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Abstract: This paper deals with optimization-based control of real microgrids with uncertain
forecasts of renewable energy production and local consumption. To achieve maximum economic
benefits, these uncertainties need to be accounted for in a systematic fashion. Conventionally,
this task is approached by employing stochastic model predictive control. While doing so allows
to account for uncertainties in the forecasts, the downside is high computational complexity
that hinders implementation in real time. In this paper we therefore propose an alternative
method that decreases the computational burden by an order of magnitude without inducing
significant suboptimality. The approach is based on splitting the stochastic model predictive
control problem into two stages, one that employs multiple realizations of the uncertainties
combines with a low-fidelity prediction model, and one that uses only the risk-aware realization,
combined with a high-fidelity model. The theoretical development is then showcased on a real
microgrid to confirm viability of our approach.
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1. INTRODUCTION

The economic operation of microgrids with battery en-
ergy storage system (BESS) and renewable energy sources
(RES) is a widely researched problem. The most attrac-
tive microgrid optimization technique is model predictive
control (MPC). MPC draws attention due to its ability to
predict the system’s future behavior while satisfying pre-
defined constraints. An overview and successful implemen-
tations of MPC in the microgrid are described in detail in
the work of Hu et al. (2021). Since the power consumption
and production forecasts included in a predictive controller
are accompanied by uncertainty, implementation of the
original so-called nominal or deterministic MPC approach
can be insufficient. In order to explicitly include uncer-
tainty in controller formulation with stability and recur-
sive feasibility guarantees while satisfying the constraints,
extensions to the MPC concept have been introduced.
The most frequently used approaches are robust MPC
(Bemporad and Morari (1999)), tube-based MPC (Mayne
et al. (2006)), and stochastic MPC (Penad et al. (2006)).

To address the presence of uncertainty in our microgrid, we
have decided to employ scenario-based stochastic model
predictive control formulation as presented in Calafiore
and Campi (2006) and Bernardini and Bemporad (2009).
The scenario-based method delivers a single control se-
quence that incorporates different uncertainty realizations.
The scenario-based approach was proposed in the work of
Zhang et al. (2018), where two-stage microgrid control,

including prescheduling phase and real-time control, was
carried out. The authors Casagrande and Boem (2022)
have applied distribution techniques to reduce the compu-
tational burden. However, all of the proposed algorithms
integrate one hour sampling time, which proved insuffi-
cient for today’s application. Moreover, implementing a
shorter sample time could yield time-consuming optimiza-
tion problems.

Including risk measures into the stochastic optimization
problems allows to adjust the controller according to given
risk aversion. Risk measures such as value-at-risk (VaR)
and conditional value-at-risk (CVaR) that originally come
from financial portfolio management have recently been
applied in the energy systems. In Wu et al. (2014) used
CVaR measure to make a trade-off between the expected
costs and the risk, but BESS output power was determined
by fuzzy logic controller to exchange computation time for
optimality. In studies Farzan et al. (2014); Ji et al. (2018);
Shen et al. (2016), the risk-based approach for day-ahead
scheduling of the microgrid was incorporated, but not for
real-time control. In Khodabakhsh and Sirouspour (2016)
was used CVaR directly in the objective of the rolling
MPC, but with prediction intervals N = 14 and decisions
updated every half and hour. Moreover, stated approaches
were used only in simulations and lacks real-time control
application in a realistic microgrid.

In this paper, we propose the MPC-based, risk-aware
energy management system (EMS) for microgrids that



is applicable to real systems. The main contribution is
developing a procedure capable of dealing with compu-
tation complexity arising from large-scale scenario MPC
that allows using the predictive controller in real time.
Designed EMS utilizes neural network-based forecasts to
generate uncertainty scenarios for stochastic MPC.

The proposed methodology is based on a two-stage pro-
cedure. In the first step, a classic scenario-based MPC
problem is solved with multiple scenario representations of
the uncertainties and with a simpler prediction model. The
result of this stage is the so-called CVaR-scenario, i.e., the
scenario that corresponds to the desired CVaR level. Then,
in the second stage, we solve an another MPC problem, but
this time with a single scenario identified previously, and
with a high-fidelity model. In this way we can significantly
reduce the computational time (up to ∼ 50-times) while
still achieving a risk-aware control performance. These
claims are validated by an experimental case study that
employs a real industrial-grade microgrid.

2. ENERGY SYSTEM MODEL

2.1 Microgrid System

The considered microgrid system consists of photovoltaic
(PV) power plant, battery energy storage, load demand
and utility grid connection, see Fig. 1. Power production
must match power consumption within the microgrid at
each time t ∈ [t0, tf ], forming the power balance equation

Pimp(t) + PPV(t) + Pdch(t) =

Pexp(t) + Pch(t) + Pload(t) + Pthr(t) ,
(1)

where all terms are non-negative. Production assets are
on the left-hand side. Bi-directional flow with the grid is
possible, Pimp(t) denotes imported power for which the
microgrid pays, Pexp(t) denotes exported power for which
the microgrid is paid. Power produced from the PV system
PPV(t) can be predicted with some degree of uncertainty.
If necessary, the PV inverter can be throttled, Pthr(t)
is the amount of dissipated energy. The load demand
Pload(t) is assumed to be inflexible. As with PV power,
load demand can be predicted with some uncertainty. The
battery storage serves as a power consumer when charging
Pch(t) or as a power supplier when discharging Pdch(t).

Pthr

Pch

Pdch

Pload

Pexp

Pimp

PPV − Pthr

Fig. 1. Scheme of the microgrid system with power flows.

2.2 Battery Energy Storage

Battery storage system is modelled as an energy reservoir,
whose state at time t is the current capacity level Ebat(t).
The system dynamics is described with the differential

equation where capacity level changes with the battery
power (Ábelová and Kvasnica (2022))

dEbat(t)

dt
= −σ

(
Ebat(t)

)
+ ηch Pch(t)−

1

ηdch
Pdch(t) . (2)

Some amount of energy is lost during the charging and dis-
charging processes, the efficiencies are given by ηch, ηdch ∈
[0, 1]. The self-discharging rate σ(Ebat(t)) can be regard-
ing to the assumed time window neglected. The state is
bounded by the minimum β and maximum β allowed state

β Enom
bat ≤ Ebat(t) ≤ β Enom

bat , (3)

where Enom
bat is the nominal battery capacity and β, β ∈

[0, 1]. The maximum battery power is limited by P ch, P dch

0 ≤ Pch(t) ≤ P ch , (4a)

0 ≤ Pdch(t) ≤ P dch . (4b)

If no additional constraints are imposed, stated model is
linear and referred to as a relaxed model. If simultaneous
charging and discharging is strictly prohibited, the non-
linear complementarity constraint Pch(t) · Pdch(t) = 0 is
added, or equivalent binary constraints as

0 ≤ Pch(t) ≤ δch(t)P ch , (5a)

0 ≤ Pdch(t) ≤ δdch(t)P dch , (5b)

δch(t) + δdch(t) ≤ 1 , (5c)

where δch(t) and δdch(t) are binary variables.

3. METHODOLOGY

3.1 Method Outline

In conventional scenario-based stochastic MPC, the con-
trol actions are computed from a single optimization prob-
lem that accounts for multiple realizations of the uncer-
tainties, but the number of scenarios negatively impacts
the computational efficiency. To cut down the computa-
tional requirements, our method is based on the following
procedure. First, we solve a scenario-based MPC with a
low-fidelity prediction model and a longer sampling time.
Such a problem can be solved quickly. Then we post-
process the solution to identify the scenario that corre-
sponds to the desired risk level. In the last step, we solve
a deterministic MPC problem with the identified scenario,
along with a high-fidelity prediction model and shorter
sampling time. This way, we can yield control results faster
compared to the conventional procedures.

3.2 Optimization Formulation

The energy management system of a microgrid is designed
as a model predictive controller with the receding horizon
strategy. The MPC computes decisions in discrete time
intervals. The time horizon [t0, tf ] is split into N steps
with sampling time ∆T (k) = t(k + 1) − t(k), where
k ∈ {0, . . . , N − 1} is the discrete time index. Note that
time interval ∆T (k) is not restricted to be constant over
the whole horizon.

Variables: The microgrid system model is described at
the time step k with the state x(k), controls u(k), costs
c(k), slacks e(k), weights q(k) and uncertainties w(k)



x(k)=[Ebat(k)] , (6a)

u(k)=[Pch(k), Pdch(k), Pthr(k), Pimp(k), Pexp(k)]
⊤, (6b)

c(k)=[cch(k), cdch(k), cthr(k), cimp(k), cexp(k)]
⊤, (6c)

e(k)=[ϵSoC(k), ϵSoC(k), ϵimp(k), ϵexp(k)]
⊤, (6d)

q(k)=[qSoC(k), qSoC(k), qimp(k), qexp(k)]
⊤, (6e)

w(k)=[PPV(k), Pload(k)]
⊤ (6f)

and all variables are defined over the whole horizon N to
form vectors Xd,Ud,Cd,Ed,Qd and Wd.

The microgrid controller is to decide about optimal power
setpoints for battery and PV inverters, and for power flow
from or to the utility grid. Deterministic MPC considers
only nominal forecasted values.

Constraints: Discrete battery model is derived from (2)
as the first-order difference equation with sampling ∆T (k)

Ebat(k + 1) =Ebat(k)+

+∆T (k)
(
ηch Pch(k) − 1

ηdch
Pdch(k)

)
.
(7)

State of charge limits (3) are formulated as soft constraints
with slacks ϵSoC, ϵSoC penalization

Ebat(k) ≤ β Enom
bat + ϵSoC(k) , (8a)

Ebat(k) ≥ β Enom
bat − ϵSoC(k) . (8b)

Power balance constraint (1) is complemented with limits

Pthr(k) ≤ PPV(k) , (9a)

Pimp(k) ≤ P imp + ϵimp(k) , (9b)

Pexp(k) ≤ P exp + ϵexp(k) . (9c)

All stated slacks are non-negative. The grid limits P imp

and P exp represents not physical, but rather contractual,
agreed upon thresholds, whose overreaching is penalized.

Objective: The purpose of the energy management sys-
tem is to maximize profit while ensuring smooth operation.
The microgrid benefits from PV utilization, price arbitrage
when electricity tariff differs, and from selling the energy.
The microgrid is charged for importing energy, using the
battery storage, and violating grid limits. The objective
function that captures mentioned yields and costs is

J
(
x(0),Ud,Cd,Ed,Qd,Wd

)
=

N−1∑
k=0

(
∆T (k)u(k)⊤c(k) + e(k)⊤q(k)

)
.

(10)

Objective minimizes total costs subjected to the battery
state model, initial conditions, state and control bound-
aries, where boundary sets X , E are function of slack vector
Ed to ensure the solution is feasible under any condition

min
Xd,Ud,Ed

J
(
x(0),Ud,Cd,Ed,Qd,Wd

)
(11a)

s.t. x(k + 1) = f
(
x(k),u(k)

)
, ∀k , (11b)

x(0) = x0 , (11c)

w(0) = w0 , (11d)

Xd ∈ X
(
Ed

)
, (11e)

Ud ∈ U
(
Ed,Wd

)
, (11f)

Ed ∈ R≥0 . (11g)

Using the receding horizon strategy, the MPC outputs
optimal control sequence Ud∗ for the whole prediction
horizon from which the first control vector u(0)∗ is applied
for time ∆T (0) and procedure is repeated at k + 1 with
new state measurement x0 and uncertainty vector Wd.

3.3 Forecasting and Scenario Generation

The uncertainty w(k) of the system disturbances is mod-
eled as point prediction with additional confidence bounds
within the real value can vary. Both of these information
needs to be provided at each step of the horizon N .

Load demand: For the electricity load demand, the
seasonal autoregression model is considered. This model
is a sufficient tool for forecasting stochastic processes
with seasonal aspects (Guefano et al. (2021)). The point
predictions are calculated as a linear dependence from the
past sequences

P̂load(k) =

R∑
j=1

γjPload(k − rj), (12)

where vector r is a set of seasonal repetitions on which
P̂load(k) is regressed on, and γj represents a regression
coefficient for define historical value Pload(k − rj).

A simple but accurate method is used to construct a
confidence interval. As the minimal and maximal value
which can occur is one of the correlated historical values,
then the confidence interval can be formulated as follows[
P ub
load(k)

P lb
load(k)

]
= Sf

[
max

(
Pload(k − r1), . . . , Pload(k − rR)

)
min

(
Pload(k − r1), . . . , Pload(k − rR)

)] ,
(13)

where Sf is and scaling factor, P ub
load(k) is a upper, and

P lb
load(k) is a lower bound of the confidence interval.

PV production: In the case of power production from
the photovoltaic panels, recurrent neural network (RNN)
shows excellent performance for short and medium-term
horizons (Rodŕıguez et al. (2018)). Moreover, the RNN is
trained as standard regression to minimize mean square
error. In conclusion, RNN is a non-linear prediction model
based on weather forecasts for the exact location of the
PV panels

P̂PV(k) = fPV(z(k)), (14)

where fPV represents trained model, and z(k) is a weather
forecast for corresponding time index k.

The confidence interval is calculated using the maximum
likelihood method (Nix and Weigend (1994)). This ap-
proach assumes that the distribution of the variable of
interest can be divided into two separate parts, expected
value P̂PV(k) and the noise. With this assumption, it is
possible to estimate total prediction variance σ2(k) di-
rectly, including the model uncertainty and the measure-
ment noise. The main idea of this approach is to build a
second RNN

σ̂2(k) = fσ(z(k)), (15)

which estimates total variance σ̂2(k) of the given predic-

tion P̂PV(k) with the identical input z(k) as in the point
prediction model from (14). The final confidence interval
is defined in this form



[
P ub
PV(k)

P lb
PV(k)

]
=

[
P̂PV(k) + Sf

√
σ̂2(k)

P̂PV(k)− Sf

√
σ̂2(k)

]
, (16)

where P ub
PV(k) is an upper, and P lb

PV(k) is a lower bound
of the confidence interval.

Scenario generation: The proposed scenario generation
method is based on a multi-step procedure with two
random variables, assuming that the uncertainty of the
system disturbances comes from Gaussian distribution.

(1) Calculate the point prediction ŵ(k), and confidence
interval [wub(k),wlb(k)]⊤ for each step of the predic-
tion horizon N .

(2) Generating random variable ωβ ∼ N (µ, σ2
β), where

σ2
β = (1 − µ) exp

(β/100)2/2

√
2π

. This variable ωβ is scaled

in such a way that (100%− β) represents how many
scenarios will be generated outside of the confidence
interval [wub(k),wlb(k)]⊤, with µ = 0.5.

(3) Generate the additional random variable in each time
step k which behaves like a white noise ωn(k) ∼
N (0, σ2

n(k)), where σ2
n(k) is calculated from the his-

torical data. This way, it is possible to mimic real
noise acting on the system but still hold the Gaussian
distribution for the generated scenario.

(4) The final scenario is produced as follows

w(s, k) = ωβw
ub(k) + (1− ωβ)w

lb(k) + ωn(k), (17)

where s represents an index of the generated scenario.

This procedure is repeated for the desired number of
scenarios. It is important to note that scenario generation
is independent of the method employed for the point
prediction and its respective confidence bounds.

3.4 Stochastic Model Predictive Control

When introducing scenarios, dimension of all variables
is expanded with scenario index s ∈ S, where set S =
{1, . . . , NS} and NS is the number of scenarios, define
vectors Xs(s),Us(s),Cs(s),Es(s),Qs(s) and Ws(s).

Every scenario trajectory in the uncertainty vectorWs(s) =
[w(s, 0),w(s, 1), . . . , w(s,N −1)]⊤ is created according to
the scenario generation strategy. Variables Xs(s), Us(s),
and Es(s) are optimized for every scenario, while costs
Cs(s) and weights Qs(s) are considered constant.

Because of decisions at k = 0 are based on the same past
information and w(s, 0) = w0, x(s, 0) = x0 for all s ∈ S,
it is possible to introduce non-anticipatory constraints
(Velarde et al. (2017)), which are necessary to compute
control u(s, 0)∗ that is equal for all the scenarios in the
first time step

u(i, 0) = u(j, 0) if w(i, 0) = w(j, 0); ∀i ̸= j , (18)

where i, j ∈ S.
A robust controller would make decisions regarding the
worst-case predictions leading to the too conservative
control. Desired behaviour of the controller is to consider
uncertainties, but not to be overly reserved in the actions.
Incorporating probabilistic risk measure such as value at
risk allows to adjust a degree of risk aversion. If C(s) is
the cost distribution, VaR with α-percentile is defined as

VaRα ≜ min{c ∈ R : P{C(s) ≤ c} ≥ α} , (19)

where P denotes the probability of the cost C(s) not
exceeding the threshold cost c. VAR can be interpreted
as the maximum cost that will not be exceeded with
the probability (1 − α). VaR drawback that it is a non-
coherent risk measure lacking convexity properties can
be avoided by including conditional value at risk variable
(Khodabakhsh and Sirouspour (2016)). CVaR expresses
the expected value of the worst (1 − α)-quantile of the
cost distribution

CVaRα ≜ E
[
C(s) | C(s) ≥ VaRα

]
. (20)

Using the linearized formulation of CVaR introduced by
Rockafellar et al. (2000) it is possible to minimize the risk
measure in the form

CVaRα = y +
1

1− α

NS∑
s=1

π(s)
[
C(s)− y

]+
, (21)

y represents VaRα, π(s) is the probability of the scenario
s, C(s) = J

(
x(s, 0),Us(s),Cs(s),Es(s),Qs(s),Ws(s)

)
is

the cost of the scenario s, and [C(s)− y]+ = (C(s)− y) if
(C(s) − y) > 0, else [C(s) − y]+ = 0. With the auxiliary
variable z(s) defined as

z(s) ≜ max
(
0, (C(s)− y)

)
, (22)

it is possible to formulate optimization problem minimiz-
ing CVaRα as

min
y,C,z

(
y +

1

1− α

NS∑
s=1

π(s)z(s)
)

(23a)

s.t. z(s) ≥ C(s)− y , ∀s , (23b)

z(s) ≥ 0 , ∀s . (23c)

Deterministic MPC stated in (11) is expanded with sce-
narios and objective is replaced with CVaRα measure in
the form (23a) to formulate stochastic MPC as follows

min
Xs,Us,Es,y,z

CVaRα (24a)

s.t. x(s, k + 1) = f
(
x(s, k),u(s, k)

)
, ∀s,∀k , (24b)

x(s, 0) = x0 , ∀s , (24c)

w(s, 0) = w0 , ∀s , (24d)

Xs(s) ∈ X
(
Es(s)

)
, ∀s , (24e)

Us(s) ∈ U
(
Es(s),Ws(s)

)
, ∀s , (24f)

Es(s) ∈ R≥0 , ∀s , (24g)

(18), (23b), (23c). (24h)

3.5 Double-Stage α-Scenario MPC

Solving multiple-scenario optimization problem is com-
putationally demanding as the computational complexity
grows with the number of scenarios. This time barrier may
hinder deployment in the real energy systems. If all gen-
erated scenarios could be reduced to α-scenario sα whose
cost C(sα) is equal to CVaRα value, MPC can be solved
as a deterministic problem with advantages of stochastic
MPC. The proposed MPC-based energy management sys-
tem solves optimization problem twice in separate stages
and the whole procedure consists of the following steps:

(1) Get initial conditions x0, w0, set k ⇐ k + 1.
(2) Generate NS scenarios with normal distribution from

the given upper and lower bounds of the confidence
interval to obtain the uncertainty vector Ws. Update
w(s, k) = w0 , ∀s with the initial condition.



(3) Solve stochastic MPC (stage 1) stated in (24) for NS

scenarios with the prediction model of the form (4)
that does not account for nonlinear complementarity
constraints. Use the longest sampling time the system
allows to reduce the number of prediction intervals N .

(4) Select scenarios s with cost C(s) ≥ VaRα to obtain
the subset Sα ⊂ S. Number of selected scenarios,
|Sα| = (1 − α) · NS and expected cost E[C(s)] =
CVaRα for s ∈ Sα. Calculate weighted average α-
scenario sα with cost C(sα) = CVaRα.

(5) Solve deterministic MPC (stage 2) stated in (11),
whereWd = Ws(sα). Use the high-fidelity prediction
model with nonlinear complementarity constraints
(5). Use variable sampling time with shorter intervals.

(6) Extract optimal control setpoint u(k)∗ from the so-
lution and apply it for the whole ∆T (k).

(7) Move to t(k) + ∆T (k) and repeat from step 1.

Block diagram of procedure steps is shown in Fig. 2.

Forecasting Deterministic
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Scenario
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w0
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x , P lb

x

x0

x0
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Ws(sα)

Ws

u(0)∗

VaR∗
α

Fig. 2. Diagram of the proposed procedure with data flows.

4. CASE STUDY

The proposed control system is implemented for the EV
charging station with photovoltaic system and battery
energy storage. The PV system of size 150 kWp and
100 kW invertor is oversized for the station’s load demand,
with a workday daily average below 10 kW. The battery
storage rated 50 kW/151 kWh was installed to supplement
photovoltaic system to enhance overall microgrid energy
management. The site has a utility grid connection and
may feed-in excessive energy, however, the export prices
are lower than import prices. The grid operator provides
dual electricity tariff, creating a space for price arbitrage.

With the deterministic MPC ignoring forecast errors the
often seen behaviour was that the battery state wasn’t well
prepared for the upcoming events. If PV production was
delayed or a vehicle was plugged in earlier than predicted,
the storage was already empty and microgrid had to
import power. Or if PV production exceeds expectations,
the battery didn’t have enough space for storing excessive
energy. The risk-averse control strategy is not aiming for
the best possible outcome when the forecasts come true
(rarely), but for optimal outcome when they does not.
With the CVaR optimization we could be α · 100% sure
that expected cost will not exceed value VaRα.

4.1 Implementation

The proposed energy management system utilizing risk-
aware α-scenario MPC was implemented using Pyomo
modelling framework and both, the relaxed LP and MILP
problem were solved using GLPK solver.

Both forecasting models were trained using more than
six months of historical data. In the case of electricity
consumption (12), seasonal repetition r consists of histor-
ical measurements from 1-4 weeks. PV production (14)
depended on weather forecasts of humidity, temperature,
irradiance, and cloud base. The structure of this model was
selected as RNN with 40 long short-term memory units.
Confidence intervals were scaled with 90% certainty.

For the stochastic MPC, risk parameter α = 20% and the
prediction horizon was 1 day with 15 min sampling, N =
96, and NS = 50. The subsequent deterministic MPC in
the second stage of procedure used variable sampling time
∆T (k) = 1min for k ∈ {0, . . . , 14}, ∆T (k) = 5min for k ∈
{15, . . . , 23}, and ∆T (k) = 15min for k ∈ {24, . . . , 115}.

4.2 Numerical Results

Closed-loop control: Weather forecasts and thus PV pro-
duction forecasts are updated every hour. Fig. 3 shows
confidence intervals and generated scenarios predicted at
midnight. During the microgrid operation, the low-level
controller requested a new setpoint every 60 s, valid for
120 s. If MPC solver does not converge, last setpoint is used
if valid, Pch = Pdch = 0 otherwise. Results of the closed-
loop control are shown in Fig. 4. The battery is charging
from the grid during the night lower electricity tariff to
have enough energy for supply until PV plant starts to
produce. Then battery stores excessive PV energy to cover
load demand later. PV system produced 150.1 kWh/day
from which 90.9% was utilized for self-consumption. En-
ergy consumption of the microgrid was 137.8 kWh/day of
which 77.0 kWh had to be imported from the utility grid.

Comparison: An open-loop simulations of the regular
stochastic MPC (Subsection 3.4) and double-stage α-
scenario MPC (Subsection 3.5) were performed to compare
control strategies under the same conditions. The evalua-
tions of the worst-case solving time and scaled objective
value are in Table 1. The regular stochastic MPC includes
complementarity constraints and variable sampling time,
so does the MPC problem in the second stage of α-scenario
MPC. Tests were run on M1 8-core chip, 8GB RAM. The
double-stage α-scenario MPC can find a solution up to
∼50-times faster with just a modest suboptimality.

Table 1. Performance comparison

Method Solving time Objective value

Stochastic MPC 1605.1 s 1.00
Double-stage MPC 27.4 s 1.05

5. CONCLUSION

We have presented the control strategy for microgrids and
the application for the real system. The proposed MPC
scheme is able to handle uncertainties arising from the
prediction errors of power consumption and production.
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In the case study, the grid import and export prices were
precisely known beforehand, but the framework allows to
consider any uncertainties. Using stochastic optimization
with multiple scenarios of uncertainty trajectories to find
optimal control decisions is time-consuming, what had
to be overcome in the real application. The proposed
approach can deal with the complexity and still decide
optimal setpoints regarding adjustable risk parameter.
The results of applying the proposed control strategy in
the microgrid showed desired control behaviour.
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F. (2006). Robust output feedback model predictive
control of constrained linear systems. Automatica, 42(7).

Nix, D. and Weigend, A. (1994). Estimating the mean
and variance of the target probability distribution. In
Proceedings of 1994 IEEE International Conference on
Neural Networks (ICNN’94), volume 1, 55–60 vol.1.

Penad, D., Bemporad, A., and Alamo, T. (2006). Stochas-
tic programming applied to model predictive control.
volume 2005, 1361 – 1366.

Rockafellar, R.T., Uryasev, S., et al. (2000). Optimization
of conditional value-at-risk. Journal of risk, 2, 21–42.
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