

1

Research Software Lifecycle

Deliverable 1 of the Subgroup 1 “On the Software Lifecycle” of the
Task Force on Infrastructure for Quality Research Software

Contributors

● Guy Courbebaisse, CGE and INSA Lyon - CREATIS Lab., France,
https://orcid.org/0000-0001-6181-2000

● Bernd Flemisch, University of Stuttgart, Institute for Modelling Hydraulic and
Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany,
https://orcid.org/0000-0001-8188-620X

● Kay Graf, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for
Astroparticle Physics, Nikolaus-Fiebiger-Str. 2, 91058 Erlangen, Germany,
https://orcid.org/0000-0002-1921-5568

● Uwe Konrad, Helmholtz-Zentrum Dresden-Rossendorf, Germany,
https://orcid.org/0000-0001-8167-9411

● Jason Maassen, Netherlands eScience Center, Vrije Universiteit Amsterdam, the
Netherlands https://orcid.org/0000-0002-8172-4865

● Raphael Ritz, Max Planck Computing and Data Facility, Giessenbachstr. 2, D-85748
Garching, Germany, https://orcid.org/0000-0003-4615-6804

Table of Contents

Table of Contents 1

Abstract 2

Introduction 2

User stories 3

Approaches in Software Development - Products, Projects or Platforms 7

Research Software Lifecycle 8

2

1 Initialization 9

2 Planning 10

3 Implementation 10

4 Publication 10

5 Deployment and Platform Integration 11

6 Community Feedback and Reuse 12

Start Over 12

From the Lifecycle to an EOSC Infrastructure 12

Abstract
Software developed in the process of doing research is receiving increased attention. It is now
more and more often considered a genuine research output next to scientific articles and
research data publications. Based on representative user stories we identify and characterize
the different phases and stages that the research software development process can go
through thereby defining the “Research Software Lifecycle”. Different approaches to software
development such as product-, project- or platform-orientation are also outlined. We close with
recommendations on EOSC infrastructure components needed to support the identified
processes and platforms.

Introduction
This document constitutes Deliverable 1 of the SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for quality research software”1. In order to reach the goals of
the Task Force, it is mandatory to achieve a common understanding on the current processes
in research software engineering, particularly the research software lifecycle. The aim of the
present document is to illustrate this lifecycle and how its instantiations for particular software
projects are influenced by varying developer groups and their intentions. We focus on the
software developed and maintained in research which can be embedded into open research
infrastructures such as EOSC. We point out possible connections to the existing and planned
EOSC infrastructure to support the research software lifecycle. In general, research software

1 Charter of the EOSC Task Force on Infrastructures for Quality Research Software

3

should be as open as possible and reflect the FAIR principles in its design, especially the
Interoperability and Reusability.2

While various software development lifecycle models exist3, the specifics of research software4
should be discussed. Various considerations associated with software engineering processes
in research software have been put forward. This document takes inspiration from these
sources, e.g. the DLR Software Engineering Guidelines5 provides a useful definition of
“application classes”, ranging from class 0 (personal use, small scope) to class 4 (mission
critical). Depending on the class, stricter guidelines regarding software engineering,
documentation, testing, change management, etc. apply. The Turing Way6 and CODE
REFINERY7 contain extensive information on best practices for research software development
and reproducible research. A characterization of research software projects and their transitions
between different application classes have been analyzed for NSF-funded software.8 Four
different organizational configurations have been identified: author group, laboratory, tool group
and peer production.

The rest of this document is organized as follows. We first describe different user stories
encountered in research software development, ranging from an individual researcher creating
software for personal use up to a possibly large scientific community developing an well-
established service. This is followed by elaborating on different approaches in software
development driven by different orientations of developers or maintainers. This sets the stage
for presenting the research software lifecycle, where we provide recommendations for
facilitating and implementing the individual steps. We conclude by drawing explicit connections
from the research software lifecycle to the EOSC.

User stories
In this chapter, user stories are introduced to set the stage for the later discussion of the
software and research lifecycle.

2 Barker, M., Chue Hong, N.P., Katz, D.S. et al. Introducing the FAIR Principles for research software.
Sci Data 9, 622 (2022). https://doi.org/10.1038/s41597-022-01710-x
3 Khan, N.A. (2021). Research on Various Software Development Lifecycle Models. In: Arai, K.,
Kapoor, S., Bhatia, R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, Volume
3. FTC 2020. Advances in Intelligent Systems and Computing, vol 1290. Springer, Cham.
https://doi.org/10.1007/978-3-030-63092-8_24
4 Gruenpeter, M., Katz, D.S., Lamprecht, A. et al. Defining Research Software: a controversial
discussion (Version 1). Zenodo. https://doi.org/10.5281/zenodo.5504016
5 DLR Software Engineering Guidelines, https://doi.org/10.5281/zenodo.1344612
6 The Turing Way, https://the-turing-way.netlify.app/welcome
7 Training and e-Infrastructure for Research Software Development, https://coderefinery.org
8 The Transition Project, https://hannahcohoon.com/transition

4

1. Individual creating research software for own use (e.g. a PhD student)

Based on a research question, software is created by a single person with the specific
aim of answering the research question and producing research output (paper, dataset,
etc). The planning and development process is kept light. Basic software engineering
practices (version control, basic documentation, basic testing) should be applied. More
advanced software engineering practices like issue tracking, code style, test coverage,
Continuous Integration and Delivery (CI/CD), code reviews, code quality checkers, etc.
are often not used. Once the desired result is obtained, all research outputs should be
published (paper, dataset, workflow, software, etc.) to ensure reproducibility of the
results. After publication, the software component is often not actively maintained,
although in some cases it may serve as a basis for the next cycle (i.e., based on feedback
which triggers further research questions). This type of software can be picked up by
other single persons or teams, where a transfer of intellectual property and access rights
needs to be ensured. A prerequisite for such a transfer is to equip the software tool with
a license, preferably an open-source one9.

2. A research team creating an application or workflow for use within the team

Research software is created by a team to answer a series of research questions (often
as part of a larger research project). To enable development by multiple team members
and ensure longer term maintainability, both basic software engineering practices
(version control, basic documentation, basic testing) and a selection of more advanced
software engineering practices (issue tracking, semantic versioning, code style, test
coverage, CI/CD, code reviews, code quality checkers, etc.) should be used. Proper
planning of development is needed to ensure regular releases of the software. These
releases are used to answer research questions and produce research outputs (papers,
datasets, etc). To ensure reproducibility of results, versioned releases should be
archived, and properly cited in papers/dataset/etc. After publication, the development
cycle continues to answer further research questions and provide improvements/fixes
to the existing code.
Examples for this category are software solutions to simulate, operate and analyze the
outputs of large scientific experiments or - more generally - measurement devices and
their outputs.

3. A team / community developing (possibly broadly applicable) open source research
software

9 Cf. § 47 of the European Parliament discharge report 2018
https://www.europarl.europa.eu/doceo/document/TA-9-2020-0088_EN.pdf

5

Software is created by a team (possibly distributed over multiple organizations) to
answer a broad range of research questions. Different team members may have
different objectives and/or may represent a community of users. External users may
depend on that software with or without directly contributing to its development. Both
basic and advanced software engineering techniques should be used to ensure a
smooth development process, quality and long term maintainability. Proper
development planning should be used to organize the team members and ensure regular
releases. This development cycle is often not directly driven by a (single) research cycle.
Instead, community feedback (e.g. issue tracking) is used to drive maintenance and
development decisions.

Examples - by far not exhaustive - in different communities are: Astropy10 (astronomy);
ESMValTool11 (Earth sciences); VASP12, FHI-aims13 (material research); Gromacs14
(molecular dynamics); Neuron15, Nest16, Genesis (Neuroinformatics); root (particle
physics); Scikit-Learn (machine learning)17; Sat4J (boolean satisfaction and
optimization)18. <any more examples can be found at, e.g., the Research Software
Directory19.

4. A team or community creating a research service

 A service platform is a set of software components which is used to provide services for
a large number of users, most of whom make use of these offerings via the Internet (e.g.
cloud services). These software components can run at one place or be distributed on
virtualized hardware. They are mostly open source, but the services offered are not
necessarily free. It's also not uncommon to have closed source services which provide
access to open data.
The goal in developing and operating such a platform is to create a sustainable and
scalable set of services for a defined target group. Added value compared to local
software solutions arises, among other things, from the fact that data storage,
computing capacities and communication options are offered in addition to core
functions such as modeling, data analysis, project management or software

10 Astropy, https://www.astropy.org/
11 ESMValTool, https://www.esmvaltool.org
12 The Vienna Ab initio Simulation Package (VASP), https://www.vasp.at/
13 FHI-aims, https://fhi-aims.org/
14 Gromacs, https://www.gromacs.org/
15 NEURON, https://neuron.yale.edu/neuron/
16 NEST simulator, https://www.nest-simulator.org/
17 https://scikit-learn.org/stable/
18 https://www.sat4j.org/
19 Research Software Directory, https://www.research-software-directory.org/software

6

development. The need for development, deployment and continuous operation (24x7)
as well as flexible scalability requires special software development methods such as
DevOps20 and CI/CD21. The sustainability approach also requires strict development and
quality guidelines, clear licenses, an open development environment, a clear recognition
to contributors as well as continuous funding or a viable business model.
Examples of such platforms in research are, e.g., D4Science (a solution supporting the
development of Virtual Research Environments), HIFIS22 (generic digital service
platform), VIP23 (medical imaging platform), VISA24 (infrastructure for analysis) or
VISPA25 (physics data analysis platform). Such services or platforms are more and more
collected in the EOSC portal26.

While user stories 1 and 2 are usually managed by individual persons or groups of persons with
a common research interest and goal, 3 and 4 need a stricter organizational form, e.g. forming
a management or by effectively applying the role of a CTO, hired or taken by the original
author/PI. The persons and groups are supported in their development and maintenance goals
by different foundations or organizations like the Apache Software Foundation27, the eScience
Centre of the Netherlands28, the HEP Software Foundation29, or Software Heritage30. If a
software development project leaves the domain of research - e.g. by its complexity, industry
involvement or global application - it is not covered by the use cases addressed here.

It is important to notice that software projects may evolve significantly over time, and can hence
move from one category to another. It is often the case that what has become broadly used
research software today, either maintained by a large community, or by a small number of core
developers, actually started at the beginning as an individual effort to address a research
question in a small team or community (see for example the evolution of Sat4J31).
Recommendations and/or requirements on research software must take into account this
evolutionary nature of research software.

20 DevOps - Wikipedia, https://en.wikipedia.org/wiki/DevOps
21 CI/CD - Wikipedia, https://en.wikipedia.org/wiki/CI/CD
22 Helmholtz Federated IT Services (HIFIS), www.hifis.net
23 Virtual Imaging Platform (VIP) - EOSC Marketplace, https://marketplace.eosc-
portal.eu/services/virtual-imaging-platform
24 Virtual Infrastructure for Scientific Analysis (VISA), https://marketplace.eosc-portal.eu/services/visa-
virtual-infrastructure-for-scientific-analysis
25 Visual Physics Analysis (VISPA), https://vispa.physik.rwth-aachen.de
26 EOSC Portal - Marketplace Processing & Analysis
, https://marketplace.eosc-portal.eu/services/c/processing-analysis
27 The Apache Software Foundation, https://www.apache.org/
28 Netherlands eScience Centre, https://www.esciencecenter.nl/
29 The HEP Software Foundation (HSF), https://hepsoftwarefoundation.org/
30 Software Heritage, https://www.softwareheritage.org/
31 https://www.sat4j.org/allabout.php

7

Approaches in Software Development - Products,
Projects or Platforms
Different approaches in the development of software - for products, projects and platforms are
pursued in science and industry. In the following we describe the main aspects of those three
approaches mostly adopted by the group of developers or maintainers that need to be taken
into account for the full software life cycle as described in the next section.

Product Orientation (a typical case in Industry)

● Roles and responsibilities are more separated between different departments and
people, e.g.: marketing, requirements engineering, product management, project
management, development, quality assurance including professional software
engineering, sales, after sales, service and training

● Project planning and controlling (implementation, milestones, development models,
goals and targets in terms of time effort and costs) usually high, roadmap and rollout of
new products and releases planned well in advance

● Cost / benefit orientation and -calculation throughout the development cycle
● Quality assurance in different phases (development, product documentation, field test,

pilot projects, release)
● Visibility and recognition is high but also strong pressure with respect to time, budget

and success
● Often closed community and mostly closed source, prominent exceptions being e.g.

Kubernetes32, Docker33 and TensorFlow34

Project Orientation (a typical case in Science):

● Usually starts with an idea to solve a problem (in most cases a challenge for the own
team or company), sometimes based on a vision, requirements evolving over time

● Less clear goals and targets in terms of time, effort and costs
● Team and budget changing over time
● Little visibility and recognition but sometimes low pressure with respect to milestones,

budget and success
● In research often embedded in an open community (strong cooperation), mostly open

source
The four user stories mentioned above show examples of project-based SW development in
research, which in many cases is not yet implemented in a sustainable way. There is also a

32 Kubernetes (K8s), https://kubernetes.io/
33 Docker, https://www.docker.com/
34 TensorFlow, https://www.tensorflow.org/

8

project oriented “internal SW” development in industry. It is not that much focused on marketing
and sales, but still cost and milestone oriented.

Platform Orientation (in Industry and Science)

● Cost / Benefit orientation: calculated throughout the cycle, with an overall aim of
increasing the number of users and developers (rather than directly maximizing
monetisation)

● Project Planning and Control: usually high with a clear roadmap for releases (to allow
coordination with developers creating products based on the platform)

● Open Community and often open source
● Usually agile development techniques are employed
● Highly automated test and deployment process
● Takes care of data and various services around the core software
● Provides a certain level of sustainability for platform users, also data privacy is an issue
● Develops support structures and resources (e.g., ticket system, help desk,

documentation/wiki)

By introducing “application classes” (see Introduction), the requirements of these approaches
can be taken into account in early phases of the Software Life Cycle in order to achieve a more
professional software development in research. This is supported by the definition of concrete
minimum standards and measures for the application classes in the guidelines and policies for
software development for an increasing number of research institutions.

Research Software Lifecycle
In Fig. 1, a graphical representation of the research software lifecycle is presented. It represents
one loop cycle which usually is repeated over the lifetime of a research software project. During
a specific instantiation of one cycle, not necessarily all of the depicted six steps are taken into
account. We remark that the figure is necessarily not exhaustive due to the complexity and
individuality of the different approaches adopted by different persons, groups and communities.
The different steps and interactions of the graph are described below.

More recently, software management plans35 (SMPs) have been proposed for managing
software lifecycles. Like data management plans (DMPs), SMPs are documents describing what
the aim of the software is, how the research software will be managed, both during a project’s
lifetime and after a project has ended. By making this information explicit, SMPs help to set up
a proper development cycle for research software, provide insight into the necessary resources

35 Introduction to Software Management Plans, https://github.com/softwaresaved/introduction-to-
software-management-plans

9

during development, and ensure the long-term accessibility of the software is properly
considered.
As there currently is no universally accepted SMP template, several organizations have created
their own36, as well as checklist37 and recommendations38 39 on how to create SMPs. Important
aspects to be considered when setting up a SMP are to classify the software, choose the
necessary stages from Figure 1 as well as the appropriate license, the organization of IP
handling and the transition between different software classes. As those steps are usually not
plannable a priori, an SMP often evolves during a project.

Figure 1: Graphical representation of the research software lifecycle

1 Initialization
A research question, a new service or feature request (e.g. data service, workflow automation)
or tenders from funders (e.g. from EU) initiate the planning phase.

36 Netherlands eScience Center Software Sustainability Protocol,
https://doi.org/10.5281/zenodo.1451751
37 Checklist for a Software Management Plan, https://zenodo.org/record/2159713
38 Writing and using a software management plan,
https://www.software.ac.uk/resources/guides/software-management-plans
39 Practical guide to software management plans, https://doi.org/10.5281/zenodo.7248877

10

2 Planning
Planning research software development usually happens in the context of a student thesis
(BSc, MSc, PhD), or for a larger research project including preparations of concrete scientific
articles. Also new releases for longer running research software projects often trigger a “start
over”.

The planning stage can be facilitated by or include a requirements analysis (for all levels), a value
proposition (for software products) or a market or community survey in order to understand the
audience (for software products or platforms). Also a roadmap for the initial development and
later stages can be instrumental.

3 Implementation
Depending on the context, each cycle illustrates the typical workflow for the implementation of,
e.g. a new feature as part of software development or a bugfix as part of software
maintenance.40

Especially in bigger projects, all stages within one cycle might be very elaborated, while several
cycles coexist at the same time corresponding to the parallel implementation of new features
or bug fixes. In single-person projects such as student theses, implementation is naturally
performed in a more sequential manner. Reviews by third parties might be missing and, typically,
no CI/CD services or frameworks are employed.
The implementation stage can be facilitated, amongst others, by version control and version
control management systems (incl. release management); issue tracking and code review
services; testing and CI/CD services and infrastructure.
The practices and facilitating tools may differ for different stages the software is in, see e.g., the
application classes in the DLR Software Engineering Guidelines.41

4 Publication
While software is worth being published per se, currently in research, the publication of research
software usually accompanies the completion and publication of a document such as a student
thesis, scientific article or project report. Further ingredients such as input and result data,
containers, notebooks, or workflow descriptions should ideally yield an integrated research
compendium/object. Research software should in itself be citable and should be referenced in
the document. Research software engineers (RSEs) often play an important role in developing
the software, without necessarily becoming co-author of the resulting papers or datasets. It is
therefore important to give them recognition for their contributions through software citation. In

40 Topics related to research software quality, such as code styles, testing schemes and vulnerability
checks are addressed in detail by this task force, in the Ensure Software Quality deliverable
41 DLR Software Engineering Guidelines, https://doi.org/10.5281/zenodo.1344612

11

addition to publishing the software itself, various dedicated journals exist that offer the service
of publishing research software papers42.

The publication/deployment stage of research software can be facilitated by, e.g., (i) CD
frameworks, (ii) publication services, (iii) archival services or (iv) training and support services,
(v) research software directories43.
A link between research software and other research objects can be established within research
software directories, requiring proper IDs, e.g. by minting DOIs via Zenodo44 or the Software
Heritage45 IDs.

At the latest during the publication preparation - but preferably at an as early stage as possible
- metadata should be added to the software. Several standards are in use and under
harmonization via several EOSC-related groups46, currently used standards are the Citation File
Format47 and CodeMeta48.
The findability can be increased by adding a citation to software and referencing in
accompanying articles.

5 Deployment and Platform Integration
Software is not only provided as source code and executable, but also via direct use in platforms,
see user story 4. This targets software as a service that adds some specific issues compared
to an on-premise software publisher, e.g. interfaces to authentication and authorization, data,
monitoring, scalability, accounting, continuous maintenance.
Such integration can be started by the software developer by providing software and data within
Jupyter notebooks, containers or virtual machines as a first or intermediate step towards a
software as a service.

42 The Journal of Open Source Software, https://joss.theoj.org/
The Journal of Open Research Software (JORS), https://openresearchsoftware.metajnl.com/
Software X, https://www.sciencedirect.com/journal/softwarex
43 Research Software Directory, https://github.com/research-software-directory
Research Software Directory, https://research-software-directory.org/
Research Software Directory, https://helmholtz.software/
44 Zenodo, https://zenodo.org
45 Software Heritage, https://www.softwareheritage.org/
46 EOSC Task Force FAIR Metrics and Data Quality
https://www.eosc.eu/sites/default/files/tfcharters/eosca_tffairmetricsanddataquality_draftcharter_20210
614.pdf
EOSC Task Force Semantic Interoperability
https://www.eosc.eu/sites/default/files/tfcharters/eosca_tfsemanticinteroperability_draftcharter_202106
14.pdf
47 Citation File Format, https://citation-file-format.github.io/
48 The CodeMeta Project https://codemeta.github.io/

12

Here, the deployment and integration process of the specific software is meant, the platform
itself is a necessary ingredient but often not in the focus of the software development lifecycle.
Both - the integration and the platforms - are a necessary ingredient to the EOSC integration.
Open source publication should be preferred before integration to a platform but other options
are also possible, keeping in mind that for software as a service a valid business model may be
needed (e.g. there are models of having a community edition for free and a professional edition
with a support fee).

6 Community Feedback
The form, amount and timeliness of community feedback to research software can vary
substantially depending on the size, maturity and targeted application range and audience. In
addition to the dissemination of the scientific articles describing (and advertising) the software,
presentations at conferences and other meetings potentially help to initiate and grow a user
community.
The community feedback stage can be facilitated by appropriate communication channels
(helpdesk, issue tracker, email lists, chat applications …) or even an established means to let the
community contribute to or assess the quality of the software in general.

Continuation or Termination
Feedback and reuse can either lead to new research questions initiating another full cycle (from
1 to 6 above), trigger smaller implementation cycles in the context of software maintenance or
termination of the development/service.
Particularly in this stage, the user stories can be changed and also the application classes can
be newly defined.

Research Software Lifecycle and the EOSC
Infrastructure
An Infrastructure for Research Software in EOSC should support all user stories and the
research software lifecycle as described above in consistency with the EOSC rules of
participation49. To allow broad support for the software and services, infrastructure components
for aggregation, communication, development and archival are required.
There are two categories of actions as outcome of the software lifecycle needs.
One is in the area of governance, outreach and support:

● Communicate the added value of the use and integration of research software and
software related services in EOSC

49 EOSC Rules of Participation Compliance Monitoring Task Force, https://www.eosc.eu/advisory-
groups/rules-participation-compliance-monitoring

13

● Provide support on the transition of software projects and services into the EOSC
ecosystem

● Support the scientific communities on the transition between the different levels of
software classes and their sustainability, especially respecting time-limited funding
schemes

● Support teaching and training activities50 on software development and engineering
including coordinating efforts across Europe; not only for practitioners but also following
the “train the trainer” approach to expand the reach

The other for technical implementations:
● Provide and support open, sustainable software development platforms and the

federation of established platforms to foster broad collaboration and cross-fertilisation
● Provide a support infrastructure for ensuring and improving research software quality,

including the application of appropriate metadata, licenses, and quality metrics
● Provide software directories, repositories, registries and archives - in the sense of

Archives, Publishers, and Aggregators of the SIRS Report51
● Integrate or link community, national, and global infrastructures (e.g. GitHub52,

OpenAire53, Software Heritage54, Zenodo55) in the EOSC ecosystem guaranteeing the
validity of identification and access control used

● Provide collaborative support tools for interactions between developers and the user
communities, preferably well integrated into the software service and development
platform

Research software should be considered as a first class citizen of open science, the resulting
requirements must be considered in the implementation of a EOSC infrastructure for research
software.

50 See also the charter of the EOSC Task Force on Data stewardship curricula and career paths
51 European Commission, Directorate-General for Research and Innovation, Scholarly infrastructures
for research software : report from the EOSC Executive Board Working Group (WG) Architecture Task
Force (TF) SIRS, Publications Office, 2020, https://data.europa.eu/doi/10.2777/28598
52 Git Hub, https://github.com/
53 OpenAIRE, https://openaire.eu
54 Software Heritage, https://www.softwareheritage.org/
55 Zenodo, https://zenodo.org

