-
—_—

7T X% - —
erification Methodology

OVM Class Reference

Version 2.1.2
June 2011

© 2008-2011 Cadence Design Systems, Inc. (Cadence). All rights reserved.
Cadence Design Systems, Inc., 2655 Seely Ave., San Jose, CA 95134, USA.

© 2008-2011 Mentor Graphics, Corp. (Mentor). All rights reserved.
Mentor Graphics, Corp., 8005 SW Boeckman Rd., Wilsonville, OR 97070, USA

This product is licensed under the Apache Software Foundation’s Apache License, Version 2.0, January
2004. The full license is available at: http://www.apache.org/licenses/

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. and Mentor Graphics, Corp.
contained in this document are attributed to Cadence and Mentor with the appropriate symbol. For queries
regarding Cadence’s or Mentor’s trademarks, contact the corporate legal department at the address shown
above. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law. Cadence and Mentor grant
permission to print hard copy of this publication subject to the following conditions:

1. The publication may not be modified in any way.

2. Any authorized copy of the publication or portion thereof must include all original copyright,
trademark, and other proprietary notices and this permission statement.

Disclaimer: Information in this publication is provided as is and subject to change without notice and does
not represent a commitment on the part of Cadence or Mentor. Cadence and Mentor do not make, and
expressly disclaim, any representations or warranties as to the completeness, accuracy, or usefulness of
the information contained in this document. Cadence and Mentor do not warrant that use of such information
will not infringe any third party rights, nor does Cadence or Mentor assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

OVM Class Reference

OVM Class Reference

The OVM Class Library provides the building blocks needed to quickly develop well-
constructed and reusable verification components and test environments in SystemVerilog.

This OVM Class Reference Guide provides detailed reference information for each user-visible
class in the OVM library. For additional information on using OVM, see the OVM User Guide
located in the top level directory within the OVM Kkit.

We divide the OVM classes and utilities into categories pertaining to their role or function. A
more detailed overview of each category-- and the classes comprising them-- can be found in
the menu at left.

Base This basic building blocks for all environments are components, which do the
actual work, transactions, which convey information between components, and
ports, which provide the interfaces used to convey transactions. The OVM’s
core base classes provide these building blocks. See Core Base Classes for
more information.

Reporting The reporting classes provide a facility for issuing reports (messages) with
consistent formatting and configurable side effects, such as logging to a file or
exiting simulation. Users can also filter out reports based on their verbosity ,
unique ID, or severity. See Reporting Classes for more information.

Factory As the name implies, the OVM factory is used to manufacture (create) OVM
objects and components. Users can configure the factory to produce an object
of a given type on a global or instance basis. Use of the factory allows
dynamically configurable component hierarchies and object substitutions
without having to modify their code and without breaking encapsulation. See
Factory Classes for details.

SychronizationThe OVM provides event and barrier synchronization classes for process
synchronization. See Synchronization Classes for more information.

Policies Each of OVM'’s policy classes perform a specific task for ovm_object-based
objects: printing, comparing, recording, packing, and unpacking. They are
implemented separately from ovm_object so that users can plug in different
ways to print, compare, etc. without modifying the object class being operated
on. The user can simply apply a different printer or compare “policy” to change
how an object is printed or compared. See Policy Classes for more information.

TLM The OVM TLM library defines several abstract, transaction-level interfaces and
the ports and exports that facilitate their use. Each TLM interface consists of
one or more methods used to transport data, typically whole transactions
(objects) at a time. Component designs that use TLM ports and exports to
communicate are inherently more reusable, interoperable, and modular. See
TLM Interfaces, Ports, and Exports for detalils.

Components Components form the foundation of the OVM. They encapsulate behavior of
drivers, scoreboards, and other objects in a testbench. The OVM library
provides a set of predefined component types, all derived directly or indirectly
from ovm_component. See Predefined Component Classes for more

information.

OVM Class Reference

Sequencers The sequencer serves as an arbiter for controlling transaction flow from
multiple stimulus generators. More specifically, the sequencer controls the flow
of ovm_sequence_item-based transactions generated by one or more
ovm_sequence #(REQ,RSP)-based sequences. See Sequencer Classes for
more information.

Sequences Sequences encapsulate user-defined procedures that generate multiple
ovm_sequence_item-based transactions. Such sequences can be reused,
extended, randomized, and combined sequentially and hierarchically in
interesting ways to produce realistic stimulus to your DUT. See Sequence
Classes for more information.

Macros The OVM provides several macros to help increase user productivity. See
<Utility and Field Macros> and Sequence and Do Action Macros for a complete
list.

Globals This category defines a small list of types, variables, functions, and tasks

defined in ovm_pkg scope. These items are accessible from any scope that
imports the ovm_pkg. See Types and Enumerations and Globals for details.

Core Base Classes

Core Base Classes

The OVM library defines a set of base classes and utilities that facilitate the design of modular,
scalable, reusable verification environments.

The basic building blocks for all environments are components and the transactions they use
to communicate. The OVM provides base classes for these, as shown below.

ovm_woid

-

ovm_object
ovrm_report_object oW transsction

ovm_component

ovm_object - All components and transactions derive from ovm_object, which defines
an interface of core class-based operations: create, copy, compare, print, sprint,
record, etc. It also defines interfaces for instance identification (name, type name,
unique id, etc.) and random seeding.

ovm_component - The ovm_component class is the root base class for all OVM

components. Components are quasi-static objects that exist throughout simulation.
This allows them to establish structural hierarchy much like modules and program
blocks. Every component is uniquely addressable via a hierarchical path name, e.g.
“envl.pcil.master3.driver”. The ovm_component also defines a phased test flow
that components follow during the course of simulation. Each phase-- build, connect,
run, etc.-- is defined by a callback that is executed in precise order. Finally, the
ovm_component also defines configuration, reporting, transaction recording, and
factory interfaces.

ovm_transaction - The ovm_transaction is the root base class for OVM transactions,
which, unlike ovm_components, are transient in nature. It extends ovm_object to

include a timing and recording interface. Simple transactions can derive directly from
ovm_transaction, while sequence-enabled transactions derive from
ovm_sequence_item.

ovm_root - The ovm_root class is special ovm_component that serves as the top-

level component for all OVM components, provides phasing control for all OVM
components, and other global services.

ovm_void

ovm_void

The ovm_void class is the base class for all OVM classes. It is an abstract class with no data
members or functions. It allows for generic containers of objects to be created, similar to a
void pointer in the C programming language. User classes derived directly from ovm_void
inherit none of the OVM functionality, but such classes may be placed in ovm_void-typed
containers along with other OVM objects.

ovm_object

ovm_object

The ovm_object class is the base class for all OVM data and hierarchical classes. Its primary
role is to define a set of methods for such common operations as create, copy, compare,

print, and record. Classes deriving from ovm_object must implement the pure virtual
methods such as create and get_type name.

Summary

ovm_ object

The ovm_object class is the base class for all OVM data and hierarchical classes.

Class Declaration

virtual class ovm object extends ovmvoid

new

Seeding

use_ovm_seeding

reseed

Identification
set_name

get_name

get_full_name
get_inst_id
get_inst_count

get_type
get_object_type
get_type name

Creation
create

clone

Printing
print

sprint

Creates a new ovm_object with the given instance
name.

This bit enables or disables the OVM seeding
mechanism.

Calls srandom on the object to reseed the object using
the OVM seeding mechanism, which sets the seed
based on type name and instance name instead of
based on instance position in a thread.

Sets the instance name of this object, overwriting any
previously given name.

Returns the name of the object, as provided by the
name argument in the new constructor or set_name
method.

Returns the full hierarchical name of this object.
Returns the object’s unique, numeric instance identifier.
Returns the current value of the instance counter,
which represents the total number of ovm_object-
based objects that have been allocated in simulation.
Returns the type-proxy (wrapper) for this object.

Returns the type-proxy (wrapper) for this object.

This function returns the type name of the object,
which is typically the type identifier enclosed in quotes.

The create method allocates a new object of the same
type as this object and returns it via a base
ovm_object handle.

The clone method creates and returns an exact copy of
this object.

The print method deep-prints this object’s properties in
a format and manner governed by the given printer
argument; if the printer argument is not provided, the
global ovm_default_printer is used.
The sprint method works just like the print method,
except the output is returned in a string rather than
displayed.

7

ovm_object

do_print

convert2string

Fields declared in < ovm_field _*> macros, if

used, will not
Recording
record

do_record

Copying
copy
do_copy

Comparing
compare

do_compare

Packing
pack

pack bytes
pack_ints

do_pack

Unpacking
unpack
unpack_bytes
unpack_ints

do_unpack

Configuration
set_int_local
set_string_local
set_object_local

new

function new (string nane

The do_print method is the user-definable hook called
by print and sprint that allows users to customize what
gets printed or sprinted beyond the field information
provided by the <~ ovm_field_*> macros.

This virtual function is a user-definable hook, called
directly by the user, that allows users to provide object
information in the form of a string.

automatically appear in calls to convert2string.

The record method deep-records this object’s
properties according to an optional recorder policy.
The do_record method is the user-definable hook
called by the record method.

The copy method returns a deep copy of this object.

The do_copy method is the user-definable hook called
by the copy method.

The compare method deep compares this data object
with the object provided in the rhs (right-hand side)
argument.

The do_compare method is the user-definable hook
called by the compare method.

The pack methods bitwise-concatenate this object'’s
properties into an array of bits, bytes, or ints.

The do_pack method is the user-definable hook called
by the pack methods.

The unpack methods extract property values from an
array of bits, bytes, or ints.

The do_unpack method is the user-definable hook
called by the unpack method.

These methods provide write access to integral, string,
and ovm_object-based properties indexed by a
field_name string.

Creates a new ovm_object with the given instance name. If name is not supplied, the object

8

ovm_object

is unnamed.

Seeding

use_ovm_seeding
static bit use_ovmseeding =1

This bit enables or disables the OVM seeding mechanism. It globally affects the operation of
the reseed method.

When enabled, OVM-based objects are seeded based on their type and full hierarchical name
rather than allocation order. This improves random stability for objects whose instance
names are unique across each type. The ovm_component class is an example of a type that

has a unigue instance name.

reseed

function void reseed ()

Calls srandom on the object to reseed the object using the OVM seeding mechanism, which
sets the seed based on type name and instance name instead of based on instance position in
a thread.

If the use _ovm_seeding static variable is set to O, then reseed() does not perform any
function.

| dentification

set_name

virtual function void set _nane (string nane)

Sets the instance name of this object, overwriting any previously given name.

get_name

ovm_object
virtual function string get_name ()

Returns the name of the object, as provided by the name argument in the new constructor or
set_name method.

get_full_name
virtual function string get full _nanme ()

Returns the full hierarchical name of this object. The default implementation is the same as
get _name, as ovm_objects do not inherently possess hierarchy.

Objects possessing hierarchy, such as ovm_components, override the default

implementation. Other objects might be associated with component hierarchy but are not
themselves components. For example, ovm_sequence #(REQ,RSP) classes are typically

associated with a ovm_sequencer #(REQ,RSP). In this case, it is useful to override

get_full_name to return the sequencer’s full name concatenated with the sequence’s name.
This provides the sequence a full context, which is useful when debugging.

get inst_id

virtual function int get_inst_id ()

Returns the object’s unique, numeric instance identifier.

get_inst_count
static function int get_inst_count()
Returns the current value of the instance counter, which represents the total number of

ovm_object-based objects that have been allocated in simulation. The instance counter is
used to form a unique numeric instance identifier.

get_type

static function ovm object _w apper get_type ()

Returns the type-proxy (wrapper) for this object. The ovm_factory’s type-based override and
creation methods take arguments of ovm_object _wrapper. This method, if implemented, can
be used as convenient means of supplying those arguments.

The default implementation of this method produces an error and returns null. To enable use
10

ovm_object

of this method, a user’s subtype must implement a version that returns the subtype’s wrapper.

For example

class cnd extends ovm obj ect;
t ypedef ovm object _registry #(cnd) type_id;
static function type_id get_type();
return type_id::get();
endfunction
endcl ass

Then, touse

factory.set _type_override(cnd::get_type(), subcnd::get_type());

This function is implemented by the “ovm_*_utils macros, if employed.

get_object_type

virtual function ovm object_ w apper get_object _type ()

Returns the type-proxy (wrapper) for this object. The ovm_factory’s type-based override and
creation methods take arguments of ovm_object _wrapper. This method, if implemented, can

be used as convenient means of supplying those arguments. This method is the same as the
static get_type method, but uses an already allocated object to determine the type-proxy to

access (instead of using the static object.

The default implementation of this method does a factory lookup of the proxy using the return
value from get_type name. If the type returned by get type name is not registered with the

factory, then a null handle is returned.

For example

class cnd extends ovm obj ect;
t ypedef ovm object _registry #(cnd) type_id;
static function type_id get_type();
return type_id::get();
endfuncti on
virtual function type_id get_object_type();
return type_id::get();
endf unction
endcl ass

1"

ovm_object

This function is implemented by the “ovm_*_utils macros, if employed.

get_type name

virtual function string get type nane ()

This function returns the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is used by
the factory for creating objects.

This function must be defined in every derived class.

A typical implementation isasfollows

cl ass nytype extends ovm object;
const static string type_name = "nytype";
virtual function string get_type_nane();

return type_nang;
endf uncti on

We define the <type name> static variable to enable access to the type name without need
of an object of the class, i.e., to enable access via the scope operator, mytype::type_name.

Creation

create

virtual function ovmobject create (string nane

The create method allocates a new object of the same type as this object and returns it via a
base ovm_object handle. Every class deriving from ovm_object, directly or indirectly, must
implement the create method.

A typical implementation is asfollows

cl ass nytype extends ovm object;

virtual function ovm object create(string name="");
nytype t = new nane);
return t;
12

ovm_object

endf unction

clone

virtual function ovm object clone ()

The clone method creates and returns an exact copy of this object.

The default implementation calls create followed by copy. As clone is virtual, derived classes
may override this implementation if desired.

Printing

print

function void print (ovmprinter printer

The print method deep-prints this object’s properties in a format and manner governed by the
given printer argument; if the printer argument is not provided, the global
ovm_default_printer is used. See ovm_printer for more information on printer output

formatting. See also ovm_line_printer, ovm_tree printer, and ovm_table printer for details
on the pre-defined printer “policies,” or formatters, provided by the OVM.

The print method is not virtual and must not be overloaded. To include custom information in
the print and sprint operations, derived classes must override the do_print method and use

the provided printer policy class to format the output.

sprint
function string sprint (ovmprinter printer

The sprint method works just like the print method, except the output is returned in a string
rather than displayed.

The sprint method is not virtual and must not be overloaded. To include additional fields in
the print and sprint operation, derived classes must override the do_print method and use the

provided printer policy class to format the output. The printer policy will manage all string
concatenations and provide the string to sprint to return to the caller.

13

ovm_object

do print

virtual function void do _print (ovmprinter printer)

The do_print method is the user-definable hook called by print and sprint that allows users to

customize what gets printed or sprinted beyond the field information provided by the
< ovm_field_*> macros.

The printer argument is the policy object that governs the format and content of the output.
To ensure correct print and sprint operation, and to ensure a consistent output format, the
printer must be used by all do_print implementations. That is, instead of using $display or
string concatenations directly, a do_print implementation must call through the printer’s API
to add information to be printed or sprinted.

An example implementation of do_print isasfollows

cl ass nytype extends ovm object;

dat a_obj dat a;

int f1;

virtual function void do_print (ovmprinter printer);
super.do_print(printer);
printer.print_field("f1", f1, $bits(f1), DEC);
printer.print_object("data", data);

endf unction

Then, to print and sprint the object, you could write

nytype t = new,
t.print();
ovm report_info("Received",t.sprint());

See ovm_ printer for information about the printer API.

convert2string

This virtual function is a user-definable hook, called directly by the user, that allows users to
provide object information in the form of a string. Unlike sprint, there is no requirement to

use an ovm_ printer policy object. As such, the format and content of the output is fully

customizable, which may be suitable for applications not requiring the consistent formatting
offered by the print/sprint/do_print API.

14

ovm_object

Fieldsdeclared in <ovm_field *> macros, if used, will not

automatically appear in calls to convert2string.

An example implementation of convert2string follows.

cl ass base extends ovm object;
string field = "foo";
virtual function string convert2string();
convert2string = {"base_field=",field};
endf uncti on
endcl ass

cl ass obj 2 extends ovm obj ect;
string field = "bar";
virtual function string convert2string();
convert2string = {"child_field=",field};
endf unction
endcl ass

cl ass obj extends base;
int addr = 'h123;
int data = ' h456
bit wite = 1;
obj 2 child = new,
virtual function string convert2string();
convert2string = {super.convert2string(),
$psprintf (" wite=%®0d addr=%8h data=%8h ",wite, addr, data),
chil d.convert2string()};
endf uncti on
endcl ass

Then, to display an object, you could write

obj 0 = new;
ovm report _info("BusMaster",{"Sending:\n ", 0.convert2string()});

The output will look similar to

OVM_ INFO @0: reporter [BusMaster] Sending
base field=foo wite=1 addr=00000123 dat a=00000456 child_fi el d=bar

Recording

15

ovm_object
record

function void record (ovmrecorder recorder

The record method deep-records this object’s properties according to an optional recorder
policy. The method is not virtual and must not be overloaded. To include additional fields in
the record operation, derived classes should override the do_record method.

The optional recorder argument specifies the recording policy, which governs how recording
takes place. If a recorder policy is not provided explicitly, then the global
ovm_default_recorder policy is used. See ovm_recorder for information.

A simulator’s recording mechanism is vendor-specific. By providing access via a common
interface, the ovm_recorder policy provides vendor-independent access to a simulator’s
recording capabilities.

do record

virtual function void do_record (ovmrecorder recorder)

The do_record method is the user-definable hook called by the record method. A derived
class should override this method to include its fields in a record operation.

The recorder argument is policy object for recording this object. A do_record implementation
should call the appropriate recorder methods for each of its fields. Vendor-specific recording
implementations are encapsulated in the recorder policy, thereby insulating user-code from
vendor-specific behavior. See ovm_recorder for more information.

A typical implementation is asfollows

cl ass nytype extends ovm object;
dat a_obj dat a;
int f1;
function void do_record (ovmrecorder recorder);
recorder.record field int("f1", f1, $bits(fl), DEC;
recorder.record_object("data", data);
endfunction

Copying

copy

16

ovm_object

function void copy (ovm.object rhs)

The copy method returns a deep copy of this object.

The copy method is not virtual and should not be overloaded in derived classes. To copy the
fields of a derived class, that class should override the do copy method.

do_copy

virtual function void do_copy (ovm object rhs)

The do_copy method is the user-definable hook called by the copy method. A derived class
should override this method to include its fields in a copy operation.

A typical implementation is asfollows

cl ass nytype extends ovm object;
int f1;
function void do_copy (ovm object rhs);

nmytype rhs_;

super. do_copy(rhs);

$cast (rhs_, rhs);

field 1 =rhs_.field_1
endfunction

The implementation must call super.do_copy, and it must $cast the rhs argument to the
derived type before copying.

Comparing

compare

function bit conpare (ovm object rhs,
ovm _conpar er conparer

The compare method deep compares this data object with the object provided in the rhs
(right-hand side) argument.

The compare method is not virtual and should not be overloaded in derived classes. To
compare the fields of a derived class, that class should override the do_compare method.

17

ovm_object

The optional comparer argument specifies the comparison policy. It allows you to control
some aspects of the comparison operation. It also stores the results of the comparison, such
as field-by-field miscompare information and the total number of miscompares. If a compare
policy is not provided, then the global ovm_default_comparer policy is used. See
ovm_comparer for more information.

do_compare

virtual function bit do_conpare (ovm obj ect rhs,
ovm _conpar er comnparer)

The do_compare method is the user-definable hook called by the compare method. A derived
class should override this method to include its fields in a compare operation.

A typical implementation is asfollows

cl ass nytype extends ovm object;

int f1;

virtual function bit do_conpare (ovm object rhs,ovm conparer conparer);
nytype rhs_;

do_conpare = super.do_conpare(rhs, conparer);

$cast (rhs_, rhs);

do_conpare &= conparer.conpare_field_ int("f1", f1, rhs_.f1);
endf uncti on

A derived class implementation must call super.do_compare to ensure its base class’
properties, if any, are included in the comparison. Also, the rhs argument is provided as a
generic ovm_object. Thus, you must $cast it to the type of this object before comparing.

The actual comparison should be implemented using the ovm_comparer object rather than
direct field-by-field comparison. This enables users of your class to customize how
comparisons are performed and how much miscompare information is collected. See
ovm_comparer for more details.

Packing

pack

function int pack (bi t bitstreanf],
ovm packer packer

18

ovm_object

pack bytes

function int pack bytes (unsi gned byt estrean],
ovm packer packer

pack_ints

function int pack_ ints (unsi gned intstreani],

ovm packer packer

The pack methods bitwise-concatenate this object’s properties into an array of bits, bytes, or
ints. The methods are not virtual and must not be overloaded. To include additional fields in
the pack operation, derived classes should override the do pack method.

The optional packer argument specifies the packing policy, which governs the packing
operation. If a packer policy is not provided, the global ovm_default_packer policy is used.

See ovm_packer for more information.

The return value is the total number of bits packed into the given array. Use the array’s built-
in size method to get the number of bytes or ints consumed during the packing process.

do_pack

virtual function void do_pack (ovm packer packer)

The do_pack method is the user-definable hook called by the pack methods. A derived class
should override this method to include its fields in a pack operation.

The packer argument is the policy object for packing. The policy object should be used to
pack objects.

A typical example of an object packing itself is as follows

cl ass nysubtype extends nysupertype;

shortint myshort;
obj _type mnyobj ;
byte nyarray[];

function void do_pack (ovm packer packer)
super . do_pack(packer); // pack nmysupertype properties
packer. pack_field_int(nyarray.size(), 32);
foreach (nyarray)
packer. pack_field_int(nyarray[index], 8);
packer . pack_field_int(nyshort, $bits(myshort));
packer . pack_obj ect (nyobj);

19

ovm_object

endf unction

The implementation must call super.do_pack so that base class properties are packed as well.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you must
include meta-information about the dynamic data when packing as follows.

. For queues, dynamic arrays, or associative arrays, pack the number of elements in
the array in the 32 bits immediately before packing individual elements, as shown
above.

. For string data types, append a zero byte after packing the string contents.

. For objects, pack 4 bits immediately before packing the object. For null objects, pack
4'b0000. For non-null objects, pack 4’b0001.

When the “ovm_*_field macros are used, the above meta information is included provided
the ovm_packer’s <use_metadata> variable is set.

Packing order does not need to match declaration order. However, unpacking order must
match packing order.

Unpacking
unpack
function int unpack (bi t bitstreani],

ovm packer packer

unpack_bytes

function int unpack bytes (unsi gned bytestreani],
ovm packer packer

unpack_ints
function int unpack_ ints (unsi gned Intstrean],
ovm packer packer

The unpack methods extract property values from an array of bits, bytes, or ints. The
20

ovm_object

method of unpacking must exactly correspond to the method of packing. This is assured if (a)
the same packer policy is used to pack and unpack, and (b) the order of unpacking is the
same as the order of packing used to create the input array.

The unpack methods are fixed (non-virtual) entry points that are directly callable by the user.
To include additional fields in the unpack operation, derived classes should override the

do_unpack method.

The optional packer argument specifies the packing policy, which governs both the pack and
unpack operation. If a packer policy is not provided, then the global ovm_default _packer
policy is used. See ovm_packer for more information.

The return value is the actual number of bits unpacked from the given array.

do_unpack

virtual function void do_unpack (ovm packer packer)

The do_unpack method is the user-definable hook called by the unpack method. A derived
class should override this method to include its fields in an unpack operation.

The packer argument is the policy object for both packing and unpacking. It must be the
same packer used to pack the object into bits. Also, do_unpack must unpack fields in the
same order in which they were packed. See ovm_packer for more information.

The following implementation corresponds to the example given in do_pack.

function void do_unpack (ovm packer packer);
int sz;
super. do_unpack(packer); // unpack super's properties
sz = packer.unpack_field_int(nyarray.size(), 32);
nyarray. del ete();
for(int index=0; index<sz; index++)
nyarray[index] = packer.unpack_field_int(8);
nyshort = packer.unpack field_int($bits(myshort));
packer . unpack_obj ect (nmyobj);
endf unction

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure, you must have included

meta-information about the dynamic data when it was packed.

. For queues, dynamic arrays, or associative arrays, unpack the number of elements in
the array from the 32 bits immediately before unpacking individual elements, as
shown above.

. For string data types, unpack into the new string until a null byte is encountered.

. For objects, unpack 4 bits into a byte or int variable. If the value is O, the target
21

ovm_object

object should be set to null and unpacking continues to the next property, if any. If
the least significant bit is 1, then the target object should be allocated and its
properties unpacked.

Configuration

set_int_local

virtual function void set _int _local (string field nane,
ovm bitstreamt val ue,
bi t recurse

set_string_local

virtual function void set_string |local (string field nane,
string val ue,

bi t recurse
set_object_local
virtual function void set_object |ocal (string field _nane,
ovm obj ect val ue,
bi t cl one
bi t recurse

These methods provide write access to integral, string, and ovm_object-based properties
indexed by a field_name string. The object designer choose which, if any, properties will be
accessible, and overrides the appropriate methods depending on the properties’ types. For
objects, the optional clone argument specifies whether to clone the value argument before
assignment.

The global ovm_is_match function is used to match the field names, so field_name may
contain wildcards.

An example implementation of all three methods is as follows.

cl ass nytype extends ovm object;

| ocal int nyint;
| ocal byte nybyte;
| ocal shortint myshort; // no access
22

ovm_object

| ocal string mystring;
| ocal obj type nyobj;

/'l provide access to integral properties
function void set_int _local (string field nane, ovmbitstreamt val ue);
if (ovmis_match (field_nane, "nyint"))
nyi nt = val ue;
else if (ovmis_match (field_name, "nmybyte"))
nybyte = val ue;
endf uncti on

/'l provide access to string properties
function void set_string local (string field_nanme, string value);
if (ovmis_match (field_nanme, "nystring"))
nystring = val ue
endf unction

/'l provide access to sub-objects
function void set_object_local (string field_nanme, ovm object val ue
bit clone=1);
if (ovmis_match (field name, "nyobj")) begin
if (value !'= null) begin
obj _type tnp;
/1 if provided value is not correct type, produce error
if (!$cast(tnp, val ue)
/* error */
el se
myobj = clone ? tnp.clone() : tnp;
end
el se
myobj = null; // value is null, so sinply assign null to nyobj
end
endfunction

Although the object designer implements these methods to provide outside access to one or
more properties, they are intended for internal use (e.g., for command-line debugging and
auto-configuration) and should not be called directly by the user.

23

ovm_transaction

ovm_transaction

The ovm_transaction class is the root base class for OVM transactions.

Inheriting all the

methods of ovm_object, ovm_transaction adds a timing and recording interface.

Summary

ovm__transaction
The ovm_transaction class is the root base class for OVM transactions.

Class Hierarchy
ovm_object

lovm_transaction|

Class Declaration
cl ass ovm transacti on extends ovm obj ect

vi rt ual

Methods
new
accept_tr

do_accept_tr
begin_tr
begin_child_tr
do_begin_tr

end_tr
do_end_tr

get_tr_handle

disable_recording
enable_recording

Creates a new transaction object.

Calling accept_tr indicates that the transaction has been accepted for processing by
a consumer component, such as an ovm_driver.

This user-definable callback is called by accept_tr just before the accept event is
triggered.

This function indicates that the transaction has been started and is not the child of
another transaction.

This function indicates that the transaction has been started as a child of a parent
transaction given by parent_handle.

This user-definable callback is called by begin_tr and begin_child_tr just before the
begin event is triggered.

This function indicates that the transaction execution has ended.

This user-definable callback is called by end_tr just before the end event is
triggered.

Returns the handle associated with the transaction, as set by a previous call to
begin_child_tr or begin_tr with transaction recording enabled.

Turns off recording for the transaction stream.

Turns on recording to the stream specified by stream, whose interpretation is
implementation specific.

is_recording_enabledReturns 1 if recording is currently on, O otherwise.

is_active
get_event_pool
set_initiator
get_initiator

get_accept_time
get_begin_time
get_end_time

set_transaction_id
get_transaction_id

Returns 1 if the transaction has been started but has not yet been ended.
Returns the event pool associated with this transaction.
Sets initiator as the initiator of this transaction.

Returns the component that produced or started the transaction, as set by a
previous call to set_initiator.

Returns the time at which this transaction was accepted, begun, or ended, as by a
previous call to accept_tr, begin_tr, begin_child_tr, or end_tr.

Sets this transaction’s numeric identifier to id.

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

24

ovm_transaction

M ethods

new
function new (string name
ovm conponent initiator

Creates a new transaction object. The name is the instance name of the transaction. If not
supplied, then the object is unnamed.

accept_tr

function void accept _tr (tine accept _tine)

Calling accept_tr indicates that the transaction has been accepted for processing by a
consumer component, such as an ovm_driver. With some protocols, the transaction may not
be started immediately after it is accepted. For example, a bus driver may have to wait for a
bus grant before starting the transaction.

Thisfunction performsthe following actions

. The transaction’s internal accept time is set to the current simulation time, or to
accept_time if provided and non-zero. The accept_time may be any time, past or
future.

. The transaction’s internal accept event is triggered. Any processes waiting on the
this event will resume in the next delta cycle.

. The do_accept_tr method is called to allow for any post-accept action in derived
classes.

do_accept_tr

virtual protected function void do_accept_tr ()

This user-definable callback is called by accept_tr just before the accept event is triggered.
Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr

25

ovm_transaction

function integer begin_tr (tinme begin_tinme)

This function indicates that the transaction has been started and is not the child of another
transaction. Generally, a consumer component begins execution of the transactions it
receives.

Thisfunction performsthe following actions

. The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

. If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from ovm_object is then called,
which records the current property values to this new transaction.

. The do_begin_tr method is called to allow for any post-begin action in derived classes.

. The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

begin_child_tr

function integer begin child tr (time begin_tine
I nt eger parent handl e

This function indicates that the transaction has been started as a child of a parent transaction
given by parent_handle. Generally, a consumer component begins execution of the
transactions it receives.

The parent handle is obtained by a previous call to begin_tr or begin_child_tr. If the
parent_handle is invalid (=0), then this function behaves the same as begin_tr.

Thisfunction performsthe following actions

. The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

. If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from ovm_object is then called,
which records the current property values to this new transaction. Finally, the newly
started transaction is linked to the parent transaction given by parent_handle.

. The do_begin_tr method is called to allow for any post-begin action in derived classes.

. The transaction’s internal begin event is triggered. Any processes waiting on this
26

ovm_transaction

event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

do_begin_tr
virtual protected function void do_begin_ tr ()
This user-definable callback is called by begin_tr and begin_child_tr just before the begin

event is triggered. Implementations should call super.do_begin_tr to ensure correct
operation.

end _tr

function void end _tr (tine end_tine
bit free handle

This function indicates that the transaction execution has ended. Generally, a consumer
component ends execution of the transactions it receives.

Thisfunction performsthe following actions

. The transaction’s internal end time is set to the current simulation time, or to
end_time if provided and non-zero. The end_time may be any time, past or future,
but should not be less than the begin time.

. If recording is enabled and a database-transaction is currently active, then the record
method inherited from ovm_object is called, which records the final property values.
The transaction is then ended. If free_handle is set, the transaction is released and
can no longer be linked to (if supported by the implementation).

. The do_end_tr method is called to allow for any post-end action in derived classes.

. The transaction’s internal end event is triggered. Any processes waiting on this event
will resume in the next delta cycle.

do end tr

virtual protected function void do_end tr ()

This user-definable callback is called by end_tr just before the end event is triggered.
Implementations should call super.do_end_tr to ensure correct operation.

27

ovm_transaction

get_tr_handle

function integer get _tr_handle ()

Returns the handle associated with the transaction, as set by a previous call to begin_child_tr
or begin_tr with transaction recording enabled.

disable recording

function void disable_recording ()

Turns off recording for the transaction stream. This method does not effect a component’s
recording streams.

enable recording

function void enable recording (string stream

Turns on recording to the stream specified by stream, whose interpretation is implementation
specific.

If transaction recording is on, then a call to record is made when the transaction is started
and when it is ended.

IS recording_enabled

function bit is_recordi ng_enabl ed()

Returns 1 if recording is currently on, O otherwise.

IS _active

function bit is_active ()

Returns 1 if the transaction has been started but has not yet been ended. Returns O if the
transaction has not been started.

get_event_pool
functi on ovm event pool get_event_pool ()

28

ovm_transaction

Returns the event pool associated with this transaction.

By default, the event pool contains the events: begin, accept, and end. Events can also be
added by derivative objects. See ovm_event_pool for more information.

set_initiator

function void set_initiator (ovm conponent initiator)

Sets initiator as the initiator of this transaction.

The initiator can be the component that produces the transaction. It can also be the

component that started the transaction. This or any other usage is up to the transaction
designer.

get_initiator

functi on ovm conponent get _initiator ()

Returns the component that produced or started the transaction, as set by a previous call to
set_initiator.

get_accept_time

function time get _accept _tinme ()

get_begin_time

function tinme get_begin_tinme ()

get_end_time

function tine get_end tinme ()

Returns the time at which this transaction was accepted, begun, or ended, as by a previous
call to accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_id

29

ovm_transaction

function void set _transaction_id(integer id)

Sets this transaction’s numeric identifier to id. If not set via this method, the transaction ID
defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

get_transaction _id

function integer get _transaction_id()

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

30

ovm_component

ovm_component

The ovm_component class is the root base class for OVM components.

In addition to the features

inherited from ovm_object and ovm_report_object, ovm_component provides the following interfaces:

Hierarchy
Configuration

Phasing

Reporting

provides methods for searching and traversing the component hierarchy.
provides methods for configuring component topology and other parameters
ahead of and during component construction.

defines a phased test flow that all components follow. Derived components
implement one or more of the predefined phase callback methods to perform
their function. During simulation, all components’ callbacks are executed in
precise order. Phasing is controlled by ovm_top, the singleton instance of
ovm_root.

provides a convenience interface to the ovm_report_handler. All messages,

warnings, and errors are processed through this interface.

Transaction recordingprovides methods for recording the transactions produced or consumed by the

Factory

component to a transaction database (vendor specific).

provides a convenience interface to the ovm_factory. The factory is used to
create new components and other objects based on type-wide and instance-
specific configuration.

The ovm_component is automatically seeded during construction using OVM seeding, if enabled. All
other objects must be manually reseeded, if appropriate. See ovm_object::reseed for more

information.
Summary

ovim_component
The ovm_component class is the root base class for OVM components.

Class Hierarchy
ovm_object

ovm_report_object

lovm_component]|

Class Declaration
vi rtual

new

Hierarchy Interface

get_parent
get_full_name
get_child
get_next_child
get_first_child
get_num_children
has_child
set_name

lookup

Phasing Interface
build

connect
end_of_elaboration

start_of_simulation

cl ass ovm conponent extends ovm report_obj ect

Creates a new component with the given leaf instance name and handle to
to its parent.

These methods provide user access to information about the component
hierarchy, i.e., topology.

Returns a handle to this component’s parent, or null if it has no parent.
Returns the full hierarchical name of this object.

These methods are used to iterate through this component’s children, if any.
Returns the number of this component’s children.
Returns 1 if this component has a child with the given name, 0 otherwise.
Renames this component to name and recalculates all descendants’ full
names.
Looks for a component with the given hierarchical name relative to this
component.
Components execute their behavior in strictly ordered, pre-defined phases.
The build phase callback is the first of several methods automatically called
during the course of simulation.
The connect phase callback is one of several methods automatically called
during the course of simulation.
The end_of_elaboration phase callback is one of several methods
automatically called during the course of simulation.
The start_of_simulation phase callback is one of several methods
automatically called during the course of simulation.

31

ovm_component
run
extract
check
report
suspend
resume
status

kill
do_Kkill_all
stop

enable_stop_interrupt
resolve_bindings

Configuration Interface

set_config_int
set_config_string
set_config_object

get_config_int
get_config_string
get_config_object

check_config_usage

apply_config_settings
print_config_settings

print_config_matches
Objection Interface
raised

dropped

all_dropped

Factory Interface

create_component

create_object

set_type_ override_ by type

set_inst_override_by_type

The run phase callback is the only predefined phase that is time-consuming,
i.e., task-based.

The extract phase callback is one of several methods automatically called
during the course of simulation.

The check phase callback is one of several methods automatically called
during the course of simulation.

The report phase callback is the last of several predefined phase methods
automatically called during the course of simulation.

Suspends the process tree spawned from this component’s currently
executing task-based phase, e.g.

Resumes the process tree spawned from this component’s currently
executing task-based phase, e.g.

Returns the status of the parent process associated with the currently
running task-based phase, e.g., run.

Kills the process tree associated with this component’s currently running
task-based phase, e.g., run.

Recursively calls kill on this component and all its descendants, which
abruptly ends the currently running task-based phase, e.g., run.

The stop task is called when this component’s enable_stop_interrupt bit is
set and global_stop_request is called during a task-based phase, e.g., run.
This bit allows a component to raise an objection to the stopping of the
current phase.

Processes all port, export, and imp connections.

Components can be designed to be user-configurable in terms of its topology
(the type and number of children it has), mode of operation, and run-time
parameters (knobs).

Calling set_config_* causes configuration settings to be created and placed
in a table internal to this component.

These methods retrieve configuration settings made by previous calls to their
set_config_* counterparts.

Check all configuration settings in a components configuration table to
determine if the setting has been used, overridden or not used.

Searches for all config settings matching this component’s instance path.
Called without arguments, print_config_settings prints all configuration
information for this component, as set by previous calls to set_config_*.
Setting this static variable causes get_config_* to print info about matching
configuration settings as they are being applied.

These methods provide object level hooks into the ovm_objection
mechanism.

The raised callback is called when a decendant of the component instance
raises the specfied objection.

The dropped callback is called when a decendant of the component instance
raises the specfied objection.

The all_dropped callback is called when a decendant of the component
instance raises the specfied objection.

The factory interface provides convenient access to a portion of OVM's
ovm_factory interface.

A convenience function for ovm_factory::create_component_by_name, this
method calls upon the factory to create a new child component whose type
corresponds to the preregistered type name, requested_type_name, and
instance name, name.

A convenience function for ovm_factory::create_object_by_name, this
method calls upon the factory to create a new object whose type
corresponds to the preregistered type name, requested_type_name, and
instance name, name.

A convenience function for ovm_factory::set_type_override_by_type, this
method registers a factory override for components and objects created at
this level of hierarchy or below.

A convenience function for ovm_factory::set_inst_override_by type, this
method registers a factory override for components and objects created at
this level of hierarchy or below.

32

ovm_component

set_type_override A convenience function for ovm_factory::set_type_override_by name, this
method configures the factory to create an object of type
override_type_name whenever the factory is asked to produce a type
represented by original_type_name.

set_inst_override A convenience function for ovm_factory::set_inst_override_by_type, this

method registers a factory override for components created at this level of

hierarchy or below.

This factory debug method performs the same lookup process as

create_object and create_component, but instead of creating an object, it

prints information about what type of object would be created given the

provided arguments.

Hierarchical Reporting InterfaceThis interface provides versions of the set_report_* methods in the
ovm_report_object base class that are applied recursively to this component
and all its children.

print_override_info

set_report_severity action_hier

set_report_id_action_hier

set_report_severity_id_action_hier These methods recursively associate the specified action with reports of the
given severity, id, or severity-id pair.

set_report_default_file_hier

set_report_severity_file_hier

set_report_id_file_hier

set_report_severity_id_file_hier These methods recursively associate the specified FILE descriptor with
reports of the given severity, id, or severity-id pair.

set_report_verbosity level hier This method recursively sets the maximum verbosity level for reports for this

component and all those below it.

These methods comprise the component-based transaction recording

interface.

Recording Interface

accept_tr
do_accept_tr

This function marks the acceptance of a transaction, tr, by this component.
The accept_tr method calls this function to accommodate any user-defined
post-accept action.

begin_tr This function marks the start of a transaction, tr, by this component.

begin_child_tr This function marks the start of a child transaction, tr, by this component.

do_begin_tr The begin_tr and begin_child_tr methods call this function to accommodate
any user-defined post-begin action.

end_tr This function marks the end of a transaction, tr, by this component.

do_end_tr The end_tr method calls this function to accommodate any user-defined post-
end action.

record_error_tr This function marks an error transaction by a component.

record_event_tr This function marks an event transaction by a component.

print_enabled This bit determines if this component should automatically be printed as a
child of its parent object.

new

function new (string nane,

ovm conponent parent)

Creates a new component with the given leaf instance name and handle to to its parent. If the
component is a top-level component (i.e. it is created in a static module or interface), parent should
be null.

The component will be inserted as a child of the parent object, if any. If parent already has a child
by the given name, an error is produced.

If parent is null, then the component will become a child of the implicit top-level component,
ovm_top.

All classes derived from ovm_component must call super.new(name,parent).

33

ovm_component

Hierarchy Interface

These methods provide user access to information about the component hierarchy, i.e., topology.

get_parent

virtual function ovm conponent get_parent ()

Returns a handle to this component’s parent, or null if it has no parent.

get_full_name

virtual function string get _full _name ()

Returns the full hierarchical name of this object. The default implementation concatenates the
hierarchical name of the parent, if any, with the leaf name of this object, as given by ovm_object::

get_name.

get_child

function ovm conmponent get child (string name)

get_next_child

function int get_next_child (ref string nane)

get_first_child
function int get_first_child (ref string nane)

These methods are used to iterate through this component’s children, if any. For example, given a
component with an object handle, comp, the following code calls ovm_object::print for each child:

string nane;
ovm conponent chil d;
if (conmp.get_first_child(nane))
do begin
child = conp. get_chil d(nane)
child.print();
end while (conp.get_next_child(nane))

get_num_children

function int get_numchildren ()

Returns the number of this component’s children.

34

ovm_component

has_child

function int has_child (string name)

Returns 1 if this component has a child with the given name, 0 otherwise.

set_name

virtual function void set_name (string nane)

Renames this component to name and recalculates all descendants’ full names.

lookup

function ovm conmponent | ookup (string namne)

Looks for a component with the given hierarchical name relative to this component. If the given
name is preceded with a‘.” (dot), then the search begins relative to the top level (absolute lookup).
The handle of the matching component is returned, else null. The name must not contain wildcards.

Phasing I nterface

Components execute their behavior in strictly ordered, pre-defined phases. Each phase is defined by
its own method, which derived components can override to incorporate component-specific behavior.
During simulation, the phases are executed one by one, where one phase must complete before the
next phase begins. The following briefly describe each phase:

new Also known as the constructor, the component does basic initialization of any
members not subject to configuration.
build The component constructs its children. It uses the get_config interface to obtain

any configuration for itself, the set_config interface to set any configuration for its
own children, and the factory interface for actually creating the children and other
objects it might need.

connect The component now makes connections (binds TLM ports and exports) from child-
to-child or from child-to-self (i.e. to promote a child port or export up the
hierarchy for external access. Afterward, all connections are checked via
resolve_bindings before entering the end_of elaboration phase.

end_of_elaborationAt this point, the entire testbench environment has been built and connected. No
new components and connections may be created from this point forward.
Components can do final checks for proper connectivity, and it can initiate
communication with other tools that require stable, quasi-static component
structure..

start_of_simulationThe simulation is about to begin, and this phase can be used to perform any pre-
run activity such as displaying banners, printing final testbench topology and
configuration information.

run This is where verification takes place. It is the only predefined, time-consuming
phase. A component’s primary function is implemented in the run task. Other
processes may be forked if desired. When a component returns from its run task,
it does not signify completion of its run phase. Any processes that it may have
forked continue to run. The run phase terminates in one of four ways:

35

ovm_component

stop When a component’s enable_stop_interrupt bit is set and global stop request is
called, the component’s stop task is called. Components can implement stop to
allow completion of in-progress transactions, <flush> queues, etc. Upon return
from stop() by all enabled components, a do_Kill_all is issued. If the
ovm_test_done_objection is being used, this stopping procedure is deferred until
all outstanding objections on ovm_test _done have been dropped.

objections dropped The ovm_test_done_objection will implicitly call global_stop_request when all
objections to ending the phase are dropped. The stop procedure described above
is then allowed to proceed normally.

kill When called, all component’s run processes are killed immediately. While kill can
be called directly, it is recommended that components use the stopping
mechanism, which affords a more ordered and safe shut-down.

timeout If a timeout was set, then the phase ends if it expires before either of the above
occur. Without a stop, kill, or timeout, simulation can continue “forever”, or the
simulator may end simulation prematurely if it determines that all processes are
waiting.

extract This phase can be used to extract simulation results from coverage collectors and
scoreboards, collect status/error counts, statistics, and other information from
components in bottom-up order. Being a separate phase, extract ensures all
relevant data from potentially independent sources (i.e. other components) are
collected before being checked in the next phase.

check Having extracted vital simulation results in the previous phase, the check phase
can be used to validate such data and determine the overall simulation outcome.
It too executes bottom-up.

report Finally, the report phase is used to output results to files and/or the screen.

All task-based phases (run is the only pre-defined task phase) will run forever until killed or stopped
via Kill or global_stop request. The latter causes each component’s stop task to get called back if its
enable_stop_interrupt bit is set. After all components’ stop tasks return, the OVM will end the phase.

Note- the post_new, export_connections, import_connections, configure, and pre_run phases are
deprecated. build replaces post_new, connect replaces both import_ and export_connections, and

start_of simulation replaces pre_run.

build

virtual function void build ()

The build phase callback is the first of several methods automatically called during the course of
simulation. The build phase is the second of a two-pass construction process (the first is the built-in
new method).

The build phase can add additional hierarchy based on configuration information not available at time
of initial construction. Any override should call super.build().

Starting after the initial construction phase (new method) has completed, the build phase consists of

calling all components’ build methods recursively top-down, i.e., parents’ build are executed before
the children. This is the only phase that executes top-down.

The build phase of the ovm_component class executes the automatic configuration of fields registed
in the component by calling apply_config_settings. To turn off automatic configuration for a
component, do not call super.build() in the subtype’s build method.

See ovm_phase for more information on phases.

connect
36

ovm_component

virtual function void connect ()

The connect phase callback is one of several methods automatically called during the course of
simulation.

Starting after the build phase has completed, the connect phase consists of calling all components’
connect methods recursively in depth-first, bottom-up order, i.e., children are executed before their
parents.

Generally, derived classes should override this method to make port and export connections via the
similarly-named ovm_port_base #(IF)::connect method. Any override should call super.connect().

This method should never be called directly.

See ovm_phase for more information on phases.

end_of_elaboration

virtual function void end _of el aboration ()

The end_of_elaboration phase callback is one of several methods automatically called during the
course of simulation.

Starting after the connect phase has completed, this phase consists of calling all components’
end_of_elaboration methods recursively in depth-first, bottom-up order, i.e., children are executed
before their parents.

Generally, derived classes should override this method to perform any checks on the elaborated
hierarchy before the simulation phases begin. Any override should call super.end_of_elaboration().

This method should never be called directly.

See ovm_phase for more information on phases.

start_of simulation

virtual function void start_of _simulation ()

The start_of_simulation phase callback is one of several methods automatically called during the
course of simulation.

Starting after the end_of elaboration phase has completed, this phase consists of calling all
components’ start_of_simulation methods recursively in depth-first, bottom-up order, i.e. children
are executed before their parents.

Generally, derived classes should override this method to perform component- specific pre-run
operations, such as discovery of the elaborated hierarchy, printing banners, etc. Any override should
call super.start_of_simulation().

This method should never be called directly.

See ovm_phase for more information on phases.

run
u 37

ovm_component

virtual task run ()

The run phase callback is the only predefined phase that is time-consuming, i.e., task-based. It
executes after the start_of simulation phase has completed. Derived classes should override this

method to perform the bulk of its functionality, forking additional processes if needed.

In the run phase, all components’ run tasks are forked as independent processes. Returning from its
run task does not signify completion of a component’s run phase; any processes forked by run
continue to run.

The run phase terminates in one of four ways.
lexplicit call to global_stop_ request - When global_stop_request is called, an ordered shut-down for

the currently running phase begins. First, all enabled components’ status tasks are called bottom-
up, i.e., childrens’ stop tasks are called before the parent’s. A component is enabled by its
enable_stop_interrupt bit. Each component can implement stop to allow completion of in-progress
transactions, flush queues, and other shut-down activities. Upon return from stop by all enabled
components, the recursive do_Kill_all is called on all top-level component(s). If the ovm_test done

objection> is being used, this stopping procedure is deferred until all outstanding objections on
ovm_test _done have been dropped.

2all objections to ovm_test _done have been dropped - When all objections on the ovm_test_done
objection have been dropped, global_stop_request is called automatically, thus kicking off the
stopping procedure described above. See ovm_objection for details on using the objection
mechanism.

3explicit call to kill or do_kill_all - When Kill is called, this component’s run processes are killed
immediately. The do_Kkill_all methods applies to this component and all its descendants. Use of this

method is not recommended. It is better to use the stopping mechanism, which affords a more
ordered, safer shut-down.
4timeout - The phase ends if the timeout expires before an explicit call to global stop request or

kill. By default, the timeout is set to near the maximum simulation time possible. You may
override this via set_global timeout, but you cannot disable the timeout completely.

If the default timeout occurs in your simulation, or if simulation never ends despite completion of
your test stimulus, then it usually indicates a missing call to global_stop_request.

The run task should never be called directly.

See ovm_phase for more information on phases.

extract

virtual function void extract ()

The extract phase callback is one of several methods automatically called during the course of
simulation.

Starting after the run phase has completed, the extract phase consists of calling all components’

extract methods recursively in depth-first, bottom-up order, i.e., children are executed before their
parents.

Generally, derived classes should override this method to collect information for the subsequent
check phase when such information needs to be collected in a hierarchical, bottom-up manner. Any
override should call super.extract().

This method should never be called directly.

See ovm_phase for more information on phases.

38

ovm_component

check

virtual function void check ()

The check phase callback is one of several methods automatically called during the course of
simulation.

Starting after the extract phase has completed, the check phase consists of calling all components’
check methods recursively in depth-first, bottom-up order, i.e., children are executed before their
parents.

Generally, derived classes should override this method to perform component specific, end-of-test
checks. Any override should call super.check().

This method should never be called directly.

See ovm_phase for more information on phases.

report

virtual function void report ()

The report phase callback is the last of several predefined phase methods automatically called during
the course of simulation.

Starting after the check phase has completed, the report phase consists of calling all components’
report methods recursively in depth-first, bottom-up order, i.e., children are executed before their
parents.

Generally, derived classes should override this method to perform component-specific reporting of
test results. Any override should call super.report().

This method should never be called directly.

See ovm_phase for more information on phases.

suspend

virtual task suspend ()

Suspends the process tree spawned from this component’s currently executing task-based phase, e.
g. run.

resume

virtual task resune ()

Resumes the process tree spawned from this component’s currently executing task-based phase, e.
g. run.

status 39

ovm_component

function string status ()

Returns the status of the parent process associated with the currently running task-based phase, e.
g., run.

Kill

virtual function void kill ()
Kills the process tree associated with this component’s currently running task-based phase, e.g., run.

An alternative mechanism for stopping the run phase is the stop request. Calling
global stop request causes all components’ run processes to be killed, but only after all components
have had the opportunity to complete in progress transactions and shutdown cleanly via their stop
tasks.

do_kill_all

virtual function void do kill_all ()

Recursively calls kill on this component and all its descendants, which abruptly ends the currently
running task-based phase, e.g., run. See run for better options to ending a task-based phase.

stop

virtual task stop (string ph_nane)

The stop task is called when this component’s enable stop_interrupt bit is set and
global_stop_request is called during a task-based phase, e.g., run.

Before a phase is abruptly ended, e.g., when a test deems the simulation complete, some
components may need extra time to shut down cleanly. Such components may implement stop to
finish the currently executing transaction, flush the queue, or perform other cleanup. Upon return
from its stop, a component signals it is ready to be stopped.

The stop method will not be called if enable_stop_interrupt is O.
The default implementation of stop is empty, i.e., it will return immediately.

This method should never be called directly.

enable stop_interrupt

protected int enable_stop_interrupt = 0

This bit allows a component to raise an objection to the stopping of the current phase. It affects only
time consuming phases (such as the run phase).

When this bit is set, the stop task in the component is called as a result of a call to
global_stop_request. Components that are sensitive to an immediate killing of its run-time processes
should set this bit and implement the stop task to prepare for shutdown.

40

ovm_component

resolve_bindings

virtual function void resolve_bindings ()

Processes all port, export, and imp connections. Checks whether each port’s min and max
connection requirements are met.

It is called just before the end_of elaboration phase.

Users should not call directly.

Configuration Interface

Components can be designed to be user-configurable in terms of its topology (the type and number
of children it has), mode of operation, and run-time parameters (knobs). The configuration interface
accommodates this common need, allowing component composition and state to be modified without
having to derive new classes or new class hierarchies for every configuration scenario.

set_config_int

virtual function void set_config_int (string i nst_nane,
string field nane,
ovm bitstreamt val ue)

set_config_string

virtual function void set_config_string (string inst_nane,
string field_nane,

string val ue)
set_config_object
virtual function void set_config_object (string i nst_nane,
string field nane,
ovm obj ect val ue,
bi t cl one

Calling set_config_* causes configuration settings to be created and placed in a table internal to this
component. There are similar global methods that store settings in a global table. Each setting
stores the supplied inst_name, field_name, and value for later use by descendent components during
their construction. (The global table applies to all components and takes precedence over the
component tables.)

When a descendant component calls a get_config_* method, the inst_name and field_name provided
in the get call are matched against all the configuration settings stored in the global table and then in
each component in the parent hierarchy, top-down. Upon the first match, the value stored in the
configuration setting is returned. Thus, precedence is global, following by the top-level component,
and so on down to the descendent component’s parent.

41

ovm_component

These methods work in conjunction with the get_config_* methods to provide a configuration setting
mechanism for integral, string, and ovm_object-based types. Settings of other types, such as virtual
interfaces and arrays, can be indirectly supported by defining a class that contains them.

Both inst_name and field_name may contain wildcards.

. For set_config_int, value is an integral value that can be anything from 1 bit to 4096 bits.
. For set_config_string, value is a string.

. For set_config_object, value must be an ovm_object-based object or null. Its clone

argument specifies whether the object should be cloned. If set, the object is cloned both
going into the table (during the set) and coming out of the table (during the get), so that
multiple components matched to the same setting (by way of wildcards) do not end up
sharing the same object.

The following message tags are used for configuration setting. You can use the standard ovm report
messaging interface to control these messages. CFGNTS -- The configuration setting was not used
by any component. This is a warning. CFGOVR -- The configuration setting was overridden by a
setting above. CFGSET -- The configuration setting was used at least once.

See get_config_int, get_config_string, and get_config_object for information on getting the
configurations set by these methods.

get_config_int

virtual function bit get_config_int (string fiel d_nane,
ovm bitstreamt val ue)

get_config_string

virtual function bit get _config string (string field_nane,
string val ue)

get_config_object

virtual function bit get _config object (string field nane,
ovm obj ect val ue,
bi t cl one

These methods retrieve configuration settings made by previous calls to their set_config_*
counterparts. As the methods’ names suggest, there is direct support for integral types, strings, and
objects. Settings of other types can be indirectly supported by defining an object to contain them.

Configuration settings are stored in a global table and in each component instance. With each call to
a get_config_* method, a top-down search is made for a setting that matches this component’s full
name and the given field_name. For example, say this component’s full instance name is top.ul.u2.
First, the global configuration table is searched. If that fails, then it searches the configuration table
in component ‘top’, followed by top.ul.

The first instance/field that matches causes value to be written with the value of the configuration
setting and 1 is returned. If no match is found, then value is unchanged and the O returned.

Calling the get_config_object method requires special handling. Because value is an output of type
ovm_object, you must provide an ovm_object handle to assign to (not a derived class handle). After
42

ovm_component
the call, you can then $cast to the actual type.

For example, the following code illustrates how a component designer might call upon the
configuration mechanism to assign its data object property, whose type myobj_t derives from
ovm_object.

cl ass nyconponent extends ovm conponent;
| ocal myobj t data;
function void build();
ovm obj ect tnp;
super . bui I d();
i f(get_config_object("data", tnp))
if (!$cast(data, tnp))

$di splay("error! config setting for 'data’ not of type nyobj_t");
endf uncti on

The above example overrides the build method. If you want to retain any base functionality, you
must call super.build().

The clone bit clones the data inbound. The get_config_object method can also clone the data
outbound.

See Members for information on setting the global configuration table.

check config_usage

function void check _config usage (bit recurse
Check all configuration settings in a components configuration table to determine if the setting has
been used, overridden or not used. When recurse is 1 (default), configuration for this and all child

components are recursively checked. This function is automatically called in the check phase, but
can be manually called at any time.

Additional detail is provided by the following message tags

. CFGOVR -- lists all configuration settings that have been overridden from above.

. CFGSET -- lists all configuration settings that have been set.

To get all configuration information prior to the run phase, do something like this in your top object:

function void start_of _sinulation();
set _report _id_action_hier(CFGOVR, OVM DI SPLAY);
set _report _id_action_hier(CFGSET, OVM DI SPLAY);
check_confi g_usage();

endf uncti on

apply_config_settings

virtual function void apply config settings (bit verbose)

Searches for all config settings matching this component’s instance path. For each match, the
appropriate set_*_local method is called using the matchj@g config setting’s field_name and value.

ovm_component

Provided the set_*_local method is implemented, the component property associated with the
field_name is assigned the given value.

This function is called by ovm_component::build.

The apply_config_settings method determines all the configuration settings targeting this component
and calls the appropriate set_*_local method to set each one. To work, you must override one or
more set_*_local methods to accommodate setting of your component’s specific properties. Any
properties registered with the optional ~ovm_*_field macros do not require special handling by the
set_* local methods; the macros provide the set_*_local functionality for you.

If you do not want apply_config_settings to be called for a component, then the build() method
should be overloaded and you should not call super.build(). If this case, you must also set the
m_build_done bit. Likewise, apply_config_settings can be overloaded to customize automated
configuration.

When the verbose bit is set, all overrides are printed as they are applied. If the component’s

print_config_matches property is set, then apply_config_settings is automatically called with verbose
= 1.

print_config_settings

function void print_config settings (string field
ovm conponent conp
bit recurse

Called without arguments, print_config_settings prints all configuration information for this
component, as set by previous calls to set_config_*. The settings are printing in the order of their
precedence.

If field is specified and non-empty, then only configuration settings matching that field, if any, are
printed. The field may not contain wildcards.

If comp is specified and non-null, then the configuration for that component is printed.

If recurse is set, then configuration information for all comp’s children and below are printed as well.

print_config_matches

static bit print_config matches = 0

Setting this static variable causes get_config_* to print info about matching configuration settings as
they are being applied.

Objection Interface

These methods provide object level hooks into the ovm_objection mechanism.

raised

44

ovm_component

virtual function void raised (ovm objection objection,
ovm obj ect sour ce_obj,
i nt count)

The raised callback is called when a decendant of the component instance raises the specfied
objection. The source_obj is the object which originally raised the object. count is an optional count
that was used to indicate a number of objections which were raised.

dropped

virtual function void dropped (ovm objection objection,
ovm obj ect sour ce_obj,
i nt count)

The dropped callback is called when a decendant of the component instance raises the specfied
objection. The source_obj is the object which originally dropped the object. count is an optional
count that was used to indicate a number of objections which were dropped.

all_dropped

virtual task all _dropped (ovm objection objection,
ovm obj ect source_obj,
i nt count)

The all_dropped callback is called when a decendant of the component instance raises the specfied
objection. The source_obj is the object which originally all_dropped the object. count is an optional
count that was used to indicate a number of objections which were dropped. This callback is time-
consuming and the all_dropped conditional will not be propagated up to the object’s parent until the
callback returns.

Factory Interface

The factory interface provides convenient access to a portion of OVM’s ovm_factory interface. For

creating new objects and components, the preferred method of accessing the factory is via the object
or component wrapper (see ovm_component_registry #(T,Tname) and ovm_object_registry #(T,

Tname)). The wrapper also provides functions for setting type and instance overrides.

create_component
function ovm conmponent create_conponent (string requested type nane,
string nane)

A convenience function for ovm_factory::create_component_by name, this method calls upon the

factory to create a new child component whose type corresponds to the preregistered type name,
requested_type name, and instance name, name. This method is equivalent to:

factory. create_conponent _by_nane(requested_type_nane,
get _full _name(), nane, this);

45

ovm_component

If the factory determines that a type or instance override exists, the type of the component created
may be different than the requested type. See set type override and set_inst_override. See also

ovm_factory for details on factory operation.

create object

function ovm obj ect create object (string requested type_nane,
string nane ="
A convenience function for ovm_factory::create_object_by name, this method calls upon the factory

to create a new object whose type corresponds to the preregistered type name,
requested_type name, and instance name, name. This method is equivalent to:

factory. create_object_by_name(requested_type_nane,
get _full _nanme(), nane);

If the factory determines that a type or instance override exists, the type of the object created may
be different than the requested type. See ovm_factory for details on factory operation.

set_type override by type

static function void set_type override_by type (
ovm obj ect _wrapper original _type,
ovm obj ect _wrapper override_type,
bi t repl ace =1

A convenience function for ovm_factory::set_type override by type, this method registers a factory
override for components and objects created at this level of hierarchy or below. This method is
equivalent to:

factory.set_type_override_by_type(original _type, override_type,replace);

The relative_inst_path is relative to this component and may include wildcards. The original_type
represents the type that is being overridden. In subsequent calls to ovm_factory::

create_object_by type or ovm_factory::create_component by type, if the requested_type matches
the original_type and the instance paths match, the factory will produce the override_type.

The original and override type arguments are lightweight proxies to the types they represent. See
set_inst_override by type for information on usage.

set_inst_override by type

function void set_inst_override_by type(string rel ative_inst_path,
ovm obj ect _wrapper original _type,
ovm obj ect _wrapper override_type

A convenience function for ovm_factory::set_inst _override by type, this method registers a factory

override for components and objects created at this level of hierarchy or below. In typical usage, this
46

)

ovm_component

method is equivalent to:

factory.set_inst_override_by type({get_full_nane(),".",
relative_inst_path},
original _type
override_type);

The relative_inst_path is relative to this component and may include wildcards. The original_type
represents the type that is being overridden. In subsequent calls to ovm_factory::
create_object by type or ovm_factory::create_component by type, if the requested_type matches
the original_type and the instance paths match, the factory will produce the override_type.

The original and override types are lightweight proxies to the types they represent. They can be
obtained by calling type::get_type(), if implemented, or by directly calling type::type_id::get(),

where type is the user type and type_id is the name of the typedef to ovm_object registry #(T,

Tname) or ovm_component_registry #(T,Tname).

If you are employing the ~ovm_*_utils macros, the typedef and the get_type method will be
implemented for you.

The following example shows “ovm_*_utils usage

cl ass conp extends ovm conponent;
“ovm conponent _util s(conp)
endcl ass
cl ass nyconp extends ovm conponent;
“ovm conponent _uti | s(myconp)
endcl ass
cl ass bl ock extends ovm conponent;
“ovm conponent _uti | s(bl ock)
conp c_inst;
virtual function void build();
set _inst_override_by_type("c_inst", conp::get_type()
myconp: : get _type());
endf uncti on

endcl ass

set_type override

static function void set_type override(string original _type nane,
string override_type_nhane,
bit repl ace =1

A convenience function for ovm_factory::set_type override by name, this method configures the

factory to create an object of type override_type_name whenever the factory is asked to produce a
type represented by original_type_name. This method is equivalent to:

factory.set _type_override_by nanme(original _type_nane
override_type_nane, replace)

The original_type_name typically refers to a preregistered type in the factory. It may, however, be
47

ovm_component

any arbitrary string. Subsequent calls to create_component or create_object with the same string
and matching instance path will produce the type represented by override_type_name. The
override_type_name must refer to a preregistered type in the factory.

set_inst_override

function void set_inst _override(string relative_inst_path,
string original _type_nane,
string override_type_nane)

A convenience function for ovm_factory::set_inst_override by type, this method registers a factory

override for components created at this level of hierarchy or below. In typical usage, this method is
equivalent to:

factory.set _inst_override_by_name({get_full _name(),".",
relative_inst_path},

original _type_nane,

override_type_nane);

The relative_inst_path is relative to this component and may include wildcards. The
original_type_name typically refers to a preregistered type in the factory. It may, however, be any
arbitrary string. Subsequent calls to create_component or create_object with the same string and
matching instance path will produce the type represented by override_type_name. The
override_type_name must refer to a preregistered type in the factory.

print_override_info
function void print_override_ info(string requested type nane,
string nane

This factory debug method performs the same lookup process as create_object and
create_component, but instead of creating an object, it prints information about what type of object
would be created given the provided arguments.

Hierarchical Reporting I nterface

This interface provides versions of the set_report_* methods in the ovm_report_object base class
that are applied recursively to this component and all its children.

When a report is issued and its associated action has the LOG bit set, the report will be sent to its
associated FILE descriptor.

set_report_severity action_hier

function void set_report_severity_action_hier (ovmseverity severity,
ovm action action)

set_report_id_action_hier
48

ovm_component

function void set_report_id_action_hier (string id,
ovm action action)

set_report_severity id_action_hier

function void set _report_severity id action_hier(ovmseverity severity,
string id,
ovm action action)

These methods recursively associate the specified action with reports of the given severity, id, or
severity-id pair. An action associated with a particular severity-id pair takes precedence over an
action associated with id, which takes precedence over an an action associated with a severity.

For a list of severities and their default actions, refer to ovm_report_handler.

set_report_default_file hier
function void set report _default file hier (OVWM FILE file)

set_report_severity file hier

function void set _report_severity file hier (ovmseverity severity,
OVM FI LE file)

set_report_id_file hier

function void set report _id file hier (string id,
OVM FILE file)

set_report_severity id_file hier

function void set_report_severity id file_hier(ovmseverity severity,
string id,
OVM _FI LE file)

These methods recursively associate the specified FILE descriptor with reports of the given severity,
id, or severity-id pair. A FILE associated with a particular severity-id pair takes precedence over a
FILE associated with id, which take precedence over an a FILE associated with a severity, which takes
precedence over the default FILE descriptor.

For a list of severities and other information related to the report mechanism, refer to
ovm_report_handler.

set_report_verbosity level hier

function void set_report_verbosity | evel _hier (int verbosity)

49

ovm_component

This method recursively sets the maximum verbosity level for reports for this component and all
those below it. Any report from this component subtree whose verbosity exceeds this maximum will
be ignored.

See ovm_report_handler for a list of predefined message verbosity levels and their meaning.

Recording Interface

These methods comprise the component-based transaction recording interface. The methods can be
used to record the transactions that this component “sees”, i.e. produces or consumes.

The APl and implementation are subject to change once a vendor-independent use-model is
determined.

accept_tr
function void accept _tr (ovmtransaction tr,
time accept _tine)

This function marks the acceptance of a transaction, tr, by this component. Specifically, it performs
the following actions:
. Calls the tr's ovm_transaction::accept_tr method, passing to it the accept_time argument.

. Calls this component’s do_accept_tr method to allow for any post-begin action in derived
classes.

. Triggers the component'’s internal accept_tr event. Any processes waiting on this event will
resume in the next delta cycle.

do_accept_tr

virtual protected function void do_accept_tr (ovmtransaction tr)

The accept_tr method calls this function to accommodate any user-defined post-accept action.
Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr

function integer begin_tr (ovmtransaction tr,
string stream nane
string | abel
string desc
time begin_tine

This function marks the start of a transaction, tr, by this component. Specifically, it performs the
following actions:

. Calls tr's ovm_transaction::begin_tr method, passing to it the begin_time argument. The

begin_time should be greater than or equal to the accept time. By default, when begin_time
= 0, the current simulation time is used.

50

ovm_component

If recording is enabled (recording_detail = OVM_OFF), then a new database-transaction is started on
the component’s transaction stream given by the stream argument. No transaction properties are
recorded at this time.

. Calls the component’s do_begin_tr method to allow for any post-begin action in derived
classes.

. Triggers the component’s internal begin_tr event. Any processes waiting on this event will
resume in the next delta cycle.

A handle to the transaction is returned. The meaning of this handle, as well as the interpretation of
the arguments stream_name, label, and desc are vendor specific.

begin_child_tr

function integer begin child tr (ovmtransaction tr,
i nt eger parent _handl e
string st ream nane
string | abel
string desc
tinme begin_tine

This function marks the start of a child transaction, tr, by this component. Its operation is identical
to that of begin_tr, except that an association is made between this transaction and the provided
parent transaction. This association is vendor-specific.

do_begin_tr

virtual protected function void do_begin tr (ovmtransaction tr,
string stream nane,
i nt eger tr_handle)

The begin_tr and begin_child_tr methods call this function to accommodate any user-defined post-
begin action. Implementations should call super.do_begin_tr to ensure correct operation.

end_tr
function void end_tr (ovmtransaction tr,
time end_tine
bi t free_handl e

This function marks the end of a transaction, tr, by this component. Specifically, it performs the
following actions:

. Calls tr's ovm_transaction::end_tr method, passing to it the end_time argument. The

end_time must at least be greater than the begin time. By default, when end_time = O, the
current simulation time is used.

The transaction’s properties are recorded to the database-transaction on which it was started, and
then the transaction is ended. Only those properties handled by the transaction’s do_record method
(and optional ~ovm_*_field macros) are recorded.

. Calls the component’s do_end_tr method to accommodate any post-end action in derived
51

ovm_component

classes.

. Triggers the component’s internal end_tr event. Any processes waiting on this event will
resume in the next delta cycle.

The free_handle bit indicates that this transaction is no longer needed. The implementation of
free_handle is vendor-specific.

do_end_tr

virtual protected function void do_end tr (ovmtransaction tr,
i nt eger tr _handl e)

The end_tr method calls this function to accommodate any user-defined post-end action.
Implementations should call super.do_end_tr to ensure correct operation.

record_error_tr

function integer record _error_tr (string st ream nane
ovm obj ect info
string | abel
string desc
tine error_tine
bi t keep_active

This function marks an error transaction by a component. Properties of the given ovm_object, info,
as implemented in its <do_record> method, are recorded to the transaction database.

An error_time of O indicates to use the current simulation time. The keep_active bit determines if the
handle should remain active. If O, then a zero-length error transaction is recorded. A handle to the
database-transaction is returned.

Interpretation of this handle, as well as the strings stream_name, label, and desc, are vendor-specific.

record_event_tr

function integer record_event _tr (string st ream name
ovm obj ect info
string | abel
string desc
tinme event _tine
bit keep_active

This function marks an event transaction by a component.
An event_time of O indicates to use the current simulation time.

A handle to the transaction is returned. The keep_active bit determines if the handle may be used
for other vendor-specific purposes.

The strings for stream_name, label, and desc are vendor-specific identifiers for the transaction.

52

ovm_component

print_enabled
bit print_enabled = 1

This bit determines if this component should automatically be printed as a child of its parent object.

By default, all children are printed. However, this bit allows a parent component to disable the
printing of specific children.

53

ovm_root

ovm_r oot

The ovm_root class serves as the implicit top-level and phase controller for all OVM
components. Users do not directly instantiate ovm_root. The OVM automatically creates a
single instance of ovm_root that users can access via the global (ovm_pkg-scope) variable,
ovm__top.

phese quUELa

ovin_roaot — - ovim_phase

ovm_component

The ovm_top instance of ovm_root plays several key roles in the OVM.

Implicit top-level The ovm_top serves as an implicit top-level component. Any component
whose parent is specified as NULL becomes a child of ovm_top. Thus, all
OVM components in simulation are descendants of ovm_top.

Phase control ovm_top manages the phasing for all components. There are eight
phases predefined in every component: build, connect,
end_of elaboration, start_of simulation, run, extract, check, and report.
Of these, only the run phase is a task. All others are functions. OVM’s
flexible phasing mechanism allows users to insert any number of custom
function and task-based phases. See run_test, insert_phase, and
stop_request, and others.

Search Use ovim_top to search for components based on their hierarchical name.
See find and find_all.

Report configurationUse ovm_top to globally configure report verbosity, log files, and actions.
For example, ovm_top.set_report_verbosity level hier(OVM_FULL) would
set full verbosity for all components in simulation.

Global reporter Because ovm_top is globally accessible (in ovm_pkg scope), OVM’s
reporting mechanism is accessible from anywhere outside
ovm_component, such as in modules and sequences. See
ovm_report_error, ovim_report_warning, and other global methods.

Summary

ovm_ root

The ovm_root class serves as the implicit top-level and phase controller for all OVM components.
Class Hierarchy

54

ovm_root
ovim_object
ovim_report_object

ovim_component

lovm_root |

Class Declaration
cl ass ovm root extends ovm conponent

Methods

run_test Phases all components through all registered phases.

stop_request Calling this function triggers the process of shutting down the currently running
task-based phase.

in_stop_request This function returns 1 if a stop request is currently active, and O otherwise.

insert_phase Inserts a new phase given by new_phase after the existing phase given by
exist_phase.

find

find_all Returns the component handle (find) or list of components handles (find_all)

matching a given string.
get_current_phase Returns the handle of the currently executing phase.
get_phase_ by name Returns the handle of the phase having the given name.
Variables
phase_timeout
stop_timeout These set watchdog timers for task-based phases and stop tasks.

enable_print_topologylf set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.
finish_on_completion If set, then run_test will call $finish after all phases are executed.

ovm_top This is the top-level that governs phase execution and provides component search
interface.
Methods

raised
all_dropped

M ethods

run_test

virtual task run_test (string test nane

Phases all components through all registered phases. If the optional test_ name argument is
provided, or if a command-line plusarg, +OVM_TESTNAME=TEST_NAME, is found, then the
specified component is created just prior to phasing. The test may contain new verification
components or the entire testbench, in which case the test and testbench can be chosen from
the command line without forcing recompilation. If the global (package) variable,
finish_on_completion, is set, then $finish is called after phasing completes.

55

ovm_root

stop_request

function void stop_request ()

Calling this function triggers the process of shutting down the currently running task-based
phase. This process involves calling all components’ stop tasks for those components whose
enable_stop_interrupt bit is set. Once all stop tasks return, or once the optional
global_stop_timeout expires, all components’ kill method is called, effectively ending the
current phase. The ovm_top will then begin execution of the next phase, if any.

In_stop_request

function bit in_stop_request()

This function returns 1 if a stop request is currently active, and O otherwise.

insert_phase
function void insert_phase (ovm phase new _phase,
ovm phase exi st_phase)

Inserts a new phase given by new_phase after the existing phase given by exist_phase. The
ovim_top maintains a queue of phases executed in consecutive order. If exist_phase is null,
then new_phase is inserted at the head of the queue, i.e., it becomes the first phase.

find

function ovm conponent find (string conp_natch)

find_all

function void find all (string conp_nmat ch,
ovm conponent conps| $],
ovm conponent conp

Returns the component handle (find) or list of components handles (find_all) matching a
given string. The string may contain the wildcards,

. and ?. Strings beginning with *.” are absolute path names. If optional comp arg is
provided, then search begins from that component down (default=all components).

56

ovm_root

get_current_phase

functi on ovm phase get _current phase ()

Returns the handle of the currently executing phase.

get_phase by name

function ovm phase get phase by nane (string nane)

Returns the handle of the phase having the given name.

Variables

phase timeout

time phase_tinmeout =0

stop_timeout

time stop_tineout =0

These set watchdog timers for task-based phases and stop tasks. You can not disable the
timeouts. When set to 0, a timeout of the maximum time possible is applied. A timeout at
this value usually indicates a problem with your testbench. You should lower the timeout to
prevent “never-ending” simulations.

enable print_topology

bit enable_print_topology = 0

If set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.

finish_on_completion

57

ovm_root

bit finish on _conpletion =1

If set, then run_test will call $finish after all phases are executed.

ovm_top

‘const ovmroot ovmtop = ovmroot::get()

This is the top-level that governs phase execution and provides component search interface.
See ovm_root for more information.

Methods
raised
function void ovmroot::raised (ovmobjection objection,
ovm obj ect source_obj,
I nt count)
all_dropped

task ovmroot::all_dropped (ovm objection objection,
ovm obj ect source_obj,
i nt count)

58

ovm_phase

ovm_phase

The ovm_phase class is used for defining phases for ovm_component and its subclasses. For
a list of predefined phases see ovim_component::Phasing Interface

Summary

ovm_ phase

The ovm_phase class is used for defining phases for ovm_component and its subclasses.
Class Declaration
virtual class ovm phase

Methods

new Creates a phase object.

get_name Returns the name of the phase object as supplied in the constructor.
is_task Returns 1 if the phase is time consuming and O if not.

is_top_down Returns 1 if the phase executes top-down (executes the parent;s phase callback before
executing the children¢s callback) and O otherwise.
get_type nameDerived classes should override this method to return the phase type name.

wait_start Waits until the phase has beed started.
wait_done Waits until the phase has been completed.
is_in_progress Returns 1 if the phase is currently in progress (active), O otherwise.
is_done Returns 1 if the phase has completed, 0 otherwise.
reset Resets phase state such that is_done and is_in_progress both return O.
call_task Calls the task-based phase of the component given by parent, which must be derived
from ovm_component.
call_func Calls the function-based phase of the component given by parent.
Methods
new
function new (string nane,
bi t IS _top_down,
bi t I s_task)

Creates a phase object.
The name is the name of the phase. When is_top_down is set, the parent is phased before its

children. is_task indicates whether the phase callback is a task (1) or function (0). Only tasks
may consume simulation time and execute blocking statements.

59

ovm_phase

get_name

function string get_name ()

Returns the name of the phase object as supplied in the constructor.

IS task

function bit is_task ()

Returns 1 if the phase is time consuming and O if not.

Is top_down

function bit is_top_down ()

Returns 1 if the phase executes top-down (executes the parent¢s phase callback before
executing the children¢s callback) and O otherwise.

get_type name

virtual function string get_type_nane()

Derived classes should override this method to return the phase type name.

wait_start

task wait_start ()

Waits until the phase has beed started.

wait_done

task wait_done ()

Waits until the phase has been completed.

IS In_progress

60

ovm_phase

function bit is_in_progress ()

Returns 1 if the phase is currently in progress (active), O otherwise.

Is done

function bit is_done ()

Returns 1 if the phase has completed, O otherwise.

reset

function void reset ()

Resets phase state such that is_done and is_in_progress both return O.

call _task

virtual task call _task (ovm conponent parent)

Calls the task-based phase of the component given by parent, which must be derived from
ovm_component. A task-based phase is defined by subtyping ovm_phase and overriding this
method. The override must $cast the base parent handle to the actual component type that
defines the phase callback, and then call the phase callback.

call_func

virtual function void call_func (ovm conponent parent)

Calls the function-based phase of the component given by parent. A function-based phase is
defined by subtyping ovm_phase and overriding this method. The override must $cast the
base parent handle to the actual component type that defines the phase callback, and then
call that phase callback.

Usage

Phases are a synchronizing mechanism for the environment. They are represented by
callback methods. A set of predefined phases and corresponding callbacks are provided in
ovm_component. Any class deriving from ovm_component may implement any or all of these
callbacks, which are executed in a particular order. Depending on the properties of any given

61

ovm_phase

phase, the corresponding callback is either a function or task, and it is executed in top-down
or bottom-up order.

The OVM provides the following predefined phases for all ovm_components.

build Depending on configuration and factory settings, create and configure
additional component hierarchies.

connect Connect ports, exports, and implementations (imps).

end_of_elaborationPerform final configuration, topology, connection, and other integrity
checks.

start_of_simulationDo pre-run activities such as printing banners, pre-loading memories, etc.

run Most verification is done in this time-consuming phase. May fork other
processes. Phase ends when global_stop_request is called explicitly.

extract Collect information from the run in preparation for checking.

check Check simulation results against expected outcome.

report Report simulation results.

A phase is defined by an instance of an ovm_phase subtype. If a phase is to be shared
among several component types, the instance must be accessible from a common scope, such
as a package.

To have a user-defined phase get called back during simulation, the phase object must be
registered with the top-level OVM phase controller, ovm_top.

Inheriting from the ovm_phase Class
When creating a user-defined phase, you must do the following.
1. Define a new phase class, which must extend ovm_phase. To enable use of the phase by

any component, we recommend this class be parameterized. The easiest way to define a new
phase is to invoke a predefined macro. For example:

“ovm phase_func_t opdown_decl (prel oad)

This convenient phase declaration macro is described below.

2. Create a single instance of the phase in a convenient placein a package, or in the same
scope as the component classes that will use the phase.

typedef class ny_nenory;
prel oad_phase #(ny_nenory) preload_ph = new,

3. Register the phase object with ovm__top.

cl ass ny_nenory extends ovm conponent;
function newstring name, ovm conponent parent);

super. new(name, par ent)
62

ovm_phase

ovm top.insert_phase(prel oad_ph, start_of _sinulation_ph);
endf unction
virtual function void preload(); // our new phase
endfunction
endcl ass

Phase Macr os (Optional)

The following macros simplify the process of creating a user-defined phase. They create a
phase type that is parameterized to the component class that uses the phase.

sSummary

Usage Phases are a synchronizing mechanism for the environment.
Macros
“ovm_phase_func_decl “ovm_phase_func_decl (PHASE_NAME, TOP_DOWN)

“ovm_phase_task decl

“ovm_phase_func_topdown_decl

~ovm_phase_func_bottomup_decl

~ovm_phase_task topdown_decl

“ovm_phase_task bottomup_decl These alternative macros have a single phase name argument.

M acros

‘ovm_phase func_decl

~ovm_phase_func_decl (PHASE_NAME, TOP_DOWN)

The PHASE_NAME argument is used to define the name of the phase, the name of the
component method that is called back during phase execution, and the prefix of the type-
name of the phase class that gets generated.

The above macro creates the following class definition.

cl ass PHASE _NAME "~ _phase #(type PARENT=i nt) extends ovm phase;
PARENT m par ent;

function new);
super. new "NAME ", TOP_DOWN, 1) ;
endfunction
virtual function void call_func();
m parent. NAME(); // call the conponent¢s phase cal |l back
endt ask

63

ovm_phase

virtual task execute(ovm conponent parent);
assert ($cast (m parent, parent));
call _func();
endt ask
endcl ass

“ovm_phase task_decl

“ovm phase_t ask_decl (PHASE _NAMVE, TOP_DOWN)

The above macro creates the following class definition.

cl ass PHASE _NAME "~ _phase #(type PARENT=i nt) extends ovm phase
PARENT m par ent;
function new);
super. new " "NAME ", TOP_DOWN, 1) ;
endfunction
virtual task call _task();
m parent. NAVE(); // call the conponent¢s phase call back
endt ask
virtual task execute(ovm conponent parent);
assert ($cast (m parent, parent));
call _task();
endt ask
endcl ass

‘ovm_phase func_topdown_decl

“ovm_phase func_bottomup_decl

‘ovm_phase task _topdown_decl

‘ovm_phase task _bottomup_decl

These alternative macros have a single phase name argument. The top-down or bottom-up
selection is specified in the macro name, which makes them more self-documenting than

those with a O or 1 2nd argument.
64

ovm_phase

“define
“define
“define
“define

ovm phase_func_t opdown_decl
ovm phase_func_bott onup_decl
ovm phase_t ask_t opdown_decl
ovm phase_t ask_bot t onmup_decl

“ovm phase_func_decl
“ovm phase_func_decl
“ovm phase_t ask_decl
“ovm phase_t ask_decl

65

(PHASE_NAME, 1)
(PHASE_NAME, 0)
(PHASE_NAME, 1)
(PHASE_NAME, 0)

ovm_port_base #(1F)

ovm_port _base #(IF)

Transaction-level communication between components is handled via its ports, exports, and
imps, all of which derive from this class.

The ovm_port_base extends IF, which is the type of the interface implemented by derived
port, export, or implementation. IF is also a type parameter to ovm_port_base.
IFThe interface type implemented by the subtype to this base port

The OVM provides a complete set of ports, exports, and imps for the OSCI- standard TLM
interfaces. They can be found in the ../src/tim/ directory. For the TLM interfaces, the IF
parameter is always tim_if base #(T1,T2).

Just before ovm_component::end_of elaboration, an internal ovim_component::
resolve_bindings process occurs, after which each port and export holds a list of all imps
connected to it via hierarchical connections to other ports and exports. In effect, we are
collapsing the port’s fanout, which can span several levels up and down the component
hierarchy, into a single array held local to the port. Once the list is determined, the port’s min
and max connection settings can be checked and enforced.

ovm_port_base possesses the properties of components in that they have a hierarchical
instance path and parent. Because SystemVerilog does not support multiple inheritance,
ovm_port_base can not extend both the interface it implements and ovim_component. Thus,
ovm_port_base contains a local instance of ovm_component, to which it delegates such
commands as get_name, get_full_name, and get_parent.

Summary

ovm_port_base #(IF)

Transaction-level communication between components is handled via its ports, exports, and imps, all of
which derive from this class.
Class Hierarchy

IF
lovm_port_base#(1F)

Class Declaration
virtual class ovm port_ base #(

type IF = ovmuvoid

) extends IF
Methods
new The first two arguments are the normal ovm_component constructor arguments.
get_name Returns the leaf name of this port.
get_full_name Returns the full hierarchical name of this port.
get_parent Returns the handle to this port’s parent, or null if it has no parent.
get_comp Returns a handle to the internal proxy component representing this port.

get _type name Returns the type name to this port.

66

ovm_port_base #(1F)

min_size Returns the mininum number of implementation ports that must be connected to
this port by the end_of_elaboration phase.

max_size Returns the maximum number of implementation ports that must be connected to
this port by the end_of_elaboration phase.

is_unbounded Returns 1 if this port has no maximum on the number of implementation (imp)
ports this port can connect to.

is_port

is_export

is_imp Returns 1 if this port is of the type given by the method name, O otherwise.

size Gets the number of implementation ports connected to this port.

set_default_index Sets the default implementation port to use when calling an interface method.

connect Connects this port to the given provider port.

debug_connected_toThe debug_connected_to method outputs a visual text display of the port/export/
imp network to which this port connects (i.e., the port’s fanout).

debug_provided_to The debug_provided_to method outputs a visual display of the port/export network
that ultimately connect to this port (i.e., the port’s fanin).

resolve_bindings This callback is called just before entering the end_of_elaboration phase.

get if Returns the implementation (imp) port at the given index from the array of imps
this port is connected to.

M ethods

new

function new (string name,
ovm _conponent par ent,
ovm port_type_e port_type,
i nt mn_size
i nt nmax_si ze

The first two arguments are the normal ovim_component constructor arguments.
The port_type can be one of OVM_PORT, OVM_EXPORT, or OVM_IMPLEMENTATION.

The min_size and max_size specify the minimum and maximum number of implementation
(imp) ports that must be connected to this port base by the end of elaboration. Setting
max_size to OVM_UNBOUNDED_ CONNECTIONS sets no maximum, i.e., an unlimited number
of connections are allowed.

By default, the parent/child relationship of any port being connected to this port is not

checked. This can be overridden by configuring the port’s check connection_relationships bit
via set_config_int. See connect for more information.

67

ovm_port_base #(1F)

get_name

function string get_ nane()

Returns the leaf name of this port.

get_full_name

virtual function string get_full _nane()

Returns the full hierarchical name of this port.

get_parent

virtual function ovm conponent get parent()

Returns the handle to this port’s parent, or null if it has no parent.

get_comp

virtual function ovm port_conponent base get _conp()

Returns a handle to the internal proxy component representing this port.

Ports are considered components. However, they do not inherit ovm_component. Instead,

they contain an instance of <ovm_port_component #(PORT)> that serves as a proxy to this
port.

get_type name

virtual function string get_type_nane()

Returns the type name to this port. Derived port classes must implement this method to

I\

return the concrete type. Otherwise, only a generic “ovm_port”, “ovm_export” or
“ovm_implementation” is returned.

min_size

Returns the mininum number of implementation ports that must be connected to this port by
the end_of elaboration phase.

68

ovm_port_base #(1F)

max_size

Returns the maximum number of implementation ports that must be connected to this port by
the end_of_elaboration phase.

Is_unbounded

function bit is_unbounded ()

Returns 1 if this port has no maximum on the number of implementation (imp) ports this port
can connect to. A port is unbounded when the max_size argument in the constructor is
specified as OVM_UNBOUNDED_CONNECTIONS.

IS port

function bit is_port ()

IS_export

function bit is_export ()

Is imp
function bit is_inmp ()

Returns 1 if this port is of the type given by the method name, O otherwise.

Size
function int size ()

Gets the number of implementation ports connected to this port. The value is not valid before
the end_of_elaboration phase, as port connections have not yet been resolved.

set_default_index

69

ovm_port_base #(1F)

function void set _default index (int index)

Sets the default implementation port to use when calling an interface method. This method
should only be called on OVM_EXPORT types. The value must not be set before the
end_of elaboration phase, when port connections have not yet been resolved.

connect

virtual function void connect (this_ type provider)

Connects this port to the given provider port. The ports must be compatible in the following
ways

. Their type parameters must match

. The provider’s interface type (blocking, non-blocking, analysis, etc.) must be
compatible. Each port has an interface mask that encodes the interface(s) it
supports. If the bitwise AND of these masks is equal to the this port’s mask, the
requirement is met and the ports are compatible. For example, an
ovm_blocking put_port #(T) is compatible with an ovm_put_export #(T) and
ovm_blocking_put_imp #(T) because the export and imp provide the interface
required by the ovm_blocking_put_port.

. Ports of type OVM_EXPORT can only connect to other exports or imps.

. Ports of type OVM_IMPLEMENTATION can not be connected, as they are bound to the
component that implements the interface at time of construction.

In addition to type-compatibility checks, the relationship between this port and the provider
port will also be checked if the port’s check _connection_relationships configuration has been
set. (See new for more information.)

Relationships, when enabled, are checked are asfollows

. If this port is an OVM_PORT type, the provider can be a parent port, or a sibling
export or implementation port.

. If this port is an OVM_EXPORT type, the provider can be a child export or
implementation port.

If any relationship check is violated, a warning is issued.

Note- the ovm_component::connect method is related to but not the same as this method.

The component’s connect method is a phase callback where port’s connect method calls are
made.

70

ovm_port_base #(1F)

debug_connected to
function void debug connected to (int |evel
int max_| evel

The debug_connected_to method outputs a visual text display of the port/export/imp network
to which this port connects (i.e., the port’s fanout).

This method must not be called before the end_of elaboration phase, as port connections are
not resolved until then.

debug _provided to
function void debug provided to (int |evel
I nt max_| evel

The debug_provided to method outputs a visual display of the port/export network that
ultimately connect to this port (i.e., the port’s fanin).

This method must not be called before the end_of _elaboration phase, as port connections are
not resolved until then.

resolve bindings

virtual function void resolve_bindi ngs()

This callback is called just before entering the end_of_elaboration phase. It recurses through
each port’s fanout to determine all the imp destina- tions. It then checks against the required
min and max connections. After resolution, size returns a valid value and get_if can be used

to access a particular imp.

This method is automatically called just before the start of the end_of_elaboration phase.
Users should not need to call it directly.

get_if

function ovm port base #(IF) get if(int index=0)

Returns the implementation (imp) port at the given index from the array of imps this port is
connected to. Use size to get the valid range for index. This method can only be called at the

end_of_elaboration phase or after, as port connections are not resolved before then.

71

ovm_barrier_pool

ovm_barrier_pool

Summary

ovm_ barrier_pool
Class Hierarchy
ovm_object

lovm_barrier_pooll

Class Declaration
cl ass ovm barrier_pool extends ovm object

Methods

new Creates a new barrier pool with the given name.

get_global _pool Returns the singleton global barrier pool.

get Returns the barrier with the given name.

num Returns the number of uniquely named barriers stored in the pool.

delete Removes the barrier with the given name from the pool.

exists Returns 1 if a barrier with the given name exists in the pool, O otherwise.
first Returns the name of the first barrier stored in the pool.

last Returns the name of the last barrier stored in the pool.

next Returns the name of the next barrier in the pool.

prev Returns the name of the previous barrier in the pool.

Methods

new

function new (string name = "")

Creates a new barrier pool with the given name.

get_global _pool

static function ovm barrier_pool get_gl obal _pool ()

Returns the singleton global barrier pool.

This allows barriers to be shared amongst components throughout the verification
environment.

72

ovm_barrier_pool

get

virtual function ovmbarrier get (string name)

Returns the barrier with the given name.

If no barrier exists by that name, a new barrier is created with that name and returned.

num

virtual function int num ()

Returns the number of uniquely named barriers stored in the pool.

delete

virtual function void delete (string name)

Removes the barrier with the given name from the pool.

exists

virtual function int exists (string nane)

Returns 1 if a barrier with the given name exists in the pool, O otherwise.

first

virtual function int first (string namne)
Returns the name of the first barrier stored in the pool.

If the pool is empty, then name is unchanged and O is returned.

If the pool is not empty, then name is name of the first barrier and 1 is returned.

last

73

ovm_barrier_pool

virtual function int |ast (string nane)

Returns the name of the last barrier stored in the pool.
If the pool is empty, then O is returned and name is unchanged.

If the pool is not empty, then name is set to the last name in the pool and 1 is returned.

next

virtual function int next (string nane)

Returns the name of the next barrier in the pool.
If the input name is the last name in the pool, then name is left unchanged and O is returned.

If a next name is found, then name is updated with that name and 1 is returned.

prev

virtual function int prev (string nane)

Returns the name of the previous barrier in the pool.
If the input name is the first name in the pool, then name is left unchanged and O is returned.

If a previous name is found, then name is updated with that name and 1 is returned.

74

ovm_event_pool

ovm_event_pool

The ovm_event_pool is essentially an associative array of ovm_event objects indexed by the
string name of the event.
Summary

ovm_event_pool
The ovm_event_pool is essentially an associative array of ovm_event objects indexed by the string

name of the event.
Class Hierarchy

ovm_object

lovm_event_pool|

Class Declaration
cl ass ovm event pool extends ovm obj ect

Methods

new Creates a new event pool with the given name.

get_global_poolReturns the singleton global event pool.

get Returns the event with the given name.

num Returns the number of uniquely named events stored in the pool.

delete Removes the event with the given name from the pool.

exists Returns 1 if an event with the given name exists in the pool, O otherwise.
first Returns the name of the first event stored in the pool.

last Returns the name of the last event stored in the pool.

next Returns the name of the next event in the pool.

prev Returns the name of the previous event in the pool.

Methods

new

function new (string name = "")

Creates a new event pool with the given name.

get_global pool

static function ovm event pool get gl obal _pool ()

75

ovm_event_pool

Returns the singleton global event pool.

This allows events to be shared between components throughout the verification environment.

get

virtual function ovmevent get (string nane)

Returns the event with the given name.

If no event exists by that name, a new event is created with that name and returned.

num

virtual function int num ()

Returns the number of uniquely named events stored in the pool.

delete

virtual function void delete (string nane)

Removes the event with the given name from the pool.

exists

virtual function int exists (string nane)

Returns 1 if an event with the given name exists in the pool, O otherwise.

first

virtual function int first (string nane)

Returns the name of the first event stored in the pool.
If the pool is empty, then name is unchanged and O is returned.

If the pool is not empty, then name is name of the first event and 1 is returned.

76

ovm_event_pool

last

virtual function int |ast (string name)

Returns the name of the last event stored in the pool.
If the pool is empty, then O is returned and name is unchanged.

If the pool is not empty, then name is set to the last name in the pool and 1 is returned.

next

virtual function int next (string name)

Returns the name of the next event in the pool.
If the input name is the last name in the pool, then name is unchanged and O is returned.

If a next name is found, then name is updated with that name and 1 is returned.

prev

virtual function int prev (string name)

Returns the name of the previous event in the pool.
If the input name is the first name in the pool, then name is left unchanged and O is returned.

If a previous name is found, then name is updated with that name and 1 is returned.

77

Reporting Classes

Reporting Classes

The reporting classes provide a facility for issuing reports with consistent formatting. Users
can configure what actions to take and what files to send output to based on report severity,
ID, or both severity and ID. Users can also filter messages based on their verbosity settings.

The primary interface to the OVM reporting facility is the ovm_report_object from which all
ovm_components extend. The ovm_report_object delegates most tasks to its internal
ovm_report_handler. If the report handler determines the report is not filtered based the
configured verbosity setting, it sends the report to the central ovm_report_server for
formatting and processing.

Reporting Classes

ovm_object

L 4

ovm_report_object

ovm_report_handler ——-» ovm_report_server

OVIM_componant

ik

user-defimed
componeant

78

ovm_report_object

ovm_report_object

The ovm_report_object provides an interface to the OVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. Users can
configure what actions are taken and what file(s) are output for individual messages from a
particular component or for all messages from all components in the environment. Defaults
are applied where there is no explicit configuration.

Most methods in ovm_report_object are delegated to an internal instance of an
ovm_report_handler, which stores the reporting configuration and determines whether an
issued message should be displayed based on that configuration. Then, to display a message,
the report handler delegates the actual formatting and production of messages to a central
ovm_report_server.

A report consists of an id string, severity, verbosity level, and the textual message itself.
They may optionally include the filename and line number from which the message came. If
the verbosity level of a report is greater than the configured maximum verbosity level of its
report object, it is ignored. If a report passes the verbosity filter in effect, the report’s action
is determined. If the action includes output to a file, the configured file descriptor(s) are
determined.

Actions can be set for (in increasing priority) severity, id, and (severity,id) pair. They
include output to the screen OVM_DISPLAY, whether the message counters
should be incremented OVM_COUNT, and whether a $finish should occur
OVM_EXIT.

Default ActionsThe following provides the default actions assigned to each severity. These
can be overridden by any of the set_*_action methods.

OVM | NFO - OVM DI SPLAY
OVM_ WARNI NG - OVM DI SPLAY

OVM_ERRCR - OVM DI SPLAY | OVM COUNT
OVM FATAL - OVM DI SPLAY | OVM EXI T

File descriptors These can be set by (in increasing priority) default, severity level, an id, or
(severity,id) pair. File descriptors are standard verilog file descriptors; they
may refer to more than one file. It is the user’s responsibility to open and
close them.

Default file handleThe default file handle is O, which means that reports are not sent to a file
even if an OVM_LOG attribute is set in the action associated with the
report. This can be overridden by any of the set_*_file methods.

Summary

ovm_report_object
The ovm_report_object provides an interface to the OVM reporting facility.
Class Hierarchy

79

ovm_report_object

ovim_object

lovm_report_object]

Class Declaration

virtual class ovmreport_object extends ovm object

new

Reporting
ovm_report_info
ovm_report_warning
ovm_report_error
ovm_report_fatal
Callbacks
report_info_hook
report_error_hook
report_warning_hook
report_fatal _hook
report_hook

report_header
report_summarize

die
Configuration
set_report_verbosity level

set_report_severity action
set_report_id_action

Creates a new report object with the given name.

These are the primary reporting methods in the OVM.

These hook methods can be defined in derived classes to perform
additional actions when reports are issued.

Prints version and copyright information.

Outputs statistical information on the reports issued by the central report
server.

This method is called by the report server if a report reaches the maximum
quit count or has an OVM_EXIT action associated with it, e.g., as with fatal
errors.

This method sets the maximum verbosity level for reports for this
component.

set_report_severity id_actionThese methods associate the specified action or actions with reports of the

set_report_default_file
set_report_severity_file
set_report_id_file
set_report_severity_id_file

get_report_verbosity_level
get_report_action
get_report_file_handle

ovm_report_enabled

set_report_max_quit_count
Setup

set_report_handler
get_report_handler

reset_report_handler
get_report_server
dump_report_state
new

given severity, id, or severity-id pair.

These methods configure the report handler to direct some or all of its
output to the given file descriptor.

Gets the verbosity level in effect for this object.

Gets the action associated with reports having the given severity and id.
Gets the file descriptor associated with reports having the given severity
and id.

Returns 1 if the configured verbosity for this object is greater than
verbosity and the action associated with the given severity and id is not
OVM_NO_ACTION, else returns O.

Sets the maximum quit count in the report handler to max_count.

Sets the report handler, overwriting the default instance.

Returns the underlying report handler to which most reporting tasks are
delegated.
Resets the underlying report handler to its default settings.

Returns the ovm_report_server instance associated with this report object.
This method dumps the internal state of the report handler.

Creates a new reporter instance with the given name.
80

ovm_report_object

new

function new(string nane =

Creates a new report object with the given name. This method also creates a new
ovm_report_handler object to which most tasks are delegated.

Reporting

ovm_report_info

virtual function void ovmreport_info(string id,
string nessage,
I nt verbosity = O/M VEDI UM

string filenane = ,
i nt i ne =0

ovm_report_warning

virtual function void ovmreport_warning(string id,
string nessage,

i nt verbosity = OVM VEDI UV
string filename = "",
i nt i ne =0

ovm_report_error

virtual function void ovmreport_error(string id,
string nessage,
I nt verbosity = OVM LOW

string filenanme = ,
i nt i ne =0

ovm_report_fatal
81

ovm_report_object

virtual function void ovmreport fatal (string id,
string nmessage,

I nt verbosity
string fil enane
I nt l'ine

These are the primary reporting methods in the OVM. Using these instead of $display and
other ad hoc approaches ensures consistent output and central control over where output is
directed and any actions that result. All reporting methods have the same arguments,
although each has a different default verbosity:

id a unique id for the report or report group that can be used for identification and
therefore targeted filtering. You can configure an individual report’s actions and
output file(s) using this id string.

message the message body, preformatted if necessary to a single string.

verbosity the verbosity of the message, indicating its relative importance. If this number
is less than or equal to the effective verbosity level (see
<set_report_verbosity level>), then the report is issued, subject to the
configured action and file descriptor settings. Verbosity is ignored for warnings,
errors, and fatals to ensure users do not inadvertently filter them out. It remains
in the methods for backward compatibility.

filename/line(Optional) The location from which the report was issued. Use the predefined
macros, __FILE_ _and ~___LINE__. If specified, it is displayed in the output.

Callbacks

report_info_hook

virtual function bit report _info_hook(string id,
string nessage,

I nt ver bosity,
string fil enane,
I nt l'ine)

report_error_hook

virtual function bit report_error_hook(string id,
string nessage,
I nt verbosity,
string fil enane,
I nt i ne)

82

ovm_report_object

report_warning_hook

virtual function bit report_warni ng_hook(string id,
string nessage,

i nt verbosity,
string fil enane,
i nt line)

report_fatal _hook

virtual function bit report fatal hook(string id,
string nessage,

I nt ver bosity,
string filenane,
I nt l'ine)

report_hook

virtual function bit report_hook(string id,
string nmessage,

I nt verbosity,
string fil enane,
i nt i ne)

These hook methods can be defined in derived classes to perform additional actions when
reports are issued. They are called only if the OVM_CALL_HOOK bit is specified in the action
associated with the report. The default implementations return 1, which allows the report to
be processed. If an override returns O, then the report is not processed.

First, the hook method associated with the report’s severity is called with the same arguments
as the given the report. If it returns 1, the catch-all method, report_hook, is then called. If
the severity-specific hook returns 0, the catch-all hook is not called.

report_header
virtual function void report_header (OVM FI LE file

Prints version and copyright information. This information is sent to the command line if file
is 0, or to the file descriptor file if it is not 0. The ovm_root::run_test task calls this method

just before it component phasing begins.

83

ovm_report_object
report_summarize

virtual function void report_sunmarize(OVM FI LE file

Outputs statistical information on the reports issued by the central report server. This
information will be sent to the command line if file is O, or to the file descriptor file if it is not O.

The run_test method in ovm_top calls this method.

die
virtual function void die()

This method is called by the report server if a report reaches the maximum quit count or has
an OVM_EXIT action associated with it, e.g., as with fatal errors.

If this report object is an ovm_component and we're in a task-based phase (e.g. run), then
die will issue a global stop request, which ends the phase and allows simulation to continue
to the next phase.

If not a component, die calls report_summarize and terminates simulation with $finish.

Configuration

set_report_verbosity level

function void set _report _verbosity level (int verbosity |evel)

This method sets the maximum verbosity level for reports for this component. Any report
from this component whose verbosity exceeds this maximum will be ignored.

set_report_severity action

function void set _report_severity action (ovmseverity severity,
ovm acti on action)

set_report_id_action

84

ovm_report_object

function void set report _id action (string id,
ovm action action)

set_report_severity id_action

function void set _report_severity id action (ovmseverity severity,
string I d,
ovm acti on action)

These methods associate the specified action or actions with reports of the given severity, id,
or severity-id pair. An action associated with a particular severity-id pair takes precedence
over an action associated with id, which take precedence over an an action associated with a
severity.

The action argument can take the value OVM_NO_ ACTION, or it can be a bitwise OR of any
combination of OVM_DISPLAY, OVM_LOG, OVM_COUNT, <OVM_STOP>, OVM_EXIT, and
OVM_CALL_HOOK.

set_report_default file
function void set _report _default file (O/M FILE file)

set_report_severity file

function void set _report_severity file (ovmseverity severity,
OVM FI LE file)

set_report_id file

function void set _report _id file (string i d,
OVM FI LE file)

set_report_severity id file

function void set _report_severity id file (ovmseverity severity,
string id,
OVM FI LE file)

These methods configure the report handler to direct some or all of its output to the given file
85

ovm_report_object

descriptor. The file argument must be a multi-channel descriptor (mcd) or file id compatible
with $fdisplay.

A FILE descriptor can be associated with with reports of the given severity, id, or severity-id
pair. A FILE associated with a particular severity-id pair takes precedence over a FILE
associated with id, which take precedence over an a FILE associated with a severity, which
takes precedence over the default FILE descriptor.

When a report is issued and its associated action has the OVM_LOG bit set, the report will be

sent to its associated FILE descriptor. The user is responsible for opening and closing these
files.

get_report_verbosity level

function int get_report_verbosity_|evel ()

Gets the verbosity level in effect for this object. Reports issued with verbosity greater than
this will be filtered out.

get_report_action

function int get_report_action(ovmseverity severity,
string I d)

Gets the action associated with reports having the given severity and id.

get_report_file_handle

function int get _report _file_handl e(ovm severity severity,
string id)

Gets the file descriptor associated with reports having the given severity and id.

ovm_report_enabled

function int ovmreport _enabl ed(i nt ver bosity,
ovm severity severity
string I d

Returns 1 if the configured verbosity for this object is greater than verbosity and the action
associated with the given severity and id is not OVM_NO_ACTION, else returns O.

86

ovm_report_object

See also get _report_verbosity level and get _report_action, and the global version of
ovm_report_enabled.

set_report_max_quit_count

function void set _report_max_quit_count(int max_count)

Sets the maximum quit count in the report handler to max_count. When the number of
OVM_COUNT actions reaches max_count, the die method is called.

The default value of O indicates that there is no upper limit to the number of OVM_COUNT
reports.

Setup

set_report_handler

function void set _report _handl er(ovmreport handl er handl er)

Sets the report handler, overwriting the default instance. This allows more than one
component to share the same report handler.

get_report_handler

function ovmreport handl er get _report _handl er ()

Returns the underlying report handler to which most reporting tasks are delegated.

reset_report_handler

function void reset_report_handl er

Resets the underlying report handler to its default settings. This clears any settings made
with the set_report_* methods (see below).

get_report_server

87

ovm_report_object

function ovm report_server get_report_server()

Returns the ovm_report_server instance associated with this report object.

dump_report_state

function void dunp_report_state()

This method dumps the internal state of the report handler. This includes information about
the maximum quit count, the maximum verbosity, and the action and files associated with
severities, ids, and (severity, id) pairs.

new

function new(string nane

Creates a new reporter instance with the given name.

88

ovm_report_handler

ovm_report_handler

The ovm_report_handler is the class to which most methods in ovm_report_object delegate.
It stores the maximum verbosity, actions, and files that affect the way reports are handled.

The report handler is not intended for direct use. See ovm_report_object for information on
the OVM reporting mechanism.

The relationship between ovm_report_object (a base class for ovm_component) and

ovm_report_handler is typically one to one, but it can be many to one if several
ovm_report_objects are configured to use the same ovm_report_handler_object. See
ovim_report_object::set_report_handler.

The relationship between ovm_report_handler and ovm_report_server is many to one.
Summary

ovm_report_handler

The ovm_report_handler is the class to which most methods in ovm_report_object delegate.

Class Declaration
cl ass ovm report _handl er

Methods

new Creates and initializes a new ovm_report_handler object.

run_hooks The run_hooks method is called if the OVM_CALL HOOK action is set for a report.

get_verbosity levelReturns the configured maximum verbosity level.

get_action Returns the action associated with the given severity and id.

get_file_handle Returns the file descriptor associated with the given severity and id.

report This is the common handler method used by the four core reporting methods (e.g.,
ovm_report_error) in ovm_report_object.

format_action Returns a string representation of the action, e.g., "DISPLAY".

Methods

new

function new()

Creates and initializes a new ovm_report_handler object.

run_hooks
89

ovm_report_handler

virtual function bit run_hooks(ovm report object client,

ovim severity severity,
string id,

string nessage,

I nt verbosity,
string filenane,

I nt l'ine)

The run_hooks method is called if the OVM_CALL HOOK action is set for a report. It first calls

the client’s <report_hook> method, followed by the appropriate severity-specific hook
method. If either returns O, then the report is not processed.

get_verbosity level

function int get_verbosity |evel ()

Returns the configured maximum verbosity level.

get_action
function ovm action get_action(ovm severity severity,
string I d)

Returns the action associated with the given severity and id.

First, if there is an action associated with the (severity,id) pair, return that. Else, if there is
an action associated with the id, return that. Else, if there is an action associated with the
severity, return that. Else, return the default action associated with the severity.

get_file_handle
function OYM FI LE get file_handl e(ovm severity severity,
string id)

Returns the file descriptor associated with the given severity and id.

First, if there is a file handle associated with the (severity,id) pair, return that. Else, if there
is a file handle associated with the id, return that. Else, if there is an file handle associated
with the severity, return that. Else, return the default file handle.

report

90

ovm_report_handler

virtual function void report(ovmseverity severity,
string namne,
string id,
string nmessage,
I nt verbosity | evel,
string filenane,
I nt l'ine,

ovm report _object client

This is the common handler method used by the four core reporting methods (e.g.,
ovm_report_error) in ovm_report_object.

format_action

function string format_acti on(ovm acti on action)

Returns a string representation of the action, e.g., "DISPLAY".

91

ovm_report_server

ovm_report_server

ovm_report_server is a global server that processes all of the reports generated by an
ovm_report_handler. None of its methods are intended to be called by normal testbench
code, although in some circumstances the virtual methods process_report and/or
compose_ovm_info may be overloaded in a subclass.

Summary

ovm_report_server

ovm_report_server is a global server that processes all of the reports generated by an
ovm_report_handler.
Class Declaration

cl ass ovm report_server

Variables

id_count An associative array holding the number of occurences for each unique report ID.
Methods

new Creates the central report server, if not already created.

set_max_quit_count

get_max_quit_count Get or set the maximum number of COUNT actions that can be tolerated before
an OVM_EXIT action is taken.

set_quit_count

get_quit_count

incr_quit_count

reset_quit_count Set, get, increment, or reset to O the quit count, i.e., the number of COUNT
actions issued.

is_quit_count_reachedlIf is_quit_count_reached returns 1, then the quit counter has reached the
maximum.

set_severity count

get_severity_count

incr_severity count

reset_severity counts Set, get, or increment the counter for the given severity, or reset all severity
counters to O.

set_id_count

get _id_count

incr_id_count Set, get, or increment the counter for reports with the given id.

process_report Calls compose_message to construct the actual message to be output.

compose_message Constructs the actual string sent to the file or command line from the severity,
component name, report id, and the message itself.

summarize See ovm_report_object::report_summarize method.
dump_server_state Dumps server state information.
get_server Returns a handle to the central report server.

Variables

92

ovm_report_server

id_count

protected int id_count[string]

An associative array holding the number of occurences for each unique report ID.

M ethods

new

function new()

Creates the central report server, if not already created. Else, does nothing. The constructor
is protected to enforce a singleton.

set_max_quit_count

function void set_max_quit_count (int count)

get_max_quit_count

function int get_max_quit_count()

Get or set the maximum number of COUNT actions that can be tolerated before an OVM_EXIT
action is taken. The default is 0, which specifies no maximum.

set_quit_count

function void set_quit_count(int quit_count)

get_quit_count

function int get_quit_count ()

incr_quit_count
93

ovm_report_server

function void incr_quit_count ()

reset_quit_count

function void reset _quit_count ()

Set, get, increment, or reset to O the quit count, i.e., the number of COUNT actions issued.

IS _quit_count_reached

function bit is_quit_count_reached()

If is_quit_count_reached returns 1, then the quit counter has reached the maximum.

set_severity _count

function void set_severity_count(ovm severity severity,
I nt count)

get_severity count

function int get_severity count(ovmseverity severity)

Incr_severity count

function void incr_severity count(ovm severity severity)

reset_severity counts

function void reset_severity_counts()

Set, get, or increment the counter for the given severity, or reset all severity counters to O.

set_id_count

94

ovm_report_server

function void set_id count(string id,
I nt count)

get_id_count

function int get id count(string id)

incr_id_count

function void incr_id count(string id)

Set, get, or increment the counter for reports with the given id.

process report

virtual function void process_report(ovmseverity severity,
string name,
string id,
string nmessage,
ovm acti on action,
OVM FI LE file,
string filenane,
I nt l'ine,
string conposed_nessage,
I nt verbosity |evel,
ovm report_object client)

Calls compose_message to construct the actual message to be output. It then takes the
appropriate action according to the value of action and file.

This method can be overloaded by expert users to customize the way the reporting system
processes reports and the actions enabled for them.

COMpOose_Mmessage

95

ovm_report_server

virtual function string conpose nessage(ovm severity
string
string
string
string
I nt

Constructs the actual string sent to the file or command line from the
name, report id, and the message itself.

severity,
nane,

I d,
nmessage,
filenane,
l'ine)

severity, component

Expert users can overload this method to customize report formatting.

summarize

virtual function void summarize(OVYM FILE file)

See ovm_report_object::report_summarize method.

dump_server state

function void dunp_server_state()

Dumps server state information.

get_server

function ovmreport_server get_server()

Returns a handle to the central report server.

96

Factory Classes

Factory Classes

As the name implies, the ovm_factory is used to manufacture (create) OVM objects and
components. Only one instance of the factory is present in a given simulation.

User-defined object and component types are registered with the factory via typedef or macro
invocation, as explained in ovm_factory::Usage. The factory generates and stores lightweight
proxies to the user-defined objects and components: ovm_object_registry #(T,Tname) for
objects and ovm_component_registry #(T,Tname) for components. Each proxy only knows

how to create an instance of the object or component it represents, and so is very efficient in
terms of memory usage.

When the user requests a new object or component from the factory (e.g. ovm_factory::
create_object_by type), the factory will determine what type of object to create based on its

configuration, then ask that type’s proxy to create an instance of the type, which is returned
to the user.

Factory Classes

ovm_factory L “») ovm_object_wrapper
|~ T, Trame | 7T, Trame |
______ 1l ___ _
ovm_component_registry ovm_object_registry

97

ovm_component_registry #(T,Tname)

ovm_component_registry #(T,Tname)

The ovm_component_registry serves as a lightweight proxy for a component of type T and type name
Tname, a string. The proxy enables efficient registration with the ovm_factory. Without it,

registration would require an instance of the component itself.

See Usage section below for information on using ovm_component_registry.
Summary

ovm_component_registry #(T,Tname)

The ovm_component_registry serves as a lightweight proxy for a component of type T and type name Tname, a
string.

Class Hierarchy

ovm_object_wrapper

|ovm_component_registry#(T,Tname)|

Class Declaration]
cl ass ovm conponent _registry #(

type T = ovm _conponent,
string Tname = "<unknown>"
) extends ovm obj ect w apper
Methods

create_componentCreates a component of type T having the provided name and parent.

get_type name Returns the value given by the string parameter, Tname.

get Returns the singleton instance of this type.

create Returns an instance of the component type, T, represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s full name.

set_type override Configures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type, T, represented by this proxy, provided no
instance override applies.

set_inst_override Configures the factory to create a component of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this proxy, with
matching instance paths.

M ethods

create_component
virtual function ovm conponent create _conponent (string narme,
ovm conmponent parent)

Creates a component of type T having the provided name and parent. This is an override of the
method in ovm_object_wrapper. It is called by the factory after determining the type of object to

create. You should not call this method directly. Call create instead.

98

ovm_component_registry #(T,Tname)

get_type name

virtual function string get_type_namne()

Returns the value given by the string parameter, Tname. This method overrides the method in
ovm_object_wrapper.

get

static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on there being a
single proxy instance for each registered type.

create

static function T create(string nane,
ovm _conponent parent,
string cont xt

Returns an instance of the component type, T, represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s full name. The contxt argument, if supplied,
supercedes the parent’s context. The new instance will have the given leaf name and parent.

set_type override

static function void set type override (ovm object w apper override_ type,
bi t repl ace

Configures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type, T, represented by this proxy, provided no instance
override applies. The original type, T, is typically a super class of the override type.

set_inst_override

static function void set_inst_override(ovm obj ect wapper override_type,
string I nst _pat h,
ovm _conponent par ent

Configures the factory to create a component of the type represented by override_type whenever a
request is made to create an object of the type, T, represented by this proxy, with matching instance
paths. The original type, T, is typically a super class of the override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which enables instance
overrides to be set from outside component classes. If parent is specified, inst_path is interpreted as

99

ovm_component_registry #(T,Tname)

Va4

being relative to the parent’s hierarchical instance path, i.e. {parent.get _full name(),”.”,inst_path} is
the instance path that is registered with the override. The inst_path may contain wildcards for
matching against multiple contexts.

ovm_object_registry #(T,Tname)

The ovm_object_registry serves as a lightweight proxy for an ovm_object of type T and type name
Tname, a string. The proxy enables efficient registration with the ovm_factory. Without it,
registration would require an instance of the object itself.

See Usage section below for information on using ovm_component_registry.
Summary

ovm_object registry #(T,Tname)

The ovm_object_registry serves as a lightweight proxy for an ovm_object of type T and type name Thame, a
string.

Class Hierarchy

ovm_object_wrapper

lovm_object_registry# (T, Tname)|

Class Declaration] '
cl ass ovm object _registry #(

type T = ovm_ obj ect,
string Tname = "<unknown>"
) extends ovm obj ect w apper
create_object Creates an object of type T and returns it as a handle to an ovm_object.
get_type name Returns the value given by the string parameter, Tname.
get Returns the singleton instance of this type.
create Returns an instance of the object type, T, represented by this proxy, subject to any factory

overrides based on the context provided by the parent’s full name.

set_type overrideConfigures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type represented by this proxy, provided no instance
override applies.

set_inst_override Configures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type represented by this proxy, with matching
instance paths.

Usage This section describes usage for the ovm_*_registry classes.

create object

virtual function ovm object create_object(string name = "")

Creates an object of type T and returns it as a handle to an ovim_object. This is an override of the
method in ovm_object_wrapper. It is called by the factory after determining the type of object to
create. You should not call this method directly. Call create instead.

100

ovm_component_registry #(T,Tname)

get_type name

virtual function string get_type_nane()

Returns the value given by the string parameter, Tname. This method overrides the method in
ovm_object_wrapper.

get
static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on there being a
single proxy instance for each registered type.

create

static function T create (string name
ovm _conponent parent
string cont xt

Returns an instance of the object type, T, represented by this proxy, subject to any factory overrides
based on the context provided by the parent’s full name. The contxt argument, if supplied, supercedes
the parent’s context. The new instance will have the given leaf name, if provided.

set_type override

static function void set_type_override (ovm object_ w apper override_type,
bi t repl ace

Configures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type represented by this proxy, provided no instance
override applies. The original type, T, is typically a super class of the override type.

set_inst_override

static function void set_inst_override(ovm obj ect _w apper override_type,
string I nst _pat h,
ovm conponent par ent

Configures the factory to create an object of the type represented by override_type whenever a
request is made to create an object of the type represented by this proxy, with matching instance
paths. The original type, T, is typically a super class of the override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which enables instance

overrides to be set from outside component classes. If parent is specified, inst_path is interpreted as
101

ovm_component_registry #(T,Tname)

Va4

being relative to the parent’s hierarchical instance path, i.e. {parent.get _full name(),”.”,inst_path} is
the instance path that is registered with the override. The inst_path may contain wildcards for
matching against multiple contexts.

Usage

This section describes usage for the ovm_*_registry classes.
The wrapper classes are used to register lightweight proxies of objects and components.

To register a particular component type, you need only typedef a specialization of its proxy class,
which is typically done inside the class.

For example, to register an OVM component of type mycomp

cl ass myconp extends ovm conponent ;
typedef ovm conponent _regi stry #(nmyconp, "nyconp") type_id
endcl ass

However, because of differences between simulators, it is necessary to use a macro to ensure vendor
interoperability with factory registration. To register an OVM component of type mycomp in a vendor-
independent way, you would write instead:

cl ass myconp extends ovm conponent;
“ovm conponent _uti | s(myconp)

endcl ass

The “ovm_component_utils macro is for non-parameterized classes. In this example, the typedef

underlying the macro specifies the Tname parameter as “mycomp”, and mycomp’s get_type_name() is
defined to return the same. With Tname defined, you can use the factory’s name-based methods to
set overrides and create objects and components of non-parameterized types.

For parameterized types, the type name changes with each specialization, so you can not specify a
Tname inside a parameterized class and get the behavior you want; the same type name string would
be registered for all specializations of the class! (The factory would produce warnings for each
specialization beyond the first.) To avoid the warnings and simulator interoperability issues with
parameterized classes, you must register parameterized classes with a different macro.

For example, to register an OVM component of type driver #(T), you would write:

class driver #(type T=int) extends ovm conponent;
“ovm conponent _paramutils(driver #(T));

endcl ass

The “ovm_component_param_utils and ~ovm_object_param_utils macros are used to register
102

ovm_component_registry #(T,Tname)

parameterized classes with the factory. Unlike the the non-param versions, these macros do not
specify the Tname parameter in the underlying ovm_component_registry typedef, and they do not
define the get_type_name method for the user class. Consequently, you will not be able to use the
factory’s name-based methods for parameterized classes.

The primary purpose for adding the factory’s type-based methods was to accommodate registration of

parameterized types and eliminate the many sources of errors associated with string-based factory
usage. Thus, use of name-based lookup in ovm_factory is no longer recommended.

103

OVM Factory

OVM Factory

This page covers the following classes.

. ovm_factory - creates objects and components according to user-defined type and instance-based
overrides.

. ovm_object wrapper - a lightweight substitute (proxy) representing a user-defined object or component.
Summary

OVM Factory
This page covers the following classes.

ovm_factory

As the name implies, ovm_factory is used to manufacture (create) OVM objects and components. Only
one instance of the factory is present in a given simulation (termed a singleton). Object and component
types are registered with the factory using lightweight proxies to the actual objects and components
being created. The ovm_object registry #(T,Tname) and ovm_component_registry #(T,Tname) class are
used to proxy ovm_objects and ovm_components.

The factory provides both name-based and type-based interfaces.

type-based The type-based interface is far less prone to errors in usage. When errors do occur, they are caught at
compile-time.

name-basedThe name-based interface is dominated by string arguments that can be misspelled and provided in the
wrong order. Errors in name-based requests might only be caught at the time of the call, if at all.
Further, the name-based interface is not portable across simulators when used with parameterized
classes.

See Usage section for details on configuring and using the factory.
Summary

ovm_factory
As the name implies, ovm_factory is used to manufacture (create) OVM objects and components.
Class Declaration
class ovm factory
Registering Types
register Registers the given proxy object, obj, with the factory.
Type & Instance Overrides
set_inst_override_by_type
set_inst_override_by name Configures the factory to create an object of the override’s type whenever a request is made to
create an object of the original type using a context that matches full_inst_path.
set_type_override_by_ type
set_type_override_by name Configures the factory to create an object of the override’s type whenever a request is made to

create an object of the original type, provided no instance override applies.
Creation

create_object_by_ type
create_component_by_type
create_object_by name

create_component_by name Creates and returns a component or object of the requested type, which may be specified by type
or by name.
Debug
104

OVM Factory

debug_create_by_type

debug_create_by name These methods perform the same search algorithm as the create_* methods, but they do not
create new objects.

find_override_by_type

find_override_by_name These methods return the proxy to the object that would be created given the arguments.

print Prints the state of the ovm_factory, including registered types, instance overrides, and type
overrides.

Usage Using the factory involves three basic operations

Registering Types

register

function void register (ovm object w apper obj)

Registers the given proxy object, obj, with the factory. The proxy object is a lightweight substitute for
the component or object it represents. When the factory needs to create an object of a given type, it calls
the proxy’s create_object or create_component method to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name method to match against
the requested_type_name argument in subsequent calls to create_component_by name

and create object by name. If the proxy object’s get_type name method returns the empty string,
name-based lookup is effectively disabled.

Type & Instance Overrides

set_inst_override by type

function void set_inst_override_by type (ovm object _w apper original _type,
ovm obj ect _wrapper override_type,
string full _inst_path)

set_inst_override by name

function void set_inst_override_by nanme (string original _type_nane,
string override_type_nane,
string full _inst_path)

Configures the factory to create an object of the override’s type whenever a request is made to create an
object of the original type using a context that matches full_inst_path. The original type is typically a
super class of the override type.

When overriding by type, the original_type and override_type are handles to the types’ proxy
objects. Preregistration is not required.

When overriding by name, the original_type_ name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Future calls to any of the create_* methods with the same string
and matching instance path will produce the type represented by override_type_ name, which must

be preregistered with the factory. 105

OVM Factory

The full_inst_path is matched against the contentation of {parent_inst_path, “.”, name} provided in
future create requests. The full_inst_path may include wildcards (* and ?) such that a single instance
override can be applied in multiple contexts. A full_inst_path of “*" is effectively a type override, as it will
match all contexts.

When the factory processes instance overrides, the instance queue is processed in order of
override registrations, and the first override match prevails. Thus, more specific overrides should be
registered first, followed by more general overrides.

set_type override by type

function void set_type override by type (ovm object _w apper original _type,
ovm obj ect _wrapper override_type,
bi t repl ace

set_type override by name

function void set_type_override_by nanme (string original_type_nane,
string override_type_nane,
bit repl ace

Configures the factory to create an object of the override’s type whenever a request is made to create an
object of the original type, provided no instance override applies. The original type is typically a super class
of the override type.

When overriding by type, the original_type and override type are handles to the types’ proxy
objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Future calls to any of the create_* methods with the same string
and matching instance path will produce the type represented by override_type_name, which must

be preregistered with the factory.

When replace is 1, a previous override on original_type_name is replaced, otherwise a previous override, if
any, remains intact.

Creation

create object_by type

functi on ovm obj ect create object_ by type (ovm object_ w apper requested_type,
string parent _inst _path
string nane

create_component_by_type

106

OVM Factory

functi on ovm conmponent create_conponent by type (
ovm obj ect _wrapper requested_type,

string parent _inst _path
string nane,
ovm_conponent par ent

create_object_by name

functi on ovm obj ect create_object_by name (string requested_type_nane,
string parent _inst_path
string name

create_component_by name

functi on ovm conponent create_conponent by nanme (string request ed_type_nane,
string parent _i nst _path
string nane,

ovm conponent parent

Creates and returns a component or object of the requested type, which may be specified by type or by
name. A requested component must be derived from the ovm_component base class, and a requested
object must be derived from the ovm_object base class.

When requesting by type, the requested_type is a handle to the type’s proxy object. Preregistration is
not required.

When requesting by name, the request_type_name is a string representing the requested type, which must
have been registered with the factory with that name prior to the request. If the factory does not recognize
the requested_type_name, an error is produced and a null handle returned.

If the optional parent_inst_path is provided, then the concatenation, {parent_inst_path, “.”,—~name—}, forms
an instance path (context) that is used to search for an instance override. The parent_inst_path is
typically obtained by calling the ovm_component::get_full_name on the parent.

If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in place of the
requested type. New components will have the given name and parent. New objects will have the given
name, if provided.

Override searches are recursively applied, with instance overrides taking precedence over type overrides. If
foo overrides bar, and xyz overrides foo, then a request for bar will produce xyz. Recursive loops will result
in an error, in which case the type returned will be that which formed the loop. Using the previous example,
if bar overrides xyz, then bar is returned after the error is issued.

Debug

debug_create by type

107

OVM Factory

function void debug_create_by type (ovm object_w apper requested_type,
string parent _i nst_path
string namne

debug_create by name

function void debug_create_by nanme (string requested_type_nane,
string parent _inst _path
string nane

These methods perform the same search algorithm as the create_* methods, but they do not create

new objects. Instead, they provide detailed information about what type of object it would return, listing
each override that was applied to arrive at the result. Interpretation of the arguments are exactly as with
the create_* methods.

find_override by type

functi on ovm obj ect _wapper find override by type (
ovm obj ect _wr apper request ed_t ype,
string full _inst_path

find_override by name
functi on ovm obj ect _w apper find_override_by name (string requested_type_nane,
string full __inst_path)

These methods return the proxy to the object that would be created given the arguments. The full_inst_path
is typically derived from the parent’s instance path and the leaf name of the object to be created, i.e.

A\

{ parent.get_full_name(), *.”, name }.

print

function void print (int all _types

Prints the state of the ovm_factory, including registered types, instance overrides, and type overrides.
When all_types is 0, only type and instance overrides are displayed. When all_types is 1 (default), all

registered user-defined types are printed as well, provided they have names associated with them.
When all_types is 2, the OVM types (prefixed with ovm_) are included in the list of registered types.

Usage

Using the factory involves three basic operations

1Registering objects and components types with the factory

2Designing components to use the factory to create objects or components

3Configuring the factory with type and instance overrides, both within and outside components

We’'ll briefly cover each of these steps here. More reference information can be found at Utility
Macros, ovm_component_registry #(T,Tname), ovm_obj%%tg_registry #(T,Tname), ovm_component.

OVM Factory

1 -- Registering objects and component typeswith the factory

When defining ovm_object and ovmm_component-based classes, simply invoke the appropriate macro. Use
of macros are required to ensure portability across different vendors’ simulators.

Objects that are not parameterized are declared as

cl ass packet extends ovm object;
“ovm obj ect _util s(packet)
endcl ass

cl ass packet D extends packet;
“ovm obj ect _util s(packet D)
endcl ass

Objects that are parameterized are declared as

cl ass packet #(type T=int, int WDTH=32) extends ovm obj ect
“ovm obj ect _param util s(packet #(T, WDTH))
endcl ass

Components that are not parameterized are declared as

cl ass conp extends ovm conponent;
“ovm conponent _uti |l s(conp)
endcl ass

Components that are parameterized are declared as

class conp #(type T=int, int WDTH=32) extends ovm conponent
“ovm conponent _param utils(conp #(T, WDTH))
endcl ass

The ~ovm_*_utils macros for simple, non-parameterized classes will register the type with the factory and
define the get_type, get_type_name, and create virtual methods inherited from ovm_object. It will also define

a static type_name variable in the class, which will allow you to determine the type without having to allocate
an instance.

The “ovm_*_ param_utils macros for parameterized classes differ from ~ovm_*_utils classes in the
following ways:

. The get_type _name method and static type_name variable are not defined. You will need to implement
these manually.

. A type name is not associated with the type when registeriing with the factory, so the factory’s *_by name
operations will not work with parameterized classes.

. The factory’s print, debug_create by type, and debug create by name methods, which depend on type
names to convey information, will list parameterized types as <unknown=>.

It is worth noting that environments that exclusively use the type-based factory methods (*_by type) do
not require type registration. The factory’s type-based methods will register the types involved “on the
fly,” when first used. However, registering with the ~ovm_*_utils macros enables name-based factory
usage and implements some useful utility functions.

109

OVM Factory

2 -- Designing componentsthat defer creation to the factory

Having registered your objects and components with the factory, you can now make requests for new
objects and components via the factory. Using the factory instead of allocating them directly (via new)
allows different objects to be substituted for the original without modifying the requesting class. The
following code defines a driver class that is parameterized.

class driverB #(type T=ovm obj ect) extends ovmdri ver;

/| paraneterized classes nust use the _paramutils version
“ovm conponent _param utils(driverB #(T))

/'l our packet type; this can be overridden via the factory
T pkt;

/] standard conponent constructor

function new(string name, ovm conponent parent=null);
super. new nang, parent) ;

endfunction

/1 get_type_nane not inplenented by nmacro for paraneterized cl asses
const static string type_name = {"driverB #(", T::type_nane,")"};
virtual function string get_type_nane();

return type_nane;
endfunction

/'l using the factory allows pkt overrides from outside the class
virtual function void build();

pkt = packet::type_id::create("pkt",this);
endfuncti on

/1 print the packet so we can confirmits type when printing

virtual function void do_print(ovmprinter printer);
printer.print_object("pkt", pkt);

endfunction

endcl ass

For purposes of illustrating type and instance overrides, we define two subtypes of the driverB class.
The subtypes are also parameterized, so we must again provide an implementation for
ovm_object::get _type name, which we recommend writing in terms of a static string constant.

class driverDl #(type T=ovm obj ect) extends driverB #(T);
“ovm conponent _paramutils(driverDl #(T))

function new(string nane, ovm conponent parent=null);
super. new nang, parent) ;
endfuncti on

const static string type_name = {"driverDlL #(",T::type_nane,")"};
virtual function string get_type_nane();

...return type_nang;
endfunction

endcl ass
class driverD2 #(type T=ovm object) extends driverB #(T);
“ovm conponent _param utils(driverD2 #(T))
function new(string name, ovm conponent parent=null);
super. new(nang, parent) ;
endfunction
const static string type nane = {"driverD2 #(",T::type_nane,")"};
virtual function string get_type_nane();
return type_nane;

endf unction

110

OVM Factory

endcl ass

/1 typedef sone specializations for conveni ence

typedef driverB #(packet) B_driver; /'l the base driver
typedef driverDl #(packet) Dl1_driver; // a derived driver
typedef driverD2 #(packet) D2_driver; // another derived driver

Next, we'll define a agent component, which requires a utils macro for non-parameterized types.
creating the drivers using the factory, we override driverQ’s packet type to be packetD.

cl ass agent extends ovm agent;

“ovm conponent _uti |l s(agent)

B_|
B_|

driver driverO;
driver driverl;

function new(string name, ovm conponent parent=null);

super. new(nane, parent);

endfuncti on

virtual function void build();

/1 override the packet type for driver0 and bel ow
packet::type_id::set_inst_override(packetD::get_type(),"driver0.*");

/'l create using the factory; actual driver types nmay be different
driverO = B_driver::type_id::create("driverQ0",this);
driverl B driver::type_id::create("driverl",this);

endf uncti on

endcl ass

Before

Finally we define an environment class, also not parameterized. Its build method shows three methods
for setting an instance override on a grandchild component with relative path name, agentl.driverl,
all equivalent.

cl ass env extends ovm env;

“ovm conponent _util s(env)

agent agentO0;
agent agent1;

function new(string name, ovm conponent parent=null);

super . new(nane, parent);

endfuncti on

virtual function void build();

// three methods to set an instance override for agentl.driverl
/1 - via conponent conveni ence nethod. ..
set _inst_override_by_ type("agentl.driverl",
B driver::get_type(),
D2_driver::get_type());

/'l - via the conponent's proxy (sanme approach as create)...
B driver::type_id::set_inst_override(D2_driver::get_type(),
"agentl.driverl",this);

// - via a direct call to a factory nethod. ..
factory.set_inst_override_by_type(B_driver::get_type(),
D2_driver::get_type(),
{get_full _nane(),".agentl.driverl"});

/'l create agents using the factory; actual agent types may be different
agent0 = agent::type_id::create("agent0",this);
agentl = agent::type_id::create("agentl",this);

111

OVM Factory
endfunction
/1 at end_of el aboration, print topology and factory state to verify
virtual function void end_of _el aboration();
ovm t op. print _topol ogy();
endfunction
virtual task run();
#100 gl obal _stop_request();

endf uncti on

endcl ass

3 -- Configuring the factory with type and instance overrides

In the previous step, we demonstrated setting instance overrides and creating components using the
factory within component classes. Here, we will demonstrate setting overrides from outside components,
as when initializing the environment prior to running the test.

nmodul e top;
env envo;
initial begin

/1 Being registered first, the followi ng overrides take precedence
/'l over any overrides nmade within env0's construction & build.

/'l Replace all base drivers with derived drivers...
B driver::type_id::set_type_ override(D driver::get_type());

/'l ...except for agentO.driver0O, whose type renains a base driver.
/1 (Bot h net hods bel ow have the equival ent result.)

/1 - via the conponent's proxy (preferred)
B driver::type_id::set_inst_override(B_driver::get_type(),
"env0. agent 0. driver0");

/1 - via a direct call to a factory method
factory.set _inst_override_by type(B_ driver::get_type(),
B driver::get_type(),
{get_full _name(), "env0. agent0.driver0"});

/1 now, create the environment; our factory configuration wll
/1 govern what topology gets created
env0 = new "env0");

/1 run the test (will execute build phase)
run_test();

end

endnodul e

When the above example is run, the resulting topology (displayed via a call to <ovm_top.print_topology>
in env’s ovm_component::end_of elaboration method) is similar to the following:

OVM_INFO @O [RNTST] Running test ...
O/M_INFO @0 [OVMIOP] OVM t est bench topol ogy:

$f COCCOCCODCSCOOCCoOCCOCOSOCOCCOCCOOCCOOSOCOCCOCSOC0CSCO0CCoOCooOCOSoCoooooSoo
Name Type Si ze Val ue
 CCOOCOCOCCOCCOOCCCOCCOOCCO0COCOCCO0CO0CSO0COoCOCCO0SOC0CCCOCCoOCCoO0Sooo0
envO0 env - envOo@
agent 0 agent - agent 0@
driverO driver B #(packet) - driver0@
pkt packet - pkt @1
driverl driverD #(packet) - driverl@4
pkt packet - pkt @3
agent 1 agent - agent 1@

112

OVM Factory

driver0 driverD #(packet) - drivero@4
pkt packet - pkt @7
driverl driverD2 #(packet) - driver1@0
pkt packet - pkt @9
! COCCO0COOCCOOCCOOCCOCOSOCOCCOCSOOCCOOSOCOCCOCSO0CSoO0SCoOCoOCOSOCooSooSoo

ovm_object_wrapper

The ovm_object_wrapper provides an abstract interface for creating object and component proxies. Instances
of these lightweight proxies, representing every ovm_object-based and ovm_component-based object

available in the test environment, are registered with the ovm_factory. When the factory is called upon
to create an object or component, it finds and delegates the request to the appropriate proxy.
Summary

ovm_object_wrapper
The ovm_object_wrapper provides an abstract interface for creating object and component proxies.
Class Declaration]
virtual class ovm object _w apper
Methods
create_object Creates a new object with the optional name.
create_componentCreates a new component, passing to its constructor the given name and parent.
get_type_name Derived classes implement this method to return the type name of the object created by create_component or
create_object.

M ethods

create object
virtual function ovm object create_object (string name = "")

Creates a new object with the optional name. An object proxy (e.g., ovm_object_registry #(T,
Tname)) implements this method to create an object of a specific type, T.

create_component
virtual function ovm conponent create_conponent (string nane,
ovm conponent parent)

Creates a new component, passing to its constructor the given name and parent. A component proxy (e.
g. ovm_component_registry #(T,Tname)) implements this method to create a component of a specific type, T.

get_type name

pure virtual function string get_type_nane()

Derived classes implement this method to return the type name of the object created by create_component
113

OVM Factory

or create_object. The factory uses this name when matching against the requested type in nhame-based lookups.

114

Synchronization Classes

Synchronization Classes

ovm_abject ovm_object
0.* 0.*
ovm_event_pool e ovm_event | ovm_event_callback
avm_object avm_object
, 0. ,
ovm_barrier_pool [————» ovm_barrier

The OVM provides event and barrier synchronization classes for managing concurrent
processes.

. ovm_event - OVM’s event class augments the SystemVerilog event datatype with
such services as setting callbacks and data delivery.

. ovm_barrier - A barrier is used to prevent a pre-configured number of processes
from continuing until all have reached a certain point in simulation.

. ovm_event_pool and ovm_barrier_pool - The event and barrier pool classes are used

to store collections of events and barriers, all indexed by string name. Each pool
class contains a static, “global” pool instance for sharing across all processes.

115

ovm_event

ovm_event

The ovm_event class is a wrapper class around the SystemVerilog event construct. It
provides some additional services such as setting callbacks and maintaining the number of
waiters.

Summary

ovm_event

The ovm_event class is a wrapper class around the SystemVerilog event construct.
Class Hierarchy

ovm_object

lovm_event]

Class Declaration
cl ass ovm event extends ovm obj ect

Methods

new Creates a new event object.

wait_on Waits for the event to be activated for the first time.

wait_off If the event has already triggered and is “on”, this task waits for the event to be
turned “off” via a call to reset.

wait_trigger Waits for the event to be triggered.

wait_ptrigger Waits for a persistent trigger of the event.

wait_trigger_data This method calls wait_trigger followed by get_trigger_data.
wait_ptrigger_dataThis method calls wait_ptrigger followed by get_trigger_data.
trigger Triggers the event, resuming all waiting processes.

get _trigger_data Gets the data, if any, provided by the last call to trigger.
get_trigger_time Gets the time that this event was last triggered.

is_on Indicates whether the event has been triggered since it was last reset.
is_off Indicates whether the event has been triggered or been reset.

reset Resets the event to its off state.

add_callback Registers a callback object, cb, with this event.

delete_callback Unregisters the given callback, cb, from this event.

cancel Decrements the number of waiters on the event.

get_num_waiters Returns the number of processes waiting on the event.

M ethods

new

function new (string nane =)

116

ovm_event

Creates a new event object.

wait_on

virtual task wait_on (bit delta =)

Waits for the event to be activated for the first time.

If the event has already been triggered, this task returns immediately. If delta is set, the
caller will be forced to wait a single delta #0 before returning. This prevents the caller from
returning before previously waiting processes have had a chance to resume.

Once an event has been triggered, it will be remain “on” until the event is reset.

wait_off

virtual task wait_off (bit delta =)

If the event has already triggered and is “on”, this task waits for the event to be turned "“off”
via a call to reset.

If the event has not already been triggered, this task returns immediately. If delta is set, the
caller will be forced to wait a single delta #0 before returning. This prevents the caller from
returning before previously waiting processes have had a chance to resume.

wait_trigger

virtual task wait_trigger ()

Waits for the event to be triggered.

If one process calls wait_trigger in the same delta as another process calls trigger, a race

condition occurs. If the call to wait occurs before the trigger, this method will return in this
delta. If the wait occurs after the trigger, this method will not return until the next trigger,
which may never occur and thus cause deadlock.

wait_ptrigger
virtual task wait_ptrigger ()

Waits for a persistent trigger of the event. Unlike wait_trigger, this views the trigger as
persistent within a given time-slice and thus avoids certain race conditions. If this method is

17

ovm_event

called after the trigger but within the same time-slice, the caller returns immediately.

wait_trigger data

virtual task wait_trigger _data (output ovm object data)

This method calls wait_trigger followed by get_trigger_ data.

wait_ptrigger _data

virtual task wait_ptrigger _data (output ovm object data)

This method calls wait_ptrigger followed by get trigger data.

trigger

virtual function void trigger (ovmobject data = nul |

Triggers the event, resuming all waiting processes.

An optional data argument can be supplied with the enable to provide trigger-specific
information.

get_trigger data

virtual function ovm object get _trigger_data ()

Gets the data, if any, provided by the last call to trigger.

get_trigger_time

virtual function tinme get _trigger_tinme ()

Gets the time that this event was last triggered. If the event has not been triggered, or the
event has been reset, then the trigger time will be 0.

IS on

118

ovm_event

virtual function bit is_on ()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has triggered.

is off

virtual function bit is_off ()

Indicates whether the event has been triggered or been reset.

A return of 1 indicates that the event has not been triggered.

reset

virtual function void reset (bit wakeup)

Resets the event to its off state. If wakeup is set, then all processes currently waiting for the
event are activated before the reset.

No callbacks are called during a reset.

add_callback

virtual function void add call back (ovm event call back cb,
bi t append

Registers a callback object, cb, with this event. The callback object may include pre_trigger
and post_trigger functionality. If append is set to 1, the default, cb is added to the back of
the callback list. Otherwise, cb is placed at the front of the callback list.

delete callback

virtual function void delete callback (ovmevent call back cb)

Unregisters the given callback, cb, from this event.

cancel

119

ovm_event

virtual function void cancel ()

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some other
means.

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes waiting on the event.

120

ovm_event_callback

ovm_event_callback

The ovm_event_callback class is an abstract class that is used to create callback objects
which may be attached to ovm_events. To use, you derive a new class and override any or

both pre_trigger and post_trigger.

Callbacks are an alternative to using processes that wait on events. When a callback is
attached to an event, that callback object’s callback function is called each time the event is
triggered.

Summary

ovm_event_callback

The ovm_event_callback class is an abstract class that is used to create callback objects which may be
attached to ovm_events.

Class Hierarchy

ovm_object

lovm_event_callback|

Class Declaration

virtual class ovm event_cal |l back extends ovm obj ect
Methods
new Creates a new callback object.
pre_trigger This callback is called just before triggering the associated event.
post_triggerThis callback is called after triggering the associated event.

M ethods

new

function new (string name =)

Creates a new callback object.

pre trigger

virtual function bit pre_trigger (ovmevent e,
ovm obj ect data = null)

121

ovm_event_callback

This callback is called just before triggering the associated event. In a derived class, override
this method to implement any pre-trigger functionality.

If your callback returns 1, then the event will not trigger and the post-trigger callback is not
called. This provides a way for a callback to prevent the event from triggering.

In the function, e is the ovm_event that is being triggered, and data is the optional data
associated with the event trigger.

post_trigger

virtual function void post _trigger (ovmevent e,
ovm obj ect data

This callback is called after triggering the associated event. In a derived class, override this
method to implement any post-trigger functionality.

In the function, e is the ovm_event that is being triggered, and data is the optional data
associated with the event trigger.

122

ovm_barrier

ovm_barrier

The ovm_barrier class provides a multiprocess synchronization mechanism. It enables a set
of processes to block until the desired number of processes get to the synchronization point,
at which time all of the processes are released.

Summary

ovm_ barrier

The ovm_barrier class provides a multiprocess synchronization mechanism.
Class Hierarchy

ovm_object

lovm_barrier]

Class Declaration
cl ass ovm barrier extends ovm obj ect

Methods

new Creates a new barrier object.

wait_for Waits for enough processes to reach the barrier before continuing.
reset Resets the barrier.

set_auto_reset Determines if the barrier should reset itself after the threshold is reached.
set_threshold Sets the process threshold.

get threshold Gets the current threshold setting for the barrier.

get_ num_waiters Returns the number of processes currently waiting at the barrier.
cancel Decrements the waiter count by one.

Methods

new

function new (string nane = :
i nt t hreshol d

I
o
N

Creates a new barrier object.

wait_for

virtual task wait _for()

Waits for enough processes to reach the barrier before continuing.
123

ovm_barrier

The number of processes to wait for is set by the set threshold method.

reset

virtual function void reset (bit wakeup

Resets the barrier. This sets the waiter count back to zero.

The threshold is unchanged. After reset, the barrier will force processes to wait for the
threshold again.

If the wakeup bit is set, any currently waiting processes will be activated.

set_auto reset

virtual function void set _auto reset (bit val ue

Determines if the barrier should reset itself after the threshold is reached.

The default is on, so when a barrier hits its threshold it will reset, and new processes will
block until the threshold is reached again.

If auto reset is off, then once the threshold is achieved, new processes pass through without
being blocked until the barrier is reset.

set_threshold

virtual function void set_threshold (int threshol d)

Sets the process threshold.

This determines how many processes must be waiting on the barrier before the processes
may proceed.

Once the threshold is reached, all waiting processes are activated.

If threshold is set to a value less than the number of currently waiting processes, then the
barrier is reset and waiting processes are activated.

get_threshold

124

ovm_barrier

virtual function int get _threshold ()

Gets the current threshold setting for the barrier.

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes currently waiting at the barrier.

cancel

virtual function void cancel ()

Decrements the waiter count by one. This is used when a process that is waiting on the
barrier is killed or activated by some other means.

125

ovm_objection

ovm_objection

Objections provide a facility for coordinating status information between two or more participating
components, objects, and even module-based IP. In particular, the ovm_test _done built-in
objection provides a means for coordinating when to end a test, i.e. when to call
global_stop_request to end the ovm_component::run phase. When all participating components
have dropped their raised objections with ovm_test_done, an implicit call to global_stop_request is
issued.

Summary

ovm_ objection

Objections provide a facility for coordinating status information between two or more participating components,
objects, and even module-based IP.
Class Hierarchy

ovim_object

ovm_report_object

lovm_objection |

Class Declaration
cl ass ovm obj ecti on extends ovm report obj ect

new Creates a new objection instance.

Objection Control

raise_objection Raises the number of objections for the source object by count, which defaults to 1.
drop_objection Drops the number of objections for the source object by count, which defaults to 1.
set_drain_time Sets the drain time on the given object to drain.

Callback Hooks

raised Objection callback that is called when a raise_objection has reached obj.

dropped Objection callback that is called when a drop_objection has reached obj.

all_dropped Objection callback that is called when a drop_objection has reached obj, and the total

count for obj goes to zero.
Objection Status

get _objection_countReturns the current number of objections raised by the given object.

get objection_total Returns the current number of objections raised by the given object and all descendants.
get_drain_time Returns the current drain time set for the given object (default: O ns).
display_objections Displays objection information about the given object.

new

function new(string nane =)

Creates a new objection instance.

Objection Control

126

ovm_objection

raise_objection

function void raise_objection (ovm object obj
I nt count

Raises the number of objections for the source object by count, which defaults to 1. The object is
usually the this handle of the caller. If object is not specified or null, the implicit top-level
component, ovm_top, is chosen.

Rasing an objection causes the following.

. The source and total objection counts for object are increased by count.

. The objection’s raised virtual method is called, which calls the ovm_component::raised
method for all of the components up the hierarchy.

drop_objection

function void drop_objection (ovm object obj
I nt count

Drops the number of objections for the source object by count, which defaults to 1. The object is
usually the this handle of the caller. If object is not specified or null, the implicit top-level
component, ovm_top, is chosen.

Dropping an objection causes the following.

. The source and total objection counts for object are decreased by count. Itis an error to
drop the objection count for object below zero.

. The objection’s dropped virtual method is called, which calls the ovm_component::dropped
method for all of the components up the hierarchy.

. If the total objection count has not reached zero for object, then the drop is propagated up
the object hierarchy as with raise_objection. Then, each object in the hierarchy will have

updated their source counts--objections that they originated--and total counts--the total
number of objections by them and all their descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a
configurable drain-time has passed and the ovm_component::all_dropped callback for the current

hierarchy level has returned. The following process occurs for each instance up the hierarchy from
the source caller:

A process is forked in a non-blocking fashion, allowing the drop call to return. The forked process
then does the following:

. If a drain time was set for the given object, the process waits for that amount of time.

. The objection’s all_dropped virtual method is called, which calls the ovim_component::

all_dropped method (if object is a component).
127

ovm_objection

The process then waits for the all_dropped callback to complete.

After the drain time has elapsed and all_dropped callback has completed, propagation of
the dropped objection to the parent proceeds as described in raise objection, except as

described below.

If a new objection for this object or any of its descendents is raised during the drain time or during
execution of the all_dropped callback at any point, the hierarchical chain described above is
terminated and the dropped callback does not go up the hierarchy. The raised objection will
propagate up the hierarchy, but the number of raised propagated up is reduced by the number of
drops that were pending waiting for the all_dropped/drain time completion. Thus, if exactly one
objection caused the count to go to zero, and during the drain exactly one new objection comes in,
no raises or drops are propagted up the hierarchy,

As an optimization, if the object has no set drain-time and no registered callbacks, the forked
process can be skipped and propagation proceeds immediately to the parent as described.

set_drain_time

function void set_drain_tinme (ovm object obj,
tinme dr ai n)

Sets the drain time on the given object to drain.

The drain time is the amount of time to wait once all objections have been dropped before calling
the all_dropped callback and propagating the objection to the parent.

If a new objection for this object or any of its descendents is raised during the drain time or during
execution of the all_dropped callbacks, the drain_time/all_dropped execution is terminated.

Callback Hooks

raised

virtual function void raised (ovm object obj,
ovm obj ect source_obj,
I nt count)

Objection callback that is called when a raise_objection has reached obj. The default
implementation calls ovm_component::raised.

dropped

128

ovm_objection

virtual function void dropped (ovm object obj,
ovm obj ect source_obj,
I nt count)

Objection callback that is called when a drop_objection has reached obj. The default
implementation calls ovm_component::dropped.

all_dropped

virtual task all _dropped (ovm object obj,
ovm obj ect source_obj,
i nt count)

Objection callback that is called when a drop_objection has reached obj, and the total count for obj

goes to zero. This callback is executed after the drain time associated with obj. The default
implementation calls ovm_component::all_dropped.

Objection Status

get_objection_count

function int get_objection_count (ovm object obj)

Returns the current number of objections raised by the given object.

get_objection_total

function int get_objection_total (ovm.object obj = null

Returns the current number of objections raised by the given object and all descendants.

get_drain_time

function tine get _drain_tinme (ovm object obj)

Returns the current drain time set for the given object (default: O ns).

display objections

129

ovm_objection

nul |,
1)

protected function string mdisplay_objections(ovm object obj
bi t show_header

Displays objection information about the given object. If object is not specified or null, the implicit
top-level component, <ovm_top>, is chosen. The show_header argument allows control of whether
a header is output.

ovm_test _done objection

Built-in end-of-test coordination
Summary

ovm_test _done_objection

Built-in end-of-test coordination
Class Hierarchy

ovim_object
ovim_report_object

ovim_objection

lovm_test done_objection|

Class Declaration
cl ass ovm test done_objection extends ovm objection

Methods
qualify Checks that the given object is derived from either ovm_component or ovm_sequence_base.

all dropped This callback is called when the given object’s objection count reaches zero; if the object is the
implicit top-level, <ovm_top> then it means there are no more objections raised for the
ovm_test_done objection.

raise_objectionCalls ovm_objection::raise_objection after calling qualify.

drop Calls ovm_objection::drop_objection after calling qualify.
force_stop
Methods
qualify
virtual function void qualify(ovm object obj = null,
bi t IS _raise)

Checks that the given object is derived from either ovm_component or ovim_sequence_base.

130

ovm_objection

all_dropped

virtual task all _dropped (ovm object obj,
ovm obj ect source_obj,
I nt count)

This callback is called when the given object’s objection count reaches zero; if the object is the
implicit top-level, <ovm_top> then it means there are no more objections raised for the
ovm_test_done objection. Thus, after calling ovm_objection::all_dropped, this method will call

global_stop_request to stop the current task-based phase (e.g. run).

raise_objection

virtual function void raise_objection (ovm object obj = nul |
i nt count = 1

Calls ovm_objection::raise_objection after calling qualify. If the object is not provided or is null,
then the implicit top-level component, ovm_top, is chosen.

drop

virtual function void drop_objection (ovm object obj nul |

i nt count

I
'_\

Calls ovm_objection::drop_objection after calling qualify. If the object is not provided or is null,
then the implicit top-level component, ovm_top, is chosen.

force stop

virtual task force_stop(ovm object obj = nul

131

ovm_pool #(T)

ovm_pool #(T)

Implements a class-based dynamic associative array. Allows sparse arrays to be allocated on
demand, and passed and stored by reference.

Summary

ovm_ pool #(T)

Implements a class-based dynamic associative array.
Class Hierarchy

ovm_object

lovm_ pool#(T)|

Class Declaration
cl ass ovm pool #(type KEY = Int,

T = ovmyvoid) extends ovm obj ect
Methods
new Creates a new pool with the given name.
get_global_pool Returns the singleton global pool for the item type, T.
get_global Returns the specified item instance from the global item pool.
get Returns the item with the given key.
add Adds the given (key, item) pair to the pool.
num Returns the number of uniquely keyed items stored in the pool.
delete Removes the item with the given key from the pool.
exists Returns 1 if a item with the given key exists in the pool, O otherwise.
first Returns the key of the first item stored in the pool.
last Returns the key of the last item stored in the pool.
next Returns the key of the next item in the pool.
prev Returns the key of the previous item in the pool.
Methods
new
function new (string nane = "")

Creates a new pool with the given name.

get_global pool
static function this type get gl obal pool ()

Returns the singleton global pool for the item type, T.

132

ovm_pool #(T)

This allows items to be shared amongst components throughout the verification environment.

get_global
static function T get gl obal (KEY key)

Returns the specified item instance from the global item pool.

get
virtual function T get (KEY key)

Returns the item with the given key.

If no item exists by that key, a new item is created with that key and returned.

add

virtual function void add (KEY key,
T item

Adds the given (key, item) pair to the pool.

num

virtual function int num ()

Returns the number of uniquely keyed items stored in the pool.

delete
virtual function void delete (KEY key)

Removes the item with the given key from the pool.

exists

virtual function int exists (KEY key)

Returns 1 if a item with the given key exists in the pool, O otherwise.

133

ovm_pool #(T)

first

virtual function int first (ref KEY key)

Returns the key of the first item stored in the pool.

If the pool is empty, then key is unchanged and O is returned.

If the pool is not empty, then key is key of the first item and 1 is returned.

last

virtual function int last (ref KEY key)

Returns the key of the last item stored in the pool.
If the pool is empty, then O is returned and key is unchanged.

If the pool is not empty, then key is set to the last key in the pool and 1 is returned.

next

virtual function int next (ref KEY key)

Returns the key of the next item in the pool.
If the input key is the last key in the pool, then key is left unchanged and O is returned.

If a next key is found, then key is updated with that key and 1 is returned.

prev

virtual function int prev (ref KEY key)

Returns the key of the previous item in the pool.

If the input key is the first key in the pool, then key is left unchanged and O is returned.

If a previous key is found, then key is updated with that key and 1 is returned.

ovm_object_string_pool #(T)

This provides a specialization of the generic <ovm_pool #(KEY,T) class for an associative

134

ovm_pool #(T)

array of ovm_object-based objects indexed by string. Specializations of this class include the
ovm_event_pool and ovm_barrier_pool classes.
Summary

ovm_object_string_pool #(T)

This provides a specialization of the generic <ovm_pool #(KEY,T) class for an associative array of
ovm_object-based objects indexed by string.

Class Hierarchy

ovm_ pool#(string,T)

lovm_object_string_pool#(T)|

Class Declaration -
cl ass ovm obj ect _string_pool #(

type T
) extends ovm pool #(string,T)
Methods
new Creates a new pool with the given name.

get_type nameReturns the type name of this object.
get_global poolReturns the singleton global pool for the item type, T.

get Returns the object item at the given string key.

delete Removes the item with the given string key from the pool.
M ethods

new

function new (string nane

Creates a new pool with the given name.

get_type name

virtual function string get_type_nane()

Returns the type name of this object.

get_global pool
static function this type get gl obal pool ()

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification environment.
135

ovm_pool #(T)

get

virtual function T get (string key)

Returns the object item at the given string key.

If no item exists by the given key, a new item is created for that key and returned.

delete

virtual function void delete (string key)

Removes the item with the given string key from the pool.

136

ovm_queue #(T)

ovm_queue #(T)

Implements a class-based dynamic queue. Allows queues to be allocated on demand, and
passed and stored by reference.

Summary

ovm_ queue #(T)

Implements a class-based dynamic queue.
Class Hierarchy

ovm_object

lovm_queue#(T)|
Class Declaration _]
cl ass ovm queue #(type T = I ni) extends ovm obj ect
Methods
new Creates a new queue with the given name.
get_global queueReturns the singleton global queue for the item type, T.
get_global Returns the specified item instance from the global item queue.
get Returns the item at the given index.
size Returns the number of items stored in the queue.
insert Inserts the item at the given index in the queue.
delete Removes the item at the given index from the queue; if index is not provided, the
entire contents of the queue are deleted.
pop_front Returns the first element in the queue (index=0), or null if the queue is empty.
pop_back Returns the last element in the queue (index=size()-1), or null if the queue is empty.
push_front Inserts the given item at the front of the queue.
push_back Inserts the given item at the back of the queue.
M ethods
new
function new (string nane = "")

Creates a new queue with the given name.

get_global queue

static function this_type get gl obal queue ()
137

ovm_queue #(T)

Returns the singleton global queue for the item type, T.

This allows items to be shared amongst components throughout the verification environment.

get_global

static function T get gl obal (int index)

Returns the specified item instance from the global item queue.

get

virtual function T get (int index)

Returns the item at the given index.

If no item exists by that key, a new item is created with that key and returned.

size
virtual function int size ()

Returns the number of items stored in the queue.

insert

virtual function void insert (int index,
T item)

Inserts the item at the given index in the queue.

delete

virtual function void delete (int index

Removes the item at the given index from the queue; if index is not provided, the entire
contents of the queue are deleted.

138

ovm_queue #(T)

pop_front

virtual function T pop_front()

Returns the first element in the queue (index=0), or null if the queue is empty.

pop_back

virtual function T pop_back()

Returns the last element in the queue (index=size()-1), or null if the queue is empty.

push_front

virtual function void push front(T item

Inserts the given item at the front of the queue.

push_back

virtual function void push_back(T item

Inserts the given item at the back of the queue.

139

ovm_callbacks #(T,CB)

ovm_callbacks #(T,CB)

The ovm__callbacks class provides a base class for implementing callbacks, which are typically
used to modify or augment component behavior without changing the component class. To
work effectively, the developer of the component class defines a set of “hook” methods that
enable users to customize certain behaviors of the component in a manner that is controlled
by the component developer. The integrity of the component’s overall behavior is intact,
while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined
callback interface implementation as well as the object type associated with the callback.

To provide the most flexibility for end-user customization and reuse, it is recommended that
the component developer also define a corresponding set of virtual method hooks in the
component itself. This affords users the ability to customize via inheritance/factory overrides
as well as callback object registration. The implementation of each virtual method would
provide the default traversal algorithm for the particular callback being called. Being virtual,
users can define subtypes that override the default algorithm, perform tasks before and/or
after calling super.<method> to execute any registered callbacks, or to not call the base
implementation, effectively disabling that particalar hook. A demonstration of this
methodology is provided in an example included in the Kit.

Summary

ovm__callbacks #(T,CB)

The ovm_callbacks class provides a base class for implementing callbacks, which are typically used to
modify or augment component behavior without changing the component class.
Class Hierarchy

ovm_ pool#(T,ovm_queue#(CB))
lovm_ callbacks#(T,CB) |

Class Declaration
cl ass ovm cal | backs #(

type T = i nt,
CB = I nt
) extends ovm pool #(T, ovm queue #(CB))
Parameters
T This type parameter specifies the base object type with which the CB callback objects will
be registered.
CB This type parameter specifies the base callback type that will be managed by this callback
class.
Methods
new Creates a new ovm__callbacks object, giving it an optional name.
get_global cbsReturns the global callback pool for this type.
add_cb Registers the given callback object, cb, with the given obj handle.
delete_cb Removes a previously registered callback, cb, for the given object, obj.

trace_mode This function takes a single argument to turn on (1) or off (0) tracing.
display_cbs Displays information about all registered callbacks for the given obj handle.

140

ovm_callbacks #(T,CB)

Parameters

T

This type parameter specifies the base object type with which the CB callback objects will be
registered.

CB

This type parameter specifies the base callback type that will be managed by this callback
class. The callback type is typically a interface class, which defines one or more virtual
method prototypes that users can override in subtypes.

M ethods

new

function new(string name

Creates a new ovm__callbacks object, giving it an optional name.

get_global cbs

Returns the global callback pool for this type.

This allows items to be shared amongst components throughout the verification environment.

add _cb

virtual function void add cb(T obj ,
CB cb,
bit append

141

ovm_callbacks #(T,CB)

Registers the given callback object, cb, with the given obj handle. The obj handle can be null,
which allows registration of callbacks without an object context. If append is 1 (default), the
callback will be executed after previously added callbacks, else the callback will be executed
ahead of previously added callbacks.

delete cb

virtual function void delete cb(T obj,
CB cb)

Removes a previously registered callback, cb, for the given object, obj.

trace_mode

function void trace_node(bit node)

This function takes a single argument to turn on (1) or off (O) tracing. The default is to turn
tracing on.

display cbs

function void display cbs(T obj = null)

Displays information about all registered callbacks for the given obj handle. If obj is not
provided or is null, then information about all callbacks for all objects is displayed.

ovm_callback

The ovm_callback class is the base class for user-defined callback classes. Typically, the
component developer defines an application-specific callback class that extends from this
class. In it, he defines one or more virtual methods, called a callback interface, that represent
the hooks available for user override.

Methods intended for optional override should not be declared pure. Usually, all the callback
methods are defined with empty implementations so users have the option of overriding any
or all of them.

The prototypes for each hook method are completely application specific with no restrictions.
Summary

142

ovm_callbacks #(T,CB)

ovm_ callback

The ovm_callback class is the base class for user-defined callback classes.
Class Hierarchy

ovm_object

lovm_ callback]

Class Declaration
cl ass ovm cal | back extends ovm obj ect

Methods

new Creates a new ovm_ callback object, giving it an optional name.
callback_mode Enable/disable callbacks (modeled like rand_mode and constraint_mode).
is_enabled Returns 1 if the callback is enabled, O otherwise.

get type name Returns the type name of this callback object.

M ethods

new

function new(string name

Creates a new ovm__callback object, giving it an optional name.

callback_mode

function void call back_node(bit on)

Enable/disable callbacks (modeled like rand_mode and constraint_mode).

Is enabled

function bit is_enabl ed()

Returns 1 if the callback is enabled, O otherwise.

get_type name

virtual function string get_type_name()

143

ovm_callbacks #(T,CB)

Returns the type name of this callback object.

144

Policy Classes

Policy Classes

Each of OVM'’s policy classes perform a specific task for ovm_object-based objects: printing,

comparing, recording, packing, and unpacking. They are implemented separately from
ovm_object so that users can plug in different ways to print, compare, etc. without modifying
the object class being operated on. The user can simply apply a different printer or compare
“policy” to change how an object is printed or compared.

Each policy class includes several user-configurable parameters that control the operation.
Users may also customize operations by deriving new policy subtypes from these base types.
For example, the OVM provides four different ovm_ printer-based policy classes, each of which
print objects in a different format.

. ovm_printer - performs deep printing of ovm_object-based objects. The OVM

provides several subtypes to ovm_printer that print objects in a specific format:
ovm_table printer, ovm_tree printer, and ovm_line_ printer. Each such printer has

many configuration options that goven what and how object members are printed.

. ovm_comparer - performs deep comparison of ovm_object-based objects. Users
may configure what is compared and how miscompares are reported.

. ovm_recorder - performs the task of recording ovm_object-based objects to a
transaction data base. The implementation is vendor-specific.

. ovm_packer - used to pack (serialize) and unpack ovm_object-based properties into
bit, byte, or int arrays and back again.

145

ovm_printer

ovm_printer

The ovm_printer class provides an interface for printing ovm_objects in various formats. Subtypes of
ovm_printer implement different print formats, or policies.

A user-defined printer format can be created, or one of the following four built-in printers can be used:

Printer Classes

ovm_printer

& 3

ovm_tree_printer ovm_table_printer

s

ovm_line_printer

. ovm_printer - provides raw, essentially un-formatted output

. ovm_table printer - prints the object in a tabular form.

. ovm_tree_printer - prints the object in a tree form.

. ovm_line_printer - prints the information on a single line, but uses the same object separators

as the tree printer.

Printers have knobs that you use to control what and how information is printed. These knobs are
contained in separate knob classes:

Printer Knob Classes

ovm_printer_knobs

5 g

ovm_hier_printer_knobs ovm_table_printer_knobs

ovm_tree_printer_knobs

. ovm_printer_knobs - common printer settings

. ovm_hier_printer_knobs - settings for printing hierarchically

. ovm_table printer_knobs - settings specific to the table printer
. ovm_tree_printer_knobs - settings specific to the tree printer

146

ovm_printer

For convenience, global instances of each printer type are available for direct reference in your

testbenches.

. ovm_default_tree printer

. ovm_default_line_printer

. ovm_default_table_printer

. ovm_default printer (set to default_table_printer by default)

The ovm_default_printer is used by ovm_object::print and ovm_object::sprint when the optional
ovm_printer argument to these methods is not provided.

Summary

ovm_ printer

The ovm_printer class provides an interface for printing ovim_objects in various formats.

Class Declaration

class ovm printer

knobs

Methods for printer usage

print_field
print_object_header
print_object
print_string
print_time

Methods for printer subtyping

print_header
print_footer
print_id
print_type_name
print_size
print_newline
print_value
print_value_object
print_value_string
print_value_array
print_array_header
print_array_range
print_array_footer

knobs

The knob object provides access to the variety of knobs associated with a specific
printer instance.

Prints an integral field.

Prints the header of an object.
Prints an object.

Prints a string field.

Prints a time value.

Prints header information.

Prints footer information.

Prints a field’s name, or id, which is the full instance name.
Prints a field’s type name.

Prints a field’s size.

Prints a newline character.

Prints an integral field’s value.

Prints a unique handle identifier for the given object.
Prints a string field’s value.

Prints an array’s value.

Prints the header of an array.

Prints a range using ellipses for values.

Prints the header of a footer.

ovm pri nt er _knobs knobs = new

The knob object provides access to the variety of knobs associated with a specific printer instance.

Each derived printer class overwrites the knobs variable with the a derived knob class that extends
ovm_printer_knobs. The derived knobs class adds more knobs to the base knobs.

147

ovm_printer

Methodsfor printer usage

print_field
virtual function void print _field (string nane,
ovm bitstreamt val ue,
i nt si ze,
ovm radi Xx_enum radi x
byt e scope_separ at or
string t ype_nane
Prints an integral field.
name The name of the field.
value The value of the field.
size The number of bits of the field (maximum is 4096).
radix The radix to use for printingthe printer knob for radix is used if no radix is specified.

scope_separatoris used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are . (dot) or [(open bracket).

print_object_header

virtual function void print_object header (string narme,
ovm obj ect val ue,
byt e scope_separ at or

Prints the header of an object.

This function is called when an object is printed by reference. For this function, the object will not be
recursed.

print_object
virtual function void print_object (string name,
ovm obj ect val ue,
byt e scope_separ at or

Prints an object. Whether the object is recursed depends on a variety of knobs, such as the depth knob;
if the current depth is at or below the depth setting, then the object is not recursed.

By default, the children of ovm_components are printed. To turn this behavior off, you must set the
ovm_component::print_enabled bit to 0 for the specific children you do not want automatically printed.

print_string

148

ovm_printer

virtual function void print_string (string nane,
string val ue,
byt e scope_separ at or

Prints a string field.

print_time

virtual function void print_time (string nane,
tinme val ue,
byte scope_separator

Prints a time value. name is the name of the field, and value is the value to print.

The print is subject to the $timeformat system task for formatting time values.

Methodsfor printer subtyping

print_header

virtual function void print_header ()

Prints header information. It is called when the current depth is O, before any fields have been printed.

print_footer

virtual function void print_footer ()

Prints footer information. It is called when the current depth is O, after all fields have been printed.

print_id

virtual protected function void print_id (string id,
byte scope_separator

Prints a field’s name, or id, which is the full instance name.

The intent of the separator is to mark where the leaf name starts if the printer if configured to print only
the leaf name of the identifier.

print_type name

149

ovm_printer

virtual protected function void print_type_nane (string nane,
bi t I s_obj ect)

Prints a field’s type name.

The is_object bit indicates that the item being printed is an object derived from ovm_object.

print_size

virtual protected function void print_size (int size

Prints a field’s size. A size of -1 indicates that no size is available, in which case the printer inserts the
appropriate white space if the format requires it.

print_newline

virtual protected function void print_newline (bit do_global indent

Prints a newline character. It is up to the printer to determine how or whether to display new lines. The
do_global_indent bit indicates whether the call to print_newline() should honor the indent knob.

print_value

virtual protected function void print_value (ovmbitstreamt val ue,
i nt si ze,
ovm radi Xx_enum radi x

Prints an integral field’s value.
The value vector is up to 4096 bits, and the size input indicates the number of bits to actually print.

The radix input is the radix that should be used for printing the value.

print_value_object

virtual protected function void print_value_object (ovm object val ue)

Prints a unique handle identifier for the given object.

print_value_string

virtual protected function void print_value_string (string val ue)

Prints a string field’s value.

150

ovm_printer

print_value array

virtual function void print_value array (string val ue :
I nt si ze

]
(@)
~

Prints an array’s value.

This only prints the header value of the array, which means that it implements the printer-specific
print_array_header().

value is the value to be printed for the array. It is generally the string representation of size, but it may
be any string. size is the number of elements in the array.

print_array header

virtual function void print_array header(string nane,
I nt si ze,
string arraytype = "array",
byt e scope_separ at or o

I
~

Prints the header of an array. This function is called before each individual element is printed.
print_array_footer is called to mark the completion of array printing.

print_array range
virtual function void print_array_range (int mn,
I nt max)

Prints a range using ellipses for values. This method is used when honoring the array knobs for partial
printing of large arrays, ovm_printer_knobs::begin_elements and ovm_printer_knobs::end_ elements.

This function should be called after begin_elements have been printed and after end_elements have been
printed.

print_array footer
virtual function void print_array footer (int size =)
Prints the header of a footer. This function marks the end of an array print. Generally, there is no

output associated with the array footer, but this method lets the printer know that the array printing is
complete.

ovm_table printer

151

ovm_printer

The table printer prints output in a tabular format.

The following shows sample output from the table printer.

Nane Type Si ze Val ue

cl cont ai ner - @nois

di nydat a - @022

vl i ntegral 32 ' hcb8f 1c97

el enum 32 THREE

str string 2 hi

val ue i ntegral 12 ' h2d
Summary

ovm_table_ printer

The table printer prints output in a tabular format.
Class Hierarchy

ovm_ printer

lovm_table_printer|

Class Declaration
class ovmtable printer extends ovm printer

Variables
new Creates a new instance of ovm_table_printer.
knobs An instance of ovm_table_printer_knobs, which govern the content and format of the printed table.

Variables

new

function new()

Creates a new instance of ovm_table_printer.

knobs

ovm tabl e _printer_knobs knobs = new

An instance of ovm_table_printer_knobs, which govern the content and format of the printed table.

ovm_printer

By overriding various methods of the ovm_ printer super class, the tree printer prints output in a tree
format.

The following shows sample output from the tree printer.

cl: (container@013) {
dl: (nydata@022) {
v1l: ' hcb8f 1c97
el: THREE
str: hi

}

val ue: 'h2d

}

Summary

ovm_tree_printer

By overriding various methods of the ovm_printer super class, the tree printer prints output in a tree format.
Class Hierarchy

ovm_ printer

ovm_tree_printer
I I

Class Declaration
class ovmtree printer extends ovmprinter

Variables
new Creates a new instance of ovm_tree_printer.
knobs An instance of ovm_tree_printer_knobs, which govern the content and format of the printed tree.

Variables

new

function new()

Creates a new instance of ovm_tree_printer.

knobs

ovm tree_printer_knobs knobs = new

An instance of ovm_tree_printer_knobs, which govern the content and format of the printed tree.

153

ovm_printer

ovm_line printer

The line printer prints output in a line format.

The following shows sample output from the line printer.

cl: (container@013) { dl: (nydata@022) { vl1: 'hcb8f1c97 el: THREE str: hi } value: 'h2d }

Summary

ovm_line_printer

The line printer prints output in a line format.
Class Hierarchy

ovm_ printer

ovm_tree_printer

lovm_line_printer]

Class Declaration
class ovmline_printer extends ovmtree_printer

Variables

new Creates a new instance of ovm_line_printer.

Methods

print_newlineOverrides ovm_printer::print_newline to not print a newline, effectively making everything appear on a
single line.

Variables

new

function new()

Creates a new instance of ovm_line_printer.

M ethods

print_newline

virtual function void print_newine (bit do_global _indent = 1)
154

ovm_printer

Overrides ovm_printer::print_newline to not print a newline, effectively making everything appear on a
single line.

ovm_printer_knobs

The ovm_printer_knobs class defines the printer settings available to all printer subtypes. Printer
subtypes may subtype this class to provide additional knobs for their specific format. For example, the
ovm_table printer uses the ovm_table printer_knobs, which defines knobs for setting table column

widths.
Summary

ovm_ printer_knobs

The ovm_printer_knobs class defines the printer settings available to all printer subtypes.
Class Declaration
cl ass ovm printer_knobs

Variables

max_width The maximum with of a field.

truncation Specifies the character to use to indicate a field was truncated.

header Indicates whether the <print_header> function should be called when printing an object.
footer Indicates whether the <print_footer> function should be called when printing an object.
global_indent Specifies the number of spaces of indentation to add whenever a newline is printed.
full_name Indicates whether <print_id> should print the full name of an identifier or just the leaf name.
identifier Indicates whether <print_id> should print the identifier.

depth Indicates how deep to recurse when printing objects.

reference Controls whether to print a unique reference ID for object handles.

type_name Controls whether to print a field’s type name.

size Controls whether to print a field’s size.

begin_elementsDefines the number of elements at the head of a list to print.
end_elements This defines the number of elements at the end of a list that should be printed.

show_radix Indicates whether the radix string (‘h, and so on) should be prepended to an integral value when one
is printed.

prefix Specifies the string prepended to each output line

mcd This is a file descriptor, or multi-channel descriptor, that specifies where the print output should be
directed.

default_radix This knob sets the default radix to use for integral values when no radix enum is explicitly supplied to
the print_field() method.

dec_radix This string should be prepended to the value of an integral type when a radix of OVM_DEC is used for
the radix of the integral object.

bin_radix This string should be prepended to the value of an integral type when a radix of OVM_BIN is used for
the radix of the integral object.

oct_radix This string should be prepended to the value of an integral type when a radix of OVM_OCT is used for

the radix of the integral object.

unsigned_radix This is the string which should be prepended to the value of an integral type when a radix of
OVM_UNSIGNED is used for the radix of the integral object.

hex_radix This string should be prepended to the value of an integral type when a radix of OVM_HEX is used for

the radix of the integral object.
Methods

get_radix_str Converts the radix from an enumerated to a printable radix according to the radix printing knobs
(bin_radix, and so on).

155

ovm_printer

Variables

max_width
int max_width = 999

The maximum with of a field. Any field that requires more characters will be truncated.

truncation

string truncation = "+"

Specifies the character to use to indicate a field was truncated.

header
bit header =1

Indicates whether the <print_header> function should be called when printing an object.

footer
bit footer = 1

Indicates whether the <print_footer> function should be called when printing an object.

global_indent

int global _indent = 0

Specifies the number of spaces of indentation to add whenever a newline is printed.

full_name

bit full nane =1

Indicates whether <print_id> should print the full name of an identifier or just the leaf name. The line,
table, and tree printers ignore this bit and always print only the leaf name.

identifier

156

ovm_printer

bit identifier =1

Indicates whether <print_id> should print the identifier. This is useful in cases where you just want the
values of an object, but no identifiers.

depth
int depth = -1

Indicates how deep to recurse when printing objects. A depth of -1 means to print everything.

reference

bit reference = 1

Controls whether to print a unique reference ID for object handles. The behavior of this knob is
simulator-dependent.

type_name

bit type name =1

Controls whether to print a field’s type name.

size
bit size =1

Controls whether to print a field’s size.

begin_elements

int begin_elements =5

Defines the number of elements at the head of a list to print. Use -1 for no max.

end_elements

int end elements = 5

This defines the number of elements at the end of a list that should be printed.

157

ovm_printer

show_radix

bit showradix =1

Indicates whether the radix string ('h, and so on) should be prepended to an integral value when one is
printed.

prefix

string prefix =

Specifies the string prepended to each output line

mcd
int ncd = OVM_STDOUT

This is a file descriptor, or multi-channel descriptor, that specifies where the print output should be
directed.

By default, the output goes to the standard output of the simulator.

default_radix

ovm radi x_enum defaul t _radi x = OVM_HEX

This knob sets the default radix to use for integral values when no radix enum is explicitly supplied to the
print_field() method.

dec radix

string dec_radix = ""'d"

This string should be prepended to the value of an integral type when a radix of OVM_DEC is used for the
radix of the integral object.

When a negative number is printed, the radix is not printed since only signed decimal values can print as
negative.

bin_radix

string bin_radix = "'b"

This string should be prepended to the value of an integral type when a radix of OVM_BIN is used for the
radix of the integral object.

158

ovm_printer

oct_radix

string oct_radix ="'o0

This string should be prepended to the value of an integral type when a radix of OVM_OCT is used for the
radix of the integral object.

unsigned_radix

string unsigned_radix = "'d"

This is the string which should be prepended to the value of an integral type when a radix of
OVM_UNSIGNED is used for the radix of the integral object.

hex_radix

string hex_radix = "'h"

This string should be prepended to the value of an integral type when a radix of OVM_HEX is used for the
radix of the integral object.

M ethods

get_radix_str

function string get _radi x_str (ovmradi x_enum radi x)

Converts the radix from an enumerated to a printable radix according to the radix printing knobs
(bin_radix, and so on).

ovm_hier_printer _knobs

The ovm_hier_printer_knobs is a simple container class that extends <ovm_ printer::
ovm_printer_knobs> with settings for printing information hierarchically.

Summary

ovm__hier_printer_knobs

The ovm_hier_printer_knobs is a simple container class that extends <ovm_printer::ovm_printer_knobs> with
settings for printing information hierarchically.
Class Hierarchy

159

ovm_printer

ovm_printer_knobs

lovm_hier_printer_knobs|

Class Declaratio_n] _

class ovm hi er _printer_knobs extends ovm printer_knobs
Variables
indent_strThis knob specifies the string to use for level indentation.

show_rootThis setting indicates whether or not the initial object that is printed (when current depth is O) prints the
full path name.

Variables

indent_str

string indent_str =" "

This knob specifies the string to use for level indentation. The default level indentation is two spaces.

show_root
bit showroot = 0
This setting indicates whether or not the initial object that is printed (when current depth is 0) prints the

full path name. By default, the first object is treated like all other objects and only the leaf name is
printed.

ovm_table printer_knobs

The ovm_table_printer_knobs is a simple container class that extends <ovm_printer::
ovm_hier_printer_knobs> with settings specific to printing in table format.

Summary

ovm_table_printer_knobs

The ovm_table_printer_knobs is a simple container class that extends <ovm_printer::ovm_hier_printer_knobs> with
settings specific to printing in table format.
Class Hierarchy

ovm_printer_knobs

ovm_hier_printer_knobs

lovm_table_printer_knobs|

Class Declaration _] _
cl ass ovm table_printer_knobs extends ovm hier_printer_knobs
160

ovm_printer

Variables

name_widthSets the width of the name column.
type_width Sets the width of the type column.
size_width Sets the width of the size column.
value_width Sets the width of the value column.

Variables

name_width

int nane_wi dth = 25

Sets the width of the name column. If set to O, the column is not printed.

type width
int type_width = 20

Sets the width of the type column. If set to O, the column is not printed.

Size width

int size width =5

Sets the width of the size column. If set to O, the column is not printed.

value width

int value width = 20

Sets the width of the value column. If set to O, the column is not printed.

ovm_tree printer_knobs

The ovm_tree_printer_knobs is a simple container class that extends <ovm_printer::
ovm_hier_printer_knobs> with settings specific to printing in tree format.

Summary

ovm_tree_printer_knobs

161

ovm_printer

The ovm_tree_printer_knobs is a simple container class that extends <ovm_printer::ovm_hier_printer_knobs> with
settings specific to printing in tree format.
Class Hierarchy

ovm_printer_knobs

ovm_hier_printer_knobs

lovm_tree printer_knobs|

Class Declaration] _]
class ovmtree_printer_knobs extends ovm hi er_printer_knobs

Variables
separator Determines the opening and closing separators used for nested objects.

Variables

separ ator

string separator = "{}"

Determines the opening and closing separators used for nested objects.

162

ovm_comparer

ovim_compar er

The ovm_comparer class provides a policy object for doing comparisons. The policies determine
how miscompares are treated and counted. Results of a comparison are stored in the comparer
object. The ovm_object::compare and ovm_object::do_compare methods are passed an

ovm_comparer policy object.

Summary

ovm_comparer

The ovm_comparer class provides a policy object for doing comparisons.
Class Declaration
cl ass ovm _conpar er

Variables

policy
show_max

verbosity

sev
miscompares
physical
abstract
check_type

result
Methods
compare_field

compare_field_int

Determines whether comparison is OVM_DEEP, OVM_REFERENCE, or OVM_SHALLOW.

Sets the maximum number of messages to send to the messager for miscompares of an
object.
Sets the verbosity for printed messages.

Sets the severity for printed messages.

This string is reset to an empty string when a comparison is started.

This bit provides a filtering mechanism for fields.

This bit provides a filtering mechanism for fields.

This bit determines whether the type, given by ovm_object::get_type name, is used to

verify that the types of two objects are the same.
This bit stores the number of miscompares for a given compare operation.

Compares two integral values.
This method is the same as compare_field except that the arguments are small
integers, less than or equal to 64 bits.

compare_field realThis method is the same as compare_field except that the arguments are real numbers.

compare_object

compare_string

Compares two class objects using the policy knob to determine whether the comparison

should be deep, shallow, or reference.
Compares two string variables.

print_msg Causes the error count to be incremented and the message, msg, to be appended to
the miscompares string (a newline is used to separate messages).

Variables

policy

ovm r ecur si on_policy_enum policy = O/M DEFAULT_POLI CY

Determines whether comparison is OVM_DEEP, OVM_REFERENCE, or OVM_SHALLOW.

163

ovm_comparer

show_max

i nt unsigned show max = 1

Sets the maximum number of messages to send to the messager for miscompares of an object.

verbosity
i nt unsigned verbosity = OVM LOW

Sets the verbosity for printed messages.

The verbosity setting is used by the messaging mechanism to determine whether messages
should be suppressed or shown.

sev

ovm severity sev = OVM_ | NFO

Sets the severity for printed messages.

The severity setting is used by the messaging mechanism for printing and filtering messages.

miscompar es

string m sconpares =
This string is reset to an empty string when a comparison is started.

The string holds the last set of miscompares that occurred during a comparison.

physical
bit physical =1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes of
fields.

It is up to you, in the ovm_object::do_compare method, to test the setting of this field if you
want to use the physical trait as a filter.

164

ovm_comparer

abstr act

bit abstract = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes of
fields.

It is up to you, in the ovm_object::do_compare method, to test the setting of this field if you
want to use the abstract trait as a filter.

check_type
bit check type =1

This bit determines whether the type, given by ovm_object::get type name, is used to verify
that the types of two objects are the same.

This bit is used by the compare object method. In some cases it is useful to set this to O when
the two operands are related by inheritance but are different types.

result

int unsigned result =0

This bit stores the number of miscompares for a given compare operation. You can use the
result to determine the number of miscompares that were found.

M ethods

compare field

virtual function bit conpare_field (string nare,
ovmbitstreamt | hs,
ovm bitstreamt rhs,
i nt si ze,
ovm r adi x_enum radi x

Compares two integral values.
165

ovm_comparer

The name input is used for purposes of storing and printing a miscompare.
The left-hand-side Ihs and right-hand-side rhs objects are the two objects used for comparison.

The size variable indicates the number of bits to compare; size must be less than or equal to
4096.

The radix is used for reporting purposes, the default radix is hex.

compare field_int

virtual function bit conpare_field_int (string name,
| ogi c[63: 0] | hs,
| ogi c[63: 0] rhs,
I nt si ze,

ovm radi x_enum r adi x

This method is the same as compare_field except that the arguments are small integers, less
than or equal to 64 bits. It is automatically called by compare_field if the operand size is less
than or equal to 64.

compare field real

virtual function bit conpare field real (string nane,
r eal | hs,
r eal rhs)

This method is the same as compare_field except that the arguments are real numbers.

compare_object

virtual function bit conpare_object (string name,
ovm obj ect | hs,
ovm object rhs)

Compares two class objects using the policy knob to determine whether the comparison should
be deep, shallow, or reference.

The name input is used for purposes of storing and printing a miscompare.
The lhs and rhs objects are the two objects used for comparison.

The check type determines whether or not to verify the object types match (the return from lhs.
get_type_name() matches rhs.get_type_namqué

ovm_comparer

compare _string

virtual function bit conmpare_string (string nane,
string | hs,
string rhs)

Compares two string variables.

The name input is used for purposes of storing and printing a miscompare.

The Ihs and rhs objects are the two objects used for comparison.

print_msg
function void print_nsg (string nsQ)

Causes the error count to be incremented and the message, msg, to be appended to the
miscompares string (a newline is used to separate messages).

If the message count is less than the show max setting, then the message is printed to
standard-out using the current verbosity and severity settings. See the verbosity and sev
variables for more information.

167

ovm_recorder

ovm_recorder

The ovm_recorder class provides a policy object for recording ovm_objects. The policies
determine how recording should be done.

A default recorder instance, ovm_default _recorder, is used when the ovm_object::record is
called without specifying a recorder.
Summary

ovm_recorder

The ovm_recorder class provides a policy object for recording ovm_objects.

Class Declaration
cl ass ovm recorder

Variables

tr_handle This is an integral handle to a transaction object.

default_radix This is the default radix setting if record_field is called without a radix.

physical This bit provides a filtering mechanism for fields.

abstract This bit provides a filtering mechanism for fields.

identifier This bit is used to specify whether or not an object’s reference should be recorded when

the object is recorded.
recursion_policy Sets the recursion policy for recording objects.

Methods

record_field Records an integral field (less than or equal to 4096 bits).

record_field realRecords an real field.

record_object Records an object field.

record_string Records a string field.

record_time Records a time value.

record_generic Records the name-value pair, where value has been converted to a string, e.g.

Variables

tr_handle

integer tr_handle = 0

This is an integral handle to a transaction object. Its use is vendor specific.

A handle of O indicates there is no active transaction object.

168

ovm_recorder

default_radix

ovm r adi x_enum defaul t _radi x = OVM_HEX

This is the default radix setting if record_field is called without a radix.

physical
bit physical =1
This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes
of fields.

It is up to you, in the ovm_object::do_record method, to test the setting of this field if you
want to use the physical trait as a filter.

abstract

bit abstract =1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes
of fields.

It is up to you, in the ovm_object::do_record method, to test the setting of this field if you
want to use the abstract trait as a filter.

identifier
bit identifier =1

This bit is used to specify whether or not an object’s reference should be recorded when the
object is recorded.

recursion_policy

ovm r ecur si on_policy_enum policy = O/M DEFAULT_PQOLI CY

Sets the recursion policy for recording objects.

169

ovm_recorder

The default policy is deep (which means to recurse an object).

Methods

record _field

virtual function void record field (string name,
ovm bitstreamt val ue,
I nt sSi ze,

ovm radi x_enum radix

Records an integral field (less than or equal to 4096 bits). name is the name of the field.

value is the value of the field to record. size is the number of bits of the field which apply.
radix is the ovm_radix_enum to use.

record field real

virtual function void record field real (string nane,
r eal val ue)

Records an real field. value is the value of the field to record.

record_object
virtual function void record _object (string namne,
ovm obj ect val ue)

Records an object field. name is the name of the recorded field.

This method uses the recursion <policy> to determine whether or not to recurse into the
object.

record_string
virtual function void record _string (string nane,
string val ue)

Records a string field. name is the name of the recorded field.
170

ovm_recorder

record_time

virtual function void record_tinme (string nane,
tinme val ue)

Records a time value. name is the name to record to the database.

record_generic

virtual function void record _generic (string nane,
string val ue)

Records the name-value pair, where value has been converted to a string, e.g. via $psprintf
("%<format>",<some variable>);

171

ovm_packer

ovm_packer

The ovm_packer class provides a policy object for packing and unpacking ovm_objects. The
policies determine how packing and unpacking should be done. Packing an object causes the
object to be placed into a bit (byte or int) array. If the “ovm_field_* macro are used to
implement pack and unpack, by default no metadata information is stored for the packing of
dynamic objects (strings, arrays, class objects).

Summary

ovm_ packer

The ovm_packer class provides a policy object for packing and unpacking ovm_objects.
Packing

pack_field Packs an integral value (less than or equal to 4096 bits) into the packed array.

pack field int Packs the integral value (less than or equal to 64 bits) into the pack array.
pack_string Packs a string value into the pack array.

pack_time Packs a time value as 64 bits into the pack array.

pack_real Packs a real value as 64 bits into the pack array.

pack object Packs an object value into the pack array.

Unpacking

is_null This method is used during unpack operations to peek at the next 4-bit chunk of the

pack data and determine if it is O.
unpack_field_intUnpacks bits from the pack array and returns the bit-stream that was unpacked.

unpack_field Unpacks bits from the pack array and returns the bit-stream that was unpacked.
unpack_string Unpacks a string.

unpack_time Unpacks the next 64 bits of the pack array and places them into a time variable.
unpack_real Unpacks the next 64 bits of the pack array and places them into a real variable.
unpack_object Unpacks an object and stores the result into value.

get_packed_sizeReturns the number of bits that were packed.

Variables
physical This bit provides a filtering mechanism for fields.
abstract This bit provides a filtering mechanism for fields.

use_metadata This flag indicates whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking.
big_endian This bit determines the order that integral data is packed (using pack_field,

pack_field_int, pack_ time, or pack real) and how the data is unpacked from the pack
array (using unpack_field, unpack_field_int, unpack_time, or unpack_real).

Packing

pack field

172

ovm_packer

virtual function void pack field (ovmbitstreamt val ue,
I nt size)

Packs an integral value (less than or equal to 4096 bits) into the packed array. size is the
number of bits of value to pack.

pack field_int

virtual function void pack field int (logic[63:0] value,
I nt size)

Packs the integral value (less than or equal to 64 bits) into the pack array. The size is the
number of bits to pack, usually obtained by $bits. This optimized version of pack_field is

useful for sizes up to 64 bits.

pack_string
virtual function void pack _string (string val ue)
Packs a string value into the pack array.

When the metadata flag is set, the packed string is terminated by a null character to mark the
end of the string.

This is useful for mixed language communication where unpacking may occur outside of
SystemVerilog OVM.

pack_time

virtual function void pack tinme (tinme val ue)

Packs a time value as 64 bits into the pack array.

pack real

virtual function void pack real (real val ue)

Packs a real value as 64 bits into the pack array.

The real value is converted to a 6-bit scalar value using the function $real2bits before it is
packed into the array.

173

ovm_packer

pack _object
virtual function void pack object (ovm object val ue)
Packs an object value into the pack array.

A 4-bit header is inserted ahead of the string to indicate the number of bits that was packed.
If a null object was packed, then this header will be O.

This is useful for mixed-language communication where unpacking may occur outside of
SystemVerilog OVM.

Unpacking

Is_null

virtual function bit is_null ()

This method is used during unpack operations to peek at the next 4-bit chunk of the pack
data and determine if it is O.

If the next four bits are all O, then the return value is a 1; otherwise it is O.

This is useful when unpacking objects, to decide whether a new object needs to be allocated
or not.

unpack_field_int
virtual function |ogic[63:0] unpack_field_int (int size)
Unpacks bits from the pack array and returns the bit-stream that was unpacked.

size is the number of bits to unpack; the maximum is 64 bits. This is a more efficient variant
than unpack_field when unpacking into smaller vectors.

unpack_field

virtual function ovmbitstreamt unpack field (int size)

Unpacks bits from the pack array and returns the bit-stream that was unpacked. size is the
174

ovm_packer

number of bits to unpack; the maximum is 4096 bits.

unpack_string
virtual function string unpack _string (int numchars
Unpacks a string.

num_chars bytes are unpacked into a string. If num_chars is -1 then unpacking stops on at
the first null character that is encountered.

unpack_time

virtual function tinme unpack tinme ()

Unpacks the next 64 bits of the pack array and places them into a time variable.

unpack_real

virtual function real unpack_real ()

Unpacks the next 64 bits of the pack array and places them into a real variable.

The 64 bits of packed data are converted to a real using the $bits2real system function.

unpack _object
virtual function void unpack object (ovm object val ue)
Unpacks an object and stores the result into value.

value must be an allocated object that has enough space for the data being unpacked. The
first four bits of packed data are used to determine if a null object was packed into the array.

The is_null function can be used to peek at the next four bits in the pack array before calling
this method.

get_packed size
virtual function int get_ packed_size()

175

ovm_packer

Returns the number of bits that were packed.

Variables

physical
bit physical =1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes
of fields. Itis up to you, in the ovm_object::do_pack and ovm_object::do_unpack methods,
to test the setting of this field if you want to use it as a filter.

abstract

bit abstract = 0

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different classes
of fields. Itis up to you, in the ovm_object::do_pack and ovm_object::do_unpack routines,

to test the setting of this field if you want to use it as a filter.

use metadata

bit use netadata = 0

This flag indicates whether to encode metadata when packing dynamic data, or to decode
metadata when unpacking. Implementations of <do_pack> and <do_unpack> should regard
this bit when performing their respective operation. When set, metadata should be encoded
as follows:

. For strings, pack an additional null byte after the string is packed.

. For objects, pack 4 bits prior to packing the object itself. Use 4’b0000 to indicate the
object being packed is null, otherwise pack 4’0001 (the remaining 3 bits are
reserved).

. For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size
of the array prior to to packing individual elements.

176

ovm_packer

big_endian

bit big endian =1

This bit determines the order that integral data is packed (using pack_field, pack field int,
pack time, or pack real) and how the data is unpacked from the pack array (using
unpack_field, unpack_field_int, unpack_time, or unpack_real). When the bit is set, data is
associated msb to Isb; otherwise, it is associated Isb to msb.

The following code illustrates how data can be associated msb to Isb and Isb to msb:

cl ass nydata extends ovm object;
| ogi c[15: 0] value = 'h1234;

function void do_pack (ovm packer packer);
packer. pack_field_int(value, 16);
endf unction

function void do_unpack (ovm packer packer);
val ue = packer. unpack _field_int(16);
endf uncti on
endcl ass

mydata d = new,
bit bits[];

initial begin
d. pack(bits); // 'b0001001000110100
ovm def aul t _packer. bi g_endi an = 0;
d. pack(bits); // 'b0010110001001000
end

177

TLM Interfaces, Ports, and Exports

TLM Interfaces, Ports, and Exports

The OVM TLM library defines several abstract, transaction-level interfaces and the ports and
exports that facilitate their use. Each TLM interface consists of one or more methods used to
transport data, typically whole transactions (objects) at a time. Component designs that use
TLM ports and exports to communicate are inherently more reusable, interoperable, and
modular.

I nterface Overview

The TLM standard specifies the required behavior (semantic) of each interface method. Classes
(components) that implement a TLM interface must meet the specified semantic.

Each TLM interface is either blocking, non-blocking, or a combination of these two.

blocking A blocking interface conveys transactions in blocking fashion; its methods do not
return until the transaction has been successfully sent or retrieved. Because
delivery may consume time to complete, the methods in such an interface are
declared as tasks.

non-blockingA non-blocking interface attempts to convey a transaction without consuming
simulation time. Its methods are declared as functions. Because delivery may fail
(e.g. the target component is busy and can not accept the request), the methods
may return with failed status.

combination A combination interface contains both the blocking and non-blocking variants. In
SystemC, combination interfaces are defined through multiple inheritance.
Because SystemVerilog does not support multiple inheritance, the OVM emulates
hierarchical interfaces via a common base class and interface mask.

Like their SystemC counterparts, the OVM’s TLM port and export implementations allow
connections between ports whose interfaces are not an exact match. For example, an
ovm_blocking_get_port can be connected to any port, export or imp port that provides at the
least an implementation of the blocking_get interface, which includes the ovm_get_* ports and
exports, ovm_blocking_get_peek_* ports and exports, and ovm_get_peek_* ports and exports.

The sections below provide and overview of the unidirectional and bidirectional TLM interfaces,
ports, and exports.

Summary

TLM Interfaces, Ports, and Exports

The OVM TLM library defines several abstract, transaction-level interfaces and the ports and exports that

facilitate their use.

Unidirectional Interfaces & PortsThe unidirectional TLM interfaces consist of blocking, non-blocking,
and combined blocking and non-blocking variants of the put, get and
peek interfaces, plus a non-blocking analysis interface.

Put The put interfaces are used to send, or put, transactions to other
components.

Get and Peek The get interfaces are used to retrieve transactions from other
components.

Analysis The analysis interface is used to perform non-blocking broadcasts of

transactions to connected components.

178

TLM Interfaces, Ports, and Exports

Ports, Exports, and Imps The OVM provides unidirectional ports, exports, and implementation
ports for connecting your components via the TLM interfaces.

Bidirectional Interfaces & Ports The bidirectional interfaces consist of blocking, non-blocking, and
combined blocking and non-blocking variants of the transport,
master, and slave interfaces.

Transport The transport interface sends a request transaction and returns a
response transaction in a single task call, thereby enforcing an in-
order execution semantic.

Master and Slave The primitive, unidirectional put, get, and peek interfaces are
combined to form bidirectional master and slave interfaces.

Ports, Exports, and Imps The OVM provides bidirectional ports, exports, and implementation
ports for connecting your components via the TLM interfaces.

Usage We provide an example to illustrate basic TLM connectivity using the

blocking put inteface.

Unidirectional Interfaces & Ports

The unidirectional TLM interfaces consist of blocking, non-blocking, and combined blocking and
non-blocking variants of the put, get and peek interfaces, plus a non-blocking analysis interface.

Put

The put interfaces are used to send, or put, transactions to other components. Successful
completion of a put guarantees its delivery, not execution.

77 rT7
tim_blocking_put_if tim_nonblocking_put_if
put try_put

can ;ut
T 37
| IS —
tim_put_if
put
Iry_put
can_put

Get and Peek

The get interfaces are used to retrieve transactions from other components. The peek
interfaces are used for the same purpose, except the retrieved transaction is not consumed;

successive calls to peek will return the same object. Combined get_peek interfaces are also
179

TLM Interfaces, Ports, and Exports

defined.

(70 (7] (7] (73
tim_blocking_get_if | | tim_nonblocking_get_if | [tim_blocking_peek_if| |tim_nonblocking_peek_if
get try_get peek try_get

can_get can_get
i T) i £ T s
LT T LT
tim_get_if tim_peek_if
get peek
try get Iry_paek
can_gat can_pesak
I ‘ T
tlrm_blacking_geat J_'naah:_lf_ T tim_nanblacking_gat_peek_if
et try gat
peek can_get
£ iry_peek
can_pask
T [T
tim_get_peek_if
get
try_gat
car_get
peek
try_peek
can_peek
Analysis

The analysis interface is used to perform non-blocking broadcasts of transactions to connected
components. It is typically used by such components as monitors to publish transactions

observed on a bus to its subscribers, which are typically scoreboards and response/coverage
collectors.

T

=

tim_analysis

write

180

TLM Interfaces, Ports, and Exports

Ports, Exports, and Imps

The OVM provides unidirectional ports, exports, and implementation ports for connecting your

components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate interface to initiate

transaction requests.

Exportsinstantiated by components that forward an implementation of the methods defined in
the associated interface. The implementation is typically provided by an imp port in a

child component.

Imps instantiated by components that provide or implement an implementation of the

methods defined in the associated interface.

15g |
P 1
ovm_port_base

.1

IF=Hm_If_basa<T T=
FORT=0wm_por_besa<iF

ovim_component

T "PORT

I
1 — —]
OV _port_componeant

7] F7]
| - 1
ovm_*_port I- ovim_*_export]-

A summary of port, export, and imp declarations are

cl ass ovm *_export #(type T=int)
extends ovm port_base #(tIlm.if_base #(T,T));

class ovm *_port #(type T=int)
extends ovm port_base #(tIlm.if_base #(T,T));

class ovm* _inp #(type T=int)
extends ovm port_base #(tlm.if_base #(T,T));

where the asterisk can be any of

bl ocki ng_put
nonbl ocki ng_put
put

181

C e |
1 J

mrm_‘_imp_ B T

TLM Interfaces, Ports, and Exports

bl ocki ng_get
nonbl ocki ng_get
get

bl ocki ng_peek
nonbl ocki ng_peek
peek

bl ocki ng_get _peek
nonbl ocki ng_get peek
get _peek

anal ysi s

Bidirectional | nterfaces & Ports

The bidirectional interfaces consist of blocking, non-blocking, and combined blocking and non-
blocking variants of the transport, master, and slave interfaces.

Bidirectional interfaces involve both a transaction request and response.

Transport

The transport interface sends a request transaction and returns a response transaction in a
single task call, thereby enforcing an in-order execution semantic. The request and response
transactions can be different types.

[REQ, RSP | [REQ RSP |
tim_blocking_transport_if| | tim_nonblocking_transport_if
transport nb_transpoart
. REQ.RSF |
thrn_transport if
transport
nb_transport

Master and Slave

The primitive, unidirectional put, get, and peek interfaces are combined to form bidirectional
master and slave interfaces. The master puts requests and gets or peeks responses. The slave

gets or peeks requests and puts responses. Because the put and the get come from different
182

TLM Interfaces, Ports, and Exports

function interface methods, the requests and responses are not coupled as they are with the
transport interface.

T ']' 'Y "J [T ': [T ':
tim_blocking_put_if —| ﬂm_nunhlnchlng_put_lf—| tim_blocking get J:uaal-:_if_ tlm_ncnnhlncking_gat_paak_if—l
[y & Fa fa ; I Fa)
T=REQ |T=RSF T=REQ T=R5F T=R5F T=REQ T=R5P T=REQ
i
MREQ, RSP | REQ, REF | 'REQ, RSP | REQ, RSP |
tim_blocking master_if tim_nonblocking_master i tim_blocking_slave if tim_nonblocking_slave_if
put [REQ) try_put (rReQ) get (rRsP) try get (rREC)
get (rREq) can_put [REG) peak (REQ) can_get (Req)
peek [RsF) try_get (rsr) put (RsF) try_peek (Rea)
can_get [R5F) i) can_pesk (REQ)
try_peek (REF) Iry_put (RsF)
can_peek (Rae) can_put (RSP)

[REQ. RSP | [REQ RSP |

ilm_master_if iim_nonblocking _slave if
put [REGQ) gt (Req)
iry_put (REZ) fry_get (Req)
c:anl:_put}{nm} -:anﬁ:-et {n]EnJ
get (rRep peak (REQ
try_get (RsF) try_peek (Req)
u::aanet (RsP) can_peek (REC)
eek (RSP t{RsP)
Fry_péek [LEP} Fri;_::sut (rsp) REP
can_peak (RSP can_put (RsP)

Ports, Exports, and Imps

The OVM provides bidirectional ports, exports, and implementation ports for connecting your

components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate interface to initiate
transaction requests.

Exportsinstantiated by components that forward an implementation of the methods defined in
the associated interface. The implementation is typically provided by an imp port in a
child component.

Imps instantiated by components that provide or implement an implementation of the
methods defined in the associated interface.

183

TLM Interfaces, Ports, and Exports

FREQRSF |
| — e —
tim_if_base I- ovIT_component
)
1= M omT |
| _”: | 1 | _PI:LHT]
ovm_port_base I-_-l—ir OVIT_por_companent
1
i
IE:2im_f_base<RED RSP
PORT=0vm_port_base<iF>
MREQRSP | MREQRSP | "REQ,RSP.IMP |
| -— [— [-— o wd
ovim_*_port ovim_*_export ovm_*_imp _I

A summary of port, export, and imp declarations are

class ovm *_port #(type REQ=i nt, RSP=int)
extends ovm port_base #(tIlm.if_base #(REQ RSP))

class ovm *_export #(type REQ=int, RSP=int)
extends ovm port_base #(tIlm.if_base #(REQ RSP))

class ovm*_inp #(type REQ=int, RSP=int)
extends ovm port_base #(tlm.if_base #(REQ RSP))

where the asterisk can be any of

transport
bl ocki ng_t ransport
nonbl ocki ng_t ransport

bl ocki ng_nast er
nonbl ocki ng_nmast er
mast er

bl ocki ng_sl ave

nonbl ocki ng_sl ave
sl ave

Usage

We provide an example to illustrate basic TLM connectivity using the blocking put inteface.

184

TLM Interfaces, Ports, and Exports

2y
comp COmpE
subcomp?
leaf1
leaf?
r/"'"_* part part aupart expart Imp
put {frans) task put(Tt
D = port O = gxpor. [imp <> = analysis port
port-to-port leafl’s out port is connected to its parent’s (compl) out port
port-to-export compl’s out port is connected to comp2’s in export
export-to-export comp2’s in export is connected to its child’s (subcomp?2) in export
export-to-imp subcomp?2’s in export is connected leaf2’s in imp port.

imp-to-implementationleaf2’s in imp port is connected to its implementation, leaf2

Hierarchical port connections are resolved and optimized just before the ovm_component::
end_of elaboration phase. After optimization, calling any port’s interface method (e.g. leafl.

out.put(trans)) incurs a single hop to get to the implementation (e.g. leaf2’s put task), no
matter how far up and down the hierarchy the implementation resides.

“include "ovm pkg. sv"
i mport ovm pkg::*;

class trans extends ovm transaction
rand i nt addr;
rand int data;
rand bit wite;

endcl ass

class | eaf 1 extends ovm conponent;
“ovm conponent _util s(leafl)
ovm bl ocki ng_put _port #(trans) out;

function new(string name, ovm conponent parent=null);
super. new nane, parent);
out = new("out",this);

endf unction

virtual task run();
trans t;
t = new,
t.random ze();
out. put(t);

endt ask

185

TLM Interfaces, Ports, and Exports

endcl ass

cl ass conpl extends ovm conponent;
“ovm conponent _util s(conpl)
ovm bl ocki ng_put _port #(trans) out;
|l eafl | eaf;

function new(string name, ovm conponent parent=null);
super . new(name, parent);
endf unction

virtual function void build();
out = new("out",this);
| eaf = new("leafl1",this);
endf unction

/'l connect port to port

virtual function void connect();
| eaf . out. connect (out);

endf unction

endcl ass

cl ass | eaf 2 extends ovm conponent;
“ovm conponent _util s(l eaf 2)
ovm bl ocki ng_put _inp #(trans,leaf2) in

function new(string name, ovm conponent parent=null);
super . new(nane, parent);
/1 connect inp to inplenentation (this)
in = new"in",this);
endf unction
virtual task put(trans t);
$di spl ay("Got trans: addr=%d, data=%0d, wite=%d",

t.addr, t.data, t.wite);
endt ask

endcl ass

cl ass subconp2 extends ovm conponent;
“ovm conponent _uti |l s(subconp2)
ovm bl ocki ng_put _export #(trans) in;
| eaf 2 | eaf;

function new(string name, ovm conponent parent=null);
super . new(name, parent);
endf uncti on

virtual function void build();
in =new"in",this);
| eaf = new("leaf2",this);
endf unction

186

TLM Interfaces, Ports, and Exports

/'l connect export to inp

virtual function void connect();
i n.connect (I eaf.in);

endf unction

endcl ass

cl ass conp2 extends ovm conponent;
“ovm conponent _util s(conp2)
ovm bl ocki ng_put _export #(trans) in;
subconp2 subconp;

function new(string name, ovm conponent parent=null);
super . new(name, parent);
endf unction

virtual function void build();

in =new"in",this);

subconp = new"subconp2",this);
endf unction

/'l connect export to export

virtual function void connect();
i n. connect (subconp. in);

endf unction

endcl ass

cl ass env extends ovm conponent;
“ovm conponent _util s(conpl)

conpl conpl_i;
conp2 conp2_i;

functi on new(string name, ovm conponent parent=null);
super . new(namne, parent);
endf unction

virtual function void build();
conpl_i = new "conpl",this);
conp2_i = new "conp2",this);
endf unction

/'l connect port to export

virtual function void connect();
conpl_i.out.connect(conp2_i.in);

endf unction

endcl ass

nodul e t op;

env e = new("env");

initial run_test();

initial #10 ovm top.stop_request();
endnodul e

187

tim_if_base #(T1,T2)

tim_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

Various subsets of these methods are combined to form primitive TLM interfaces, which are
then paired in various ways to form more abstract “combination” TLM interfaces. Components
that require a particular interface use ports to convey that requirement. Components that
provide a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible
exports, much like connecting module signal-level output ports to compatible input ports. The
difference is that OVM ports and exports bind interfaces (groups of methods), not signals and
wires. The methods of the interfaces so bound pass data as whole transactions (e.g.

objects). The set of primitve and combination TLM interfaces afford many choices for
designing components that communicate at the transaction level.

Summary

tim_if base #(T1,T2)
This class declares all of the methods of the TLM API.

Class Declaration

virtual class tImif_base #(type T1

Blocking put

put

Blocking get

get

Blocking peek
peek
Non-blocking put
try_put

can_put
Non-blocking get
try_get

can_get

Non-blocking peek

try_peek
can_peek

Blocking transport

transport

Non-blocking transport

nb_transport

Analysis
write

I nt,
I nt)

type T2

Sends a user-defined transaction of type T.
Provides a new transaction of type T.
Obtain a new transaction without consuming it.

Sends a transaction of type T, if possible.
Returns 1 if the component is ready to accept the transaction; O otherwise.

Provides a new transaction of type T.
Returns 1 if a new transaction can be provided immediately upon request, O
otherwise.

Provides a new transaction without consuming it.
Returns 1 if a new transaction is available; O otherwise.

Executes the given request and returns the response in the given output
argument.

Executes the given request and returns the response in the given output
argument.

Broadcasts a user-defined transaction of type T to any number of listeners.

188

tim_if_base #(T1,T2)

Blocking put
put
virtual task put(T1 t)

Sends a user-defined transaction of type T.

Components implementing the put method will block the calling thread if it cannot
immediately accept delivery of the transaction.

Blocking get
get
virtual task get(T2 t)

Provides a new transaction of type T.

The calling thread is blocked if the requested transaction cannot be provided immediately.
The new transaction is returned in the provided output argument.

The implementation of get must regard the transaction as consumed. Subsequent calls to get
must return a different transaction instance.

Blocking peek

peek
virtual task peek(T2 t)
Obtain a new transaction without consuming it.

If a transaction is available, then it is written to the provided output argument. If a
transaction is not available, then the calling thread is blocked until one is available.

189

tim_if_base #(T1,T2)

The returned transaction is not consumed. A subsequent peek or get will return the same
transaction.

Non-blocking put

try put
virtual function bit try put(Tl t)

Sends a transaction of type T, if possible.

If the component is ready to accept the transaction argument, then it does so and returns 1,
otherwise it returns O.

can_put

virtual function bit can_put()

Returns 1 if the component is ready to accept the transaction; O otherwise.

Non-blocking get

try get
virtual function bit try get(T2 t)

Provides a new transaction of type T.

If a transaction is immediately available, then it is written to the output argument and 1 is
returned. Otherwise, the output argument is not modified and O is returned.

can_get

virtual function bit can_get()

Returns 1 if a new transaction can be provided immediately upon request, O otherwise.

190

tim_if_base #(T1,T2)

Non-blocking peek

try peek
virtual function bit try_peek(T2 t)

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A subsequent
peek or get will return the same transaction. If a transaction is not available, then the
argument is unmodified and O is returned.

can_peek

virtual function bit can_peek()

Returns 1 if a new transaction is available; O otherwise.

Blocking transport

transport

virtual task transport(req ,
T2 rsp)

Executes the given request and returns the response in the given output argument. The
calling thread may block until the operation is complete.

Non-blocking transport

nb_transport

virtual function bit nb_transport(T1 req,
T2 rsp)

191

tim_if_base #(T1,T2)

Executes the given request and returns the response in the given output argument.
Completion of this operation must occur without blocking.

If for any reason the operation could not be executed immediately, then a O must be
returned; otherwise 1.

Analysis
write
virtual function void wite(T1 t)

Broadcasts a user-defined transaction of type T to any number of listeners. The operation
must complete without blocking.

192

ovm_*_port #(T)

ovm_* port #(T)

These unidirectional ports are instantiated by components that require, or use, the associated
interface to convey transactions. A port can be connected to any compatible port, export, or
imp port. Unless its min_size is 0, a port must be connected to at least one implementation
of its assocated interface.

The asterisk in ovm_*_port is any of the following

bl ocki ng_put
nonbl ocki ng_put
put

bl ocki ng_get
nonbl ocki ng_get
get

bl ocki ng_peek
nonbl ocki ng_peek
peek

bl ocki ng_get _peek
nonbl ocki ng_get _peek
get _peek

anal ysi s

Type parameters
TThe type of transaction to be communicated by the export

Ports are connected to interface implementations directly via ovm_*_imp #(T,IMP) ports or
indirectly via hierarchical connections to ovm_* port #(T) and ovim_*_ export #(T) ports.

Summary

ovm_* port #(T)
These unidirectional ports are instantiated by components that require, or use, the associated interface

to convey transactions.
Methods

new The name and parent are the standard ovm_component constructor arguments.

M ethods

193

ovm_*_port #(T)

new

The name and parent are the standard ovim_component constructor arguments. The min_size

and max_size specify the minimum and maximum number of interfaces that must have been
connected to this port by the end of elaboration.

function new (string nane,
ovm conponent parent,
int mn_size=1
int max_size=1)

ovm_* port #REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the associated
interface to convey transactions. A port can be connected to any compatible port, export, or
imp port. Unless its min_size is 0, a port must be connected to at least one implementation
of its assocated interface.

The asterisk in ovm_*_port is any of the following

bl ocki ng_transport
nonbl ocki ng_t ransport
transport

bl ocki ng_mast er
nonbl ocki ng_nast er
mast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

Ports are connected to interface implementations directly via ovm_* imp #(REQ,RSP,IMP,
REQ_ IMP,RSP_IMP) ports or indirectly via hierarchical connections to ovm_* port #(REQ,
RSP) and ovm_* export #(REQ,RSP) ports.

Type parameters
REQThe type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export

Summary

ovm_* port #(REQ,RSP)

194

ovm_*_port #(T)

These bidirectional ports are instantiated by components that require, or use, the associated interface to
convey transactions.
Methods

new The name and parent are the standard ovm_component constructor arguments.

M ethods

new

The name and parent are the standard ovm_component constructor arguments. The min_size
and max_size specify the minimum and maximum number of interfaces that must have been
supplied to this port by the end of elaboration.

function new (string name, ovm_component parent, int min_size=1, int max_size=1)

195

ovm_*_export #(T)

ovm_* export #(T)

The unidirectional ovm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to any
compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

bl ocki ng_put
nonbl ocki ng_put
put

bl ocki ng_get
nonbl ocki ng_get
get

bl ocki ng_peek
nonbl ocki ng_peek
peek

bl ocki ng_get _peek
nonbl ocki ng_get _peek
get _peek

anal ysi s

Type parameters
TThe type of transaction to be communicated by the export

Exports are connected to interface implementations directly via ovm_* imp #(T,IMP) ports or
indirectly via other ovm_* export #(T) exports.

Summary

ovm_* export #(T)
The unidirectional ovm_*_export is a port that forwards or promotes an interface implementation from a

child component to its parent.
Methods

new The name and parent are the standard ovm_component constructor arguments.

M ethods

196

ovm_*_export #(T)

new

The name and parent are the standard ovim_component constructor arguments. The min_size

and max_size specify the minimum and maximum number of interfaces that must have been
supplied to this port by the end of elaboration.

function new (string nane,
ovm conponent parent,
int mn_size=1
int max_size=1)

ovm_* export #{REQ,RSP)

The bidirectional ovm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to any
compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

bl ocki ng_transport
nonbl ocki ng_t ransport
transport

bl ocki ng_mast er
nonbl ocki ng_nast er
mast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

Type parameters
REQThe type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export

Exports are connected to interface implementations directly via <ovm_*_imp #(REQ,RSP,IMP)
> ports or indirectly via other ovm_* export #(REQ,RSP) exports.

Summary

ovm_* export #(REQ,RSP)

The bidirectional ovm_*_export is a port that forwards or promotes an interface implementation from a
child component to its parent.

197

ovm_*_export #(T)

Methods
new The name and parent are the standard ovm_component constructor arguments.

M ethods

new

The name and parent are the standard ovim_component constructor arguments. The min_size

and max_size specify the minimum and maximum number of interfaces that must have been
supplied to this port by the end of elaboration.

function new (string nane,
ovm conponent parent,
int mn_size=1,
int max_size=1)

198

ovm_*_imp ports

ovm_* imp ports

This page documents the following port classes

. ovm_* imp #(T,IMP) - unidirectional implementation ports

. ovm_* imp #(REQ, RSP, IMP, REQ IMP, RSP_IMP) - bidirectional implementation
ports

Summary

ovm_*_ imp ports
This page documents the following port classes

ovm_* imp #T,IMP)

Unidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp port
instance must be connected to the component instance that implements the associated
interface, typically the imp port’s parent. All other connections-- e.g. to other ports and
exports-- are prohibited.

The asterisk in ovm_*_imp may be any of the following

bl ocki ng_put
nonbl ocki ng_put
put

bl ocki ng_get
nonbl ocki ng_get
get

bl ocki ng_peek
nonbl ocki ng_peek
peek

bl ocki ng_get _peek
nonbl ocki ng_get _peek
get _peek

anal ysi s

Type parameters
T The type of transaction to be communicate%gby the imp

ovm_*_imp ports

IMPThe type of the component implementing the interface. That is, the class to which this
imp will delegate.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

Summary

ovm_*_ imp #(T,IMP)
Unidirectional implementation (imp) port classes--An imp port provides access to an implementation of

the associated interface to all connected ports and exports.
Methods

new Creates a new unidirectional imp port with the given name and parent.

M ethods

new

Creates a new unidirectional imp port with the given name and parent. The parent must
implement the interface associated with this port. Its type must be the type specified in the
imp’s type-parameter, IMP.

function new (string nane, |MP parent);

ovm_*_imp #REQ, RSP, IMP, REQ IMP, RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp port
instance must be connected to the component instance that implements the associated
interface, typically the imp port’s parent. All other connections-- e.g. to other ports and
exports-- are prohibited.

The interface represented by the asterisk is any of the following

bl ocki ng_transport
nonbl ocki ng_t ransport
transport
200

ovm_*_imp ports

bl ocki ng_mast er
nonbl ocki ng_mast er
nast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

Type parameters
REQ Request transaction type

RSP Response transaction type
IMP Component type that implements the interface methods, typically the the parent of
this imp port.

REQ_IMPComponent type that implements the request side of the interface. Defaults to IMP.
For master and slave imps only.

RSP_IMP Component type that implements the response side of the interface. Defaults to
IMP. For master and slave imps only.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

The master and slave imps have two modes of operation.

. A single component of type IMP implements the entire interface for both requests and
responses.

. Two sibling components of type REQ_IMP and RSP_IMP implement the request and
response interfaces, respectively. In this case, the IMP parent instantiates this imp
port and the REQ_IMP and RSP_IMP components.

The second mode is needed when a component instantiates more than one imp port, as in the
tim_req_rsp_channel #(REQ,RSP) channel.

Summary

ovm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to an implementation of
the associated interface to all connected ports and exports.
Methods

new Creates a new bidirectional imp port with the given name and parent.

M ethods

201

ovm_*_imp ports

new

Creates a new bidirectional imp port with the given name and parent. The parent, whose type
is specified by IMP type parameter, must implement the interface associated with this port.

Transport imp constructor

function new(string nanme, | M inp)

Master and slave imp constructor

The optional req_imp and rsp_imp arguments, available to master and slave imp ports, allow
the requests and responses to be handled by different subcomponents. If they are specified,
they must point to the underlying component that implements the request and response
methods, respectively.

function new(string nanme, |M inp,
REQ | MP req_i np=i np, RSP_I MP rsp_i np=i np)

202

tim_fifo_base #(T)

tim_fifo _base#(T)

This class is the base for tim_fifo #(T). It defines the TLM exports through which all

transaction-based FIFO operations occur. It also defines default implementations for each
inteface method provided by these exports.

The interface methods provided by the put _export and the get peek export are defined and
described by tim_if base #(T1,T2). See the TLM Overview section for a general discussion of
TLM interface definition and usage.

Parameter type
TThe type of transactions to be stored by this FIFO.
Summary

tim_fifo_base #(T)

This class is the base for tim_fifo #(T).
Class Hierarchy

ovm_object

ovm_report_object
ovm_component

tim_fifo_base#(T)|

Class Declaration _
virtual class tImfifo_base #(

type T = I nt
) extends ovm conponent
Ports
put_export The put_export provides both the blocking and non-blocking put interface methods to

any attached port:
get peek exportThe get peek_export provides all the blocking and non-blocking get and peek interface

methods:

put_ap Transactions passed via put or try_put (via any port connected to the put_export) are
sent out this port via its write method.

get_ap Transactions passed via get, try get, peek, or try_peek (via any port connected to the
get_peek_export) are sent out this port via its write method.

Methods

new The name and parent are the normal ovm_component constructor arguments.

Ports

203

tim_fifo_base #(T)

put_export

The put_export provides both the blocking and non-blocking put interface methods to any
attached port:

task put (input T t)
function bit can_put ()
function bit try_put (input T t)

Any put port variant can connect and send transactions to the FIFO via this export, provided
the transaction types match. See tim_if base #(T1,T2) for more information on each of the

above interface methods.

get_peek export

The get_peek_export provides all the blocking and non-blocking get and peek interface
methods:

task get (output T t)

function bit can_get ()

function bit try _get (output T t)
task peek (output T t)

function bit can_peek ()

function bit try peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the FIFO via this
export, provided the transaction types match. See tim_if base #(T1,T2) for more information

on each of the above interface methods.

put_ap

Transactions passed via put or try_put (via any port connected to the put_export) are sent
out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive put transactions. See tim_if base #(T1,
T2) for more information on the write interface method.

204

tim_fifo_base #(T)

get_ap
Transactions passed via get, try get, peek, or try_peek (via any port connected to the

get _peek_ export) are sent out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive get transactions. See tim_if base #(T1,
T2) for more information on the write method.

M ethods

new

function new(string name,
ovm _conponent parent

The name and parent are the normal ovm_component constructor arguments. The parent
should be null if the tim_fifo is going to be used in a statically elaborated construct (e.g., a
module). The size indicates the maximum size of the FIFO. A value of zero indicates no
upper bound.

205

tim_fifo #(T)

tim_fifo #(T)

This class provides storage of transactions between two independently running processes.
Transactions are put into the FIFO via the put_export. transactions are fetched from the FIFO
in the order they arrived via the get_peek _export. The put_export and get_peek_export are
inherited from the tim_fifo _base #(T) super class, and the interface methods provided by

these exports are defined by the tim_if base #(T1,T2) class.
Summary

tim_fifo #(T)
This class provides storage of transactions between two independently running processes.
Class Hierarchy

ovm_object
ovm_report_object
ovm_component
tim_fifo_base#(T)
[tim_fifo#(T) |

Class Declaration
class tImfifo #(
type T = int
) extends tImfifo_base #(T)

Methods

new The name and parent are the normal ovm_component constructor arguments.

size Returns the capacity of the FIFO-- that is, the number of entries the FIFO is capable of holding.
used Returns the number of entries put into the FIFO.

is_empty Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full Returns 1 when the number of entries in the FIFO is equal to its size, O otherwise.

flush Removes all entries from the FIFO, after which used returns O and is_empty returns 1.

M ethods

new

function new(string nane,
ovm component parent = nul |,
i nt Si ze

1
=
N—r

The name and parent are the normal ovm_corrzls)Gonent constructor arguments. The parent

tim_fifo #(T)

should be null if the tim_fifo is going to be used in a statically elaborated construct (e.g., a
module). The size indicates the maximum size of the FIFO; a value of zero indicates no upper
bound.

size
virtual function int size()

Returns the capacity of the FIFO-- that is, the number of entries the FIFO is capable of
holding. A return value of O indicates the FIFO capacity has no limit.

used

virtual function int used()

Returns the number of entries put into the FIFO.

Is_empty

virtual function bit is_enpty()

Returns 1 when there are no entries in the FIFO, O otherwise.

is full

virtual function bit is_full()

Returns 1 when the number of entries in the FIFO is equal to its size, O otherwise.

flush

virtual function void flush()

Removes all entries from the FIFO, after which used returns O and is_empty returns 1.

tim_analysis fifo #(T)

207

tim_fifo #(T)

An analysis_fifo is a tim_fifo with an unbounded size and a write interface. It can be used any
place an <ovm_subscriber #(T)> is used. Typical usage is as a buffer between an
analysis_port in a monitor and an analysis component (e.g., a component derived from
ovm_subscriber).

sSsummary

tlm_analysis_fifo #(T)
An analysis_fifo is a tim_fifo with an unbounded size and a write interface.
Class Hierarchy

ovm_object
ovim_report_object
ovm_component
tim_fifo_base#(T)
tim_fifo#(T)

tim_analysis_fifo#(T)]

Class Declaration _ _
class tImanalysis fifo #(

type T
) extends timfifo #(T)

Ports

analysis_port #(T)The analysis_export provides the write method to all connected analysis ports and
parent exports:

Methods

new This is the standard ovm_component constructor.
Ports

analysis port #(T)

The analysis_export provides the write method to all connected analysis ports and parent
exports:

function void wite (T t)

Access via ports bound to this export is the normal mechanism for writing to an analysis
FIFO. See write method of tim_if base #(T1,T2) for more information.

208

tim_fifo #(T)

M ethods

new

functi on new(nane :
ovm conponent par ent

This is the standard ovm_component constructor. name is the local name of this component.
The parent should be left unspecified when this component is instantiated in statically
elaborated constructs and must be specified when this component is a child of another OVM
component.

209

tim_req_rsp_channel #(REQ,RSP)

tim_reg_rsp_channel #REQ,RSP)

The tIm_req_rsp_channel contains a request FIFO of type REQ and a response FIFO of type
RSP. These FIFOs can be of any size. This channel is particularly useful for dealing with
pipelined protocols where the request and response are not tightly coupled.

Type parameters

REQType of the request transactions conveyed by this channel.
RSP Type of the reponse transactions conveyed by this channel.

Summary

tlm_req_rsp_channel #(REQ,RSP)

The tIm_req_rsp_channel contains a request FIFO of type REQ and a response FIFO of type RSP.
Class Hierarchy

ovm_object
ovim_report_object
ovm_component

tim_reg_rsp_channel#(REQ,RSP)|

Class Declaration
class tI mreqg_rsp _channel #(
type REQ = int,
type RSP = REQ
) extends ovm conponent

Ports

put_request_export The put_export provides both the blocking and non-blocking put interface
methods to the request FIFO:

get_peek response_exportThe get_peek_response_export provides all the blocking and non-blocking
get and peek interface methods to the response FIFO:

get_peek request_export The get_peek export provides all the blocking and non-blocking get and peek
interface methods to the response FIFO:

put_response_export The put_export provides both the blocking and non-blocking put interface
methods to the response FIFO:

request_ap Transactions passed via put or try_ put (via any port connected to the
put_request_export) are sent out this port via its write method.

response_ap Transactions passed via put or try_put (via any port connected to the
put_response_export) are sent out this port via its write method.

master_export Exports a single interface that allows a master to put requests and get or
peek responses.

slave_export Exports a single interface that allows a slave to get or peek requests and to
put responses.

Methods

new The name and parent are the standard ovm_component constructor

arguments.

210

tim_req_rsp_channel #(REQ,RSP)

Ports

put_request_export

The put_export provides both the blocking and non-blocking put interface methods to the
request FIFO:

task put (input T t);
function bit can_put ();
function bit try_put (input T t);

Any put port variant can connect and send transactions to the request FIFO via this export,
provided the transaction types match.

get_peek response export

The get_peek_response_export provides all the blocking and non-blocking get and peek
interface methods to the response FIFO:

task get (output T t);

function bit can_get ();

function bit try_get (output T t);
task peek (output T t);

function bit can_peek ();

function bit try_peek (output T t);

Any get or peek port variant can connect to and retrieve transactions from the response FIFO
via this export, provided the transaction types match.

get_peek request_export

The get_peek_export provides all the blocking and non-blocking get and peek interface
methods to the response FIFO:

task get (output T t);

function bit can_get ();

function bit try_get (output T t);
task peek (output T t);

211

tim_req_rsp_channel #(REQ,RSP)

function bit can_peek ();
function bit try_peek (output T t);

Any get or peek port variant can connect to and retrieve transactions from the response FIFO
via this export, provided the transaction types match.

put_response_export

The put_export provides both the blocking and non-blocking put interface methods to the
response FIFO:

task put (input T t);
function bit can_put ();
function bit try put (input T t);

Any put port variant can connect and send transactions to the response FIFO via this export,
provided the transaction types match.

request_ap

Transactions passed via put or try_put (via any port connected to the put_request_export)
are sent out this port via its write method.

function void wite (T t);

All connected analysis exports and imps will receive these transactions.

response_ap

Transactions passed via put or try_put (via any port connected to the put_response_export)
are sent out this port via its write method.

function void wite (T t);

All connected analysis exports and imps will receive these transactions.

212

tim_req_rsp_channel #(REQ,RSP)

master_export

Exports a single interface that allows a master to put requests and get or peek responses. It
is a combination of the put_request_export and get_peek response_export.

dave export

Exports a single interface that allows a slave to get or peek requests and to put responses. It
is a combination of the get_peek_request_export and put_response_export.

Methods
new
function new (string name,
ovm conponent parent = null,
i nt request fifo size = 1,
i nt response_fifo_size = 1)

The name and parent are the standard ovm_component constructor arguments. The parent
must be null if this component is defined within a static component such as a module,
program block, or interface. The last two arguments specify the request and response FIFO
sizes, which have default values of 1.

tim_transport_channel #REQ,RSP)

A tim_transport_channel is a tim_req_rsp_channel #(REQ,RSP) that implements the transport

interface. It is useful when modeling a non-pipelined bus at the transaction level. Because
the requests and responses have a tightly coupled one-to-one relationship, the request and
response FIFO sizes are both set to one.

Summary

tim_transport_channel #(REQ,RSP)

A tim_transport_channel is a tim_req_rsp_channel #(REQ,RSP) that implements the transport interface.
Class Hierarchy

213

tim_req_rsp_channel #(REQ,RSP)

ovm_object

ovim_report_object

ovm_component
tim_req_rsp_channel#(REQ,RSP)
[tim_transport_channel#(REQ,RSP)]

Class Declaration
class tImtransport _channel #(

type REQ
type RSP
) extends tlmreq_rsp_channel #(REQ RSP)

Ports

transport_exportThe put_export provides both the blocking and non-blocking transport interface
methods to the response FIFO:

Methods

new The name and parent are the standard ovm_component constructor arguments.

Ports

transport_export

The put_export provides both the blocking and non-blocking transport interface methods to
the response FIFO:

task transport (REQ request, output RSP response);
function bit nb_transport(REQ request, output RSP response);

Any transport port variant can connect to and send requests and retrieve responses via this
export, provided the transaction types match. Upon return, the response argument carries
the response to the request.

M ethods

new

214

tim_req_rsp_channel #(REQ,RSP)
function new (string name,
ovm conponent parent

The name and parent are the standard ovim_component constructor arguments. The parent

must be null if this component is defined within a statically elaborated construct such as a
module, program block, or interface.

215

Predefined Component Classes

Predefined Component Classes

Components form the foundation of the OVM. They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench. The OVM library provides a set of predefined
component types, all derived directly or indirectly from ovm_component.

Predefined Components

ovim_object
Fi)

ovin_report_object

ovm_component
il

ovim_test

ovm_env

ovm_agent

ovm_monitor

ovm_scoreboard

[
. o —
ovm_random_stimulus |

771
ovm_subscriber [~

216

ovm_test

This class is the virtual base class for the user-defined tests.

The ovm_test virtual class should be used as the base class for user-defined tests. Doing so
provides the ability to select which test to execute using the OVM_TESTNAME command line
or argument to the ovm_root::run_test task.

For example

pronpt > SI M_COVWAND +OVM TESTNAME=t est _bus_retry

The global run_test() task should be specified inside an initial block such as

initial run_test();

Multiple tests, identified by their type name, are compiled in and then selected for execution
from the command line without need for recompilation. Random seed selection is also
available on the command line.

If +OVM_TESTNAME=test_name is specified, then an object of type ‘test name’ is created by
factory and phasing begins. Here, it is presumed that the test will instantiate the test
environment, or the test environment will have already been instantiated before the call to
run_test().

If the specified test_name cannot be created by the ovm_factory, then a fatal error occurs. If

run_test() is called without OVM_TESTNAME being specified, then all components constructed
before the call to run_test will be cycled through their simulation phases.

Deriving from ovm_test will allow you to distinguish tests from other component types that
inherit from ovm_component directly. Such tests will automatically inherit features that may
be added to ovm_test in the future.

Summary

ovm_ test

This class is the virtual base class for the user-defined tests.
Class Hierarchy

217

ovm_test
ovim_object
ovim_report_object

ovim_component

ovm_test |

Class Declaration
virtual class ovmtest extends ovm conponent
Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

M ethods

new
function new (string name,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

218

ovm_env

The base class for hierarchical containers of other components that together comprise a
complete environment. The environment may initially consist of the entire testbench. Later,
it can be reused as a sub-environment in even larger system-level environments.

Summary

ovim_env

The base class for hierarchical containers of other components that together comprise a complete
environment.
Class Hierarchy

ovm_object
ovm_report_object

ovim_component

ovm_env |

Class Declaration
virtual class ovm env extends ovm conponent
Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

Methods
new
function new (string name = "env",
ovm conponent parent = nul |)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

219

ovm_agent

ovm_agent

The ovm_agent virtual class should be used as the base class for the user- defined agents.
Deriving from ovm_agent will allow you to distinguish agents from other component types
also using its inheritance. Such agents will automatically inherit features that may be added
to ovm_agent in the future.

While an agent’s build function, inherited from ovm_ component, can be implemented to

define any agent topology, an agent typically contains three subcomponents: a driver,
sequencer, and monitor. If the agent is active, subtypes should contain all three
subcomponents. If the agent is passive, subtypes should contain only the monitor.

Summary

ovm_agent

The ovm_agent virtual class should be used as the base class for the user- defined agents.
Class Hierarchy

ovim_object
ovim_report_object

ovim_component

ovm_agent |

Class Declaration
virtual class ovm agent extends ovm conponent

Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

M ethods

new
function new (string namne,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

220

ovm_monitor

ovm_monitor

This class should be used as the base class for user-defined monitors.

Deriving from ovm_monitor allows you to distinguish monitors from generic component types
inheriting from ovm_component. Such monitors will automatically inherit features that may
be added to ovm_monitor in the future.

Summary

ovm_ monitor

This class should be used as the base class for user-defined monitors.
Class Hierarchy

ovm_object
ovm_report_object

ovim_component

ovm_monitor |

Class Declaration
virtual class ovm nonitor extends ovm conponent
Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

M ethods

new
function new (string name,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

221

ovm_scoreboard

ovm_scoreboard

The ovm_scoreboard virtual class should be used as the base class for user-defined
scoreboards.

Deriving from ovm_scoreboard will allow you to distinguish scoreboards from other
component types inheriting directly from ovm_component. Such scoreboards will
automatically inherit and benefit from features that may be added to ovm_scoreboard in the
future.

Summary

ovm_scoreboard

The ovm_scoreboard virtual class should be used as the base class for user-defined scoreboards.
Class Hierarchy

ovim_object
ovim_report_object

ovim_component

ovm_scoreboard |

Class Declaration
virtual class ovm scoreboard extends ovm conponent

Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

M ethods

new
function new (string name,
ovm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

222

ovm_driver #(REQ,RSP)

ovm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a
ovm_sed_item_pull _port. The ports are typically connected to the exports of an appropriate
sequencer component.

This driver operates in pull mode. Its ports are typically connected to the corresponding
exports in a pull sequencer as follows:

driver.seqg_item port.connect(sequencer.seq_itemexport);
driver.rsp_port.connect (sequencer.rsp_export);

The rsp_port needs connecting only if the driver will use it to write responses to the analysis
export in the sequencer.

Summary

ovm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a ovm_seq_item_pull_port.
Class Hierarchy

ovm_object
ovm_report_object
ovm_component

lovm_driver#(REQ,RSP)|

Class Declaration _
class ovmdriver #(

type REQ = ovm sequence_item
type RSP = REOQ
) extends ovm conponent

Ports

seq_item_portDerived driver classes should use this port to request items from the sequencer.

rsp_port This port provides an alternate way of sending responses back to the originating
sequencer.

Methods

new Creates and initializes an instance of this class using the normal constructor arguments for

ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

Ports

223

ovm_driver #(REQ,RSP)

seq_item_port

Derived driver classes should use this port to request items from the sequencer. They may
also use it to send responses back.

rsp_port

This port provides an alternate way of sending responses back to the originating sequencer.
Which port to use depends on which export the sequencer provides for connection.

M ethods

new
function new (string name,
ovm component parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

224

ovm_push_driver #[REQ,RSP)

ovm_push_driver # REQ,RSP)

Base class for a driver that passively receives transactions, i.e. does not initiate requests
transactions. Also known as push mode. Its ports are typically connected to the
corresponding ports in a push sequencer as follows:

push_sequencer.req_port.connect (push_driver.req_export);
push_driver.rsp_port.connect (push_sequencer.rsp_export);

The rsp_port needs connecting only if the driver will use it to write responses to the analysis
export in the sequencer.

Summary

ovm_ push_driver #(REQ,RSP)

Base class for a driver that passively receives transactions, i.e.
Class Hierarchy

ovm_object
ovm_report_object
ovm_component

lovm_push_driver#(REQ,RSP)|

Class Declaration
cl ass ovm push_driver #(
type REQ = ovm sequence_item
type RSP = REQ
) extends ovm conponent

Ports

req_exportThis export provides the blocking put interface whose default implementation produces an
error.

rsp_port This analysis port is used to send response transactions back to the originating sequencer.

Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

Ports

req_export

225

ovm_push_driver #[REQ,RSP)

This export provides the blocking put interface whose default implementation produces an
error. Derived drivers must override put with an appropriate implementation (and not call
super.put). Ports connected to this export will supply the driver with transactions.

rsp_port

This analysis port is used to send response transactions back to the originating sequencer.

M ethods

new

function new (string namne,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

226

ovm_random_stimulus #(T)

ovm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.

The ovm_random_stimulus class generates streams of T transactions. These streams may be
generated by the randomize method of T, or the randomize method of one of its subclasses.
The stream may go indefinitely, until terminated by a call to stop_stimulus_generation, or we
may specify the maximum number of transactions to be generated.

By using inheritance, we can add directed initialization or tidy up after random stimulus
generation. Simply extend the class and define the run task, calling super.run() when you
want to begin the random stimulus phase of simulation.

While very useful in its own right, this component can also be used as a template for defining
other stimulus generators, or it can be extended to add additional stimulus generation
methods and to simplify test writing.

Summary

ovm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.
Class Hierarchy

ovm_object
ovm_report_object

ovim_component

lovm_random_stimulus#(T)|

Class Declaration]
cl ass ovm random sti mul us #(

type T = ovm transaction
) extends ovm conponent

Ports

blocking_put_port The blocking_put_port is used to send the generated stimulus to the rest of
the testbench.

Methods

new Creates a new instance of a specialization of this class.

generate_stimulus Generate up to max_count transactions of type T.

stop_stimulus_generationStops the generation of stimulus.

Ports

227

ovm_random_stimulus #(T)

blocking put_port

The blocking_put_port is used to send the generated stimulus to the rest of the testbench.

M ethods

new
function new(string name,
ovm conponent parent)

Creates a new instance of a specialization of this class. Also, displays the random state
obtained from a get_randstate call. In subsequent simulations, set_randstate can be called
with the same value to reproduce the same sequence of transactions.

generate _stimulus
virtual task generate stinmulus(T t
I nt max_count

Generate up to max_count transactions of type T. If t is not specified, a default instance of T
is allocated and used. If t is specified, that transaction is used when randomizing. It must be
a subclass of T.

max_count is the maximum number of transactions to be generated. A value of zero
indicates no maximum - in this case, generate_stimulus will go on indefinitely unless stopped
by some other process

The transactions are cloned before they are sent out over the blocking_put_port

stop_stimulus _generation

virtual function void stop_stinulus_generation

Stops the generation of stimulus. If a subclass of this method has forked additional
processes, those processes will also need to be stopped in an overridden version of this
method

228

ovm_subscriber

ovm_subscriber

This class provides an analysis export for receiving transactions from a connected analysis
export. Making such a connection “subscribes” this component to any transactions emitted by
the connected analysis port.

Subtypes of this class must define the write method to process the incoming transactions.
This class is particularly useful when designing a coverage collector that attaches to a monitor.

sSummary

ovm_subscriber

This class provides an analysis export for receiving transactions from a connected analysis export.
Class Hierarchy

ovm_object
ovm_report_object

ovm_component

lovm_subscriber |

Class Declaration]
virtual class ovm subscriber #(

type T = I nt
) extends ovm conponent

Ports

analysis_exportThis export provides access to the write method, which derived subscribers must
implement.

Methods

new Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

write A pure virtual method that must be defined in each subclass.

Ports

analysis export

This export provides access to the write method, which derived subscribers must implement.

229

ovm_subscriber

M ethods

new
function new (string name,
ovm component parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

write

pure virtual function void wite(T t)

A pure virtual method that must be defined in each subclass. Access to this method by
outside components should be done via the analysis_export.

230

Comparators

Comparators

A common function of testbenches is to compare streams of transactions for equivalence. For
example, a testbench may compare a stream of transactions from a DUT with expected
results.

The OVM library provides a base class called ovm_in_order_comparator and two derived
classes: ovm_in_order_built_in_comparator for comparing streams of built-in types and
ovm_in_order_class_comparator for comparing streams of class objects.

The ovm_algorithmic_comparator also compares two streams of transactions, but the
transaction streams might be of different type objects. Thus, this comparator will employ a
user-defined transformation function to convert one type to another before performing a
comparison.

Comparators

oern_object

ovmn_report_object

-

ovm_component

-

M
o
mrm_in_urder_buiIt_in_cumpamtuq

1
i

T
uum_ln_urdnr_class_cmparatn? -|

231

ovm_in_order_comparator #(T,comp_type,convert,pair_type)

ovm_in_order_comparator #(T,comp_type,convert,pair_type)

Compares two streams of data objects of type T, a parameter to this class. These
transactions may either be classes or built-in types. To be successfully compared, the two
streams of data must be in the same order. Apart from that, there are no assumptions made
about the relative timing of the two streams of data.

Type parameters

T Specifies the type of transactions to be compared.

comp The type of the comparator to be used to compare the two transaction streams.

convert A policy class to allow convert2string() to be called on the transactions being
compared. If T is an extension of ovm_transaction, then it uses T::convert2string
(). If T is a built-in type, then the policy provides a convert2string() method for the
comparator to call.

pair_typeA policy class to allow pairs of transactions to be handled as a single
ovm_transaction type.

Built in types (such as ints, bits, logic, and structs) can be compared using the default values
for comp_type, convert, and pair_type. For convenience, you can use the subtype,
<ovm_in_order_builtin_comparator #(T)> for built-in types.

When T is a class, T must implement comp and convert2string, and you must specify class-
based policy classes for comp_type, convert, and pair_type. In most cases, you can use the
convenient subtype, ovm_in_order_class_comparator #(T).

Comparisons are commutative, meaning it does not matter which data stream is connected to
which export, before_export or after_export.

Comparisons are done in order and as soon as a transaction is received from both streams.
Internal fifos are used to buffer incoming transactions on one stream until a transaction to
compare arrives on the other stream.

sSsummary

ovm_in_order_comparator #(T,comp_type,convert,pair_type)
Compares two streams of data objects of type T, a parameter to this class.

Ports

before_export The export to which one stream of data is written.

after_export The export to which the other stream of data is written.

pair_ap The comparator sends out pairs of transactions across this analysis port.
Methods
flush This method sets m_matches and m_mismatches back to zero.

Ports

232

ovm_in_order_comparator #(T,comp_type,convert,pair_type)

before export

The export to which one stream of data is written. The port must be connected to an analysis
port that will provide such data.

after_export

The export to which the other stream of data is written. The port must be connected to an
analysis port that will provide such data.

pair_ap

The comparator sends out pairs of transactions across this analysis port. Both matched and
unmatched pairs are published via a pair_type objects. Any connected analysis export(s) will
receive these transaction pairs.

M ethods

flush

virtual function void flush()

This method sets m_matches and m_mismatches back to zero. The tim_fifo #(T)::flush takes
care of flushing the FIFOs.

in_order_built_in_comparator #(T)

This class uses the ovm_built_in_* comparison, converter, and pair classes. Use this class for
built-in types (int, bit, string, etc.)

sSsummary

In_order_built_in_comparator #(T)
This class uses the ovm_built_in_* comparison, converter, and pair classes.

233

ovm_in_order_comparator #(T,comp_type,convert,pair_type)

Class Hierarchy
ovm_in_order_comparator#(T)

lin_order_built_in_comparator#(T)|

Class Declaration]]
class ovm.in_order _built_in_conparator #(

type T = | nt
) extends ovm.in_order conparator #(T)

In_order_class comparator #(T)

This class uses the ovm_class_* comparison, converter, and pair classes. Use this class for
comparing user-defined objects of type T, which must provide implementations of comp and

convert2string.

234

ovm_algorithmic_comparator.svh

Summary

ovm_ algorithmic_comparator.svh
Comparators A common function of testbenches is to compare streams of transactions for equivalence.

Comparators

A common function of testbenches is to compare streams of transactions for equivalence. For
example, a testbench may compare a stream of transactions from a DUT with expected
results.

The OVM library provides a base class called ovm_in_order_comparator and two derived
classes, which are ovm_in_order_built_in_comparator for comparing streams of built-in types
and ovm_in_order_class_comparator for comparing streams of class objects.

The ovm_algorithmic_comparator also compares two streams of transactions; however, the
transaction streams might be of different type objects. This device will use a user-written
transformation function to convert one type to another before performing a comparison.

ovm_algorithmic_comparator # BEFORE,AFTER,TRANSFORMER)

Compares two streams of data objects of different types, BEFORE and AFTER.

The algorithmic comparator is a wrapper around ovm_in_order_class_comparator. Like the in-
order comparator, the algorithmic comparator compares two streams of transactions, the
BEFORE stream and the AFTER stream. It is often the case when two streams of transactions
need to be compared that the two streams are in different forms. That is, the type of the
BEFORE transaction stream is different than the type of the AFTER transaction stream.

The ovm_algorithmic_comparator’s TRANSFORMER type parameter specifies the class
responsible for converting transactions of type BEFORE into those of type AFTER. This
transformer class must provide a transform() method with the following prototype:

function AFTER transform (BEFORE b);

Matches and mistmatches are reported in terms of the AFTER transactions. For more
information, see the ovm_in_order_comparator #(...) class.

Summary

ovm_ algorithmic_comparator #(BEFORE,AFTER, TRANSFORMER)
Compares two streams of data objects of different types, BEFORE and AFTER.
Class Hierarchy

235

ovm_object

ovm_report_object

ovm_component
lovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)|

Class Declaration]]
cl ass ovm al gorithm c_conpar at or #(

type BEFORE
type AFTER
type TRANSFORMER
) extends ovm conponent
Ports
before_export The export to which a data stream of type BEFORE is sent via a connected analysis port.
after_export The export to which a data stream of type AFTER is sent via a connected analysis port.

Methods
new Creates an instance of a specialization of this class.

Ports

before export

The export to which a data stream of type BEFORE is sent via a connected analysis port.
Publishers (monitors) can send in an ordered stream of transactions against which the
transformed BEFORE transactions will (be compared.

after _export

The export to which a data stream of type AFTER is sent via a connected analysis port.
Publishers (monitors) can send in an ordered stream of transactions to be transformed and
compared to the AFTER transactions.

Methods

new

function new(TRANSFORMER transforner,
name :
ovm component par ent)

236

Creates an instance of a specialization of this class. In addition to the standard
ovm_component constructor arguments, name and parent, the constructor takes a handle to
a transformer object, which must already be allocated (no null handles) and must implement
the transform() method.

237

ovm_pair #(T1,T2)

ovm_pair #T1,T2)

Container holding handles to two objects whose types are specified by the type parameters,
T1 and T2.

Summary

ovm_pair #(T1,T2)
Container holding handles to two objects whose types are specified by the type parameters, T1 and T2.
Methods

new Creates an instance of ovm_pair that holds a handle to two objects, as provided by the first
two arguments.

Methods
new
function new (T1 f = nul |,
T2 S = null,
string name = "")

Creates an instance of ovm_pair that holds a handle to two objects, as provided by the first
two arguments. The optional name argument gives a name to the new pair object.

ovm_built_in_pair #(T1,T2)

Container holding two variables of built-in types (int, string, etc.). The types are specified by
the type parameters, T1 and T2.

Summary

ovm_ built_in_pair #(T1,T2)
Container holding two variables of built-in types (int, string, etc.)
Class Hierarchy

238

ovm_pair #(T1,T2)

ovim_object

ovm_ transaction
lovm_built_in_pair#(T1,72)]

Class Declaration] _
class ovmbuilt in_pair #(

type Tl
T2
) extends ovm transaction
Methods
new Creates an instance of ovm_pair that holds a handle to two elements, as provided by the first

two arguments.

M ethods

new

function new (T1 f,
T2 S,
string nane

Creates an instance of ovm_pair that holds a handle to two elements, as provided by the first
two arguments. The optional name argument gives a name to the new pair object.

239

ovm_policies.svh

Summary

ovm_ policies.svh

Policy ClassesPolicy classes are used to implement polymorphic operations that differ between built-in
types and class-based types.

Policy Classes

Policy classes are used to implement polymorphic operations that differ between built-in types
and class-based types. Generic components can then be built that work with either classes or
built-in types, depending on what policy class is used.

ovm_built_in_comp #(T)

This policy class is used to compare built-in types.

Provides a comp method that compares, AVM-style, the built-in type, T, for which the ==
operator is defined.

Summary

ovm_ built_in_comp #(T)
This policy class is used to compare built-in types.
Class Declaration] _
class ovmbuilt in_conmp #(type T = int)

ovm_built_in_converter #(T)

This policy class is used to convert built-in types to strings.

Provides a convert2string method that converts the built-in type, T, to a string using the %p
format specifier.

Summary
240

ovm_built_in_converter #(T)

This policy class is used to convert built-in types to strings.
Class Declaration _] _
class ovmbuilt_in_converter #(type T = int)

ovm_built_in_clone #(T)

This policy class is used to clone built-in types via the = operator.

Provides a clone metod that returns a copy of the built-in type, T.
Summary

ovm_ built_in_clone #(T)
This policy class is used to clone built-in types via the = operator.

Class Declaration
class ovmbuilt_in_clone #(type T = i nt)

ovm_class comp #(T)

This policy class is used to compare two objects of the same type.

Provides a comp method that compares two objects of type T. The class T must implement
the comp method, to which this class delegates the operation.

Summary

ovm_class _comp #(T)
This policy class is used to compare two objects of the same type.

Class Declaration _
cl ass ovmcl ass _conp #(type T = int)

ovm_class converter #(T)

241

This policy class is used to convert a class object to a string.

Provides a convert2string method that converts the built-in type, T, to a string. The class T
must implement the convert2string method, to which this class delegates the operation.

Summary

ovm_class_converter #(T)

This policy class is used to convert a class object to a string.
Class Declaration _
cl ass ovm cl ass_converter #(type T = int)

ovm_class clone#(T)

This policy class is used to clone class objects.

Provides a clone metod that returns a copy of the built-in type, T. The class T must
implement the clone method, to which this class delegates the operation.

242

Sequencer Classes

Sequencer Classes

The sequencer serves as an arbiter for controlling transaction flow from multiple stimulus
generators. More specifically, the sequencer controls the flow of ovm_sequence_item-based

transactions generated by one or more ovm_sequence #(REQ,RSP)-based sequences.

[avrm_woid
T
owm_object
T
ovm_report_object
T
oW componeant

ovm_seguencer_base

[

I"REQ, RSP |

OVIM_Sequencer param base [
~ TIREQRSP) L IREQ RSP,
ovm_sequencer [|ovm_push_sequencer |

REC(] = usar's reques: sequence &em
RSF = uger's reapanss geusanda ilenm

There are two sequencer variants available.

. ovm_sequencer #(REQ,RSP) - Requests for new sequence items are initiated by the

driver. Upon such requests, the sequencer selects a sequence from a list of available
sequences to produce and deliver the next item to execute. This sequencer is
typically connected to a user-extension of ovm_driver #(REQ,RSP).

. ovm_push_sequencer #(REQ,RSP) - Sequence items (from the currently running

sequences) are pushed by the sequencer to the driver, which blocks item flow when
it is not ready to accept new transactions. This sequencer is typically connected to a
user-extension of ovim_push_driver #(REQ,RSP).

Sequencer-driver communication follows a pull or push semantic, depending on which
sequencer type is used. However, sequence-sequencer communication is always initiated by
the user-defined sequence, i.e. follows a push semantic.

See Sequence Classes for an overview on sequences and sequence items.

Sequence Item Ports

As with all OVM components, the sequencers and drivers described above use TLM Interfaces,
243

Sequencer Classes

Ports, and Exports to communicate transactions.
The ovm_sequencer #(REQ,RSP) and ovm_driver #(REQ,RSP) pair also uses a sequence item

pull port to achieve the special execution semantic needed by the sequencer-driver pair.

Sequence ltem port, export, and imp

I'REQ, RSP | |
| I —— -
seq_if base 'I- CWIT_component
riF q FPORT |
cme:h:rrt base FI - wmjmt_cnmpnnent |_

(]

PORT=owm_port_basn<IF>
IFegeq il base<REQ RS>

"REQRSP | "REQRSP | | REQ,RSP.IMP |

oVIN_Saq Itam_pull_part—l ~ | ovm_seq_item_pull_ ﬂ:part—{ ovim_seq_item_pull_imp

I — — |._____

sequencers and drivers use a seq_item_port specifically supports sequencer-driver
communication. Connections to these ports are made in the same fashion as the TLM ports.

244

sgr_if_base #(REQ,RSP)

sgr_if _base #{REQ,RSP)

This class defines an interface for sequence drivers to communicate with sequencers. The
driver requires the interface via a port, and the sequencer implements it and provides it via an
export.

Summary

sgr_if base #(REQ,RSP)
This class defines an interface for sequence drivers to communicate with sequencers.
Class Declaration _ _

virtual class sqr_iIf_base #(type T1 = ovm obj ect,

T2 = T1)
Methods
get _next_item Retrieves the next available item from a sequence.
try_next_item Retrieves the next available item from a sequence if one is available.
item_done Indicates that the request is completed to the sequencer.
wait_for sequences Waits for a sequence to have a new item available.
has_do_available Indicates whether a sequence item is available for immediate processing.
get Retrieves the next available item from a sequence.
peek Returns the current request item if one is in the sequencer fifo.
put Sends a response back to the sequence that issued the request.
Methods

get_next_item

virtual task get_next_item(output T1 t)

Retrieves the next available item from a sequence. The call will block until an item is

available. The following steps occur on this call:

1Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority
sequence based on the current sequencer arbitration mode. If no sequence is available, wait
for a requesting unlocked relevant sequence, then re-arbitrate.

2The chosen sequence will return from wait_for_grant

3The chosen sequence pre_do is called

4The chosen sequence item is randomized

5The chosen sequence post_do is called

6Return with a reference to the item

Once get_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

245

sgr_if_base #(REQ,RSP)

try_next_item
virtual task try next _iten T1 t)

Retrieves the next available item from a sequence if one is available. Otherwise, the function

returns immediately with request set to null. The following steps occur on this call:

1Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority
sequence based on the current sequencer arbitration mode. If no sequence is available,
return null.

2The chosen sequence will return from wait_for_grant

3The chosen sequence pre_do is called

4The chosen sequence item is randomized

5The chosen sequence post_do is called

6Return with a reference to the item

Once try_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

item_done

virtual function void itemdone(T2 t

Indicates that the request is completed to the sequencer. Any wait_for_item_done calls made
by a sequence for this item will return.

The current item is removed from the sequencer fifo.
If a response item is provided, then it will be sent back to the requesting sequence. The

response item must have it's sequence ID and transaction ID set correctly, using the
set_id_info method:

rsp.set _id_info(req);

Before item_done is called, any calls to peek will retrieve the current item that was obtained
by get_next_item. After item_done is called, peek will cause the sequencer to arbitrate for a
new item.

wait_for_sequences

virtual task wait_for_sequences()

Waits for a sequence to have a new item available. The default implementation in the
246

sgr_if_base #(REQ,RSP)

sequencer delays pound_zero_count delta cycles. (This variable is defined in
ovm_sequencer_base.) User-derived sequencers may override its wait_for_sequences
implementation to perform some other application-specific implementation.

has do_available

virtual function bit has_do_avail abl e()

Indicates whether a sequence item is available for immediate processing. Implementations
should return 1 if an item is available, O otherwise.

get
virtual task get(T1 t)

Retrieves the next available item from a sequence. The call blocks until an item is available.

The following steps occur on this call:

1Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority
sequence based on the current sequencer arbitration mode. If no sequence is available, wait
for a requesting unlocked relevant sequence, then re-arbitrate.

2The chosen sequence will return from wait_for_grant

3The chosen sequence <pre_do> is called

4The chosen sequence item is randomized

5The chosen sequence post_do is called

6lndicate item_done to the sequencer

7Return with a reference to the item

When get is called, item_done may not be called. A new item can be obtained by calling get
again, or a response may be sent using either put, or rsp_port.write.

peek
virtual task peek(T1 t)

Returns the current request item if one is in the sequencer fifo. If no item is in the fifo, then

the call will block until the sequencer has a new request. The following steps will occur if the

sequencer fifo is empty:

1Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority
sequence based on the current sequencer arbitration mode. If no sequence is available, wait
for a requesting unlocked relevant sequence, then re-arbitrate.

2The chosen sequence will return from wait_for_grant

3The chosen sequence pre_do is called

4The chosen sequence item is randomized

5The chosen sequence post_do is called

247

sgr_if_base #(REQ,RSP)

Once a request item has been retrieved and is in the sequencer fifo, subsequent calls to peek
will return the same item. The item will stay in the fifo until either get or item_done is called.

put
virtual task put(T2 t)

Sends a response back to the sequence that issued the request. Before the response is put, it
must have it's sequence ID and transaction ID set to match the request. This can be done
using the set_id_info call:

rsp.set_id_info(req);

This task will not block. The response will be put into the sequence response_queue or it will
be sent to the sequence response handler.

248

ovm_seq_item_pull_port #(REQ,RSP)

ovm_seq_item_pull_port #REQ,RSP)

OVM provides a port, export, and imp connector for use in sequencer-driver communication.
All have standard port connector constructors, except that ovm_seq_item_pull_port’s default
min_size argument is O; it can be left unconnected.

Summary

ovm_seqg_item_pull_port #(REQ,RSP)

OVM provides a port, export, and imp connector for use in sequencer-driver communication.
Class Hierarchy

ovm_port_base#(sqgr_if _base#(REQ,RSP))

lovm_seq_item_pull_port#(REQ,RSP) |

Class Declaration _
class ovmseq_ itempull port #(

type REQ = I nt,
type RSP = REQ
) extends ovm port base #(sqr _if base #(REQ RSP))

ovm_seq_item_pull_export # REQ,RSP)

This export type is used in sequencer-driver communication. It has the standard constructor
for exports.

Summary

ovm_seg_item_pull _export #(REQ,RSP)
This export type is used in sequencer-driver communication.
Class Hierarchy

ovm_port_base#(sqgr_if _base#(REQ,RSP))

lovm_seg_item_pull_export#(REQ,RSP)]

Class Declaration _
cl ass ovmseq_item pul |l _export #(

type REQ = I nt,
type RSP = REQ
) extends ovm port base #(sqr _if _base #(REQ RSP))

249

ovm_seq_item_pull_port #(REQ,RSP)

ovm_seq_item_pull imp #REQ,RSP,IMP)

This imp type is used in sequencer-driver communication. It has the standard constructor for
imp-type ports.
Summary

ovm_seq_item_pull _imp #(REQ,RSP,IMP)
This imp type is used in sequencer-driver communication.
Class Hierarchy

ovm_port_base#(sgr_if _base#(REQ,RSP))
lovm_seq_item_pull_imp#(REQ,RSP, IMP)|

Class Declaration

class ovmseq_ itempull inmp #(
type REQ = | nt,
type RSP = REQ
type | MP = I nt

) extends ovm port_base #(sqr_if _base #(REQ RSP))

end

250

ovm_sequencer_base

ovm_sequencer _base

Controls the flow of sequences, which generate the stimulus (sequence item transactions) that is
passed on to drivers for execution.

Summary

ovm_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item transactions) that is passed on to
drivers for execution.
Class Hierarchy

ovm_object
ovm_report_object

ovim_component

lovm_sequencer_base|

Class Declaration
cl ass ovm sequencer _base extends ovm conponent

Variables

pound_zero_count Set this variable via set_config_int to set the number of delta cycles to insert in the
wait_for_sequences task.

count Sets the number of items to execute.

max_random_count Set this variable via set_config_int to set the number of sequence items to generate,
at the discretion of the derived sequence.
max_random_depth Used for setting the maximum depth inside random sequences.

default_sequence This property defines the sequence type (by name) that will be auto-started.
Methods
new Creates and initializes an instance of this class using the normal constructor arguments

for ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent.

start_default_sequence Sequencers provide the start_default_sequence task to execute the default sequence
in the run phase.

user_priority_arbitrationlf the sequencer arbitration mode is set to SEQ_ARB_USER (via the set_arbitration
method), then the sequencer will call this function each time that it needs to arbitrate
among sequences.

is_child Returns 1 if the child sequence is a child of the parent sequence, O otherwise.

wait_for_grant This task issues a request for the specified sequence.

wait_for_item_done A sequence may optionally call wait_for_item_done.

is_blocked Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the
sequencer.

has_lock Returns 1 if the sequence refered to in the parameter currently has a lock on this
sequencer, O otherwise.

lock Requests a lock for the sequence specified by sequence_ptr.

grab Requests a lock for the sequence specified by sequence_ptr.

unlock Removes any locks and grabs obtained by the specified sequence_ptr.

ungrab Removes any locks and grabs obtained by the specified sequence_ptr.

stop_sequences Tells the sequencer to Kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued.

is_grabbed Returns 1 if any sequence currently has a lock or grab on this sequencer, 0 otherwise.

current_grabber Returns a reference to the sequence that currently has a lock or grab on the sequence.

has_do_available Determines if a sequence is ready to supply a transaction.

set_arbitration Specifies the arbitration mode for the sequencer.

251

ovm_sequencer_base

wait_for_sequences Waits for a sequence to have a new item available.

add_sequence Adds a sequence of type specified in the type_name paramter to the sequencer’s
sequence library.

get_seq_kind Returns an int seq_kind correlating to the sequence of type type name in the
sequencer¢s sequence library.

get_sequence Returns a reference to a sequence specified by the seq_kind int.

num_sequences Returns the number of sequences in the sequencer¢s sequence library.

send_request Derived classes implement this function to send a request item to the sequencer, which

will forward it to the driver.

Variables

pound_zero_count

i nt unsigned pound_zero_count = 6

Set this variable via set_config_int to set the number of delta cycles to insert in the
wait_for_sequences task. The delta cycles are used to ensure that a sequence with back-to-back
items has an opportunity to fill the action queue when the driver uses the non-blocking try get
interface.

count

int count = -1

Sets the number of items to execute.

Supercedes the max_random_count variable for ovm_random_sequence class for backward
compatibility.

max_random_count

i nt unsi gned nax_random count = 10

Set this variable via set_config_int to set the number of sequence items to generate, at the
discretion of the derived sequence. The predefined ovm_random_sequence uses count to
determine the number of random items to generate.

max_random_depth

i nt unsigned max_random depth = 4

Used for setting the maximum depth inside random sequences. (Beyond that depth, random
252

ovm_sequencer_base

creates only simple sequences.)

default_sequence

protected string default_sequence = "ovm random sequence"

This property defines the sequence type (by name) that will be auto-started. The default sequence
is initially set to ovm_random_sequence. It can be configured through the ovm_component’s
set_config_string method using the field name “default_sequence”.

M ethods

new

function new (string narme,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the hierarchical
parent.

start_default_sequence

virtual task start_default_sequence()

Sequencers provide the start_default_sequence task to execute the default sequence in the run
phase. This method is not intended to be called externally, but may be overridden in a derivative
sequencer class if special behavior is needed when the default sequence is started. The user class
ovm_sequencer_param_base #(REQ,RSP) implements this method.

user_priority_arbitration

virtual function integer user _priority arbitration(integer avail_sequences[$])

If the sequencer arbitration mode is set to SEQ_ARB_USER (via the set_arbitration method), then
the sequencer will call this function each time that it needs to arbitrate among sequences.

Derived sequencers may override this method to perform a custom arbitration policy. Such an
override must return one of the entries from the avail_sequences queue, which are int indexes into
an internal queue, arb_sequence_(Q.

The default implementation behaves like SEQ_ARB_FIFO, which returns the entry at avail_sequences

[0].

253

ovm_sequencer_base

If a user specifies that the sequencer is to use user_priority arbitration through the call
set_arbitration(SEQ_ARB_USER), then the sequencer will call this function each time that it needs
to arbitrate among sequences.

This function must return an int that matches one of the available sequences that is passed into the
call through the avail_sequences parameter

Each int in avail_sequences points to an entry in the arb_sequence_q, which is a protected queue
that may be accessed from this function.

To modify the operation of user_priority_arbitration, the function may arbitrarily choose any
sequence among the list of avail_sequences. It is important to choose only an available sequence.

is_child

function bit is _child (ovm sequence_base parent,
ovm sequence_base child)

Returns 1 if the child sequence is a child of the parent sequence, 0 otherwise.

wait_for_grant

virtual task wait_for_grant(ovm sequence_base sequence ptr,
I nt itempriority
bi t | ock_request

This task issues a request for the specified sequence. If item_priority is not specified, then the
current sequence priority will be used by the arbiter. If a lock_request is made, then the sequencer
will issue a lock immediately before granting the sequence. (Note that the lock may be granted
without the sequence being granted if is_relevant is not asserted).

When this method returns, the sequencer has granted the sequence, and the sequence must call
send_request without inserting any simulation delay other than delta cycles. The driver is currently
waiting for the next item to be sent via the send_request call.

wait_for_item_done

virtual task wait_for_itemdone(ovm sequence_base sequence_ptr,
i nt transaction_i d)

A sequence may optionally call wait_for_item_done. This task will block until the driver calls
item_done() or put() on a transaction issued by the specified sequence. If no transaction_id
parameter is specified, then the call will return the next time that the driver calls item_done() or put
(). If a specific transaction_id is specified, then the call will only return when the driver indicates
that it has completed that specific item.

Note that if a specific transaction_id has been spez%gied, and the driver has already issued an

ovm_sequencer_base

item_done or put for that transaction, then the call will hang waiting for that specific transaction_id.

Is blocked

function bit is_blocked(ovm sequence_base sequence_ptr)

Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the sequencer. It
will return O if the sequence is currently allowed to issue operations.

Note that even when a sequence is not blocked, it is possible for another sequence to issue a lock
before this sequence is able to issue a request or lock.

has lock

function bit has_| ock(ovm sequence_base sequence_ptr)

Returns 1 if the sequence refered to in the parameter currently has a lock on this sequencer, O
otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in which case the
sequence is still blocked from issueing operations on the sequencer

lock

virtual task | ock(ovm sequence base sequence _ptr)

Requests a lock for the sequence specified by sequence_ptr.

A lock request will be arbitrated the same as any other request. A lock is granted after all earlier
requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab

virtual task grab(ovm sequence_base sequence_ptr)

Requests a lock for the sequence specified by sequence_ptr.

A grab request is put in front of the arbitration queue. It will be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence.

The grab call will return when the grab has been granted.

255

ovm_sequencer_base

unlock

virtual function void unl ock(ovm sequence_base sequence_ptr)

Removes any locks and grabs obtained by the specified sequence_ptr.

ungrab

virtual function void ungrab(ovm sequence_base sequence_ptr)

Removes any locks and grabs obtained by the specified sequence_ptr.

stop_sequences

virtual function void stop_sequences()

Tells the sequencer to kill all sequences and child sequences currently operating on the sequencer,
and remove all requests, locks and responses that are currently queued. This essentially resets the
sequencer to an idle state.

Is_grabbed

virtual function bit is_grabbed()

Returns 1 if any sequence currently has a lock or grab on this sequencer, O otherwise.

current_grabber

virtual function ovm sequence_base current _grabber ()

Returns a reference to the sequence that currently has a lock or grab on the sequence. If multiple
hierarchical sequences have a lock, it returns the child that is currently allowed to perform
operations on the sequencer.

has do_available

virtual function bit has_do_avail abl e()

Determines if a sequence is ready to supply a transaction. A sequence that obtains a transaction in
pre-do must determine if the upstream object is ready to provide an item

Returns 1 if a sequence is ready to issue an operation. Returns O if no unblocked, relevant
sequence is requesting.

256

ovm_sequencer_base

set_arbitration
function void set_arbitration(SEQ ARB TYPE val)

Specifies the arbitration mode for the sequencer. It is one of

SEQ_ARB_FIFO Requests are granted in FIFO order (default)
SEQ_ARB_WEIGHTED Requests are granted randomly by weight
SEQ_ARB_RANDOM Requests are granted randomly

SEQ_ARB_STRICT_FIFO Requests at highest priority granted in fifo order
SEQ_ARB_STRICT_RANDOMRequests at highest priority granted in randomly

SEQ_ARB_USER Arbitration is delegated to the user-defined function,
user_priority_arbitration. That function will specify the next sequence
to grant.

The default user function specifies FIFO order.

wait_for_sequences

virtual task wait_for_sequences()

Waits for a sequence to have a new item available. The default implementation in the sequencer
delays pound_zero_count delta cycles. (This variable is defined in ovm_sequencer_base.) User-
derived sequencers may override its wait_for_sequences implementation to perform some other
application-specific implementation.

add_sequence

function void add _sequence(string type_nane)

Adds a sequence of type specified in the type_name paramter to the sequencer’s sequence library.

get_seq kind
function int get _seqg _kind(string type nane)

Returns an int seq_kind correlating to the sequence of type type_name in the sequencer¢s sequence
library. If the named sequence is not registered a SEQNF warning is issued and -1 is returned.

get_sequence

functi on ovm sequence_base get sequence(int req_kind)

Returns a reference to a sequence specified by the seq_kind int. The seq_kind int may be obtained

using the get_seq_kind() method.
257

ovm_sequencer_base

num_sequences

function int num sequences()

Returns the number of sequences in the sequencer¢s sequence library.

send_request

virtual function void send request(ovm sequence_base sequence _ptr,
ovm sequence_itemt,
bi t rerandom ze

Derived classes implement this function to send a request item to the sequencer, which will forward
it to the driver. If the rerandomize bit is set, the item will be randomized before being sent to the
driver.

This function may only be called after a wait_for_grant call.

258

ovm_sequencer_param_base #(REQ,RSP)

ovm_sequencer _param_base #(REQ,RSP)

Provides base functionality used by the ovm_sequencer and ovm_push_sequencer. The
implementation is dependent on REQ and RSP parameters.

Summary

ovm_sequencer_param_base #(REQ,RSP)

Provides base functionality used by the ovm_sequencer and ovm_push_sequencer.
Class Hierarchy

ovm_object
ovim_report_object
ovm_component

ovm_sequencer_base

lovm_seguencer_param_base#(REQ,RSP)|

Class Declaration
cl ass ovm sequencer param base #(

type REQ = ovm sequence_item
type RSP = REO
) extends ovm sequencer base

Ports

rsp_export This is the analysis export used by drivers or monitors to send responses to the
seqguencer.

Methods

new Creates and initializes an instance of this class using the normal constructor
arguments for ovm_component: name is the name of the instance, and parent is
the handle to the hierarchical parent, if any.

send_request The send_request function may only be called after a wait_for_grant call.

get_current_item Returns the request_item currently being executed by the sequencer.

start_default_sequence Called when the run phase begins, this method starts the default sequence, as
specified by the default_sequence member variable.
get_num_reqs_sent Returns the number of requests that have been sent by this sequencer.

get_num_rsps_receivedReturns the number of responses received thus far by this sequencer.

set_num_last_reqgs Sets the size of the last_requests buffer.

get_num_last_regs Returns the size of the last requests buffer, as set by set_ num_last_reqgs.
last_req Returns the last request item by default.

set_num_last_rsps Sets the size of the last_responses buffer.

get_num_last_rsps Returns the max size of the last responses buffer, as set by set_num_last_rsps.
last_rsp Returns the last response item by default.

execute_item This task allows the user to supply an item or sequence to the sequencer and

have it be executed procedurally.

259

ovm_sequencer_param_base #(REQ,RSP)

Ports

rsp_export

This is the analysis export used by drivers or monitors to send responses to the sequencer.
When a driver wishes to send a response, it may do so through exactly one of three methods:

seg_item port.item done(response)
seq_i tem done. put (response)
rsp_port.wite(response)

The rsp_port in the driver and/or monitor must be connected to the rsp_export in this
sequencer in order to send responses through the response analysis port.

M ethods

new

function new (string name,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

send_request

virtual function void send request(ovm sequence_base sequence ptr,
ovm sequence_itemt,
bi t rerandom ze

The send_request function may only be called after a wait_for_grant call. This call will send
the request item, t, to the sequencer pointed to by sequence_ptr. The sequencer will forward
it to the driver. If rerandomize is set, the item will be randomized before being sent to the
driver.

260

ovm_sequencer_param_base #(REQ,RSP)
get_current_item

function REQ get current item()

Returns the request_item currently being executed by the sequencer. If the sequencer is not
currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called until
the time that get or item_done is called.

Note that a driver that only calls get() will never show a current item, since the item is
completed at the same time as it is requsted.

start_default_sequence

task start_default _sequence()

Called when the run phase begins, this method starts the default sequence, as specified by
the default_sequence member variable.

get_num_regs_sent

function int get_numreqs_sent()

Returns the number of requests that have been sent by this sequencer.

get_num_rsps received

function int get_numrsps_received()

Returns the number of responses received thus far by this sequencer.

set_ num_last_reqs

function void set_num.| ast_reqs(unsi gned max)

Sets the size of the last_requests buffer. Note that the maximum buffer size is 1024. If max
is greater than 1024, a warning is issued, and the buffer is set to 1024. The default value is 1.

get_ num_last_regs

261

ovm_sequencer_param_base #(REQ,RSP)

function int unsigned get_numl ast_reqs()

Returns the size of the last requests buffer, as set by set_ num_last_reqs.

last_req

function REQ | ast _req(unsi gned n

Returns the last request item by default. If n is not O, then it will get the n¢th before last
request item. If n is greater than the last request buffer size, the function will return null.

set_num_last_rsps

function void set_num.last_rsps(unsi gned max)

Sets the size of the last_responses buffer. The maximum buffer size is 1024. If max is
greater than 1024, a warning is issued, and the buffer is set to 1024. The default value is 1.

get_ num_last_rsps

function int unsigned get_num.l ast_rsps()

Returns the max size of the last responses buffer, as set by set num_last_rsps.

last_rsp

function RSP | ast _rsp(unsi gned n

Returns the last response item by default. If n is not O, then it will get the nth-before-last
response item. If n is greater than the last response buffer size, the function will return null.

execute item

virtual task execute_ itenmovm sequence itemitem
This task allows the user to supply an item or sequence to the sequencer and have it be
executed procedurally. The parent sequence for the item or sequence is a temporary

sequence that is automatically created. There is no capability to retrieve responses. The
sequencer will drop responses to items done using this interface.

262

ovm_sequencer #(REQ,RSP)

ovm_sequencer #(REQ,RSP)

Summary

ovm_sequencer #(REQ,RSP)

Class Hierarchy
ovm_object

ovm_report_object

ovm_component

ovim_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)

lovm_sequencer#(REQ,RSP) |

Class Declaration
cl ass ovm sequencer #(

type REQ = ovm sequence_item
type RSP = REQ
) extends ovm sequencer _param base #(REQ RSP)
Variables

seq_item_exportThis export provides access to this sequencer’s implementation of the sequencer
interface, sqr_if_base #(REQ,RSP), which defines the following methods:

Methods

new Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

stop_sequences Tells the sequencer to Kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued.

Variables

seq_item_export

ovmseq_itempull inmp #(REQ
RSP,
this type) seqg_item export

This export provides access to this sequencer’s implementation of the sequencer interface,
sgr_if base #(REQ,RSP), which defines the following methods:

263

ovm_sequencer #(REQ,RSP)

virtual task get _next _item (out put REQ request);
virtual task try_next _item (out put REQ request);
virtual function void itemdone (i nput RSP response=null);
virtual task wai t _for_sequences ();

virtual function bit has_do_avail able O;

virtual task get (out put REQ request);
virtual task peek (out put REQ request);
virtual task put (i nput RSP response);

See sgr_if base #(REQ,RSP) for information about this interface.

M ethods

new
function new (string namne,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

stop_sequences

virtual function void stop_sequences()

Tells the sequencer to kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

264

ovm_push_sequencer #(REQ,RSP)

ovm_push_sequencer #REQ,RSP)

Summary

ovm_ push_sequencer #(REQ,RSP)
Class Hierarchy
ovm_object

ovm_report_object
ovm_component
ovm_sequencer_base

ovm_sequencer_param_base#(REQ,RSP)

lovm_push_sequencer#(REQ,RSP) |

Class Declaration
cl ass ovm push_sequencer #(
type REQ = ovmsequence_item
type RSP = REQ
) extends ovm sequencer _param base #(REQ RSP)

Ports

req_port The push sequencer requires access to a blocking put interface.

Methods

new Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

run The push sequencer continuously selects from its list of available sequences and sends the next
item from the selected sequence out its req_port using req_port.put(item).

Ports

req_port

The push sequencer requires access to a blocking put interface. Continual sequence items,
based on the list of available sequences loaded into this sequencer, are sent out this port.

M ethods

265

ovm_push_sequencer #(REQ,RSP)

new
function new (string nane,
ovm _conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments for
ovm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

run

task run()

The push sequencer continuously selects from its list of available sequences and sends the
next item from the selected sequence out its req_port using req_port.put(item). Typically,

the req_port would be connected to the req_export on an instance of an ovm_push_driver #
(REQ,RSP), which would be responsible for executing the item.

266

Sequence Classes

Sequence Classes

Sequences encapsulate user-defined procedures that generate multiple ovm_sequence_item-

based transactions. Such sequences can be reused, extended, randomized, and combined
sequentially and hierarchically in interesting ways to produce realistic stimulus to your DUT.

With ovm_sequence objects, users can encapsulate DUT initializaton code, bus-based stress
tests, network protocol stacks-- anything procedural-- then have them all execute in specific
or random order to more quickly reach corner cases and coverage goals.

The OVM sequence item and sequence class hierarchy is shown below.

ovm_wvoid

T
owm_object

5
ovim_iransaciion

a
ovim_sequence_item

T User sequence ibam
OVIM_SEequUence_base

I

e — — — —

. ovm_sequence_item - The ovm_sequence_item is the base class for user-defined

transactions that leverage the stimulus generation and control capabilities of the
sequence-sequencer mechanism.

. ovm_sequence #(REQ,RSP) - The ovm_sequence extends ovm_sequence_item to
add the ability to generate streams of ovm_sequence_items, either directly or by
recursively execting other ovm_sequences.

267

ovm_sequence_item

ovim_sequence item

The base class for user-defined sequence items and also the base class for the ovm_sequence
class. The ovm_sequence_item class provides the basic functionality for objects, both
sequence items and sequences, to operate in the sequence mechanism.

Summary

ovm_sequence_item

The base class for user-defined sequence items and also the base class for the ovm_sequence class.
Class Hierarchy

ovm_object

ovm_ transaction

lovm_sequence_item|

Class Declaration
cl ass ovm sequence_l t em ext ends ovm_t ransacti on

Methods
new The constructor method for ovm_sequence_item.
get_sequence_id private

set_use_sequence_info

get _use sequence_info These methods are used to set and get the status of the use_sequence_info
bit.

set_id_info Copies the sequence_id and transaction_id from the referenced item into the
calling item.

set_sequencer

get_sequencer These routines set and get the reference to the sequencer to which this
sequence_item communicates.
set_parent_sequence Sets the parent sequence of this sequence_item.

get_parent_sequence Returns a reference to the parent sequence of any sequence on which this
method was called.

set_depth The depth of any sequence is calculated automatically.

get_depth Returns the depth of a sequence from it’'s parent.

is_item This function may be called on any sequence_item or sequence.

start_item start_item and finish_item together will initiate operation of either a
sequence_item or sequence object.

finish_item finish_item, together with start_item together will initiate operation of either a

sequence_item or sequence object.
get_root_sequence_nameProvides the name of the root sequence (the top-most parent sequence).

get_root_sequence Provides a reference to the root sequence (the top-most parent sequence).
get_sequence_path Provides a string of names of each sequence in the full hierarchical path.

M ethods

268

ovm_sequence_item

new

function new (string name
ovm sequencer _base sequencer
ovm sequence_base parent_sequence

The constructor method for ovm_sequence_item. The sequencer and parent_sequence may
be specified in the constructor, or directly using ovm_sequence_item methods.

get_sequence id

function int get_sequence_id()

private

Get_sequence_id is an internal method that is not intended for user code. The sequence_id is
not a simple integer. The get_transaction_id is meant for users to identify specific
transactions.

These methods allow access to the sequence_item sequence and transaction IDs.
get_transaction_id and set_transaction_id are methods on the ovm_transaction base_class.
These IDs are used to identify sequences to the sequencer, to route responses back to the
sequence that issued a request, and to uniquely identify transactions.

The sequence_id is assigned automatically by a sequencer when a sequence initiates
communication through any sequencer calls (i.e. ~ovm_do_xxx, wait_for_grant). A
sequence_id will remain unique for this sequence until it ends or it is killed. However, a single
sequence may have multiple valid sequence ids at any point in time. Should a sequence start
again after it has ended, it will be given a new unique sequence_.id.

The transaction_id is assigned automatically by the sequence each time a transaction is sent
to the sequencer with the transaction_id in its default (-1) value. If the user sets the
transaction_id to any non-default value, that value will be maintained.

Responses are routed back to this sequences based on sequence_id. The sequence may use
the transaction_id to correlate responses with their requests.

set_use sequence info

function void set_use_sequence_info(bit val ue)

get_use sequence info

function bit get_use_sequence_i nfo()
269

ovm_sequence_item

These methods are used to set and get the status of the use_sequence_info bit.
Use_sequence_info controls whether the sequence information (sequencer, parent_sequence,
sequence_id, etc.) is printed, copied, or recorded. When use_sequence_info is the default
value of O, then the sequence information is not used. When use_sequence_info is set to 1,
the sequence information will be used in printing and copying.

set_id_info

function void set _id_info(ovm sequence itemitem

Copies the sequence_id and transaction_id from the referenced item into the calling item.
This routine should always be used by drivers to initialize responses for future compatibility.

Set_sequencer

function void set sequencer (ovm sequencer base sequencer)

get_sequencer

function ovm sequencer _base get_sequencer ()

These routines set and get the reference to the sequencer to which this sequence_item
communicates.

set_parent_sequence

function void set parent _sequence(ovm sequence_base parent)

Sets the parent sequence of this sequence_item. This is used to identify the source sequence
of a sequence_item.

get_parent_sequence

functi on ovm sequence_base get parent _sequence()

Returns a reference to the parent sequence of any sequence on which this method was
called. If this is a parent sequence, the method returns null.

270

ovm_sequence_item
set_depth

function void set_depth(int val ue)

The depth of any sequence is calculated automatically. However, the user may use set_depth
to specify the depth of a particular sequence. This method will override the automatically
calculated depth, even if it is incorrect.

get_depth

function int get_depth()

Returns the depth of a sequence from it's parent. A parent sequence will have a depth of 1,
it's child will have a depth of 2, and it's grandchild will have a depth of 3.

IS item
virtual function bit is_item()

This function may be called on any sequence_item or sequence. It will return 1 for items and
0 for sequences (which derive from this class).

start_item

virtual task start_iten(ovm sequence_itemitem
I nt set_priority

start_item and finish_item together will initiate operation of either a sequence_item or
sequence object. If the object has not been initiated using create_item, then start_item will
be initialized in start_item to use the default sequencer specified by m_sequencer.
Randomization may be done between start_item and finish_item to ensure late generation

finish_item
virtual task finish itenmovm sequence itemitem
I nt set _priority

finish_item, together with start_item together will initiate operation of either a sequence_item
or sequence object. Finish_item must be called after start_item with no delays or delta-
cycles. Randomization, or other functions may be called between the start_item and
finish_item calls.

271

ovm_sequence_item

get_root_sequence _name

function string get_root_sequence_nane()

Provides the name of the root sequence (the top-most parent sequence).

get_root_sequence

functi on ovm sequence_base get root_ sequence()

Provides a reference to the root sequence (the top-most parent sequence).

get_sequence path

function string get_sequence_path()

A\SN/4

Provides a string of names of each sequence in the full hierarchical path. A “.” is used as the
separator between each sequence.

272

ovm_sequence_base

ovm_sequence base

The ovm_sequence_base class provides the interfaces needed to create streams of sequence
items and/or other sequences.

Summary

ovm_sequence_base
The ovm_sequence_base class provides the interfaces needed to create streams of sequence items and/

or other sequences.
Class Hierarchy

ovim_object
ovm_ transaction

ovm_sequence_item

lovm_sequence_base]

Class Declaration

cl ass ovm sequence_base extends ovm sequence_item

Variables

seq_kind

Methods

new

get_sequence_state
wait_for_sequence_state
start

pre_body

post_body
pre_do
body

is_item
mid_do

post_do
num_sequences
get_seq_kind

get_sequence

get_sequence_by name
do_sequence_kind

set_priority

Used as an identifier in constraints for a specific sequence type.

The constructor for ovm_sequence_base.

Returns the sequence state as an enumerated value.
Waits until the sequence reaches the given state.

The start task is called to begin execution of a sequence

This task is a user-definable callback task that is called before the execution
of the body, unless the sequence is started with call_pre_post=0.

This task is a user-definable callback task that is called after the execution of
the body, unless the sequence is started with call_pre_post=0.

This task is a user-definable callback task that is called after the sequence
has issued a wait_for_grant() call and after the sequencer has selected this
sequence, and before the item is randomized.

This is the user-defined task where the main sequence code resides.

This function may be called on any sequence_item or sequence object.

This function is a user-definable callback function that is called after the
sequence item has been randomized, and just before the item is sent to the
driver.
This function is a user-definable callback function that is called after the
driver has indicated that it has completed the item, using either this
item_done or put methods.
Returns the number of sequences in the sequencer’s sequence library.
This function returns an int representing the sequence kind that has been
registerd with the sequencer.
This function returns a reference to a sequence specified by req_kind, which
can be obtained using the get_seq_kind method.
Internal method.
This task will start a sequence of kind specified by req_kind, which can be
obtained using the get_seq_kind method.
The priority of a sequence may be changed at any point in time.

273

ovm_sequence_base

get_priority
wait_for_relevant

is_relevant
is_blocked

has_lock
lock
grab
unlock

ungrab

wait_for_grant
send_request

wait_for_item_done

set_sequencer
get_sequencer
kill

use_response_handler

This function returns the current priority of the sequence.

This method is called by the sequencer when all available sequences are not
relevant.

The default is_relevant implementation returns 1, indicating that the
sequence is always relevant.

Returns a bit indicating whether this sequence is currently prevented from
running due to another lock or grab.

Returns 1 if this sequence has a lock, O otherwise.

Requests a lock on the specified sequencer.
Requests a lock on the specified sequencer.

Removes any locks or grabs obtained by this sequence on the specified
sequencer.

Removes any locks or grabs obtained by this sequence on the specified
seqguencer.

This task issues a request to the current sequencer.

The send_request function may only be called after a wait_for_grant call.
A sequence may optionally call wait_for_item_done.

Sets the default sequencer for the sequence to run on.

Returns a reference to the current default sequencer of the sequence.

This function will Kkill the sequence, and cause all current locks and requests in
the sequence’s default sequencer to be removed.

When called with enable set to 1, responses will be sent to the response
handler.

get _use response_handlerReturns the state of the use_response handler bit.

response_handler

create_item

When the use_reponse_handler bit is set to 1, this virtual task is called by the
sequencer for each response that arrives for this sequence.

Create_item will create and initialize a sequence_item or sequence using the
factory.

start_item start_item and finish_item together will initiate operation of either a
sequence_item or sequence object.

finish_item finish_item, together with start_item together will initiate operation of either
a sequence_item or sequence object.

Variables

seq_kind

rand i nt unsigned seqg_kind

Used as an identifier in constraints for a specific sequence type.

M ethods

274

ovm_sequence_base

new

function new (string name
ovm sequencer _base sequencer _ptr
ovm sequence_base parent_seq

The constructor for ovm_sequence_base.

The sequencer_ptr and parent_seq arguments are deprecated in favor of their being set in the
start method.

get_sequence state

functi on ovm sequence_state_enum get _sequence_stat e()

Returns the sequence state as an enumerated value. Can use to wait on the sequence
reaching or changing from one or more states.

wai t (get _sequence_state() & (STOPPED| FI Nl SHED)) ;

wait_for_sequence state

task wait_for_sequence_state(ovm sequence_state_enum st ate)

Waits until the sequence reaches the given state. If the sequence is already in this state, this
method returns immediately. Convenience for wait (get_sequence_state == state);

Start

virtual task start (ovm sequencer base sequencer,
ovm sequence_base parent_sequence
i nt eger this priority
bi t call _pre_post

The start task is called to begin execution of a sequence

If parent_sequence is null, then the sequence is a parent, otherwise it is a child of the
specified parent.

By default, the priority of a sequence is 100. A different priority may be specified by
this_priority. Higher numbers indicate higher priority.

275

ovm_sequence_base

If call_pre_post is set to 1, then the pre_body and post_body tasks will be called before and
after the sequence body is called.

pre_body
virtual task pre_body()

This task is a user-definable callback task that is called before the execution of the body,
unless the sequence is started with call_pre_post=0. This method should not be called
directly by the user.

post_body
virtual task post_body()

This task is a user-definable callback task that is called after the execution of the body, unless
the sequence is started with call_pre_post=0. This method should not be called directly by
the user.

pre do

virtual task pre_do(bit is_item
This task is a user-definable callback task that is called after the sequence has issued a
wait_for_grant() call and after the sequencer has selected this sequence, and before the item

is randomized. This method should not be called directly by the user.

Although pre_do is a task, consuming simulation cycles may result in unexpected behavior on
the driver.

body
virtual task body()

This is the user-defined task where the main sequence code resides. This method should not
be called directly by the user.

IS item
virtual function bit is_item)

276

ovm_sequence_base

This function may be called on any sequence_item or sequence object. It will return 1 on
items and O on sequences.

mid_do

virtual function void m d do(ovm sequence_ itemthis_ item

This function is a user-definable callback function that is called after the sequence item has
been randomized, and just before the item is sent to the driver. This mehod should not be
called directly by the user.

post_do

virtual function void post_do(ovm sequence itemthis itemn

This function is a user-definable callback function that is called after the driver has indicated
that it has completed the item, using either this item_done or put methods. This method
should not be called directly by the user.

num_sequences

function int num sequences()

Returns the number of sequences in the sequencer’s sequence library.

get_seq kind
function int get_seqg_kind(string type_nane)

This function returns an int representing the sequence kind that has been registerd with the
sequencer. The seq_kind int may be used with the get_sequence or do_sequence_kind
methods.

get_sequence

functi on ovm sequence_base get _sequence(unsi gned req_ki nd)

This function returns a reference to a sequence specified by req_kind, which can be obtained
using the get_seq_kind method.

277

ovm_sequence_base

get_sequence by name

functi on ovm sequence_base get sequence_by nanme(string seq_nane)

Internal method.

do_sequence kind

t ask do_sequence_ki nd(unsi gned req_ki nd)

This task will start a sequence of kind specified by reqg_kind, which can be obtained using the
get_seq_kind method.

set_priority

function void set _priority (int val ue)

The priority of a sequence may be changed at any point in time. When the priority of a
sequence is changed, the new priority will be used by the sequencer the next time that it
arbitrates between sequences.

The default priority value for a sequence is 100. Higher values result in higher priorities.

get_priority

function int get_priority()

This function returns the current priority of the sequence.

wait_for_relevant

virtual task wait_for_relevant ()

This method is called by the sequencer when all available sequences are not relevant. When
wait_for_relevant returns the sequencer attempt to re-arbitrate.

Returning from this call does not guarantee a sequence is relevant, although that would be
the ideal. The method provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence is
always relevant), then the sequence must also supply a wait_for_relevant method.

278

ovm_sequence_base

IS relevant

virtual function bit is_relevant()

The default is_relevant implementation returns 1, indicating that the sequence is always
relevant.

Users may choose to override with their own virtual function to indicate to the sequencer that
the sequence is not currently relevant after a request has been made.

When the sequencer arbitrates, it will call is_relevant on each requesting, unblocked sequence
to see if it is relevant. If a O is returned, then the sequence will not be chosen.

If all requesting sequences are not relevant, then the sequencer will call wait_for_relevant on
all sequences and re-arbitrate upon its return.

Any sequence that implements is_relevant must also implement wait_for_relevant so that the
sequencer has a way to wait for a sequence to become relevant.

IS _blocked

function bit is_blocked()

Returns a bit indicating whether this sequence is currently prevented from running due to
another lock or grab. A 1 is returned if the sequence is currently blocked. A O is returned if
no lock or grab prevents this sequence from executing. Note that even if a sequence is not
blocked, it is possible for another sequence to issue a lock or grab before this sequence can
issue a request.

has lock

function bit has_| ock()

Returns 1 if this sequence has a lock, O otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in which
case the sequence is still blocked from issuing operations on the sequencer>

lock

task | ock(ovm sequencer base sequencer

Requests a lock on the specified sequencer. If sequencer is null, the lock will be requested on
279

ovm_sequence_base

the current default sequencer.

A lock request will be arbitrated the same as any other request. A lock is granted after all
earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab

task grab(ovm sequencer base sequencer

Requests a lock on the specified sequencer. If no argument is supplied, the lock will be
requested on the current default sequencer.

A grab equest is put in front of the arbitration queue. It will be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence.

The grab call will return when the grab has been granted.

unlock

function void unl ock(ovm sequencer base sequencer

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

ungrab

function void ungrab(ovm sequencer base sequencer

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

wait_for_grant

virtual task wait _for_grant(int itempriority
bit | ock request

This task issues a request to the current sequencer. If item_priority is not specified, then the
current sequence priority will be used by the arbiter. If a lock_request is made, then the
sequencer will issue a lock immediately before granting the sequence. (Note that the lock
may be granted without the sequence being granted if is_relevant is not asserted).

280

ovm_sequence_base

When this method returns, the sequencer has granted the sequence, and the sequence must
call send_request without inserting any simulation delay other than delta cycles. The driver is
currently waiting for the next item to be sent via the send_request call.

send_request
virtual function void send_request(ovm sequence_item request,
bi t rerandom ze

The send_request function may only be called after a wait_for_grant call. This call will send
the request item to the sequencer, which will forward it to the driver. If the rerandomize bit
is set, the item will be randomized before being sent to the driver.

wait_for_item_done

virtual task wait _for _itemdone(int transaction_id

A sequence may optionally call wait_for_item_done. This task will block until the driver calls
item_done or put. If no transaction_id parameter is specified, then the call will return the
next time that the driver calls item_done or put. If a specific transaction_id is specified, then
the call will return when the driver indicates completion of that specific item.

Note that if a specific transaction_id has been specified, and the driver has already issued an

item_done or put for that transaction, then the call will hang, having missed the earlier
notification.

set_sequencer

virtual function void set_sequencer (ovm sequencer base sequencer)

Sets the default sequencer for the sequence to run on. It will take effect immediately, so it
should not be called while the sequence is actively communicating with the sequencer.

get_sequencer

virtual function ovm sequencer _base get_sequencer ()

Returns a reference to the current default sequencer of the sequence.

Kill

281

ovm_sequence_base

function void kill()

This function will kill the sequence, and cause all current locks and requests in the sequence’s
default sequencer to be removed. The sequence state will change to STOPPED, and its
post_body() method, if will not b

If a sequence has issued locks, grabs, or requests on sequencers other than the default

sequencer, then care must be taken to unregister the sequence with the other sequencer(s)
using the sequencer unregister_sequence() method.

use response_handler

function void use_response_handl er (bit enabl e)

When called with enable set to 1, responses will be sent to the response handler. Otherwise,
responses must be retrieved using get_response.

By default, responses from the driver are retrieved in the sequence by calling get_response.

An alternative method is for the sequencer to call the response_handler function with each
response.

get_use response handler

function bit get_use_response_handl er ()

Returns the state of the use_response_handler bit.

response_handler

virtual function void response_handl er (ovm sequence_item response)

When the use_reponse_handler bit is set to 1, this virtual task is called by the sequencer for
each response that arrives for this sequence.

create item

protected function ovm sequence_itemcreate iten
ovm obj ect _wr apper type_var,
ovm sequencer _base | sequencer,
string name

282

ovm_sequence_base

Create_item will create and initialize a sequence_item or sequence using the factory. The
sequence_item or sequence will be initialized to communicate with the specified sequencer.

start_item

start_item and finish_item together will initiate operation of either a sequence_item or
sequence object. If the object has not been initiated using create_item, then start_item will
be initialized in start_item to use the default sequencer specified by m_sequencer.
Randomization may be done between start_item and finish_item to ensure late generation

virtual task start_item(ovm sequence_itemitem int set_priority = -1);

finish_item

finish_item, together with start_item together will initiate operation of either a sequence_item
or sequence object. Finish_item must be called after start_item with no delays or delta-
cycles. Randomization, or other functions may be called between the start_item and
finish_item calls.

virtual task finish_item ovm sequence_itemitem int set_priority = -1);

283

ovm_sequence #(REQ,RSP)

ovm_sequence #REQ,RSP)

The ovm_sequence class provides the interfaces necessary in order to create streams of
sequence items and/or other sequences.

Summary

ovm_sequence #(REQ,RSP)

The ovm_sequence class provides the interfaces necessary in order to create streams of sequence items
and/or other sequences.
Class Hierarchy

ovim_object
ovm_ transaction
ovm_sequence_item

ovm_sequence_base

lovm_sequence#(REQ,RSP)|

Class Declaration
virtual class ovm sequence #(

type REQ = ovm sequence_item

type RSP = REOQ
) extends ovm sequence_base

Methods

new Creates and initializes a new sequence object.

start The start task is called to begin execution of a sequence.

send_request This method will send the request item to the sequencer,
which will forward it to the driver.

get_current_item Returns the request item currently being executed by the
sequencer.

get_response By default, sequences must retrieve responses by calling
get_response.

set_sequencer Sets the default sequencer for the sequence to sequencer.

set_response_queue_error_report_disabled By default, if the response_queue overflows, an error is
reported.

get_response_queue_error_report_disabledWhen this bit is O (default value), error reports are
generated when the response queue overflows.
set_response_queue_depth The default maximum depth of the response queue is 8.

get_response_queue_depth Returns the current depth setting for the response queue.

M ethods

284

ovm_sequence #(REQ,RSP)

new

function new (string name
ovm sequencer _base sequencer _ptr
ovm sequence_base parent_seq

Creates and initializes a new sequence object.

The sequencer_ptr and parent_seq arguments are deprecated in favor of their being set in the
start method.

Start

virtual task start (ovm sequencer base sequencer,
ovm sequence_base parent_sequence
i nt eger this priority
bi t call _pre_post

The start task is called to begin execution of a sequence.

The sequencer argument specifies the sequencer on which to run this sequence. The
sequencer must be compatible with the sequence.

If parent_sequence is null, then the sequence is a parent, otherwise it is a child of the
specified parent.

By default, the priority of a sequence is 100. A different priority may be specified by
this_priority. Higher numbers indicate higher priority.

If call_pre_post is set to 1, then the pre_body and post_body tasks will be called before and
after the sequence body is called.

send_request
function void send request (ovm sequence_itemrequest,
bi t rerandom ze

This method will send the request item to the sequencer, which will forward it to the driver. If
the rerandomize bit is set, the item will be randomized before being sent to the driver. The
send_request function may only be called after ovm_sequence base::wait for grant returns.

get_current_item

function REQ get current item)
285

ovm_sequence #(REQ,RSP)

Returns the request item currently being executed by the sequencer. If the sequencer is not
currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called until
the time that get or item_done is called.

Note that a driver that only calls get will never show a current item, since the item is
completed at the same time as it is requested.

get_response
task get _response(RSP response,
Int transaction_id

By default, sequences must retrieve responses by calling get_response. If no transaction_id
is specified, this task will return the next response sent to this sequence. If no response is
available in the response queue, the method will block until a response is recieved.

If a transaction_id is parameter is specified, the task will block until a response with that
transaction_id is received in the response queue.

The default size of the response queue is 8. The get_response method must be called soon
enough to avoid an overflow of the response queue to prevent responses from being dropped.

If a response is dropped in the response queue, an error will be reported unless the error
reporting is disabled via set_response_queue_error_report_disabled.

Set_sequencer

virtual function void set sequencer (ovm sequencer base sequencer)

Sets the default sequencer for the sequence to sequencer. It will take effect immediately, so
it should not be called while the sequence is actively communicating with the sequencer.

set_response queue error_report_disabled

function void set_response_queue_error_report _disabl ed(bit val ue)

By default, if the response_queue overflows, an error is reported. The response_queue will
overflow if more responses are sent to this sequence from the driver than get_response calls
are made. Setting value to O disables these errors, while setting it to 1 enables them.

286

ovm_sequence #(REQ,RSP)
get_response queue error_report_disabled

function bit get response _queue_error_report _disabl ed()

When this bit is O (default value), error reports are generated when the response queue
overflows. When this bit is 1, no such error reports are generated.

set_response _queue depth

function void set_response_queue_depth(int val ue)

The default maximum depth of the response queue is 8. These method is used to examine or
change the maximum depth of the response queue.

Setting the response_queue_depth to -1 indicates an arbitrarily deep response queue. No
checking is done.

get_response _queue depth

function int get_response_queue_dept h()

Returns the current depth setting for the response queue.

287

ovm_random_sequence

ovm_random_sequence

This sequence randomly selects and executes a sequence from the sequencer¢s sequence
library, excluding ovm_random_sequence itself, and ovm_exhaustive sequence.

The ovm_random_sequence class is a built-in sequence that is preloaded into every
sequencer’s sequence library with the name “ovm_random_sequence”.

The number of selections and executions is determined by the count property of the
sequencer (or virtual sequencer) on which ovm_random_sequence is operating. See
ovm_sequencer_base for more information.

Summary

ovm_random_sequence

This sequence randomly selects and executes a sequence from the sequencer¢s sequence library,
excluding ovm_random_sequence itself, and ovm_exhaustive_sequence.
Class Hierarchy

ovim_sequence#(ovm_sequence_item)

lovm_random_sequence |

Class Declaration
cl ass ovm random sequence extends ovm sequence #(

ovm sequence_item

)

Methods
get _count Returns the count of the number of sub-sequences which are randomly generated.

M ethods

get_count

function int unsigned get_count()

Returns the count of the number of sub-sequences which are randomly generated. By
default, count is equal to the value from the sequencer’s count variable. However, if the
sequencer’s count variable is -1, then a random value between 0 and sequencer.
max_random_count (exclusive) is chosen. The sequencer’s count variable is subsequently
reset to the random value that was used. If get_count() is call before the sequence has
started, the return value will be sequencer.count, which may be -1.

288

ovm_random_sequence

ovm_exhaustive sequence

This sequence randomly selects and executes each sequence from the sequencer’s sequence
library once, excluding itself and ovm_random_sequence.

The ovm_exhaustive_sequence class is a built-in sequence that is preloaded into every
sequencer’s sequence library with the name “ovm_exaustive_sequence”.

Summary

ovm_ exhaustive sequence

This sequence randomly selects and executes each sequence from the sequencer’s sequence library
once, excluding itself and ovm_random_sequence.
Class Hierarchy

ovim_sequence#(ovm_sequence_item)

lovm_exhaustive sequence |

Class Declaration _
cl ass ovm exhausti ve_sequence extends ovm sequence #(

ovm sequence_item

)

ovm_simple sequence

This sequence simply executes a single sequence item.

The item parameterization of the sequencer on which the ovm_simple_sequence is executed
defines the actual type of the item executed.

The ovm_simple_sequence class is a built-in sequence that is preloaded into every
sequencer’s sequence library with the name “ovm_simple_sequence”.

See ovm_sequencer #(REQ,RSP) for more information on running sequences.

Summary

ovm_simple_sequence
This sequence simply executes a single sequence item.
Class Hierarchy

289

ovm_random_sequence

lovm_sequence#(ovm_sequence_item)|

lovm_simple_sequence |

Class Declaration

cl ass ovm si npl e_sequence extends ovm sequence #(
ovm sequence_item

end

290

Report Macros

Report Macros

This set of macros provides wrappers around the ovm_report_* Reporting functions. The
macros serve two essential purposes:

. To reduce the processing overhead associated with filtered out messages, a check is
made against the report’s verbosity setting and the action for the id/severity pair
before any string formatting is performed. This affects only ~ovm_info reports.

. The °__FILE_ and ~__ LINE__ information is automatically provided to the
underlying ovm_report_* call. Having the file and line number from where a report
was issued aides in debug. You can disable display of file and line information in
reports by defining OVM_DISABLE_REPORT_FILE_LINE on the command line.

The macros also enforce a verbosity setting of OVM_NONE for warnings, errors and fatals so
that they cannot be mistakingly turned off by setting the verbosity level too low (warning and
errors can still be turned off by setting the actions appropriately).

To use the macros, replace the previous call to ovm_report_* with the corresponding macro.

/'l Previous calls to ovmreport _*

ovm report_info("MINFOL", $sformatf("val: %Od", val), O/M LOW;
ovm report_warni ng("MYMARNL", "This is a warning");
ovmreport_error("MYERR', "This is an error");

ovm report _fatal ("MYFATAL", "A fatal error has occurred");

The above code is replaced by

/I New calls to ~ovm *

“ovm i nfo("MYI NFOL", $sformatf("val: %®9d", val), OVM LOW
“ovm war ni ng(" MYWARNL", "This is a warning")
“ovmerror("MYERR', "This is an error")

“ovm fatal ("MYFATAL", "A fatal error has occurred")

Macros represent text substitutions, not statements, so they should not be terminated with
semi-colons.

Summary

Report Macros

This set of macros provides wrappers around the ovm_report_* Reporting functions.

Macros

“ovm_info Calls ovm_report_info if VERBOSITY is lower than the configured verbosity of the

associated reporter.
~ovm_warningCalls ovm_report_warning with a verbosity of OVM_NONE.

“ovm_error Calls ovm_report_error with a verbosity of OVM_NONE.

291

Report Macros

~“ovm_fatal Calls ovm_report_fatal with a verbosity of OVM_NONE.

M acros

‘ovm_info

Calls ovm_report_info if VERBOSITY is lower than the configured verbosity of the associated
reporter. ID is given as the message tag and MSG is given as the message text. The file and
line are also sent to the ovm_report_info call.

‘ovm_warning

Calls ovm_report_warning with a verbosity of OVM_NONE. The message can not be turned
off using the reporter’s verbosity setting, but can be turned off by setting the action for the
message. ID is given as the message tag and MSG is given as the message text. The file and
line are also sent to the ovm_report_warning call.

‘ovm_error

Calls ovm_report_error with a verbosity of OVM_NONE. The message can not be turned off
using the reporter’s verbosity setting, but can be turned off by setting the action for the
message. ID is given as the message tag and MSG is given as the message text. The file and
line are also sent to the ovm_report_error call.

“ovm_fatal

Calls ovm_report_fatal with a verbosity of OVM_NONE. The message can not be turned off
using the reporter’s verbosity setting, but can be turned off by setting the action for the
message. ID is given as the message tag and MSG is given as the message text. The file and
line are also sent to the ovm_report_fatal call.

292

Utility and Field Macros for Components and Objects

Utility and Field Macros for Components and Objects

Summary

Utility and Field Macros for Components and Objects

uUtility Macros The utility macros provide implementations of the ovm_object::
create method, which is needed for cloning, and the ovm_object::
get_type name method, which is needed for a number of
debugging features.

~“ovm_field_utils_begin

~ovm_field utils_end These macros form a block in which “ovm_field_* macros can be
placed.

“ovm_object_utils

“ovm_object_param_ utils

“ovm_object_utils_begin

~ovm_object_param_utils_begin

“ovm_object_utils_end ovm_object-based class declarations may contain one of the above

forms of utility macros.
~ovm_component_utils

~ovm_component_param_ utils
~ovm_component_utils_begin
~ovm_component_param_ utils_begin

~ovm_component_end ovm_component-based class declarations may contain one of the
above forms of utility macros.
Field Macros The ~ovm_field * macros are invoked inside of the

“ovm_*_utils_begin and “ovm_*_utils_end macro blocks to form
“automatic” implementations of the core data methods: copy,
compare, pack, unpack, record, print, and sprint.

“ovm_field_* macros Macros that implement data operations for scalar properties.

~ovm_field_int Implements the data operations for any packed integral property.

~ovm_field_object Implements the data operations for an ovm_object-based property.

~ovm_field_string Implements the data operations for a string property.

“ovm_field_enum Implements the data operations for an enumerated property.

~ovm_field_real Implements the data operations for any real property.

~“ovm_field_event Implements the data operations for an event property.

“ovm_field_sarray_* macros Macros that implement data operations for one-dimensional static
array properties.

“ovm_field_sarray_int Implements the data operations for a one-dimensional static array
of integrals.

~ovm_field_sarray_object Implements the data operations for a one-dimensional static array
of ovm_object-based objects.

~ovm_field_sarray_string Implements the data operations for a one-dimensional static array
of strings.

“ovm_field_sarray_enum Implements the data operations for a one-dimensional static array
of enums.

~ovm_field_array_* macros Macros that implement data operations for one-dimensional
dynamic array properties.

~ovm_field_array_int Implements the data operations for a one-dimensional dynamic
array of integrals.

~“ovm_field_array_object Implements the data operations for a one-dimensional dynamic

array of ovm_object-based objects.
293

Utility and Field Macros for Components and Objects
~ovm_field_array_string
~ovm_field_array _enum

“ovm_field_queue_* macros
“ovm_field_queue_int
~ovm_field_queue_object

~ovm_field_queue_string
“ovm_field_queue_enum

“ovm_field_aa *_ string macros
“ovm_field_aa_ int_string
“ovm_field_aa_object_string
~ovm_field_aa_string_string
“ovm_field _aa * int macros
“ovm_field _aa_ object int
“ovm_field _aa int_int
“ovm_field _aa int_int _unsigned
“ovm_field_aa int_integer
~“ovm_field_aa_int_integer_unsigned
“ovm_field_aa int_byte
“ovm_field_aa_int_byte unsigned

“ovm_field_aa_int_shortint

Implements the data operations for a one-dimensional dynamic

array of strings.

Implements the data operations for a one-dimensional dynamic

array of enums.

Macros that implement data operations for dynamic queues.
Implements the data operations for a queue of integrals.
Implements the data operations for a queue of ovm_object-based

objects.

Implements the data operations for a queue of strings.
Implements the data operations for a one-dimensional queue of

enums.

Macros that implement data operations for associative arrays

indexed by string.

Implements the data operations for an associative
integrals indexed by string.

Implements the data operations for an associative
ovm_object-based objects indexed by string.
Implements the data operations for an associative
indexed by string.

array of

array of

array of strings

Macros that implement data operations for associative arrays

indexed by an integral type.
Implements the data operations for an associative

array of

ovm_object-based objects indexed by the int data type.

Implements the data operations for an associative
types indexed by the int data type.

Implements the data operations for an associative
types indexed by the int unsigned data type.
Implements the data operations for an associative
types indexed by the integer data type.
Implements the data operations for an associative
types indexed by the integer unsigned data type.
Implements the data operations for an associative
types indexed by the byte data type.

Implements the data operations for an associative
types indexed by the byte unsigned data type.
Implements the data operations for an associative
types indexed by the shortint data type.

“ovm_field_aa int_shortint_unsignedlmplements the data operations for an associative

“ovm_field_aa_int_longint
“ovm_field_aa int_longint_unsigned
“ovm_field_aa_int_key

~ovm_field_aa_int_enumkey

Utility Macros

types indexed by the shortint unsigned data type.
Implements the data operations for an associative
types indexed by the longint data type.
Implements the data operations for an associative
types indexed by the longint unsigned data type.
Implements the data operations for an associative
types indexed by any integral key data type.
Implements the data operations for an associative
types indexed by any enumeration key data type.

array of integral
array of integral
array of integral
array of integral
array of integral
array of integral
array of integral
array of integral
array of integral
array of integral
array of integral

array of integral

The utility macros provide implementations of the ovm_object::create method, which is

294

Utility and Field Macros for Components and Objects

needed for cloning, and the ovm_object::get_type name method, which is needed for a
number of debugging features. They also register the type with the ovm_factory, and they
implement a get_type method, which is used when configuring the factory. And they
implement the virtual ovm_object::get_object _type method for accessing the factory proxy of
an allocated object.

Below is an example usage of the utility and field macros. By using the macros, you do not
have to implement any of the data methods to get all of the capabilities of an ovm_object.

cl ass nydata extends ovm obj ect;

string str;
nydat a subdat a;
int field;
nyenum el;

i nt queue[$];

“ovm object _utils_begin(nmydata) //requires ctor with default args
“ovm field_string(str, OVM DEFAULT)
“ovm fiel d_object(subdata, OVM DEFAULT)
“ovmfield_int(field, O/M DEC) //use decimal radix
“ovm field_enun{nmyenum el, OVM DEFAULT)
“ovm field_queue_int(queue, OVM DEFAULT)
“ovm object _utils_end

endcl ass

“ovm_field_utils begin

“ovm_field_utils end

These macros form a block in which ~ovm_field _* macros can be placed. Used as

“ovm field utils_begi n(TYPE)
“ovmfield * macros here
“ovmfield utils _end

These macros do NOT perform factory registration, implement get_type_name, nor implement
the create method. Use this form when you need custom implementations of these two
methods, or when you are setting up field macros for an abstract class (i.e. virtual class).

‘ovm_object_utils

295

Utility and Field Macros for Components and Objects

‘ovm_object_param_utils

‘ovm_object_utils begin

‘ovm_object_param_utils begin

“ovm_object_utils end
ovm_object-based class declarations may contain one of the above forms of utility macros.

For simple objects with no field macros, use

“ovm obj ect _util s(TYPE)

For simple objects with field macros, use

“ovm obj ect _utils_begi n(TYPE)
“ovmfield_* macro invocations here
“ovm object _utils_end

For parameterized objects with no field macros, use

“ovm obj ect _param util s(TYPE)

For parameterized objects, with field macros, use

“ovm obj ect _param utils_begi n(TYPE)
“ovmfield_* macro invocations here
“ovm object _utils_end

Simple (non-parameterized) objects use the ovm_object_utils* versions, which do the
following:

296

Utility and Field Macros for Components and Objects

. Implements get_type name, which returns TYPE as a string

. Implements create, which allocates an object of type TYPE by calling its constructor
with no arguments. TYPE's constructor, if defined, must have default values on all it
arguments.

. Registers the TYPE with the factory, using the string TYPE as the factory lookup string
for the type.

. Implements the static get_type() method which returns a factory proxy object for the
type.

. Implements the virtual get_object_type() method which works just like the static
get_type() method, but operates on an already allocated object.

Parameterized classes must use the ovm_object _param_utils* versions. They differ from
“ovm_object_utils only in that they do not supply a type name when registering the object
with the factory. As such, name-based lookup with the factory for parameterized classes is
not possible.

The macros with _begin suffixes are the same as the non-suffixed versions except that they
also start a block in which “ovm_field_* macros can be placed. The block must be terminated
by “ovm_object_utils_end.

Objects deriving from ovm_sequence must use the ~ovm_sequence_* macros instead of
these macros. See "ovm_sequence_utils for details.

‘ovm_component_utils

‘ovm_component_param_utils

‘ovm_component_utils begin

‘ovm_component_param_utils_begin

“ovm_component_end

ovm_component-based class declarations may contain one of the above forms of utility
macros.

297

Utility and Field Macros for Components and Objects

For simple components with no field macros, use

“ovm conponent _util s(TYPE)

For simple components with field macros, use

“ovm conponent _utils_begi n(TYPE)
“ovm field_* macro invocations here
“ovm conponent _utils_end

For parameterized components with no field macros, use

“ovm conponent _param uti |l s(TYPE)

For parameterized components with field macros, use

“ovm conponent _param utils_begi n(TYPE)
“ovm field * macro invocations here
“ovm conponent _utils_end

Simple (non-parameterized) components must use the ovm_components_utils* versions,
which do the following:

. Implements get_type_name, which returns TYPE as a string.

. Implements create, which allocates a component of type TYPE using a two argument
constructor. TYPE's constructor must have a name and a parent argument.

. Registers the TYPE with the factory, using the string TYPE as the factory lookup string
for the type.

. Implements the static get_type() method which returns a factory proxy object for the
type.

. Implements the virtual get_object_type() method which works just like the static
get_type() method, but operates on an already allocated object.

Parameterized classes must use the ovm_object _param_ utils* versions. They differ from
~ovm_object_utils only in that they do not supply a type name when registering the object
with the factory. As such, name-based lookup with the factory for parameterized classes is
not possible.

The macros with _begin suffixes are the same as the non-suffixed versions except that they
also start a block in which ~ovm_field_* macros can be placed. The block must be terminated

298

Utility and Field Macros for Components and Objects

by “ovm_component_utils_end.

Components deriving from ovm_sequencer must use the ~ovm_sequencer_* macros instead
of these macros. See “ovm_sequencer_utils for details.

Field M acros

The “ovm_field_* macros are invoked inside of the “ovm_*_utils_begin and
“ovm_*_utils_end macro blocks to form “automatic” implementations of the core data
methods: copy, compare, pack, unpack, record, print, and sprint. For example:

class ny_trans extends ovm transacti on;
string my_string;
“ovm obj ect _utils_begin(my_trans)
“ovm field_string(my_string, OVMALL_ON)
“ovm object _utils_end
endcl ass

Each “ovm_field _* macro is named to correspond to a particular data type: integrals, strings,
objects, queues, etc., and each has at least two arguments: ARG and FLAG.

ARG is the instance name of the variable, whose type must be compatible with the macro
being invoked. In the example, class variable my_string is of type string, so we use the
~ovm_field_string macro.

If FLAG is set to OVM_ALL_ON, as in the example, the ARG variable will be included in all data
methods. The FLAG, if set to something other than OVM_ALL_ON or OVM_DEFAULT, specifies
which data method implementations will NOT include the given variable. Thus, if FLAG is
specified as NO_COMPARE, the ARG variable will not affect comparison operations, but it will
be included in everything else.

All possible values for FLAG are listed and described below. Multiple flag values can be bitwise

ORed together (in most cases they may be added together as well, but care must be taken

when using the + operator to ensure that the same bit is not added more than once).

OVM_ALL_ON Set all operations on (default).

OVM_DEFAULT Use the default flag settings.

OVM_NOCOPY Do not copy this field.

OVM_NOCOMPAREDo not compare this field.

OVM_NOPRINT Do not print this field.

OVM_NODEFPRINTDo not print the field if it is the same as its

OVM_NOPACK Do not pack or unpack this field.

OVM_PHYSICAL Treat as a physical field. Use physical setting in policy class for this field.

OVM_ABSTRACT Treat as an abstract field. Use the abstract setting in the policy class for
this field.

OVM_READONLY Do not allow setting of this field from the set_* local methods.

A radix for printing and recording can be specified by OR’ing one of the following constants in
299

Utility and Field Macros for Components and Objects

the FLAG argument

OVM_BIN Print / record the field in binary (base-2).

OVM_DEC Print / record the field in decimal (base-10).
OVM_UNSIGNEDPrint / record the field in unsigned decimal (base-10).
OVM_OCT Print / record the field in octal (base-8).

OVM_HEX Print / record the field in hexidecimal (base-16).
OVM_STRING Print / record the field in string format.

OVM_TIME Print / record the field in time format.

Radix settings for integral types. Hex is the default radix if none is specified.

“ovm_field * macros

Macros that implement data operations for scalar properties.

“ovm_field_int

Implements the data operations for any packed integral property.

“ovm fiel d_i nt (ARG FLAG

ARG is an integral property of the class, and FLAG is a bitwise OR of one or more flag settings
as described in Field Macros above.

"ovm_field_object

Implements the data operations for an ovm_object-based property.

“ovm fi el d_obj ect (ARG FLAG

ARG is an object property of the class, and FLAG is a bitwise OR of one or more flag settings
as described in Field Macros above.

‘ovm_field_string

Implements the data operations for a string property.
300

Utility and Field Macros for Components and Objects

“ovm field_string(ARG FLAG

ARG is a string property of the class, and FLAG is a bitwise OR of one or more flag settings as
described in Field Macros above.

“ovm_field_enum

Implements the data operations for an enumerated property.

“ovm field_enun(T, ARG FLAG

T is an enumerated type, ARG is an instance of that type, and FLAG is a bitwise OR of one or
more flag settings as described in Field Macros above.

‘ovm_field real

Implements the data operations for any real property.

“ovm field_real (ARG FLAG

ARG is an real property of the class, and FLAG is a bitwise OR of one or more flag settings as
described in Field Macros above.

“ovm_field_event

Implements the data operations for an event property.

“ovm fiel d_event (ARG, FLAG

ARG is an event property of the class, and FLAG is a bitwise OR of one or more flag settings
as described in Field Macros above.

301

Utility and Field Macros for Components and Objects

‘ovm_field sarray * macros

Macros that implement data operations for one-dimensional static array properties.

‘ovm_field _sarray int

Implements the data operations for a one-dimensional static array of integrals.

“ovm field_sarray_int (ARG FLAG

ARG is a one-dimensional static array of integrals, and FLAG is a bitwise OR of one or more
flag settings as described in Field Macros above.

‘ovm_field _sarray object

Implements the data operations for a one-dimensional static array of ovm_object-based
objects.

“ovm field_sarray_object (ARG FLAG

ARG is a one-dimensional static array of ovim_object-based objects, and FLAG is a bitwise OR
of one or more flag settings as described in Field Macros above.

‘ovm_field_sarray_string

Implements the data operations for a one-dimensional static array of strings.

“ovm field_sarray_string(ARG FLAG

ARG is a one-dimensional static array of strings, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

302

Utility and Field Macros for Components and Objects

‘ovm_field _sarray _enum

Implements the data operations for a one-dimensional static array of enums.

“ovm field_sarray_enun(T, ARG FLAG

T is a one-dimensional dynamic array of enums type, ARG is an instance of that type, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

“ovm_field_array * macros

Macros that implement data operations for one-dimensional dynamic array properties.

“ovm_field_array_int

Implements the data operations for a one-dimensional dynamic array of integrals.

“ovm field_array_int (ARG FLAG

ARG is a one-dimensional dynamic array of integrals, and FLAG is a bitwise OR of one or more
flag settings as described in Field Macros above.

“ovm_field_array_object

Implements the data operations for a one-dimensional dynamic array of ovm_object-based
objects.

“ovm field_array_object (ARG FLAG

ARG is a one-dimensional dynamic array of ovim_object-based objects, and FLAG is a bitwise
OR of one or more flag settings as described in Field Macros above.

‘ovm_field _array _string
303

Utility and Field Macros for Components and Objects

Implements the data operations for a one-dimensional dynamic array of strings.

“ovm field_array_string(ARG FLAG

ARG is a one-dimensional dynamic array of strings, and FLAG is a bitwise OR of one or more
flag settings as described in Field Macros above.

‘ovm_field_array _enum

Implements the data operations for a one-dimensional dynamic array of enums.

‘ovm field_array_enum T, ARG FLAG

T is a one-dimensional dynamic array of enums type, ARG is an instance of that type, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field _queue * macros

Macros that implement data operations for dynamic queues.

“ovm_field_queue int

Implements the data operations for a queue of integrals.

“ovm fiel d_queue_int (ARG FLAG

ARG is a one-dimensional queue of integrals, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

“ovm_field_queue _object

Implements the data operations for a queue of ovm_object-based objects.

304

Utility and Field Macros for Components and Objects

“ovm fiel d_queue_object (ARG FLAG

ARG is a one-dimensional queue of ovm_object-based objects, and FLAG is a bitwise OR of
one or more flag settings as described in Field Macros above.

‘ovm_field_queue string

Implements the data operations for a queue of strings.

“ovm field _queue_string(ARG FLAG

ARG is a one-dimensional queue of strings, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

‘ovm_field_queue enum

Implements the data operations for a one-dimensional queue of enums.

“ovm field_queue_enum T, ARG FLAG

T is a queue of enums type, ARG is an instance of that type, and FLAG is a bitwise OR of one
or more flag settings as described in Field Macros above.

‘ovm_field aa * string macros

Macros that implement data operations for associative arrays indexed by string.

‘ovm_field_aa int_string

Implements the data operations for an associative array of integrals indexed by string.

‘ovm field_aa int_string(ARG FLAG
305

Utility and Field Macros for Components and Objects

ARG is the name of a property that is an associative array of integrals with string key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa object_string

Implements the data operations for an associative array of ovm_object-based objects indexed
by string.

“ovm field_aa_object_string(ARG FLAG

ARG is the name of a property that is an associative array of objects with string key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa string_string

Implements the data operations for an associative array of strings indexed by string.

“ovm field_aa_string_string(ARG FLAG

ARG is the name of a property that is an associative array of strings with string key, and FLAG
is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field aa * int macros

Macros that implement data operations for associative arrays indexed by an integral type.

‘ovm_field_aa object_int

Implements the data operations for an associative array of ovim_object-based objects indexed
by the int data type.

“ovm field _aa _object _int(ARG FLAG

306

Utility and Field Macros for Components and Objects

ARG is the name of a property that is an associative array of objects with int key, and FLAG is
a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_int

Implements the data operations for an associative array of integral types indexed by the int
data type.

“ovm field_aa_int_int(ARG FLAG

ARG is the name of a property that is an associative array of integrals with int key, and FLAG
is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_int_unsigned

Implements the data operations for an associative array of integral types indexed by the int
unsigned data type.

“ovm field_aa_int_int_unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with int unsigned key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_integer

Implements the data operations for an associative array of integral types indexed by the
integer data type.

“ovm field_aa_int_integer (ARG FLAG

ARG is the name of a property that is an associative array of integrals with integer key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

307

Utility and Field Macros for Components and Objects

"ovm_field_aa int_integer _unsigned

Implements the data operations for an associative array of integral types indexed by the
integer unsigned data type.

“ovm field_aa_ int_integer_unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with integer unsigned
key, and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_byte

Implements the data operations for an associative array of integral types indexed by the byte
data type.

“ovm field _aa_ int_byte(ARG FLAG

ARG is the name of a property that is an associative array of integrals with byte key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_byte unsigned

Implements the data operations for an associative array of integral types indexed by the byte
unsigned data type.

“ovm field_aa_ int_byte_ unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with byte unsigned key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

“ovm_field_aa int_shortint

Implements the data operations for an associative array of integral types indexed by the
shortint data type.

308

Utility and Field Macros for Components and Objects

“ovm field_aa_ int_shortint(ARG FLAG

ARG is the name of a property that is an associative array of integrals with shortint key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

"ovm_field_aa int_shortint_unsigned

Implements the data operations for an associative array of integral types indexed by the
shortint unsigned data type.

“ovm field_aa_int_shortint_unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with shortint unsigned
key, and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_longint

Implements the data operations for an associative array of integral types indexed by the
longint data type.

“ovm field_aa_int_I|ongint(ARG FLAG

ARG is the name of a property that is an associative array of integrals with longint key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

‘ovm_field_aa int_longint_unsigned

Implements the data operations for an associative array of integral types indexed by the
longint unsigned data type.

“ovm field_aa_int_|ongint_unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with longint unsigned
key, and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

309

Utility and Field Macros for Components and Objects

“ovm_field_aa int_key

Implements the data operations for an associative array of integral types indexed by any
integral key data type.

‘ovm field_aa_int_key(long unsigned, ARG FLAG

KEY is the data type of the integral key, ARG is the name of a property that is an associative
array of integrals, and FLAG is a bitwise OR of one or more flag settings as described in Field

Macros above.

‘ovm_field_aa int_enumkey

Implements the data operations for an associative array of integral types indexed by any
enumeration key data type.

“ovm field_aa_int_Iongint_unsigned(ARG FLAG

ARG is the name of a property that is an associative array of integrals with longint unsigned
key, and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

310

Sequence and Do Action Macros

Sequence and Do Action Macros

Summary

Sequence and Do Action Macros
Sequence Registration Macros
~ovm_declare_p_sequencer

~ovm_sequence_utils_begin
~ovm_sequence_utils_end
~ovm_sequence_utils

Sequencer Registration Macros

~ovm_update_sequence_lib
“ovm_update_sequence_lib_and_item
~ovm_sequencer_utils
~ovm_sequencer_utils_begin
~ovm_sequencer_param_utils

~ovm_sequencer_param_utils_begin
~ovm_sequencer_utils_end

Sequence Action Macros

“ovm_create
“ovm_do
~ovm_do_pri
“ovm_do_with

“ovm_do_pri_with

~ovm_send

“ovm_send_pri

“ovm_rand_send

The sequence-specific macros perform the same function as
the set of “ovm_object_*_utils macros, except they also set
the default sequencer type the sequence will run on.

This macro is used to set up a specific sequencer type with
the sequence type the macro is placed in.

The sequence macros can be used in non-parameterized
<ovm_sequence=> extensions to pre-register the sequence
with a given <ovm_sequencer=> type.

The sequencer-specific macros perform the same function as
the set of “ovm_componenent_*utils macros except that they
also declare the plumbing necessary for creating the
seqguencer’s sequence library.

This macro populates the instance-specific sequence library
for a sequencer.

This macro populates the instance specific sequence library
for a sequencer, and it registers the given USER_ITEM as an
instance override for the simple sequence’s item variable.

The sequencer macros are used in ovm_sequencer-based
class declarations in one of four ways.

These macros are used to start sequences and sequence
items that were either registered with a <~ ovm-
sequence_utils>= macro or whose associated sequencer was
already set using the <set_sequencer> method.

This action creates the item or sequence using the factory.

This macro takes as an argument a ovm_sequence_item
variable or object.
This is the same as ~ovm_do except that the sequene item or
sequence is executed with the priority specified in the
argument
This is the same as ~ovm_do except that the constraint block
in the 2nd argument is applied to the item or sequence in a
randomize with statement before execution.
This is the same as ~ovm_do_pri except that the given
constraint block is applied to the item or sequence in a
randomize with statement before execution.
This macro processes the item or sequence that has been
created using “ovm_create.
This is the same as ~ovm_send except that the sequene item
or sequence is executed with the priority specified in the
argument.
This macro processes the item or sequence that has been
already been allocated (possibly with “ovm_create).

311

Sequence and Do Action Macros

~ovm_rand_send_pri

“ovm_rand_send_with

“ovm_rand_send_pri_with

This is the same as ~ovm_rand_send except that the sequene
item or sequence is executed with the priority specified in the
argument.

This is the same as “ovm_rand_send except that the given
constraint block is applied to the item or sequence in a
randomize with statement before execution.

This is the same as ~ovm_rand_send_pri except that the
given constraint block is applied to the item or sequence in a
randomize with statement before execution.

Sequence on Sequencer Action MacrosThese macros are used to start sequences and sequence

“ovm_create_on

“ovm_do_on

“ovm_do_on_pri

“ovm_do_on_with

“ovm_do_on_pri_with

items on a specific sequencer, given in a macro argument.
This is the same as ~ovm_create except that it also sets the
parent sequence to the sequence in which the macro is
invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

This is the same as “ovm_do except that it also sets the
parent sequence to the sequence in which the macro is
invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

This is the same as ~ovm_do_pri except that it also sets the
parent sequence to the sequence in which the macro is
invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

This is the same as “ovm_do_with except that it also sets the
parent sequence to the sequence in which the macro is
invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

This is the same as ~ovm_do_pri_with except that it also sets
the parent sequence to the sequence in which the macro is
invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

Sequence Registration Macros

The sequence-specific macros perform the same function as the set of "ovm_object_*_utils
macros, except they also set the default sequencer type the sequence will run on.

‘ovm_declare p sequencer

This macro is used to set up a specific sequencer type with the sequence type the macro is
placed in. This macro is implicit in the <ovm_sequence_utils>= macro, but may be used
directly in cases when the sequence is not to be registered in the sequencer’s library.

The example below shows using the the ovm_declare_p_sequencer macro along with the
ovm_object_utils macros to set up the sequence but not register the sequence in the

sequencer’s library.

312

Sequence and Do Action Macros

cl ass nysequence extends ovm sequence#(nydata);
“ovm obj ect _util s(mysequence)
“ovm decl are_p_sequencer (sone_seqr _type)
task body;

/'l Access some variable in the user's custom sequencer
i f(p_sequencer.sone_variable) begin

end
endt ask
endcl ass

‘ovm_sequence utils begin

‘ovm_sequence _utils_end

‘ovm_sequence _utils

The sequence macros can be used in non-parameterized <ovm_sequence> extensions to pre-
register the sequence with a given <ovm_sequencer=> type.

For sequencesthat do not useany "ovm_field macros

“ovm sequence_uti | s(TYPE_NAME, SQR_ TYPE NAME)

For sequences employing with field macros

“ovm sequence_uti |l s_begi n(TYPE_NAME, SQR_TYPE_NANE)
"ovmfield_* macro invocations here
“ovm sequence_utils_end

The sequence-specific macros perform the same function as the set of “ovm_object_*_utils
macros except that they also register the sequence’s type, TYPE_NAME, with the given

sequencer type, SQR_TYPE_NAME, and define the p_sequencer variable and
m_set_p_seqguencer method.

Use ~ovm_sequence_utils[_begin] for non-parameterized classes and
“ovm_sequence_param_utils[_begin] for parameterized classes.

313

Sequence and Do Action Macros

Sequencer Registration Macros

The sequencer-specific macros perform the same function as the set of
~ovm_componenent_*utils macros except that they also declare the plumbing necessary for
creating the sequencer’s sequence library.

‘ovm_update _sequence lib

This macro populates the instance-specific sequence library for a sequencer. It should be
invoked inside the sequencer¢s constructor.

‘ovm_update sequence lib_and_item

This macro populates the instance specific sequence library for a sequencer, and it registers
the given USER_ITEM as an instance override for the simple sequence’s item variable.

The macro should be invoked inside the sequencer’s constructor.

‘ovm_sequencer _utils

‘ovm_sequencer _utils begin

‘ovm_sequencer_param_utils

‘ovm_sequencer_param_utils _begin

‘ovm_sequencer_utils_end

The sequencer macros are used in ovm_sequencer-based class declarations in one of four
ways.

For simple sequencers, no field macros

314

Sequence and Do Action Macros
~ovm_sequencer_utils(SQR_TYPE_NAME)
For simple sequencers, with field macros

~ovm_sequencer_utils_begin(SQR_TYPE_NAME) ~ovm_field_* macros here
~ovm_sequencer_utils_end

For parameterized sequencers, no field macros
“ovm_sequencer_param_utils(SQR_TYPE_NAME)
For parameterized sequencers, with field macros

“ovm_sequencer_param_utils_begin(SQR_TYPE_NAME) ~ovm_field _* macros here
~ovm_sequencer_utils_end

The sequencer-specific macros perform the same function as the set of
~ovm_componenent_*utils macros except that they also declare the plumbing necessary for
creating the sequencer’s sequence library. This includes:

1. Declaring the type-based static queue of strings registered on the sequencer type.

2. Declaring the static function to add strings to item #1 above.

3. Declaring the static function to remove strings to item #1 above.

4. Declaring the function to populate the instance specific sequence library for a sequencer.

Use ~ovm_sequencer_utils[_begin] for non-parameterized classes and
“ovm_sequencer_param_utils[_begin] for parameterized classes.

Sequence Action Macros

These macros are used to start sequences and sequence items that were either registered
with a <~ ovm-sequence_utils> macro or whose associated sequencer was already set using
the <set_sequencer> method.

‘ovm_create

This action creates the item or sequence using the factory. It intentionally does zero
processing. After this action completes, the user can manually set values, manipulate
rand_mode and constraint_mode, etc.

315

Sequence and Do Action Macros

‘ovm_do

This macro takes as an argument a ovm_sequence_item variable or object.
ovm_sequence_item’s are randomized at the time the sequencer grants the do request. This
is called late-randomization or late-generation. In the case of a sequence a sub-sequence is
spawned. In the case of an item, the item is sent to the driver through the associated
sequencer.

“ovm_do_pri

This is the same as “ovm_do except that the sequene item or sequence is executed with the
priority specified in the argument

“ovm_do_with

This is the same as “ovm_do except that the constraint block in the 2nd argument is applied
to the item or sequence in a randomize with statement before execution.

‘ovm_do _pri_with

This is the same as “ovm_do_pri except that the given constraint block is applied to the item
or sequence in a randomize with statement before execution.

“ovm_send

This macro processes the item or sequence that has been created using ~ovm_create. The
processing is done without randomization. Essentially, an ~ovm_do without the create or
randomization.

“ovm_send_pri

This is the same as “ovm_send except that the sequene item or sequence is executed with
the priority specified in the argument.

“ovm_rand_send

316

Sequence and Do Action Macros

This macro processes the item or sequence that has been already been allocated (possibly
with “ovm_create). The processing is done with randomization. Essentially, an “ovm_do
without the create.

‘ovm_rand_send_pri

This is the same as “ovm_rand_send except that the sequene item or sequence is executed
with the priority specified in the argument.

‘ovm_rand_send_with

This is the same as “ovm_rand_send except that the given constraint block is applied to the
item or sequence in a randomize with statement before execution.

‘ovm_rand_send_pri_with

This is the same as “ovm_rand_send_pri except that the given constraint block is applied to
the item or sequence in a randomize with statement before execution.

Sequence on Sequencer Action Macros

These macros are used to start sequences and sequence items on a specific sequencer, given
in a macro argument.

‘ovm_create on

This is the same as ovm_create except that it also sets the parent sequence to the sequence

in which the macro is invoked, and it sets the sequencer to the specified SEQUENCER_REF
argument.

‘ovm_do_on

This is the same as ovm_do except that it also sets the parent sequence to the sequence in

which the macro is invoked, and it sets the sequencer to the specified SEQUENCER_REF
argument.

317

Sequence and Do Action Macros

‘ovm_do _on_pri

This is the same as ovm_do_pri except that it also sets the parent sequence to the sequence

in which the macro is invoked, and it sets the sequencer to the specified SEQUENCER_REF
argument.

“ovm_do_on_with

This is the same as ovm_do_ with except that it also sets the parent sequence to the

sequence in which the macro is invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument. The user must supply brackets around the constraints.

‘ovm_do _on_pri_with

This is the same as “ovm_do_pri_with except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified
SEQUENCER_REF argument.

318

TLM Implementation Port Declaration Macros

TLM Implementation Port Declaration M acr os

The TLM implemenation declaration macros provide a way for an implementer to provide
multiple implemenation ports of the same implementation interface. When an implementation
port is defined using the built-in set of imps, there must be exactly one implementation of the
interface.

For example, if a component needs to provide a put implemenation then it would have an
implementation port defined like:

cl ass nyconp extends ovm conponent;
ovm put i np#(data_type, nyconp) put _inp;

virtual task put (data_type t);
endt ask
endcl ass

There are times, however, when you need more than one implementation for for an interface.
This set of declarations allow you to easily create a new implemenation class to allow for
multiple implementations. Although the new implemenation class is a different class, it can
be bound to the same types of exports and ports as the original class. Extending the put
example above, lets say that mycomp needs to provide two put implementation ports. In that
case, you would do something like:

/1 Define two new put interfaces which are conpatible with ovm put_ports
/'l 'and ovm put _exports.

“ovm put _i np_decl (_1)
“ovm put _i np_decl (_2)

class ny_put _inp#(type T=int) extends ovm conponent;
ovm put _i mp_1#(T) put_inpl;
ovm put _inp_2#(T) put _inp2;

function void put_1 (input T t);
//puts conm ng into put_inpl

endf uncti on
function void put_2(input T t);
[/ puts comm ng into put_inp2
endf uncti on
endcl ass

The important thing to note is that each ~ovm_<interface>_imp_decl creates a new class of
type ovm_<interface>_imp<suffix>, where suffix is the input argument to the macro. For
this reason, you will typically want to put these macros in a seperate package to avoid
collisions and to allow sharing of the definitions.

319

TLM Implementation Port Declaration Macros

Summary

TLM Implementation Port Declaration Macros

The TLM implemenation declaration macros provide a way for an implementer to provide multiple
implemenation ports of the same implementation interface.

Macros
~ovm_blocking_put_imp_decl

~ovm_nonblocking_put_imp_decl
“ovm_put_imp_decl
~ovm_blocking _get _imp_decl
~ovm_nonblocking_get_imp_decl
“ovm_get _imp_decl
“ovm_blocking_peek_imp_decl
~ovm_nonblocking_peek_imp_decl
“ovm_peek imp_decl

~ovm_blocking_get peek imp_decl

Define the class ovm_blocking_put_impSFX for providing

blocking put implementations.

Define the class ovm_nonblocking put_impSFX for providing non-
blocking put implementations.

Define the class ovm_put_impSFX for providing both blocking
and non-blocking put implementations.

Define the class ovm_blocking_get_impSFX for providing

blocking get implementations.

Define the class ovm_nonblocking _get_impSFX for providing non-
blocking get implementations.

Define the class ovm_get_impSFX for providing both blocking

and non-blocking get implementations.

Define the class ovm_blocking_peek_ impSFX for providing
blocking peek implementations.

Define the class ovm_nonblocking_peek impSFX for providing
non-blocking peek implementations.

Define the class ovm_peek_impSFX for providing both blocking
and non-blocking peek implementations.

Define the class ovm_blocking_get_peek impSFX for providing
the blocking get_peek implemenation.

“ovm_nonblocking_get peek imp_declDefine the class ovm_nonblocking_get peek_impSFX for

“ovm_get_peek_imp_decl
~“ovm_blocking_master_imp_decl
~ovm_nonblocking_master_imp_decl
“ovm_master_imp_decl
~ovm_blocking_slave imp_decl
~ovm_nonblocking_slave _imp_decl
“ovm_slave_imp_decl

~ovm_blocking_transport_imp_decl

providing non-blocking get_peek implemenation.

Define the class ovm_get_peek_impSFX for providing both
blocking and non-blocking get _peek implementations.

Define the class ovm_blocking_master_impSFX for providing the
blocking master implemenation.

Define the class ovm_nonblocking_master_impSFX for providing
the non-blocking master implemenation.

Define the class ovm_master_impSFX for providing both blocking
and non-blocking master implementations.

Define the class ovm_blocking_slave_impSFX for providing the
blocking slave implemenation.

Define the class ovm_nonblocking_slave_impSFX for providing
the non-blocking slave implemenation.

Define the class ovm_slave_impSFX for providing both blocking
and non-blocking slave implementations.

Define the class ovm_blocking_transport_impSFX for providing
the blocking transport implemenation.

~ovm_nonblocking_transport _imp_declDefine the class ovm_nonblocking transport_impSFX for

“ovm_transport_imp_decl

~ovm_analysis_imp_decl

M acros

providing the non-blocking transport implemenation.

Define the class ovm_transport_impSFX for providing both
blocking and non-blocking transport implementations.

Define the class ovm_analysis_impSFX for providing an analysis
implementation.

320

TLM Implementation Port Declaration Macros

“ovm_blocking _put_imp_decl

Define the class ovm_blocking_put_impSFX for providing blocking put implementations. SFX
is the suffix for the new class type.

“ovm_nonblocking put_imp_decl

Define the class ovm_nonblocking_put_impSFX for providing non-blocking put
implementations. SFX is the suffix for the new class type.

‘ovm_put_imp_decl

Define the class ovm_put_impSFX for providing both blocking and non-blocking put
implementations. SFX is the suffix for the new class type.

‘ovm_blocking _get_imp_decl
Define the class ovm_blocking _get impSFX for providing blocking get implementations. SFX

is the suffix for the new class type.

“ovm_nonblocking get imp_decl

Define the class ovm_nonblocking _get _impSFX for providing non-blocking get
implementations. SFX is the suffix for the new class type.

‘ovm_get_imp_decl

Define the class ovm_get_impSFX for providing both blocking and non-blocking get
implementations. SFX is the suffix for the new class type.

“ovm_blocking_peek imp_decl

321

TLM Implementation Port Declaration Macros

Define the class ovm_blocking_peek _impSFX for providing blocking peek implementations.
SFX is the suffix for the new class type.

"ovm_nonblocking peek imp_decl

Define the class ovm_nonblocking _peek impSFX for providing non-blocking peek
implementations. SFX is the suffix for the new class type.

‘ovm_peek imp_decl

Define the class ovm_peek_impSFX for providing both blocking and non-blocking peek
implementations. SFX is the suffix for the new class type.

"ovm_blocking _get peek imp_decl

Define the class ovm_blocking_get peek impSFX for providing the blocking get_peek
implemenation.

"ovm_nonblocking_get peek imp_decl

Define the class ovm_nonblocking_get_peek_ impSFX for providing non-blocking get_peek
implemenation.

‘ovm_get _peek _imp_decl

Define the class ovm_get_peek impSFX for providing both blocking and non-blocking
get_peek implementations. SFX is the suffix for the new class type.

“ovm_blocking _master _imp_decl

Define the class ovm_blocking_master_impSFX for providing the blocking master
implemenation.

“ovm_nonblocking_master_imp_decl
322

TLM Implementation Port Declaration Macros

Define the class ovm_nonblocking_master_impSFX for providing the non-blocking master
implemenation.

‘ovm_master _imp_decl

Define the class ovm_master_impSFX for providing both blocking and non-blocking master
implementations. SFX is the suffix for the new class type.

“ovm_blocking_slave imp_decl

Define the class ovm_blocking_slave_impSFX for providing the blocking slave implemenation.

“ovm_nonblocking slave imp_decl

Define the class ovm_nonblocking_slave impSFX for providing the non-blocking slave
implemenation.

‘ovm_slave imp_decl

Define the class ovm_slave_impSFX for providing both blocking and non-blocking slave
implementations. SFX is the suffix for the new class type.

“ovm_blocking_transport_imp_decl

Define the class ovm_blocking_transport_impSFX for providing the blocking transport
implemenation.

“ovm_nonblocking_transport_imp_decl

Define the class ovm_nonblocking_transport_impSFX for providing the non-blocking transport
implemenation.

‘ovm_transport_imp_decl
323

TLM Implementation Port Declaration Macros

Define the class ovm_transport_impSFX for providing both blocking and non-blocking
transport implementations. SFX is the suffix for the new class type.

‘ovm_analysis imp_decl

Define the class ovm_analysis_impSFX for providing an analysis implementation. SFX is the
suffix for the new class type. The analysis implemenation is the write function. The
~ovm_analysis_imp_decl allows for a scoreboard (or other analysis component) to support
input from many places. For example:

“ovm anal ysi s_i np_decl (_i ngress)
“ovm anal ysi s_i np_port (_egress)

cl ass nyscoreboard extends ovm conponent;
ovm anal ysi s_i np_i ngress#(nydata, nyscoreboard) ingress
ovm anal ysi s_i np_egress#(nmydata, nyscoreboard) egress
nydata ingress_list[$];

function new(string nanme, ovm conponent parent);
super . new(name, parent);
i ngress = new("ingress", this);
egress = new("egress", this);

endf unction

function void wite_ingress(nydata t);
i ngress_list.push_back(t);
endf unction

function void wite_egress(nydata t);
find_match_in_ingress_list(t);
endf unction

function void find_match_in_ingress_|ist(nydata t);
/i nmpl enent scoreboarding for this particular dut

endf uncti on
endcl ass

324

Callback Macros

Summary

ovm_ callback_defines.svh
Callback Macros

“ovm_do_callbacks Calls the given METHOD of all callbacks of type CB registered with the
calling object (i.e.
“ovm_do_obj callbacks Calls the given METHOD of all callbacks based on type CB registered

with the given object, OBJ, which is or is based on type T.

“ovm_do_callbacks exit _on Calls the given METHOD of all callbacks of type CB registered with the
calling object (i.e.

“ovm_do_obj_ callbacks exit onCalls the given METHOD of all callbacks of type CB registered with the
given object OBJ, which must be or be based on type T, and returns
upon the first callback that returns the bit value given by VAL.

~ovm_do_task_callbacks Calls the given METHOD of all callbacks of type CB registered with the
calling object (i.e.

“ovm_do_ext task callbacks This macro is identical to <ovm_do_task callbacks> macro except there
is an additional OBJ argument that allows the user to execute callbacks
associated with an external object instance OBJ instead of the calling
(this) object.

Callback Macros

‘ovm_do_callbacks

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e. this
object), which is or is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this object).
The macro takes three arguments:

. CB is the class type of the callback objects to execute. The class type must have a
function signature that matches the FNC argument.

. T is the type associated with the callback. Typically, an instance of type T is passed
as one the arguments in the METHOD call.

. METHOD is the method call to invoke, with all required arguments as if they were
invoked directly.

For example, given the following callback class definition

325

virtual class nmycb extends ovm cb;
pure function void ny_function (myconp conp, int addr, int data);
endcl ass

A component would invoke the macro as

task nyconp::run();
int curr_addr, curr_data;

“ovm do_cal | backs(nycb, myconp, nmy_function(this, curr_addr, curr_data)

endt ask

“ovm_do _obj_callbacks

Calls the given METHOD of all callbacks based on type CB registered with the given object,
OBJ, which is or is based on type T.

This macro is identical to <ovm_do_callbacks (CB,T,METHOD)> macro, but it has an
additional OBJ argument to allow the specification of an external object to associate the
callback with. For example, if the callbacks are being applied in a sequence, OBJ could be
specified as the associated sequencer or parent sequence.

‘ovm_do_callbacks exit_on

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e. this
object), which is or is based on type T, returning upon the first callback returning the bit value
given by VAL.

This macro executes all of the callbacks associated with the calling object (i.e. this object).
The macro takes three arguments:

. CB is the class type of the callback objects to execute. The class type must have a
function signature that matches the FNC argument.

. T is the type associated with the callback. Typically, an instance of type T is passed
as one the arguments in the METHOD call.

. METHOD is the method call to invoke, with all required arguments as if they were
invoked directly.

. VAL, if 1, says return upon the first callback invocation that returns 1. If O, says
return upon the first callback invocation that returns O.

For example, given the following callback class definition
326

virtual class nmycb extends ovm cb;
pure function bit drop_trans (nyconp conp, my_trans trans);
endcl ass

A component would invoke the macro as

task nmyconp::run();
ny_trans trans;
forever begin
get _port.get(trans);
if ("ovmdo_call backs_exit_on(nycb, myconp, extobj, drop_trans(this,trans), 1)
ovm report_i nfo("DROPPED", {"trans dropped: %", trans.convert2string()});
/] execute transaction
end
endt ask

‘ovm_do _obj callbacks exit_on

Calls the given METHOD of all callbacks of type CB registered with the given object OBJ, which
must be or be based on type T, and returns upon the first callback that returns the bit value
given by VAL.

‘ovm_do task_callbacks

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e. this
object), which is or is based on type T.

This macro is the same as the <ovm_do_callbacks> macro except that each callback is
executed inside of its own thread. The threads are concurrent, but the execution order of the
threads is simulator dependent. The macro does not return until all forked callbacks have
completed.

virtual class mycb extends ovm cb;
pure task ny_task(myconp, int addr, int data);
endcl ass

task nyconp::run();
int curr_addr, curr_data;

“ovm cal | back(nycb, myconp, ny_task(this, curr_addr, curr_data))
endt ask
327

‘ovm_do_ext_task_callbacks

This macro is identical to <ovm_do_task_callbacks> macro except there is an additional OBJ
argument that allows the user to execute callbacks associated with an external object
instance OBJ instead of the calling (this) object.

328

Types and Enumerations

Types and Enumerations

Summary

Types and Enumerations

ovm_bitstream_t The bitstream type is used as a argument type for passing integral values in
such methods as set_int_local, get_int_local, get_config_int, report, pack
and unpack.

ovm_radix_enum

ovm_recursion_policy_enum

Reporting

ovm_severity Defines all possible values for report severity.

ovm_action Defines all possible values for report actions.

ovm_verbosity Defines standard verbosity levels for reports.

Port Type

ovm_port_type_e

Sequences

ovm_sequence_state_enum

Default Policy Classes Policy classes for ovm_object basic functions, ovm_object::copy,
ovm_object::compare, ovm_object::pack, ovm_object::unpack, and
ovm_object::record.

ovm_default_table printer The table printer is a global object that can be used with ovm_object::
do_print to get tabular style printing.

ovm_default_tree printer The tree printer is a global object that can be used with ovm_object::
do_print to get multi-line tree style printing.

ovm_default_line_printer The line printer is a global object that can be used with ovm_object::
do_print to get single-line style printing.

ovm_default_printer The default printer is a global object that is used by ovm_object::print or
ovm_object::sprint when no specific printer is set.

ovm_default_packer The default packer policy.

ovm_default_comparer The default compare policy.

ovm_default_recorder The default recording policy.

ovm_bitstream t

The bitstream type is used as a argument type for passing integral values in such methods as
set_int_local, get_int_local, get_config_int, report, pack and unpack.

ovm_radix_enum

OVM_BIN Selects binary (%b) format
OVM_DEC Selects decimal (%d) format

OVM_UNSIGNEDSelects unsigned decimal (%u) format
329

Types and Enumerations

OVM_OCT Selects octal (%0) format

OVM_HEX Selects hexidecimal (%oh) format
OVM_STRING Selects string (%s) format

OVM_TIME Selects time (%t) format

OVM_ENUM Selects enumeration value (name) format

ovm_recursion_policy_enum

OVM_DEEP Objects are deep copied (object must implement copy method)
OVM_SHALLOW Objects are shallow copied using default SV copy.
OVM_REFERENCEONIly object handles are copied.

Reporting

ovm_severity

Defines all possible values for report severity.

OVM_INFO Informative messsage.

OVM_WARNINGIndicates a potential problem.

OVM_ERROR Indicates a real problem. Simulation continues subject to the configured
message action.

OVM_FATAL Indicates a problem from which simulation can not recover. Simulation exits
via $finish after a #0 delay.

ovm_action

Defines all possible values for report actions. Each report is configured to execute one or

more actions, determined by the bitwise OR of any or all of the following enumeration

constants.

OVM_NO_ACTIONNOoO action is taken

OVM_DISPLAY Sends the report to the standard output

OVM_LOG Sends the report to the file(s) for this (severity,id) pair

OVM_COUNT Counts the number of reports with the COUNT attribute. When this value
reaches max_quit_count, the simulation terminates

OVM_EXIT Terminates the simulation immediately.

OVM_CALL_HOOKCallback the report hook methods

ovm_verbosity

330

Types and Enumerations

Defines standard verbosity levels for reports.

OVM_NONE Report is always printed. Verbosity level setting can not disable it.
OVM_LOW Report is issued if configured verbosity is set to OVM_LOW or above.
OVM_MEDIUMReport is issued if configured verbosity is set to OVM_MEDIUM or above.
OVM_HIGH Report is issued if configured verbosity is set to OVM_HIGH or above.
OVM_FULL Report is issued if configured verbosity is set to OVM_FULL or above.

Port Type

ovm_port_type e

OVM_PORT The port requires the interface that is its type parameter.

OVM_EXPORT The port provides the interface that is its type parameter via a
connection to some other export or implementation.

OVM_IMPLEMENTATIONThe port provides the interface that is its type parameter, and it is
bound to the component that implements the interface.

Sequences

ovm_sequence_state_enum

CREATED The sequence has been allocated.

PRE_BODY The sequence is started and the pre_body task is being executed.

BODY The sequence is started and the body task is being executed.
POST_BODYThe sequence is started and the post_body task is being executed.
ENDED The sequence has ended by the completion of the body task.

STOPPED The sequence has been forcibly ended by issuing a kill() on the sequence.
FINISHED The sequence is completely finished executing.

Default Policy Classes

Policy classes for ovm_object basic functions, ovm_object::copy, ovm_object::compare,
ovm_object::pack, ovm_object::unpack, and ovm_object::record.

ovm_default_table printer

331

Types and Enumerations

ovmtable printer ovmdefault _table printer = new)

The table printer is a global object that can be used with ovm_object::do_print to get tabular
style printing.

ovm_default_tree printer

ovmtree_printer ovmdefault _tree_printer = new()

The tree printer is a global object that can be used with ovm_object::do_print to get multi-
line tree style printing.

ovm_default_line printer

ovmline_printer ovmdefault _line_printer = new)

The line printer is a global object that can be used with ovm_object::do_print to get single-
line style printing.

ovm_default_printer

ovmprinter ovmdefault_printer = ovmdefault_table printer

The default printer is a global object that is used by ovm_object::print or ovm_object::sprint
when no specific printer is set.

The default printer may be set to any legal ovm_ printer derived type, including the global line,
tree, and table printers described above.

ovm_default_packer

ovm packer ovm defaul t _packer = new()

The default packer policy. If a specific packer instance is not supplied in calls to ovm_object::
pack and ovm_object::unpack, this instance is selected.

ovm_default_comparer

ovm conparer ovm defaul t_conparer = new()

332

Types and Enumerations

The default compare policy. If a specific comparer instance is not supplied in calls to
ovm_object::compare, this instance is selected.

ovm_default_recorder

ovm recorder ovmdefault_recorder = new()

The default recording policy. If a specific recorder instance is not supplied in calls to
ovm_object::record.

333

Globals

Globals

Summary

Globals
Simulation Control
run_test

ovm_test done

global_stop_request
set_global timeout

set_global_stop_timeout

Reporting
ovm_report_enabled

ovm_report_info
ovm_report_warning
ovm_report_error
ovm_report_fatal

Verbosity is ignored for warnings, errors, and fatals
to ensure users

Configuration

set_config_int

set_config_object
set_config_string
Miscellaneous
ovm_is_match
ovm_string_to_bits
ovm_bits_to_string

ovm_wait_for_nba_region

Simulation Control

Convenience function for ovm_top.run_test().

An instance of the ovm_test _done_objection class,
this object is used by components to coordinate
when to end the currently running task-based
phase.

Convenience function for ovm_top.stop_request().
Convenience function for ovm_top.phase_timeout
= timeout.

Convenience function for ovm_top.stop_timeout =
timeout.

Returns 1 if the configured verbosity in <ovm_top>
is greater than verbosity and the action associated
with the given severity and id is not
OVM_NO_ACTION, else returns 0.

These methods, defined in package scope, are
convenience functions that delegate to the
corresponding component methods in ovm_ top.
do not inadvertently filter them out.

This is the global version of set_config_int in
ovm_component.

This is the global version of set_config_object in
ovm_component.

This is the global version of set_config_string in
ovm_component.

Returns 1 if the two strings match, O otherwise.
Converts an input string to its bit-vector
equivalent.

Converts an input bit-vector to its string
equivalent.

Call this task to wait for a delta cycle.

334

Globals

run_test

task run_test (string test_ nane

Convenience function for ovm_top.run_test(). See ovm_root for more information.

ovm_test _done

ovm t est _done_objection ovm test_done = ovmtest_done_objection::get()

An instance of the ovm_test _done_ objection class, this object is used by components to

coordinate when to end the currently running task-based phase. When all participating
components have dropped their raised objections, an implicit call to global stop request is

issued to end the run phase (or any other task-based phase).

global _stop request

function void gl obal _stop_request ()

Convenience function for ovm_top.stop_request(). See ovm_root for more information.

set_global timeout

function void set_global tinmeout(tinme tineout)

Convenience function for ovm_top.phase_timeout = timeout. See ovm_root for more
information.

set_global _stop_timeout

function void set _global stop tinmeout(tine tinmeout)

Convenience function for ovm_top.stop_timeout = timeout. See ovm_root for more
information.

Reporting

335

Globals

ovm_report_enabled

function bit ovmreport _enabl ed (int verbosity,
ovm severity severity = OVM_I NFO
string i d ="

Returns 1 if the configured verbosity in <ovm_top=> is greater than verbosity and the action
associated with the given severity and id is not OVM_NO_ACTION, else returns O.

See also ovm_report_object::ovm_report_enabled.

Static methods of an extension of ovm_report_object, e.g. ovm_compoent-based objects, can
not call ovm_report_enabled because the call will resolve to the ovm_report_object::

ovm_report_enabled, which is non-static. Static methods can not call non-static methods of
the same class.

ovm_report_info

function void ovmreport _info(string id,
string nessage,

I nt verbosity = O/M VEDI UM
string filenane = "",
i nt i ne =0

ovm_report_warning

function void ovmreport _warning(string id,
string nessage,
i nt verbosity = OV™M_MED UM

string filename = :
I nt l[ine =0

ovm_report_error

function void ovmreport_error(string id,
string nmessage,
I nt verbosity = O/M LON
string filename = "",
I nt l'ine =0

336

Globals

ovm_report_fatal

These methods, defined in package scope, are convenience functions that delegate to the
corresponding component methods in ovm_top. They can be used in module-based code to
use the same reporting mechanism as class-based components. See ovm_report_object for

details on the reporting mechanism.

Verbosity isignored for warnings, errors, and fatalsto ensure users

do not inadvertently filter them out. It remains in the methods for backward compatibility.

Configuration

set_config_int

function void set _config_int (string I nst _nane,
string field_nane,
ovm bitstreamt val ue)

This is the global version of set_config_int in ovm_component. This function places the

configuration setting for an integral field in a global override table, which has highest
precedence over any component-level setting. See ovim_component::set_config_int for

details on setting configuration.

set_config_object

function void set_config_object (string I nst _nane,
string field _nane,
ovm obj ect val ue,
bi t cl one =1

This is the global version of set_config_object in ovm_component. This function places the

configuration setting for an object field in a global override table, which has highest
precedence over any component-level setting. See ovm_component::set_config_object for

details on setting configuration.

set_config_string

337

Globals

function void set _config_string (string inst_nane,
string field nane,
string val ue)

This is the global version of set_config_string in ovm_component. This function places the

configuration setting for an string field in a global override table, which has highest
precedence over any component-level setting. See ovim_component::set_config_string for
details on setting configuration.

M iscellaneous

ovm_is match
“ifdef OVM DPI inmport "DPlI" function bit ovm.is_match (string expr,
string str)

Returns 1 if the two strings match, O otherwise.

The first string, expr, is a string that may contain ‘**’ and '?’ characters. A * matches zero or
more characters, and ? matches any single character. The 2nd argument, str, is the string
begin matched against. It must not contain any wildcards.

ovm_string_to_bits
function | ogi c[OYM LARGE STRING 0] ovm string to bits(string str)

Converts an input string to its bit-vector equivalent. Max bit-vector length is approximately
14000 characters.

ovm_bits to_string

function string ovmbits to _string([OVM LARGE STRI NG 0] str)

Converts an input bit-vector to its string equivalent. Max bit-vector length is approximately
14000 characters.

ovm_wait_for_nba region

task ovmwait _for_nba_region
338

Globals

Call this task to wait for a delta cycle. Program blocks don’t have an nba so just delay for a
#0 in a program block.

339

Index

Index

$#!.09-A-B-C-D-E-F-G-H-1-J-K-L-M-N:-O-P-Q-R-S-T-U-V-W:-X-Y-2Z

S

~ovm_analysis_imp_decl
~ovm_blocking_get_imp_decl
~ovm_blocking_get_peek_ imp_decl
~ovm_blocking_master_imp_decl
~ovm_blocking_peek_imp_decl
~ovm_blocking_ put_imp_decl
~ovm_blocking_slave_ imp_decl
~ovm_blocking_transport_imp_decl
~ovm_component_end
~ovm_component_param_ utils
~ovm_component_param_utils_begin
~ovm_component_utils
~ovm_component_utils_begin
~ovm_create
~ovm_create_on
~ovm_declare_p_sequencer
~ovm_do
~ovm_do_callbacks
~“ovm_do_callbacks_ exit _on
~ovm_do_ext_task_callbacks
~“ovm_do_obj_callbacks
~ovm_do_obj_callbacks_exit_on
“ovm_do_on
~ovm_do_on_pri
“ovm_do_on_pri_with
~“ovm_do_on_with
~ovm_do_pri
~“ovm_do_pri_with
~“ovm_do_task_callbacks
~“ovm_do_with
~ovm_error
~ovm_ fatal
~ovm_field_*macros
“ovm_field_aa * int macros
~ovm_field_aa_ * string macros
~ovm_field_aa_ int byte
~ovm_field_aa_int_byte unsigned
“ovm_field_aa_int_enumkey
“ovm_field_aa_int_int
“ovm_field_aa_int_int_unsigned
“ovm_field_aa int_integer
~ovm_field_aa int_integer_unsigned
“ovm_field_aa_ int _key
~ovm_field_aa_int_longint
“ovm_field_aa_int_longint_unsigned
“ovm_field_aa_int_shortint
~ovm_field_aa_int_shortint_unsigned
340

Index

~ovm_field_aa_int_string
~ovm_field_aa_ object_int
~ovm_field_aa_object string
~ovm_field_aa_string_string
~ovm_field_array_ *macros
~ovm_field_array _enum
“ovm_field_array_int
~ovm_field_array_object
“ovm_field_array_string
“ovm_field_enum
“ovm_field_event

“ovm_field_int

“ovm_field_object

“ovm_field _queue_ *macros
~ovm_field_queue_enum
“ovm_field_queue_int
~ovm_field_queue_object
“ovm_field_queue_string
~ovm_field_real
~ovm_field_sarray_ *macros
~ovm_field_sarray_enum
“ovm_field_sarray_int
~ovm_field_sarray_ object
“ovm_field_sarray_string
“ovm_field_string

~ovm_ field__utils_begin
~ovm_field_utils_end
“ovm_get_imp_decl
~ovm_get_peek_imp_decl
“ovm_info
~“ovm_master_imp_decl
~ovm_nonblocking_get_imp_decl
~ovm_nonblocking_get _peek_imp_decl
~ovm_nonblocking_master_imp_decl
~ovm_nonblocking_peek_imp_decl
~ovm_nonblocking_put_imp_decl
~ovm_nonblocking_slave imp_decl
~ovm_nonblocking_transport_imp_decl
~ovm_object_param_ utils
~“ovm_object _param_utils_begin
~ovm_object_utils
~ovm_object_utils_begin
~ovm_object_utils_end
~ovm_peek_imp_decl
~ovm_phase_func_bottomup_decl
~ovm_phase_func_decl
~ovm_phase_func_topdown_decl
~ovm_phase_ task bottomup_decl
~ovm_phase_task_ decl
~ovm_phase_task topdown_decl
“ovm_put_imp_decl
~ovm_rand_send
“ovm_rand_send_pri
~“ovm_rand_send_pri_with

~ovm_rand_send_with
341

Index

~ovm_send

“ovm_send_pri
~ovm_sequence__utils
~ovm_sequence_utils_begin
~ovm_sequence_utils_end
~ovm_sequencer_param_utils
~ovm_sequencer_param_utils_begin
~ovm_sequencer__utils
~ovm_sequencer_utils_begin
~ovm_sequencer_utils_end
~ovm_slave _imp_decl
~ovm_transport_imp_decl
~ovm_update_sequence_lib
~ovm_update_sequence_lib_and_item
~ovm_warning

A

abstract
ovm_comparer

ovm_packer
ovm_recorder

accept_tr
ovm_component
ovm_transaction

add
ovm_pool#(T)

add_ callback
ovm_event

add_cb
ovm_callbacks#(T,CB)

add_sequence
ovm_sequencer_base

after_export
ovm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)

ovm_in_order_comparator#(T,comp_type,convert,pair_type)

all_dropped
ovm_component

ovm_objection
ovm_root
ovm_test _done_objection

Analysis
Global
tim_if_base#(T1,T2)

analysis_export
ovm_subscriber

analysis_port#(T)
tim_analysis_fifo#(T)

apply_config_settings
ovm_component

342

Index

before_export
ovm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)

ovm_in_order_comparator#(T,comp_type,convert,pair_type)

begin_child_tr
ovm_component
ovm_transaction

begin_elements
ovm_printer_knobs

begin_tr
ovm_component
ovm_transaction

Bidirectional Interfaces&Ports

big_endian
ovm_packer

bin_radix
ovm_printer_knobs

Blocking get
tim_if_base#(T1,T2)

Blocking peek
tim_if_base#(T1,T2)

Blocking put
tim_if_base#(T1,T2)

Blocking transport
tim_if _base#(T1,T2)

blocking put port
ovm_random_stimulus#(T)

body
ovm_sequence_base

BODY
build
ovm_component

call_func
ovm_phase

call_task
ovm_phase

Callback Hooks
ovm_objection

Callback Macros

callback_mode
ovm__callback

Callbacks
ovm_report_object

can_get
tim_if_base#(T1,T2)

can_peek
tim_if_base#(T1,T2)

343

Index

can_put
tim_if_base#(T1,T2)

cancel
ovm_barrier
ovm_event

CB
ovm__callbacks#(T,CB)

check
ovm_component

check config_usage
ovm_component

check_type
ovim_comparer

clone
ovm_object

Comparators
comparators.txt
methodology/ovm_algorithmic_comparator.svh

compare
ovm_object

compare_field
ovm_comparer

compare_field_int
ovm_comparer

compare_field_real
ovm_comparer

compare_object
ovm_comparer

compare_string
ovim_comparer

Comparing
ovm_object

compose_message
ovm_report_server

Configuration
Global

ovm_object
ovm_report_object

Configuration Interface
ovm_component

connect
ovm_component

ovm_port_base#(IF)

convert2string
ovm_object

copy
ovm_object

344

Index

Copying
ovm_object
Core Base Classes

count
ovm_sequencer_base

create
ovm_component_registry#(T,Tname)
ovm_object
ovm_object_registry#(T,Tname)

create_component
ovm_component

ovm_component_registry#(T,Tname)
ovm_object_wrapper

create_component_by name
ovm_factory

create_component_by_ type
ovm_factory

create_item
ovm_sequence_base

create_object
ovm_component

ovm_object_reqgistry#(T,Tname)
ovm_object_wrapper

create_object by name
ovm_factory

create_object by type
ovm_factory

CREATED

Creation
ovm_factory

ovm_object

current_grabber
ovm_sequencer_base

Debug
ovm_factory

debug_connected_to
ovm_port_base#(IF)

debug_create_by name
ovm_factory

debug_create by type
ovm_factory

debug_provided_to
ovm_port_base#(IF)

dec_radix
ovm_printer_knobs

Default Policy Classes

345

Index

default_radix
ovm_printer_knobs

ovm_recorder

default_sequence
ovm_sequencer_base

delete

ovm__barrier_pool
ovm_event_pool
ovm_object_string_pool#(T)
ovm_pool#(T)
ovm_queue#(T)

delete_callback
ovim_event

delete_cb
ovm_callbacks#(T,CB)

depth
ovm_printer_knobs
die
ovm_report_object

disable_recording
ovm_transaction

display_cbs
ovm__callbacks#(T,CB)

display_objections
ovm_objection

do_accept_tr
ovm_component
ovm_transaction

do_begin_tr
ovm_component
ovm_transaction

do_compare
ovm_object

do_copy
ovm_object

do_end_tr
ovm_component
ovm_transaction

do_kill_all
ovm_component

do_pack
ovm_object

do_print
ovm_object

do_record
ovm_object

do_sequence_kind
ovm_sequence_base

346

Index

do_unpack
ovm_object

drop
ovm_test_done_objection

drop_objection
ovm_objection

dropped
ovm_component

ovm_objection

dump_report_state
ovm_report_object

dump_server_state
ovm_report_server

enable_print_topology
ovm_root

enable_recording
ovm_transaction

enable_stop_interrupt
ovm_component

end
methodology/sequences/ovm_sequence_builtin.svh
tim/sqr_connections.svh

end_elements
ovm_printer_knobs

end_of_elaboration
ovm_component

end_tr
ovm_component

ovm_transaction

ENDED

execute_item
ovm_sequencer_param_base#(REQ,RSP)

exists
ovm_barrier_pool

ovm_event_pool
ovm_pool#(T)

extract
ovm_component

Factory Classes

Factory Interface
ovm_component

Field Macros
Fields declared in<~ovm_field_*>macros,if used,will not
ovm_object

347

Index

find
ovm_root

find_all
ovm_root

find_override_by name
ovm_factory

find_override_by_ type
ovm_factory

finish_item
ovm_sequence_base
ovm_sequence_item

finish_on_completion
ovm_root

FINISHED

first
ovm__barrier_pool
ovm_event_pool
ovm_pool#(T)

flush
ovm_in_order_comparator#(T,comp_type,convert,pair_type)
tim_fifo#(T)

footer
ovm_printer_knobs

force_stop
ovm_test _done_objection

format_action
ovm_report_handler

full_name
ovm_printer_knobs

348

Index

INndex

$#!.0-9-A-B-C-D-E-F-G-H-1-

-M-N-O-P-Q-R-S-T-U-V -W-

G

generate_stimulus
ovm_random_stimulus#(T)

get
ovm_barrier_pool
ovm_component_registry#(T,Tname)
ovm_event_pool
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)
ovm_pool#(T)

ovm_queue#(T)

sqr_if _base#(REQ,RSP)
tim_if_base#(T1,T2)

Get and Peek
get_accept_time
ovm_ transaction

get_action
ovm_report_handler

get_ap
tim_fifo_base#(T)

get_begin_time
ovm_transaction

get_child
ovm_component

get_comp
ovm_port_base#(IF)

get_config_int
ovm_component

get_config_object
ovm_component

get_config_string
ovm_component

349

Index

get_count
ovm_random_sequence

get_current_item
ovm_sequence#(REQ,RSP)

ovm_sequencer_param_base#(REQ,RSP)

get_current_phase
ovm_root

get_depth
ovim_seguence_item

get_drain_time
ovm_objection

get_end_time
ovm_ transaction

get_event_ pool
ovm_ transaction

get_file_handle
ovm_report_handler

get_first_child
ovm_component

get_full_name
ovm_component

ovm_object
ovm_port_base#(IF)

get_global
ovm_pool#(T)

ovm_queue#(T)

get_global_cbs
ovm__callbacks#(T,CB)

get_global pool
ovm_ barrier_pool

ovm_event_pool
ovm_object_string_pool#(T)
ovm_pool#(T)

get_global_queue
ovm_queue#(T)

get _id_count
ovm_report_server

get_if
ovm_port_base#(IF)

350

Index

get_initiator
ovm_ transaction

get_inst_count
ovm_object

get_inst_id
ovm_object

get_max_quit_count
ovm_report_server

get_name
ovm_object
ovm_phase
ovm_port_base#(IF)

get_next_child
ovm_component

get_next_item
sqr_if _base#(REQ,RSP)

get_num_children
ovm_component

get_num_last _reqgs
ovm_sequencer_param_base#(REQ,RSP)

get_num_last_rsps
ovm_sequencer_param_base#(REQ,RSP)

get_num_reqgs_sent
ovm_sequencer_param_base#(REQ,RSP)

get_num_rsps_received
ovm_sequencer_param_base#(REQ,RSP)

get_num_waiters
ovm_ barrier

ovm_event

get_object_type
ovm_object

get_objection_count
ovm_objection

get_objection_total
ovm_objection

get_packed_size
ovm_ packer

351

Index

get_parent
ovm_component

ovim_port_base#(IF)

get_parent_sequence
ovm_sequence_item

get_peek_export
tim_fifo_base#(T)

get_peek_request_export
tim_req_rsp_channel#(REQ,RSP)

get_peek_response_export
tim_req_rsp_channel#(REQ,RSP)

get_phase_by name
ovm_root

get_priority
ovm_sequence_base

get_quit_count
ovm_report_server

get_radix_str
ovm_ printer_knobs

get_report_action
ovm_report_object

get_report_file_handle
ovim_report_object

get_report_handler
ovim_report_object

get_report_server
ovim_report_object

get_report_verbosity level
ovm_report_object

get_response
ovm_sequence#(REQ,RSP)

get_response_queue_depth
ovm_sequence#(REQ,RSP)

get_response_queue_error_report_disabled
ovm_sequence#(REQ,RSP)

get_root_sequence
ovm_sequence_item

352

Index

get_root_sequence_name

ovm_sequence_item

get_seq_kind
ovm_sequence_base
ovm_sequencer_base

get_sequence
ovim_sequence_base

ovm_sequencer_base

get_sequence_by name
ovm_sequence_base

get_sequence_id
ovim_sequence_item

get_sequence_path
ovm_sequence_item

get_sequence_state
ovim_sequence_base

get_sequencer
ovim_sequence_base

ovm_sequence_item

get_server
ovm_report_server

get_severity count
ovm_report_server

get_threshold
ovm_barrier

get_tr_handle
ovm_transaction

get_transaction_id
ovm_transaction

get_trigger_data
ovm_event

get_trigger_time
ovm_event

get_type
ovm_object

353

Index

get_type_name

ovm__callback
ovm_component_registry#(T,Tname)
ovm_object
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)
ovm_object_wrapper

ovm_phase

ovm_port_base#(IF)

get_use_response handler
ovm_sequence_base

get_use_sequence_info
ovm_sequence_item

get_verbosity level
ovm_report_handler

global_indent
ovm_printer_knobs

global _stop_request
Globals

grab
ovm_sequence_base

ovm_sequencer_base

has_child
ovm_component

has do_available
ovm_sequencer_base

sqr_if _base#(REQ,RSP)

has_lock
ovm_sequence_base

ovm_sequencer_base

header
ovm_ printer_knobs

hex_ radix
ovm_printer_knobs

Hierarchical Reporting Interface
ovm_component

Hierarchy Interface
ovm_component

354

Index

id_count
ovm_report_server

Identification
ovm_object

identifier
ovm_ printer_knobs
ovm_recorder

in_order_built_in_comparator#(T)
in_order_class_comparator#(T)

in_stop_request
ovim_root

incr_id_count
ovm_report_server

incr_quit_count
ovm_report_server

incr_severity_count
ovm_report_server

indent_str
ovm_ hier_printer_knobs

insert
ovm_queue#(T)

insert_phase
ovm_root

is_active
ovm_ transaction

is_blocked
ovim_sequence_base

ovm_sequencer_base

is_child
ovm_sequencer_base

is_done
ovm_phase

is_empty
tim_fifo#(T)

is_enabled
ovm__callback

355

Index

is_export
ovm_port_base#(IF)

is_full
tim_fifo#(T)

is_grabbed
ovm_sequencer_base

is_imp
ovm_port_base#(IF)
is_in_progress
ovm_phase

is_item
ovm_sequence_base
ovim_seguence_item

is_null
ovm_ packer

is_off
ovm_event

is_on
ovm_event

is_port
ovm_port_base#(IF)

is_quit_count_reached
ovm_report_server

is_recording_enabled
ovm_ transaction

is_relevant
ovim_sequence_base

is_task
ovm_phase

is_top_down
ovm_phase

is_unbounded
ovm_port_base#(IF)

item_done
sqr_if _base#(REQ,RSP)

356

Index

kill
ovm_component
ovm_sequence_base

knobs
ovm_printer

ovm_table_printer
ovm_tree_printer

last
ovm_barrier_pool

ovm_event_pool
ovm_pool#(T)

last_req
ovm_sequencer_param_base#(REQ,RSP)

last_rsp
ovm_sequencer_param_base#(REQ,RSP)

lock
ovim_sequence_base

ovm_sequencer_base

lookup
ovm_component

Macros
base/ovm_phases.sv

macros/ovm_message_defines.svh
macros/tim_defines.svh

Master and Slave

master_export
tim_req_rsp_channel#(REQ,RSP)

max_random_count
ovm_sequencer_base

max_random_depth
ovm_sequencer_base

max_size
ovm_port_base#(IF)

max_width
ovm_printer_knobs

mcd
ovm_ printer_knobs

357

Index

Methods

ovm_*_ export#(REQ,RSP)
ovm_*_export#(T)

ovm_*_ imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
ovm_* imp#(T,IMP)

ovm_* port#(REQ,RSP)

ovm_*_ port#(T)

ovm_agent
ovm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
ovm_barrier

ovm_ barrier_pool
ovm_built_in_pair#(T1,T2)
ovm__callback
ovm__callbacks#(T,CB)
ovm_comparer
ovm_component_registry#(T,Tname)
ovm_driver#(REQ,RSP)

ovm_env

ovm_event

ovm_event_callback
ovm_event_pool
ovim_in_order_comparator#(T,comp_type,convert,pair_type)
ovm_line_printer

ovm_monitor
ovm_object_string_pool#(T)
ovm_object_wrapper
ovm_pair#(T1,T2)

ovm_phase

ovm_ pool#(T)
ovm_port_base#(IF)

ovm_ printer_knobs
ovm_push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_queue#(T)
ovm_random_sequence
ovm_random_stimulus#(T)
ovm_recorder
ovm_report_handler
ovm_report_server

ovm_root

ovm_scoreboard
ovm_sequence#(REQ,RSP)
ovim_sequence_base
ovm_sequence_item

ovm_sequencer#(REQ,RSP)
358

Index

ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)
ovm_subscriber

ovm_test

ovm_test _done_objection

ovm_ transaction

sqr_if _base#(REQ,RSP)
tim_analysis_fifo#(T)

tim_fifo#(T)

tim_fifo_base#(T)
tim_req_rsp_channel#(REQ,RSP)
tim_transport_channel#(REQ,RSP)

Methods for printer subtyping
ovm_ printer

Methods for printer usage
ovm_ printer

mid_do
ovm_sequence_base

min_size
ovm_port_base#(IF)

Miscellaneous

miscompares
ovm_comparer

name_width
ovm_table_printer_knobs

Nnb_transport
tim_if_base#(T1,T2)

new
ovm_*_ export#(REQ,RSP)

ovm_*_export#(T)

ovm_* imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)

ovm_* imp#(T,IMP)

ovm_* port#(REQ,RSP)

ovm_*_ port#(T)

ovm_agent
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)
ovm_ barrier

ovm_barrier_pool

ovm_built_in_pair#(T1,T2)

ovm__callback

359

Index

ovm__callbacks#(T,CB)
ovm_component
ovm_driver#(REQ,RSP)

ovm_env

ovm_event

ovm_event_callback
ovm_event_pool
ovm_line_printer

ovm_monitor

ovm_object
ovm_object_string_pool#(T)
ovm_objection
ovm_pair#(T1,T2)

ovm_phase

ovm_ pool#(T)
ovm_port_base#(IF)
ovm_push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_queue#(T)
ovm_random_stimulus#(T)
ovm_report_handler
ovm_report_object
ovm_report_server
ovm_scoreboard
ovm_sequence#(REQ,RSP)
ovm_sequence_base
ovim_sequence_item
ovm_sequencer#(REQ,RSP)
ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)
ovm_subscriber

ovm_table_ printer

ovim_ test

ovm_ transaction
ovm_tree_printer
tim_analysis_fifo#(T)
tim_fifo#(T)

tim_fifo_base#(T)
tim_req_rsp_channel#(REQ,RSP)
tim_transport_channel#(REQ,RSP)

next
ovm_barrier_pool

ovm_event_pool
ovm_ pool#(T)

360

Index

Non-blocking get
tim_if_base#(T1,T2)

Non-blocking peek
tim_if_base#(T1,T2)

Non-blocking put
tim_if_base#(T1,T2)

Non-blocking transport

tim_if_base#(T1,T2)

num
ovm_barrier_pool

ovm_event_pool
ovm_ pool#(T)

num_sequences
ovim_sequence_base

ovm_sequencer_base

361

Index

Index

$#1-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O:-P-Q-R-S-T-U-V-W-X-Y-Z

@)

Objection Control
ovm_objection

Objection Interface
ovm_component

Objection Status
ovm_objection

oct_radix
ovm_printer_knobs

OVM Class Reference

OVM Factory
ovm_*_export#(REQ,RSP)
ovm_*_ export#(T)

ovm_*_imp ports

ovm_*_ imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
ovm_*_imp#(T,IMP)
ovm_*_port#(REQ,RSP)

ovm_*_ port#(T)

ovm_action

ovm_agent
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)
ovm_algorithmic_comparator.svh
ovm_ barrier

ovm_ barrier_pool

OVM_BIN

ovm_bits_to_string

ovm_ bitstream_t

ovm_ built_in_clone#(T)
ovm_built_in_comp#(T)
ovm_built_in_converter#(T)
ovm_built_in_pair#(T1,T2)
OVM_CALL_HOOK

ovm__callback

ovm__callback defines.svh

ovm_ callbacks#(T,CB)
ovm_class_clone#(T)
ovm_class_comp#(T)
ovm_class_converter#(T)
ovm_comparer

ovm_component
ovm_component_registry#(T,Thame)

OVM_COUNT
362

Index

OVM_DEC
OVM_DEEP
ovm_default_comparer
ovm_default_line_printer
ovm_default_packer
ovm_default_printer
ovm_default_recorder
ovm_default_table_printer
ovm_default_tree_printer
OVM_DISPLAY
ovm_driver#(REQ,RSP)
OVM_ENUM
ovm_env
OVM_ERROR
ovm_event
ovm_event_callback
ovm_event_pool
ovm_exhaustive_sequence
OVM_EXIT
OVM_EXPORT
ovm_ factory
OVM_FATAL
OVM_FULL
OVM_HEX
ovm_ hier_printer_knobs
OVM_HIGH
OVM_IMPLEMENTATION
ovm_in_order_comparator#(T,comp_type,convert,pair_type)
OVM_INFO
ovm_is_match
ovm_line_printer
OVM_LOG
OVM_LOW
OVM_MEDIUM
ovm_ monitor
OVM_NO_ACTION
OVM_NONE
ovm_object
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)
ovm_object_wrapper
ovm_objection
OVM_OCT
ovm_ packer
ovm_pair#(T1,T2)
ovm_phase
ovm_ policies.svh
ovm_pool#(T)
OVM_PORT
ovm_port_base#(I1F)

363

Index

ovm_port_type_e

ovm_ printer
ovm_printer_knobs

ovm_ push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_queue#(T)
ovm_radix_enum
ovm_random_sequence
ovm_random_stimulus#(T)
ovm_recorder
ovm_recursion_policy _enum
OVM_REFERENCE

ovm_report_enabled
Global

ovm_report_object

ovm_report_error
Global

ovm_report_object

ovm_report_fatal
Global

ovm_report_object

ovm_report_handler
ovm_report_info
Global
ovm_report_object

ovm_report_object
ovm_report_server
ovm_report_warning
Global
ovm_report_object

ovm_root

ovm_scoreboard
ovm_seq_item_pull_export#(REQ,RSP)
ovm_seq_item_pull_imp#(REQ,RSP,IMP)
ovm_seq_item_pull_port#(REQ,RSP)
ovm_sequence#(REQ,RSP)
ovm_sequence_base
ovm_sequence_item
ovim_sequence_state_enum
ovm_sequencer#(REQ,RSP)
ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)
ovm_severity

OVM_SHALLOW

ovm_simple_sequence

OVM_STRING

ovm_string_to_bits

ovm_subscriber

364

Index

ovm_table_printer
ovm_table_ printer_knobs
ovm_test

ovm_test done

ovm_test done_objection
OVM_TIME

ovm_top

ovm_root

ovm_ transaction
ovm_tree_printer
ovm_tree_printer_knobs
OVM_UNSIGNED
ovm_verbosity

ovm_void

ovm_wait for_nba_ region
OVM_WARNING

pack
ovm_object

pack_bytes
ovm_object

pack_field
ovm_ packer

pack_field_int
ovm_ packer

pack_ints
ovm_object

pack_object
ovm_ packer

pack_real
ovm_ packer

pack_string
ovm_ packer

pack_ time
ovm_ packer

Packing
ovm_object
ovm_ packer

pair_ap
ovm_in_order_comparator#(T,comp_type,convert,pair_type)

Parameters
ovm__callbacks#(T,CB)

peek
sqr_if base#(REQ,RSP)
tim_if _base#(T1,T2)

365

Index

phase_timeout
ovm_root

Phasing Interface
ovm_component

physical
ovm_comparer
ovm_packer
ovm_recorder

policy
ovm_comparer

Policy Classes
policies.txt

methodology/ovm_ policies.svh

pop_back
ovm_queue#(T)

pop_front
ovm_queue#(T)

Port Type
Ports
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)

ovm_driver#(REQ,RSP)
ovm_in_order_comparator#(T,comp_type,convert,pair_type)
ovm_push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_random_stimulus#(T)
ovm_sequencer_param_base#(REQ,RSP)
ovm_subscriber

tim_analysis_fifo#(T)

tim_fifo_base#(T)
tim_req_rsp_channel#(REQ,RSP)
tim_transport_channel#(REQ,RSP)

Ports,Exports,and Imps
post_body
ovm_sequence_base

POST_BODY
post_do
ovm_sequence_base

post_trigger
ovm_event_callback

pound_zero_count
ovm_sequencer_base

pre_body
ovm_sequence_base

PRE_BODY

366

Index

pre_do
ovm_sequence_base

pre_trigger
ovm_event callback

Predefined Component Classes

prefix
ovm_printer_knobs

prev
ovm_barrier_pool

ovm_event_pool
ovm_ pool#(T)

print
ovm_factory
ovm_object

print_array_footer
ovm_printer

print_array_ header
ovm_printer

print_array_range
ovm_printer

print_config_matches
ovm_component

print_config_settings
ovm_component

print_enabled
ovm_component

print_field
ovm_ printer

print_footer
ovm_ printer

print_header
ovm_ printer

print_id
ovm_ printer

print_msg
ovm_comparer

print_newline
ovm_line_printer
ovm_printer

print_object
ovm_printer

print_object_header
ovm_printer

367

Index

print_override_info
ovm_component

print_size
ovm_ printer

print_string
ovm_printer

print_time
ovm_ printer

print_type_name
ovm_ printer

print_value
ovm_ printer

print_value_array
ovm_ printer

print_value_object
ovm_ printer

print_value_string
ovm_ printer

Printing
ovm_object

process_report
ovm_report_server

push_back
ovm_queue#(T)

push_front
ovm_queue#(T)

put
sqr_if _base#(REQ,RSP)
tim_if_base#(T1,T2)

Put
put_ap
tim_fifo_base#(T)

put_export
tim_fifo_base#(T)

put_request_export
tim_req_rsp_channel#(REQ,RSP)

put_response_export
tim_req_rsp_channel#(REQ,RSP)

Q

qualify
ovm_test _done_objection

R

368

Index

raise_objection
ovm_objection
ovm_test_done_objection

raised
ovm_component

ovm_objection
ovm_root

record
ovm_object

record_error_tr
ovm_component

record_event_tr
ovm_component

record_field
ovm_recorder

record_field_real
ovm_recorder

record_generic
ovm_recorder

record_object
ovm_recorder

record_string
ovm_recorder

record_time
ovm_recorder

Recording
ovm_object

Recording Interface
ovm_component

recursion_policy
ovm_recorder

reference
ovm_printer_knobs

register
ovm_factory

Registering Types
ovm_factory

report
ovm_component

ovm_report_handler

Report Macros

report_error_hook
ovm_report_object

369

Index

report_fatal _hook
ovm_report_object

report_header
ovm_report_object

report_hook
ovm_report_object

report_info_hook
ovm_report_object

report_summarize
ovm_report_object

report_warning_hook
ovm_report_object

Reporting
Global
base/ovm_globals.svh

base/ovm_object_globals.svh
ovm_report_object

Reporting Classes

req_export
ovm_push_driver#(REQ,RSP)

req_port
ovm_push_sequencer#(REQ,RSP)

request_ap
tim_req_rsp_channel#(REQ,RSP)

reseed
ovm_object

reset
ovm_barrier

ovm_event
ovm_phase

reset_quit_count
ovm_report_server

reset_report_handler
ovm_report_object

reset_severity_counts
ovm_report_server

resolve_bindings
ovm_component
ovm_port_base#(IF)

response_ap
tim_req_rsp_channel#(REQ,RSP)

response_handler
ovm_sequence_base

370

Index

result
ovm_comparer

resume
ovm_component

rsp_export
ovm_sequencer_param_base#(REQ,RSP)

rsp_port
ovm_driver#(REQ,RSP)

ovm_push_driver#(REQ,RSP)

run
ovm_component

ovm_push_sequencer#(REQ,RSP)

run_hooks
ovm_report_handler

run_test
Global

ovm_root

371

Index

INndex

$#1-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z

S

Seeding
ovm_object

send_request
ovm_sequence#(REQ,RSP)

ovm_sequence_base
ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)

separator
ovm_tree_ printer_knobs

seq_item_export
ovm_sequencer#(REQ,RSP)

seq_item_port
ovm_driver#(REQ,RSP)

seq_kind
ovm_sequence_base

Sequence Action Macros

Sequence and Do Action Macros
Sequence Classes

Sequence on Sequencer Action Macros
Sequence Registration Macros
Sequencer Classes

Sequencer Registration Macros
Sequences

set_arbitration
ovm_sequencer_base

set_auto_reset
ovm_barrier

set_config_int
Global

ovm_component

set_config_object
Global

ovm_component

set_config_string
Global

ovm_component

372

Index

set_default_index
ovm_port_base#(IF)

set_depth
ovim_sequence_item

set_drain_time
ovm_objection

set_global stop_timeout
set_global_timeout
set_id_count
ovm_report_server

set_id_info
ovm_sequence_item

set_initiator
ovm_transaction

set_inst_override
ovm_component

ovm_component_registry#(T,Tname)
ovm_object_registry#(T,Tname)

set_inst_override by name
ovm_factory

set_inst_override_by type
ovm_component
ovm_factory

set_int_local
ovm_object

set_max_quit_count
ovm_report_server

set_name
ovm_component

ovm_object

set_num_last_reqgs
ovm_sequencer_param_base#(REQ,RSP)

set_num_last_rsps
ovm_sequencer_param_base#(REQ,RSP)

set_object_local
ovm_object

set_parent_sequence
ovm_sequence_item

set_priority
ovm_sequence_base

set_quit_count
ovm_report_server

373

Index

set_report_default_file
ovm_report_object

set_report_default_file_hier
ovm_component

set_report_handler
ovm_report_object

set_report_id_action
ovm_report_object

set_report_id_action_hier
ovm_component

set_report_id_file
ovm_report_object

set_report_id_file_hier
ovm_component

set_report_max_quit_count
ovm_report_object

set_report_severity_action
ovm_report_object

set_report_severity_action_hier
ovm_component

set_report_severity_file
ovm_report_object

set_report_severity_file_hier
ovm_component

set_report_severity id_action
ovm_report_object

set_report_severity_id_action_hier
ovm_component

set_report_severity id_file
ovm_report_object

set_report_severity_id_file_hier
ovm_component

set_report_verbosity level
ovm_report_object

set_report_verbosity level_hier
ovm_component

set_response_queue_depth
ovm_sequence#(REQ,RSP)

set_response_queue_error_report_disabled
ovm_sequence#(REQ,RSP)

374

Index

set_sequencer
ovm_sequence#(REQ,RSP)

ovim_sequence_base
ovim_sequence_item

set_severity_count
ovm_report_server

set_string_local
ovm_object

set_threshold
ovm_ barrier

set_transaction_id
ovm_ transaction

set_type_override
ovm_component

ovm_component_registry#(T,Tname)
ovm_object_registry#(T,Tname)

set_type_override by name
ovm_factory

set_type_override_by_ type
ovm_component
ovm_factory

set_use_sequence_info
ovim_sequence_item

Setup
ovm_report_object

sev
ovm_comparer

show_max
ovm_comparer

show_radix
ovm_printer_knobs

show_root
ovm_ hier_printer_knobs

Simulation Control
size
ovm_port_base#(IF)
ovm_printer_knobs
ovm_queue#(T)
tim_fifo#(T)

size width
ovm_table_printer_knobs

slave export
tim_req_rsp_channel#(REQ,RSP)

375

Index

sprint
ovm_object

sqr_if _base#(REQ,RSP)
start
ovm_sequence#(REQ,RSP)
ovm_sequence_base

start_default_sequence
ovm_sequencer_base

ovm_sequencer_param_base#(REQ,RSP)

start_item
ovm_sequence_base

ovm_sequence_item

start_of_ simulation
ovm_component

status
ovm_component

stop
ovm_component

stop_request
ovm_root

stop_sequences
ovm_sequencer#(REQ,RSP)

ovm_sequencer_base

stop_stimulus_generation
ovm_random_stimulus#(T)

stop_timeout
ovm_root

STOPPED

summarize
ovm_report_server

suspend
ovm_component

Synchronization Classes

T
ovm__callbacks#(T,CB)

TLM Implementation Port Declaration Macros
TLM Interfaces,Ports,and Exports
tim_analysis_fifo#(T)

tim_fifo#(T)

tim_fifo_base#(T)

tim_if_base#(T1,T2)
tim_req_rsp_channel#(REQ,RSP)

376

Index

tim_transport_channel#(REQ,RSP)

tr_handle
ovm_recorder

trace_mode
ovm__callbacks#(T,CB)

transport
tim_if_base#(T1,T2)

Transport

transport_export
tim_transport_channel#(REQ,RSP)

trigger
ovm_event

truncation
ovm_ printer_knobs

try get
tim_if_base#(T1,T2)

try_next_item
sqr_if_base#(REQ,RSP)

try peek
tim_if_base#(T1,T2)

try_put
tim_if _base#(T1,T2)

Type&Ilnstance Overrides
ovm_factory

type_name
ovm_printer_knobs

type_width
ovm_table printer_knobs

Types and Enumerations

ungrab
ovm_sequence_base

ovim_sequence r_base

Unidirectional Interfaces&Ports

unlock
ovm_sequence_base

ovm_sequencer_base

unpack
ovm_object

unpack_bytes
ovm_object

377

Index

unpack_field
ovm_packer

unpack_field_int
ovm_ packer

unpack_ints
ovm_object

unpack_object
ovm_ packer

unpack_real
ovm_ packer

unpack_string
ovm_packer

unpack_time
ovm_packer

Unpacking
ovm_object
ovm_packer

unsigned_radix
ovm_printer_knobs

Usage
Global
tim_ifs_and_ports.txt

base/ovm_phases.sv

ovm_factory
ovm_object_registry#(T,Tname)

use_metadata
ovm_packer

use_ovm_seeding
ovm_object

use_response_ handler
ovim_sequence_base

used
tim_fifo#(T)

user_priority_arbitration
ovm_sequencer_base

Utility and Field Macros for Components and Objects
Utility Macros

V

value_width
ovm_table printer_knobs

378

Index

Variables
ovm_comparer

ovm_ hier_printer_knobs
ovm_line_printer

ovm_ packer
ovm_printer_knobs
ovm_recorder
ovm_report_server
ovm_root
ovim_sequence_base
ovm_sequencer#(REQ,RSP)
ovm_sequencer_base
ovm_table printer
ovm_table printer_knobs
ovm_tree_printer
ovm_tree_printer_knobs

verbosity
ovm_comparer

Verbosity is ignored for warnings,errors,and fatals to ensure users

wW

wait_done
ovm_phase

wait_for
ovm_ barrier

wait_for_grant
ovim_sequence_base

ovm_sequencer_base

wait_for_item_done
ovm_sequence_base
ovm_sequencer_base

wait_for_relevant
ovim_sequence_base

wait_for_sequence_state
ovm_sequence_base

wait_for_sequences
ovm_sequencer_base

sqr_if_base#(REQ,RSP)

wait_off
ovm_event

wait_on
ovm_event

wait_ptrigger
ovm_event

379

Index

wait_ptrigger_data
ovm_event

wait_start
ovm_phase

wait_trigger
ovm_event

wait_trigger_data
ovm_event

write
ovm_subscriber

tim_if _base#(T1,T2)

380

Class Index

Class Index

$#!.09-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z

in_order_built_in_comparator#(T)
in_order_class_comparator#(T)

O
ovm_*_export#(REQ,RSP)
ovm_*_ export#(T)
ovm_*_ imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
ovm_* imp#(T,IMP)
ovm_* port#(REQ,RSP)
ovm_* port#(T)
ovm_agent
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)
ovm_barrier
ovm_barrier_pool
ovm_built_in_clone#(T)
ovm_built_in_comp#(T)
ovm_ built_in_converter#(T)
ovm_built_in_pair#(T1,T2)
ovm_ callback
ovm_ callbacks#(T,CB)
ovm_class_clone#(T)
ovm_class_comp#(T)
ovm_class_converter#(T)
ovm_comparer
ovm_component
ovm_component_registry#(T,Tname)
ovm_driver#(REQ,RSP)
ovm_env
ovm_event
ovm_event_callback
ovm_event_pool
ovm_exhaustive_sequence
ovm_factory
ovm_hier_printer_knobs
ovm_in_order_comparator#(T,comp_type,convert,pair_type)
ovm_line_printer
ovm_ monitor
ovm_object
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)
ovm_object_wrapper
ovm_objection

381

Class Index

ovm_ packer

ovm_pair#(T1,T2)

ovm_phase

ovm_pool#(T)

ovm_port_base#(IF)

ovm_printer

ovm_printer_knobs
ovm_push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_queue#(T)
ovm_random_sequence
ovm_random_stimulus#(T)
ovm_recorder

ovm_report_handler
ovm_report_object
ovm_report_server

ovm_root

ovm_scoreboard
ovm_seq_item_pull_export#(REQ,RSP)
ovm_seq_item_pull_imp#(REQ,RSP,IMP)
ovm_seq_item_pull_port#(REQ,RSP)
ovm_sequence#(REQ,RSP)
ovm_sequence_base
ovm_sequence_item
ovm_sequencer#(REQ,RSP)
ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)
ovm_simple_sequence
ovm_subscriber

ovm_table_printer

ovm_table_ printer_knobs

ovm_test

ovm_test_done_objection

ovm_ transaction

ovm_tree_ printer

ovm_tree_ printer_knobs

S

sqr_if base#(REQ,RSP)

T
tim_analysis_fifo#(T)
tim_fifo#(T)
tim_fifo_base#(T)
tim_if base#(T1,T2)
tim_req_rsp_channel#(REQ,RSP)
tim_transport_channel#(REQ,RSP)

382

File Index

File Index

$#!-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X
Y-Z

O

ovm_algorithmic_comparator.svh
ovm__callback_defines.svh
ovm_ policies.svh

383

Macro Index

Macro Index

$#!-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X
Y-z

$#!

~“ovm_analysis_imp_decl
“ovm_blocking_get_imp_decl
~“ovm_blocking_get_peek imp_decl
~“ovm_blocking_master_imp_decl
~ovm_blocking_peek_imp_decl
~“ovm_blocking_put_imp_decl
~“ovm_blocking_slave imp_decl
~ovm_blocking_transport_imp_decl
~ovm_component_end
~“ovm_component_param_ utils
~“ovm_component_param_utils_begin
~ovm_component_utils
~ovm_component_utils_begin
~ovm__create
~ovm_create_on
~ovm_declare_p_ sequencer
~ovm_do
~ovm_do_callbacks
~“ovm_do_callbacks exit _on
“ovm_do_ext task_ callbacks
~ovm_do_obj callbacks
~ovm_do_obj callbacks exit _on
~ovm_do_on
“ovm_do_on_pri
“ovm_do_on_pri_with
“ovm_do_on_with
~ovm_do_pri
~ovm_do_pri_with
~ovm_do_task_callbacks
“ovm_do_with
~ovm_error
~ovm__fatal
“ovm_field_aa int_byte
~“ovm_field_aa int_byte unsigned
“ovm_field _aa_ int_enumkey

384

Macro Index

~“ovm_field_aa int _int
“ovm_field _aa int_int_unsigned
“ovm_field _aa_ int_integer
“ovm_field_aa_int_integer_unsigned
“ovm_field_aa_ int_key
~ovm_field_aa_int_longint
~ovm_field_aa_int_longint_unsigned
~“ovm_field _aa int_shortint
~“ovm_field _aa int_shortint_unsigned
“ovm_field _aa_int_string
“ovm_field_aa object _int
~ovm_field_aa_object_string
“ovm_field_aa_string_string
“ovm_field_array_enum
~“ovm_field_array_int

~ovm_field _array_ object

~ovm_field _array_string
“ovm_field_enum

~“ovm_field_event

“ovm_field_int

~“ovm_field_object

~“ovm_field _queue enum
~“ovm_field_queue_int

“ovm_field _queue_ object

~ovm_ field_queue_string
“ovm_field_real
“ovm_field_sarray enum
~“ovm_field_sarray_int
~“ovm_field_sarray_ object
~ovm_field_sarray_string
~ovm_field_string

“ovm_ field__utils_begin
“ovm_field_utils_end
“ovm_get_imp_decl
~“ovm_get_peek_imp_decl

~ovm_info

~ovm_master_imp_decl
~ovm_nonblocking_get _imp_decl
~ovm_nonblocking get peek imp_decl
~“ovm_nonblocking_master_imp_decl
~“ovm_nonblocking_ peek imp_decl
~“ovm_nonblocking_put_imp_decl
~“ovm_nonblocking_slave imp_decl

~ovm_nonblocking_transport_imp_decl
385

Macro Index

~“ovm_object _param_ utils
~ovm_object _param_utils_begin
~ovm_object_utils
“ovm_object_utils_begin
~ovm_object_utils_end
“ovm_peek imp_decl
~ovm_phase func_bottomup_decl
~ovm_phase func_decl
~ovm_phase func_topdown_decl
~ovm_phase task bottomup_decl
“ovm_phase_task_decl
“ovm_phase_task_ topdown_decl
“ovm_put_imp_decl
~“ovm_rand_send
“ovm_rand_send_pri
~ovm_rand_send_pri_with
~ovm_rand_send_with
~ovm_send

“ovm_send_ pri
~ovm_sequence_utils
~ovm_sequence_utils_begin
~ovm_sequence_utils_end
~“ovm_sequencer_param_ utils
~“ovm_sequencer_param_utils _begin
~ovm_sequencer__utils
~ovm_sequencer_utils_begin
~ovm_sequencer_utils_end
~ovm_slave_ imp_decl
~“ovm__transport_imp_decl
~“ovm_update_sequence_lib
~ovm_update_sequence_lib_and_item
~ovm_warning

386

Method Index

Method Index

$#!.09-A-B-C-D-E-F-G-H-1-J-K-L-M-N:-O-P-Q-R-S-T-U-V-W-X-Y-Z

accept_tr
ovm_component
ovm_transaction

add
ovm_pool#(T)

add_ callback
ovm_event

add_cb
ovm__callbacks#(T,CB)

add_sequence
ovm_sequencer_base

all_dropped
ovm_component

ovm_objection
ovm_root
ovm_test _done_objection

apply_config_settings
ovm_component

begin_child_tr
ovm_component
ovm_transaction

begin_tr
ovm_component
ovm_transaction

body
ovm_sequence_base

build
ovm_component

call_func
ovm_phase

call_task
ovm_phase

callback_mode
ovm_ callback

can_get
tim_if_base#(T1,T2)

can_peek
tim_if_base#(T1,T2)

387

Method Index

can_put
tim_if_base#(T1,T2)

cancel
ovm__barrier
ovm_event

check
ovm_component

check config_usage
ovm_component

clone
ovm_object

compare
ovm_object

compare_field
ovm_comparer

compare_field_int
ovm_comparer

compare_field_real
ovm_comparer

compare_object
ovm_comparer

compare_string
ovm_comparer

compose_message
ovm_report_server

connect
ovm_component

ovm_port_base#(IF)

convert2string
ovm_object

copy
ovm_object

create
ovm_component_registry#(T,Tname)
ovm_object
ovm_object_registry#(T,Tname)

create_component
ovm_component

ovm_component_registry#(T,Tname)
ovm_object_wrapper

create_component_by_name
ovm_factory

create_component_by type
ovm_factory

create_item
ovm_sequence_base

388

Method Index

create_object
ovm_component

ovm_object_registry#(T,Tname)
ovm_object_wrapper

create_object by name
ovm_factory

create_object_by type
ovm_factory

current_grabber
ovm_sequencer_base

debug_connected_to
ovm_port_base#(IF)

debug_create_ by name
ovm_factory

debug_create by type
ovm_factory

debug_provided_to
ovm_port_base#(IF)

delete

ovm_barrier_pool
ovm_event_pool
ovm_object_string_pool#(T)
ovm_ pool#(T)
ovm_queue#(T)

delete_callback
ovm_event

delete_cb
ovm__callbacks#(T,CB)

die
ovm_report_object

disable_recording
ovm_transaction

display_cbs
ovm_callbacks#(T,CB)

display_objections
ovm_objection

do_accept_tr
ovm_component
ovm_transaction

do_begin_tr
ovm_component
ovm_transaction

do_compare
ovm_object

do_copy
ovm_object

389

Method Index

do_end_tr
ovm_component
ovm_transaction

do_Kill_all
ovm_component

do_pack
ovm_object

do_print
ovm_object

do_record
ovm_object

do_sequence_kind
ovm_sequence_base

do_unpack
ovm_object

drop
ovm_test_done_objection

drop_objection
ovm_objection

dropped
ovm_component

ovm_objection

dump_report_state
ovm_report_object

dump_server_state
ovm_report_server

enable_recording
ovm_transaction

end_of_elaboration
ovm_component

end_tr
ovm_component

ovm_transaction

execute_item
ovm_sequencer_param_base#(REQ,RSP)

exists
ovm_barrier_pool
ovm_event_pool
ovm_pool#(T)

extract
ovm_component

find
ovm_root

find_all
ovm_root

390

Method Index

find_override_by name
ovm_ factory

find_override_by_ type
ovm_factory

finish_item
ovm_sequence_base
ovm_sequence_item

first
ovm__barrier_pool
ovm_event_pool
ovm_ pool#(T)

flush
ovm_in_order_comparator#(T,comp_type,convert,pair_type)
tim_fifo#(T)

force_stop
ovm_test _done_objection

format_action
ovm_report_handler

generate_stimulus
ovm_random_stimulus#(T)

get
ovm_barrier_pool
ovm_component_registry#(T,Tname)
ovm_event_pool
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)

ovm_ pool#(T)

ovm_queue#(T)
sqr_if_base#(REQ,RSP)
tim_if_base#(T1,T2)

get_accept_time
ovm_transaction

get_action
ovm_report_handler

get_begin_time
ovm_transaction

get_child
ovm_component

get_comp
ovm_port_base#(IF)

get_config_int
ovm_component

get_config_object
ovm_component

get_config_string
ovm_component

391

Method Index

get_count
ovm_random_sequence

get_current_item
ovm_sequence#(REQ,RSP)

ovm_sequencer_param_base#(REQ,RSP)

get_current_phase
ovm_root

get_depth
ovm_sequence_item

get_drain_time
ovm_objection

get_end_time
ovm_transaction

get_event_pool
ovm_transaction

get_file_handle
ovm_report_handler

get_ first_child
ovm_component

get_full_name
ovm_component

ovm_object
ovm_port_base#(IF)

get_global
ovm_pool#(T)

ovm_queue#(T)

get_global_cbs
ovm__callbacks#(T,CB)

get_global_pool
ovm_barrier_pool

ovm_event_pool
ovm_object_string_pool#(T)
ovm_ pool#(T)

get_global_queue
ovm_queue#(T)

get_id_count
ovm_report_server

get_if
ovm_port_base#(IF)

get_initiator
ovm_transaction

get _inst_count
ovm_object

get_inst_id
ovm_object

get_max_quit_count
ovm_report_server

392

Method Index

get_name
ovm_object
ovm_phase
ovm_port_base#(IF)

get_next_child
ovm_component

get_next_item
sqr_if_base#(REQ,RSP)

get_num_children
ovm_component

get_num_last_reqs

ovim_sequencer_param_base#(REQ,RSP)

get_num_last_rsps

ovm_sequencer_param_base#(REQ,RSP)

get_num_regs_sent

ovm_sequencer_param_base#(REQ,RSP)

get_num_rsps_received

ovm_sequencer_param_base#(REQ,RSP)

get_num_waiters
ovm_barrier

ovm_event

get_object_type
ovm_object

get_objection_count
ovm_objection

get_objection_total
ovm_objection

get_packed_size
ovm_packer

get_parent
ovm_component

ovm_port_base#(IF)

get_parent_sequence
ovm_sequence_item

get_phase_ by name
ovm_root

get_priority
ovm_sequence_base

get_quit_count
ovm_report_server

get_radix_str
ovm_printer_knobs

get_report_action
ovm_report_object

get_report_file_handle
ovim_report_object

393

Method Index

get_report_handler
ovm_report_object

get_report_server
ovm_report_object

get_report_verbosity level
ovm_report_object

get_response
ovm_sequence#(REQ,RSP)

get_response_queue_depth
ovm_sequence#(REQ,RSP)

get_response_queue_error_report_disabled
ovm_sequence#(REQ,RSP)

get_root_sequence
ovm_sequence_item

get_root_sequence_name
ovm_sequence_item

get_seq_kind
ovm_sequence_base
ovm_sequencer_base

get_sequence
ovm_sequence_base

ovm_sequencer_base

get_sequence_by_ name
ovm_sequence_base

get_sequence_id
ovm_sequence_item

get_sequence_path
ovm_sequence_item

get_sequence_state
ovm_sequence_base

get_sequencer
ovm_sequence_base

ovm_sequence_item

get_server
ovm_report_server

get_severity_ count
ovm_report_server

get_threshold
ovm_ barrier

get_tr_handle
ovm_transaction

get_transaction_id
ovm_transaction

get_trigger_data
ovm_event

get_trigger_time
ovm_event

394

Method Index

get_type

ovm_object

get_type name

ovm__callback
ovm_component_registry#(T,Tname)
ovm_object
ovm_object_registry#(T,Tname)
ovm_object_string_pool#(T)
ovm_object_wrapper
ovm_phase
ovm_port_base#(IF)

get_use_response_handler
ovm_sequence_base

get_use_sequence_info
ovm_sequence_item

get_verbosity_level
ovm_report_handler

global_stop_request

grab
ovm_sequence_base

ovm_sequencer_base

has_child
ovm_component

has_do_available
ovm_sequencer_base

sqgr_if_base#(REQ,RSP)

has_lock
ovim_sequence_base
ovm_sequencer_base

in_stop_request
ovm_root

incr_id_count
ovm_report_server

incr_quit_count
ovm_report_server

incr_severity_count
ovm_report_server

insert
ovm_queue#(T)

insert_phase
ovm_root

is_active
ovm_transaction

is_blocked
ovm_sequence_base

ovm_sequencer_base

395

Method Index

is_child
ovm_sequencer_base

is_done
ovm_phase

is_empty
tim_ fifo#(T)

is_enabled
ovm__callback

is_export
ovm_port_base#(IF)

is_full
tim_fifo#(T)

is_grabbed
ovm_sequencer_base

is_imp
ovm_port_base#(IF)
is_in_progress
ovm_phase

is_item
ovm_sequence_base
ovm_sequence_item

is_null
ovm_ packer

is_off
ovm_event

is_on
ovm_event

is_port
ovm_port_base#(IF)

is_quit_count_reached
ovm_report_server

is_recording_enabled
ovm_transaction

is_relevant
ovm_sequence_base

is_task
ovm_phase

is_top_down
ovm_phase

is_unbounded
ovm_port_base#(IF)

item_done
sqr_if_base#(REQ,RSP)

kill
ovm_component
ovm_sequence_base

396

Method Index

L

last
ovm_barrier_pool

ovm_event_pool
ovm_pool#(T)

last_req
ovm_sequencer_param_base#(REQ,RSP)

last_rsp
ovm_sequencer_param_base#(REQ,RSP)

lock
ovm_sequence_base

ovm_sequencer_base

lookup
ovm_component

max_size
ovm_port_base#(IF)

mid_do
ovm_sequence_base

min_size
ovm_port_base#(IF)

397

Method Index

Method Index

$#1-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-2Z

N

nb_transport
tim_if_base#(T1,T2)

new
ovm_*_export#(REQ,RSP)
ovm_*_export#(T)
ovm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
ovm_*_imp#(T,IMP)

ovm_* port#(REQ,RSP)
ovm_*_port#(T)

ovm_agent
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)
ovm_ barrier

ovm_ barrier_pool
ovm_built_in_pair#(T1,T2)
ovm__callback
ovm__callbacks#(T,CB)
ovm_component
ovm_driver#(REQ,RSP)
ovm_env

ovm_event
ovm_event_callback
ovm_event_pool
ovm_monitor

ovm_object
ovm_object_string_pool#(T)
ovm_objection
ovm_pair#(T1,T2)
ovm_phase

ovm_pool#(T)
ovm_port_base#(IF)
ovm_push_driver#(REQ,RSP)
ovm_push_sequencer#(REQ,RSP)
ovm_queue#(T)
ovm_random_stimulus#(T)
ovm_report_handler
ovm_report_object
ovm_report_server
ovm_scoreboard
ovm_sequence#(REQ,RSP)
ovm_sequence_base
ovm_sequence_item

ovm_sequencer#(REQ,RSP)
398

Method Index

ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)
ovm_subscriber

ovm_test

ovm_transaction

tim_analysis_fifo#(T)

tim_fifo#(T)

tim_fifo_base#(T)
tim_req_rsp_channel#(REQ,RSP)
tim_transport_channel#(REQ,RSP)

next

ovm_ barrier_pool
ovm_event_pool
ovm_pool#(T)

num
ovm__barrier_pool

ovm_event_pool
ovm_pool#(T)

num_sequences
ovm_sequence_base

ovm_sequencer_base

ovm_bits_to_ string
ovm_is_match
ovm_report_enabled
Global

ovm_report_object

ovm_report_error
Global

ovm_report_object

ovm_report_fatal
Global

ovm_report_object
ovm_report_info
Global
ovm_report_object
ovm_report_warning
Global
ovm_report_object

ovm_string_to_Dbits
ovm_wait_for_nba_region

pack
ovm_object

399

Method Index

pack bytes
ovm_object

pack_field
ovm_ packer

pack_field_int
ovm_ packer

pack_ints
ovm_object

pack object
ovm_ packer

pack_real
ovm_ packer

pack_string
ovm_ packer

pack_time
ovm_ packer

peek
sqr_if_base#(REQ,RSP)
tim_if_base#(T1,T2)

pop_back
ovm_queue#(T)

pop_front
ovm_queue#(T)

post_body
ovm_sequence_base

post_do
ovm_sequence_base

post_trigger
ovm_event_callback

pre_body
ovm_sequence_base

pre_do
ovm_sequence_base

pre_trigger
ovm_event callback

prev
ovm_ barrier_pool
ovm_event_pool
ovm_pool#(T)

print
ovm_factory
ovm_object

400

Method Index

print_array_footer
ovm_ printer

print_array header
ovm_ printer

print_array_range
ovm_ printer

print_config_settings
ovm_component

print_field
ovm_ printer

print_footer
ovm_ printer

print_header
ovm_printer
print_id

ovm_ printer

print_msg
ovm_comparer

print_newline
ovm_line_printer
ovm_printer

print_object
ovm_printer

print_object header
ovm_printer

print_override_info
ovm_component

print_size
ovm_ printer

print_string
ovm_ printer

print_time
ovm_ printer

print_type name
ovm_ printer

print_value
ovm_ printer

print_value_array
ovm_ printer

print_value_object
ovm_printer

print_value_string
ovm_printer

401

Method Index

Q

R

process_report
ovm_report_server

push_back
ovm_queue#(T)

push_front
ovm_queue#(T)

put

sqr_if _base#(REQ,RSP)

tim_if_base#(T1,T2)

qualify

ovm_test _done_objection

raise_objection
ovm_objection

ovm_test _done_objection

raised
ovm_component
ovm_objection
ovm_root

record
ovm_object

record_error_tr
ovm_component

record_event_tr
ovm_component

record_field
ovm_recorder

record_field_real
ovm_recorder

record_generic
ovm_recorder

record_object
ovm_recorder

record_string
ovm_recorder

record_time
ovm_recorder

register
ovm_factory

report
ovm_component

ovm_report_handler

402

Method Index

report_error_hook
ovm_report_object

report_fatal hook
ovm_report_object

report_header
ovm_report_object

report_hook
ovm_report_object

report_info_hook
ovm_report_object

report_summarize
ovm_report_object

report_warning_hook
ovm_report_object

reseed
ovm_object

reset
ovm_ barrier

ovm_event
ovm_phase

reset_quit_count
ovm_report_server

reset_report_handler
ovm_report_object

reset_severity_counts
ovm_report_server

resolve_bindings
ovm_component

ovm_port_base#(IF)

response_handler
ovm_sequence_base

resume
ovm_component

run
ovm_component

ovm_push_sequencer#(REQ,RSP)

run_hooks
ovm_report_handler

run_test
Global

ovm_root

403

Method Index

send_request
ovm_sequence#(REQ,RSP)

ovm_sequence_base
ovm_sequencer_base
ovm_sequencer_param_base#(REQ,RSP)

set_arbitration
ovm_sequencer_base

set_auto_reset
ovm_ barrier

set_config_int
Global

ovm_component

set_config_object
Global

ovm_component

set_config_string
Global

ovm_component

set_default_index
ovm_port_base#(IF)

set_depth
ovm_sequence_item

set_drain_time
ovm_objection

set_global_stop_timeout
set_global_timeout
set_id_count
ovm_report_server

set_id_info
ovm_sequence_item

set_initiator
ovm_transaction

set_inst_override
ovm_component

ovm_component_registry#(T,Thame)
ovm_object_registry#(T,Tname)

set_inst_override_by name
ovm_factory

set_inst_override_by type
ovm_component
ovm_factory

set_int_local
ovm_object

404

Method Index

set_max_quit_count
ovm_report_server

set_name
ovm_component
ovm_object

set_num_last_reqs
ovm_sequencer_param_base#(REQ,RSP)

set_num_last_rsps
ovm_sequencer_param_base#(REQ,RSP)

set_object_local
ovm_object

set_parent_sequence
ovm_seguence_item

set_priority
ovm_sequence_base

set_quit_count
ovm_report_server

set_report_default_file
ovm_report_object

set_report_default_file_hier
ovm_component

set_report_handler
ovm_report_object

set_report_id_action
ovm_report_object
set_report_id_action_hier
ovm_component
set_report_id_file
ovm_report_object
set_report_id_file_hier
ovm_component

set_report_max_quit_count
ovm_report_object

set_report_severity action
ovm_report_object

set_report_severity_action_hier
ovm_component

set_report_severity_file
ovm_report_object

set_report_severity_file_hier
ovm_component
set_report_severity_id_action
ovm_report_object

405

Method Index

set_report_severity_id_action_hier
ovm_component

set_report_severity_id_file
ovm_report_object

set_report_severity_id_file_hier
ovm_component

set_report_verbosity level
ovm_report_object

set_report_verbosity level hier
ovm_component

set_response_queue_depth
ovm_sequence#(REQ,RSP)

set_response_queue_error_report_disabled
ovm_sequence#(REQ,RSP)

set_sequencer
ovm_sequence#(REQ,RSP)

ovm_sequence_base
ovm_sequence_item

set_severity count
ovm_report_server

set_string_local
ovm_object

set_threshold
ovm_barrier

set_transaction_id
ovm_transaction

set_type_override
ovm_component

ovm_component_registry#(T,Tnhame)
ovm_object_registry#(T,Tname)

set_type_override_by name
ovm_factory

set_type_override_by_ type
ovm_component
ovm_factory

set_use_sequence_info
ovm_sequence_item

size
ovm_port_base#(IF)
ovm_queue#(T)
tim_fifo#(T)

sprint
ovm_object

406

Method Index

start
ovm_sequence#(REQ,RSP)

ovm_sequence_base

start_default _sequence
ovm_sequencer_base

ovm_sequencer_param_base#(REQ,RSP)

start_item
ovm_sequence_base

ovm_seguence_item

start_of simulation
ovm_component

status
ovm_component

stop
ovm_component

stop_request
ovm_root

stop_sequences
ovm_sequencer#(REQ,RSP)

ovm_sequencer_base

stop_stimulus_generation
ovm_random_stimulus#(T)

summarize
ovm_report_server

suspend
ovm_component

trace_mode
ovm_callbacks#(T,CB)

transport
tim_if_base#(T1,T2)

trigger
ovm_event

try_get
tim_if_base#(T1,T2)

try _next_item
sqgr_if_base#(REQ,RSP)

try peek
tim_if_base#(T1,T2)

try_put
tim_if_base#(T1,T2)

407

Method Index

Method Index

$#!-0-9-A-B-C-D-E-F-

K-

L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-
z

U

ungrab
ovm_sequence_base

ovm_sequencer_base

unlock
ovm_sequence_base

ovm_sequencer_base

unpack
ovm_object

unpack_bytes
ovm_object

unpack_field
ovm_ packer

unpack_field_int
ovm_ packer

unpack_ints
ovm_object

unpack_ object
ovm_ packer

unpack_real
ovm_ packer

unpack_string
ovm_ packer

unpack_time
ovm_ packer

use_response_handler
ovm_sequence_base

used
tim_fifo#(T)

user_priority_arbitration
ovm_sequencer_base

W

wait_done
ovm_phase

408

Method Index

wait_for
ovm_ barrier

wait_for_grant
ovim_sequence_base

ovm_sequencer_base

wait_for_item_done
ovm_sequence_base
ovm_seqguencer_base

wait_for_relevant
ovm_sequence_base

wait_for_sequence_state
ovm_sequence_base

wait_for_sequences
ovm_sequencer_base

sqr_if _base#(REQ,RSP)

wait_off
ovm_event

wait_on
ovm_event

wait_ptrigger
ovm_event

wait_ptrigger_data
ovm_event

wait_start
ovm_phase

wait_trigger
ovm_event

wait_trigger_data
ovm_event

write
ovm_subscriber

tim_if_base#(T1,T2)

409

Type Index

Type Index

$#!-0-9-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X
Y-Z

O

ovm_ action

ovm_ bitstream_t
ovim_port_type_e
ovm_radix_enum
ovm_recursion_policy _enum
ovim_sequence_state_enum
ovim_severity
ovm_verbosity

410

Variable Index

Variable Index

$#!-0-9-A-B-C-D-E-F-G-H-1I-

M-N-O-P-Q-R-S-T-U-V-W

A

abstract
ovm_comparer

ovm_packer
ovm_recorder

begin_elements
ovm_ printer_knobs

big_endian
ovm_ packer

bin_radix
ovm_ printer_knobs

check_type
ovm_comparer

count
ovm_seqguencer_base

dec_radix
ovm_printer_knobs

default_radix
ovm_printer_knobs

ovm_recorder

default_sequence
ovm_sequencer_base

depth
ovm_ printer_knobs

E

enable_print_topology
ovm_root

411

Variable Index

enable_stop_interrupt
ovm_component

end_elements
ovm_ printer_knobs

finish_on_completion
ovm_root

footer
ovm_printer_knobs

full_name
ovm_ printer_knobs

G

global_indent
ovm_ printer_knobs

H

header
ovm_ printer_knobs

hex_ radix
ovm_ printer_knobs

id_count
ovm_report_server

identifier
ovim_ printer_knobs
ovm_recorder

indent_str
ovm_hier_printer_knobs

knobs
ovm_ printer

ovm_table_printer
ovm_tree_printer

M

max_random_count
ovim_sequencer_base

412

Variable Index

max_random_depth
ovm_sequencer_base

max_width
ovm_printer_knobs

mcd
ovm_ printer_knobs

miscompares
ovm_comparer

name_width
ovm_table_ printer_knobs

new
ovm_line_printer

ovm_table_ printer
ovm_tree_printer

oct_radix
ovm_ printer_knobs

ovm_default_comparer
ovm_default_line_printer
ovm_ default_packer
ovm_default_printer
ovm_default _recorder
ovm_default_table_printer
ovm_default_tree_printer
ovm_test _done

ovm_top

ovm_root

phase_timeout
ovm_root

physical
ovm_comparer
ovm_ packer
ovm_recorder

policy
ovm_comparer

413

Variable Index

pound_zero_count
ovm_sequencer_base

prefix
ovim_ printer_knobs

print_config_matches
ovm_component

print_enabled
ovm_component

recursion_policy
ovm_recorder

reference
ovm_ printer_knobs

result
ovm_comparer

S

separator
ovm_tree_printer_knobs

seq_item_export
ovm_sequencer#(REQ,RSP)

seq_kind
ovm_sequence_base

sev
ovm_comparer

show_max
ovm_comparer

show_radix
ovm_ printer_knobs

show_root
ovm_hier_printer_knobs
size

ovm_printer_knobs

size_width
ovm_table_printer_knobs

stop_timeout
ovm_root

Variable Index

T

tr_handle
ovm_recorder

truncation
ovm_ printer_knobs

type_name
ovm_ printer_knobs

type_width
ovm_table_ printer_knobs

unsigned_radix
ovm_printer_knobs

use metadata
ovm_ packer

use_ovm_seeding
ovm_object

value_ width
ovm_table_ printer_knobs

verbosity
ovm_comparer

415

Constant Index

Constant Index

$#!-0-9-A-B-C-D-E-F-G-H-1- M-N-O-P-Q-R-S-T-U-V-W-

BODY

CREATED

ENDED

FINISHED

O m m O

OVM_BIN
OVM_CALL_HOOK
OVM_COUNT
OVM_DEC
OVM_DEEP
OVM_DISPLAY
OVM_ENUM
OVM_ERROR
OVM_EXIT
OVM_EXPORT
OVM_FATAL
OVM_FULL
OVM_HEX
OVM_HIGH
OVM_ IMPLEMENTATION
OVM_INFO
OVM_LOG
OVM_LOW
OVM_MEDIUM
OVM_NO_ACTION
OVM_NONE
OVM_OCT
OVM_PORT
OVM_REFERENCE
OVM_SHALLOW

416

Constant Index

OVM_STRING
OVM_TIME
OVM_UNSIGNED
OVM_WARNING

P

POST_BODY
PRE_BODY

S

STOPPED

417

Port Index

Port Index

$#!-09-A-B-C-D-E-F-G-H-1-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-
X-Y-Z

A

after_export
ovm_ algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)

ovm_in_order_comparator#(T,comp_type,convert,pair_type)

analysis_export
ovm_subscriber

analysis_port#(T)
tim_analysis_fifo#(T)

before export
ovm_algorithmic_comparator#(BEFORE,AFTER, TRANSFORMER)

ovim_in_order_comparator#(T,comp_type,convert,pair_type)

blocking put_port
ovm_random_stimulus#(T)

get_ap
tim_fifo_base#(T)

get_peek_export
tim_fifo_base#(T)

get_peek_request_export
tim_req_rsp_channel#(REQ,RSP)

get_peek_response_export
tim_req_rsp_channel#(REQ,RSP)

M

master_export
tim_req_rsp_channel#(REQ,RSP)

P

pair_ap
ovm_in_order_comparator#(T,comp_type,convert,pair_type)

418

Port Index

put_ap
tim_fifo_base#(T)

put_export
tim_fifo_base#(T)

put_request_export
tim_req_rsp_channel#(REQ,RSP)

put_response_export
tim_req_rsp_channel#(REQ,RSP)

req_export
ovm_push_driver#(REQ,RSP)

req_port
ovm_push_sequencer#(REQ,RSP)

request_ap
tim_req_rsp_channel#(REQ,RSP)

response_ap
tim_req_rsp_channel#(REQ,RSP)

rsp_export
ovim_sequencer_param_base#(REQ,RSP)

rsp_port
ovm_driver#(REQ,RSP)

ovm_push_driver#(REQ,RSP)

seq_item_port
ovm_driver#(REQ,RSP)

slave_export
tim_req_rsp_channel#(REQ,RSP)

T

transport_export
tim_transport_channel#(REQ,RSP)

419

	OVM Class Reference

	Introduction

	BASE
	
Overview
	ovm_void
	ovm_object
	ovm_transaction
	ovm_component
	ovm_root
	ovm_phase

	ovm_port_base
	ovm_barrier_pool
	ovm_event_pool

	REPORTING
	Overview

	ovm_report_object
	ovm_report_handler
	ovm_report_server

	FACTORY
	Overview

	ovm_*_
registry
	ovm_factory

	SYNCHRONIZATION
	Overview

	ovm_event
	ovm_event_callback
	ovm_barrier
	ovm_objection

	CONTAINERS
	ovm_pool
	ovm_queue
	ovm_callback

	POLICIES
	Overview

	ovm_printer
	ovm_comparer
	ovm_recorder
	ovm_packer

	TLM
	Overview

	tlm_if_base

	ovm_*_port

	ovm_*_export

	ovm_*_imp

	tlm_fifo_base
	tlm_fifo

	tlm_req_rsp_channel

	COMPONENTS
	Overview

	ovm_test
	ovm_env
	ovm_agent
	ovm_monitor
	ovm_scoreboard
	ovm_driver
	ovm_push_driver
	ovm_random_stimulus
	ovm_subscriber

	COMPARATORS
	Overview

	ovm_in_order_comparator
	ovm_algorithmic_comparator
	ovm_pair
	ovm_policies

	SEQUENCERS
	Overview

	sqr_if_base

	ovm_seq_item_ports

	ovm_sequencer_base
	ovm_sequencer_param_base
	ovm_sequencer
	ovm_push_sequencer

	SEQUENCES
	Overview

	ovm_sequence_item
	ovm_sequence_base
	ovm_sequence
	Predefined Sequences

	MACROS
	Report Macros

	Component and Object

	Sequence and Do Action

	TLM Imp Port Declarations

	Callback Macros

	GLOBALS
	Types, Enums, Policies

	Globals

	INDEX
	Everything

	Classes
	Files
	Macros
	Methods
	Types
	Variables
	Constants
	Ports

