References
Bourier, Günther. 2018. Wahrscheinlichkeitsrechnung Und Schließende
Statistik: Praxisorientierte Einführung: Mit Aufgaben Und Lösungen.
9., aktualisierte Auflage. Lehrbuch. Wiesbaden
[Heidelberg]: Springer Gabler. https://doi.org/10.1007/978-3-658-07481-4.
———. 2022. Statistik-Übungen: Beschreibende Statistik –
Wahrscheinlichkeitsrechnung – Schließende Statistik. 7. Auflage.
Wiesbaden: Springer Gabler.
Cohen, Jacob. 1988. Statistical Power Analysis for the
Behavioral Sciences. Routledge. http://dx.doi.org/10.4324/9780203771587.
Dai, Hengchen, Silvia Saccardo, Maria A. Han, Lily Roh, Naveen Raja,
Sitaram Vangala, Hardikkumar Modi, Shital Pandya, Michael Sloyan, and
Daniel M. Croymans. 2021. “Behavioural Nudges Increase
COVID-19 Vaccinations.” Nature 597 (7876):
404–9. https://doi.org/10.1038/s41586-021-03843-2.
Forum, World Economic. 2020. “The Future of
Jobs Report 2020.” CH-1223 Cologny/Geneva
Switzerland: World Economic Forum. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf.
Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and
Other Stories. Analytical Methods for Social Research.
Cambridge: Cambridge University Press.
Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2020.
“Rstanarm: Bayesian Applied Regression Modeling via
Stan.” https://mc-stan.org/rstanarm.
Kampen, D. van. 2014. “The SSQ Model of Schizophrenic
Prodromal Unfolding Revised: An Analysis of Its Causal
Chains Based on the Language of Directed Graphs.” European
Psychiatry 29 (7): 437–48. https://doi.org/10.1016/j.eurpsy.2013.11.001.
Kruschke, John K. 2018. “Rejecting or Accepting Parameter
Values in Bayesian Estimation.” Advances
in Methods and Practices in Psychological Science 1 (2): 270–80. https://doi.org/10.1177/2515245918771304.
Kurz, A. Solomon. 2021. Statistical Rethinking with Brms, Ggplot2,
and the Tidyverse: Second Edition. https://bookdown.org/content/4857/.
Makowski, Dominique, Mattan S. Ben-Shachar, S. H. Annabel Chen, and
Daniel Lüdecke. 2019. “Indices of Effect Existence
and Significance in the Bayesian
Framework.” Frontiers in Psychology 10. https://www.frontiersin.org/article/10.3389/fpsyg.2019.02767.
McElreath, Richard. 2020. Statistical Rethinking: A
Bayesian Course with Examples in R and
Stan. 2nd ed. CRC Texts in Statistical
Science. Boca Raton: Taylor and Francis, CRC
Press.
Messerli, Franz H. 2012. “Chocolate Consumption,
Cognitive Function, and Nobel
Laureates.” New England Journal of Medicine 367
(16): 1562–64. https://doi.org/10.1056/NEJMon1211064.
Nasreen, Sharifa, Hannah Chung, Siyi He, Kevin A. Brown, Jonathan B.
Gubbay, Sarah A. Buchan, Deshayne B. Fell, et al. 2021.
“Effectiveness of mRNA and
ChAdOx1 COVID-19 Vaccines Against Symptomatic
SARS-CoV-2 Infection and Severe Outcomes with Variants of
Concern in Ontario,” September, 2021.06.28.21259420.
https://doi.org/10.1101/2021.06.28.21259420.
Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. 2016. Causal
Inference in Statistics: A Primer. Chichester, West
Sussex: Wiley.
Poldrack, Russell. 2022. Statistical Thinking for the
21st Century. https://statsthinking21.github.io/statsthinking21-core-site/index.html.
Pormohammad, Ali, Mohammad Zarei, Saied Ghorbani, Mehdi Mohammadi,
Mohammad Hossein Razizadeh, Diana L. Turner, and Raymond J. Turner.
2021. “Efficacy and Safety of COVID-19
Vaccines: A Systematic Review and
Meta-Analysis of Randomized Clinical
Trials.” Vaccines 9 (5): 467. https://doi.org/10.3390/vaccines9050467.
Rohrer, Julia M. 2018. “Thinking Clearly About
Correlations and Causation: Graphical Causal
Models for Observational Data.” Advances
in Methods and Practices in Psychological Science 1 (1): 27–42. https://doi.org/10.1177/2515245917745629.
Thompson, Mark G., Edward Stenehjem, Shaun Grannis, Sarah W. Ball,
Allison L. Naleway, Toan C. Ong, Malini B. DeSilva, et al. 2021.
“Effectiveness of Covid-19 Vaccines in
Ambulatory and Inpatient Care
Settings.” New England Journal of Medicine 385
(15): 1355–71. https://doi.org/10.1056/NEJMoa2110362.