. This is a serious limitation when attempting
to model human performance characteristics. It is particularly evident in certain
genres, such as jazz and funk, which are characterised by micro-timing patterns, e.g.
swing. VAEDER has a reasonable understanding of the Hit and Velocity patterns of
the genres we trained on, but the lack of meaningful Offsets results in drum patterns
that do not sound stylistically-accurate.

It could be beneficial to separate the Hit calculations from the Velocity and Offset
components in a hierarchical approach, creating one system to exclusively compose,
and another to then generate a performance. This would solve the issue of predicting
velocities and offsets on non-active voices. Furthermore, it would enable researchers
to train the compositional system on a much larger corpus of data, as there is a
considerable amount of open-source quantized score information available.

Modelling Intensity

We also noted a consistent limitation in VAEDER’s capability to model higher
intensity values. This behavior was not identified with density, which uses the same
disentanglement and injection techniques. With this discrepancy, we believe there
is something either in the initial calculation of intensity itself, or the distribution of
the dataset, that leads to this limited capability. Furthermore, measuring intensity
as the average velocity of the pattern is not necessarily aligned to human perception;
for example, a medium crash cymbal can evoke a higher sense of intensity than a
loud snare. We would be curious to see how the model performs on intensity, if
trained with a modified parameter calculation, and additional high-intensity genres
such as metal or breakcore.

Datasets

It is notable that within the realm of performance rhythm generation, there is (to the
best of our knowledge) a single, open-source dataset: the Groove MIDI Dataset. This
is in stark contrast to other fields, such as natural language processing, vision and
many audio-domain tasks such as source separation. As stated by [20], the majority
of research in this field is directed towards the development of new models, whereas
there could be tremendous value gained from creating new, high-quality symbolic
datasets. Whilst we mean no criticism of the Magenta team who kindly created and
open-sourced the GMD, there are cultural implications of having a singular dataset
that is primarily focused on Western, 4/4 rhythms. This became most apparent in
our work when the model struggled to learn certain genre representations, such as
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Jazz, whilst attaining much higher results on genres such as Rock.

Data Representation

The HVO data representation technique provides many advantages, namely the
ability to encapsulate dynamic performances in a ememory-efficient manner. This
is not without its drawbacks however; as noted in [2] the models consistently fail
to model triplets, and presumably other rhythmic divisions outside of 16th-note
divisions. We again wish to highlight the cultural implications of this, as many of
the world’s richest rhythmic traditions draw upon an incredible array of divisions
that cannot be accurately modeled with a 16th-note grid. We attempted early in
the thesis to create one such representation which combined the data-efficiency of
HVO with a more flexible token-based approach that could work with any time-
signature and beat division. However, it became apparent that an entire re-work
of the evaluation methods, model, and training procedure would be necessary to
accommodate this change, and we ultimately had to focus on the key objective of
parameter disentanglement.

With the above two points in mind, we generally wish to emphasize the importance
of investing in a more diverse and culturally-inclusive collection of datasets and
representation methods.

Fine Tuning

Finally, it is noteworthy that VAEDER has managed to create captivating outputs
despite training on just 15 hours of data, a small drop compared to standard audio
datasets. The biggest barrier to training on more data is the lack of availability;
most rhythm datasets are simply scores, which contain no information about velocity
or microtiming. We hypothesize that, in conjunction with a hierarchical approach,
it could be beneficial to first train a foundational rhythm model on a much larger
repository of drum scores. This would give it a greater degree of flexibility and
accuracy in its Hit calculations. It would then be possible to fine-tune the model
on a smaller dataset, such as the GMD or even an individual drummer’s perfor-
mances. Such an approach could both improve the capabilities of the model whilst
simultaneously unlocking new, smaller datasets for personalized rhythmic models.
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5.3 Resources

We provide here a set of links to easily access various elements of the research
presented throughout this thesis.

VAEDER model repository, including pre-trained checkpoints, evaluation tools, and
training scripts:

https://github.com/behzadhaki/GrooveTransformer

Video Demonstration:

https://youtu.be/v6VtPNv7cXI?feature=shared

Selection of MIDI and audio files:

https://github.com/behzadhaki/GrooveTransformer/tree/dev/VAE_Control_Classifiers/

demos/vaeder

NeuralMidiFx VST3 Plugin:

https://neuralmidifx.github.io/

NeutoneMIDI SDK:

https://github.com/QosmoInc/neutone_sdk

https://github.com/behzadhaki/GrooveTransformer
https://youtu.be/v6VtPNv7cXI?feature=shared
https://github.com/behzadhaki/GrooveTransformer/tree/dev/VAE_Control_Classifiers/demos/vaeder
https://github.com/behzadhaki/GrooveTransformer/tree/dev/VAE_Control_Classifiers/demos/vaeder
https://neuralmidifx.github.io/
https://github.com/QosmoInc/neutone_sdk


Bibliography

[1] Gillick, J., Roberts, A., Engel, J. H., Eck, D. & Bamman, D. Learning to
groove with inverse sequence transformations. In ICML, vol. 97 of Proceedings
of Machine Learning Research, 2269–2279 (PMLR, 2019).

[2] Haki, B., Nieto, M., Pelinski, T. & Jordà, S. Real-Time Drum Accompaniment
Using Transformer Architecture. In Proceedings of the 3rd Conference on AI
Music Creativity (AIMC, 2022). URL https://doi.org/10.5281/zenodo.

7088343.

[3] Briot, J., Hadjeres, G. & Pachet, F. Deep Learning Techniques for Music
Generation (Springer, 2020).

[4] Jabreel, M. & Moreno, A. A deep learning-based approach for multi-label
emotion classification in tweets. Applied Sciences 9, 1123 (2019).

[5] Kumar, R. L. et al. Recurrent neural network and reinforcement learning model
for covid-19 prediction. Frontiers in Public Health 9 (2021). URL https:

//www.frontiersin.org/articles/10.3389/fpubh.2021.744100.

[6] Vaswani, A. et al. Attention is all you need. CoRR abs/1706.03762 (2017).

[7] Shaw, P., Uszkoreit, J. & Vaswani, A. Self-attention with relative position
representations. CoRR abs/1803.02155 (2018).

[8] Huang, C. A. et al. Music transformer: Generating music with long-term struc-
ture. In ICLR (Poster) (OpenReview.net, 2019).

[9] Ramos, T. P. Completing audio drum loops with transformer neural networks.
URL https://zenodo.org/record/5554854.

[10] Introduction to autoencoders. https://www.jeremyjordan.me/

autoencoders.

68

https://doi.org/10.5281/zenodo.7088343
https://doi.org/10.5281/zenodo.7088343
https://www.frontiersin.org/articles/10.3389/fpubh.2021.744100
https://www.frontiersin.org/articles/10.3389/fpubh.2021.744100
https://zenodo.org/record/5554854
https://www.jeremyjordan.me/autoencoders
https://www.jeremyjordan.me/autoencoders


BIBLIOGRAPHY 69

[11] Ji, S., Luo, J. & Yang, X. A comprehensive survey on deep music genera-
tion: Multi-level representations, algorithms, evaluations, and future directions.
CoRR abs/2011.06801 (2020).

[12] Hadjeres, G., Pachet, F. & Nielsen, F. DeepBach: a steerable model for
Bach chorales generation. In Precup, D. & Teh, Y. W. (eds.) Proceedings
of the 34th International Conference on Machine Learning, vol. 70 of Pro-
ceedings of Machine Learning Research, 1362–1371 (PMLR, 2017). URL
https://proceedings.mlr.press/v70/hadjeres17a.html.

[13] Jiang, N., Jin, S., Duan, Z. & Zhang, C. Rl-duet: Online music accompani-
ment generation using deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, vol. 34, 710–718 (2020).

[14] Liu, J. et al. Symphony generation with permutation invariant language model.
arXiv preprint arXiv:2205.05448 (2022).

[15] Roberts, A., Engel, J. H., Raffel, C., Hawthorne, C. & Eck, D. A hierarchical
latent vector model for learning long-term structure in music. In ICML, vol. 80
of Proceedings of Machine Learning Research, 4361–4370 (PMLR, 2018).

[16] Thickstun, J., Hall, D., Donahue, C. & Liang, P. Anticipatory music trans-
former (2023). 2306.08620.

[17] Jiang, J., Xia, G. G., Carlton, D. B., Anderson, C. N. & Miyakawa, R. H.
Transformer vae: A hierarchical model for structure-aware and interpretable
music representation learning. In ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 516–520 (IEEE,
2020).

[18] Tan, H. H. & Herremans, D. Music fadernets: Controllable music generation
based on high-level features via low-level feature modelling. In ISMIR, 109–116
(2020).

[19] Shih, Y., Wu, S., Zalkow, F., Müller, M. & Yang, Y. Theme trans-
former: Symbolic music generation with theme-conditioned transformer. CoRR
abs/2111.04093 (2021).

[20] Hernandez-Olivan, C., Hernandez-Olivan, J. & Beltran, J. R. A survey on
artificial intelligence for music generation: Agents, domains and perspectives.
arXiv preprint arXiv:2210.13944 (2022).

https://proceedings.mlr.press/v70/hadjeres17a.html
2306.08620


70 BIBLIOGRAPHY

[21] Yin, Z., Reuben, F., Stepney, S. & Collins, T. Deep learning’s shallow gains: a
comparative evaluation of algorithms for automatic music generation. Machine
Learning 112, 1785–1822 (2023).

[22] Maezawa, A., Yamamoto, K. & Fujishima, T. Rendering music performance
with interpretation variations using conditional variational RNN. In ISMIR,
855–861 (2019).

[23] Choi, K., Hawthorne, C., Simon, I., Dinculescu, M. & Engel, J. H. Encoding
musical style with transformer autoencoders. In ICML, vol. 119 of Proceedings
of Machine Learning Research, 1899–1908 (PMLR, 2020).

[24] Hawthorne, C., Huang, A., Ippolito, D. & Eck, D. Transformer-NADE for
piano performances .

[25] Lattner, S. & Grachten, M. High-level control of drum track generation using
learned patterns of rhythmic interaction. In WASPAA, 35–39 (IEEE, 2019).

[26] Dahale, R., Talwadker, V., Rao, P. & Verma, P. Generating coherent drum
accompaniment with fills and improvisations. CoRR abs/2209.00291 (2022).

[27] Makris, D., Guo, Z., Kaliakatsos-Papakostas, M. A. & Herremans, D. Con-
ditional drums generation using compound word representations. In Evo-
MUSART, vol. 13221 of Lecture Notes in Computer Science, 179–194 (Springer,
2022).

[28] Nuttall, T., Haki, B. & Jorda, S. Transformer neural networks for automated
rhythm generation URL https://nime.pubpub.org/pub/8947fhly/release/

1.

[29] Wang, S. et al. Controllable data generation by deep learning: A review. arXiv
preprint arXiv:2207.09542 (2022).

[30] Lample, G. et al. Fader networks: Manipulating images by sliding attributes.
Advances in neural information processing systems 30 (2017).

[31] Engel, J. H., Hoffman, M. D. & Roberts, A. Latent constraints: Learning to
generate conditionally from unconditional generative models. In ICLR (Poster)
(OpenReview.net, 2018).

[32] Pati, A. & Lerch, A. Latent Space Regularization for Explicit Control of Musical
Attributes.

https://nime.pubpub.org/pub/8947fhly/release/1
https://nime.pubpub.org/pub/8947fhly/release/1


BIBLIOGRAPHY 71

[33] Mezza, A. I., Zanoni, M. & Sarti, A. A latent rhythm complexity model for
attribute-controlled drum pattern generation. EURASIP J. Audio Speech Mu-
sic. Process. 2023, 11 (2023).

[34] Kawai, L., Esling, P. & Harada, T. Attributes-aware deep music transformation.
In ISMIR, 670–677 (2020).

[35] Wu, S. & Yang, Y. Musemorphose: Full-song and fine-grained music style
transfer with just one transformer VAE. CoRR abs/2105.04090 (2021).

[36] Dai, Z. et al. Transformer-xl: Attentive language models beyond a fixed-length
context. CoRR abs/1901.02860 (2019).

[37] Raffel, C. Learning-based methods for comparing sequences, with applications
to audio-to-midi alignment and matching. URL https://colinraffel.com/

projects/lmd/.

[38] Fu, H. et al. Cyclical annealing schedule: A simple approach to mitigating KL
vanishing. CoRR abs/1903.10145 (2019).

[39] Biewald, L. Experiment tracking with weights and biases (2020). URL https:

//www.wandb.com/. Software available from wandb.com.

[40] McInnes, L., Healy, J., Saul, N. & Grossberger, L. Umap: Uniform manifold
approximation and projection. The Journal of Open Source Software 3, 861
(2018).

[41] Haki, B., Lenz, J. & Jorda, S. Neuralmidifx: A Wrapper Tem-
plate for Deploying Neural Networks as VST3 Plugins. AIMC 2023
Https://aimc2023.pubpub.org/pub/givwzz98.

[42] Breve, B., Cirillo, S., Cuofano, M. & Desiato, D. Perceiving space through
sound: mapping human movements into midi. 49–56 (2020).

[43] Huang, Y. & Yang, Y. Pop music transformer: Beat-based modeling and gen-
eration of expressive pop piano compositions. In ACM Multimedia, 1180–1188
(ACM, 2020).

[44] Hsiao, W.-Y., Liu, J.-Y., Yeh, Y.-C. & Yang, Y.-H. Compound word trans-
former: Learning to compose full-song music over dynamic directed hyper-
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 178–186 (2021).

https://colinraffel.com/projects/lmd/
https://colinraffel.com/projects/lmd/
https://www.wandb.com/
https://www.wandb.com/


72 BIBLIOGRAPHY

[45] Zeng, M. et al. Musicbert: Symbolic music understanding with large-scale pre-
training. In ACL/IJCNLP (Findings), vol. ACL/IJCNLP 2021 of Findings of
ACL, 791–800 (Association for Computational Linguistics, 2021).

[46] Fradet, N., Briot, J.-P., Chhel, F., El Fallah-Seghrouchni, A. & Gutowski, N.
Miditok: A python package for midi file tokenization. In 22nd International
Society for Music Information Retrieval Conference (2021).

[47] Thickstun, J., Hall, D., Donahue, C. & Liang, P. Anticipatory music trans-
former (2023). 2306.08620.

2306.08620

	Introduction
	Motivation
	Objectives

	State of the Art
	Architectures
	Transformers
	Autoencoders

	Deep Music Generation
	Symbolic Generation Tasks
	Rhythm Generation

	Controllability

	Methodology
	Dataset
	Data Representation
	Tapped Sequence

	Control Parameters
	Model Architecture
	Encoder Layer
	Decoder Layer

	Adversarial Networks
	Parameter Injection
	Pre-Decoder
	Decoder In-Attention

	Loss Functions
	Hyperparameter Tuning
	Analysis & Early Stopping

	Deployment
	NeuralMidiFX Plugin
	NeutoneMIDI SDK


	Results & Evaluation
	Model Selection
	Evaluations
	Reconstruction
	Controllability


	Conclusions & Future Work
	Conclusions
	Cultural Implications

	Limitations & Future Work
	Resources

	Bibliography

