
OVM User Guide
Version 2.1.2
 June 2011

© 2008–2011 Cadence Design Systems, Inc. (Cadence). All rights reserved.
Cadence Design Systems, Inc., 2655 Seely Ave., San Jose, CA 95134, USA.

© 2008–2011 Mentor Graphics, Corp. (Mentor). All rights reserved.
Mentor Graphics, Corp., 8005 SW Boeckman Rd., Wilsonville, OR 97070, USA

This product is licensed under the Apache Software Foundation’s Apache License, Version 2.0, January
2004. The full license is available at: http://www.apache.org/licenses/

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. and Mentor Graphics,
Corp. contained in this document are attributed to Cadence and Mentor with the appropriate symbol. For
queries regarding Cadence’s or Mentor’s trademarks, contact the corporate legal department at the address
shown above. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law. Cadence and Mentor grant
permission to print hard copy of this publication subject to the following conditions:

1. The publication may not be modified in any way.
2. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.

Disclaimer: Information in this publication is provided as is and subject to change without notice and does
not represent a commitment on the part of Cadence or Mentor. Cadence and Mentor do not make, and
expressly disclaim, any representations or warranties as to the completeness, accuracy, or usefulness of
the information contained in this document. Cadence and Mentor do not warrant that use of such information
will not infringe any third party rights, nor does Cadence or Mentor assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

3

1
OVM Overview . 9

Introduction to OVM . 9
OVM and Coverage-Driven Verification (CDV) . 9
OVM Testbench and Environments . 10

OVC Overview . 11
Data Item (Transaction) . 12
Driver (BFM) . 12
Sequencer . 12
Monitor . 13
Agent . 14
Environment . 14

The SystemVerilog OVM Class Library . 15
Other OVM Facilities . 17

2
Transaction-Level Modeling (TLM) . 19

Transaction-Level Modeling Overview . 19
TLM Basics . 20

Transactions . 20
Transaction-Level Communication . 20
Basic TLM Communication . 21
Communicating Between Processes . 23
Blocking versus Nonblocking . 23
Connecting Transaction-Level Components . 24
Peer-to-Peer connections . 24
Port/Export Compatibility . 24

Encapsulation and Hierarchy . 25
Hierarchical Connections . 25

Analysis Communication . 27
Analysis Ports . 27

Contents

4

Analysis Exports . 28

3
Developing Reusable Open Verification Components (OVCs)
31

Modeling Data Items for Generation . 31
Inheritance and Constraint Layering . 33
Defining Control Fields (“Knobs”) . 34

Transaction-Level Components . 35
Creating the Driver . 38
Creating the Sequencer . 39

Connecting the Driver and Sequencer . 40
Fetching Consecutive Randomized Items . 42
Sending Processed Data Back to the Sequencer . 42
Using TLM-Based Drivers . 43

Creating the Monitor . 44
Instantiating Components . 46
Creating the Agent . 47
Creating the Environment . 49

The Environment Class . 50
The OVM Configuration Mechanism . 51

Enabling Scenario Creation . 53
Declaring User-Defined Sequences . 53
Generating Stimulus with Sequences and Sequence Items . 54
Predefined Sequences . 58
Configuring the Sequencer's Default Sequence . 59
Overriding Sequence Items and Sequences . 60
Building a Reusable Sequence Library . 61

Managing End of Test . 61
Implementing Checks and Coverage . 62

Implementing Checks and Coverage in Classes . 63
Implementing Checks and Coverage in Interfaces . 65
Controlling Checks and Coverage . 65

5

4
Using OVCs . 67

Using an OVC . 68
Test Class . 69
Testbench Class . 70

Instantiating OVCs . 72
OVC Configuration . 74

OVC Configurable Parameters . 74
OVC Configuration Mechanism . 74
Using a Configuration Class . 75

Creating and Selecting a User-Defined Test . 76
Creating the Base Test . 76
Creating Tests from a Test-Family Base Class . 77
Test Selection . 77

Creating Meaningful Tests . 78
Constraining Data Items . 79
Using Sequences . 81

Virtual Sequences . 88
Creating a Virtual Sequencer . 90
Creating a Virtual Sequence . 91
Controlling Other Sequencers . 92
Connecting a Virtual Sequencer to Subsequencers . 93

Checking for DUT Correctness . 94
Scoreboards . 94

Implementing a Coverage Model . 98
Selecting a Coverage Method . 98
Implementing a Functional Coverage Model . 99

5
Advanced Topics. 101

The ovm_component Base Class . 101
Simulation Phase Methods . 102

build() . 102
connect() . 103

6

end_of_elaboration() . 103
start_of_simulation() . 103
run() . 104
extract() . 104
check() . 105
report() . 105
Adding User-Defined Phases . 105

The Built-In Factory and Overrides . 106
About the Factory . 106
Factory Registration . 107
Component Overrides . 107

Callbacks . 111
Problematic Nature of Callbacks . 111
Callbacks Use model . 111
Callback Example . 112

Advanced Sequence Control . 116
Implementing Complex Scenarios . 116
Protocol Layering . 121
Advanced Sequence-Generation . 131

6
XBus OVC Example. 137

XBus Demo . 138
XBus Demo Architecture . 141
XBus Top Module . 142
The Test . 143
Testbench Environment . 146
XBus Environment . 148
XBus Agent . 149
XBus Sequencer . 151
XBus Driver . 152
XBus Agent Monitor . 153
XBus Bus Monitor . 153

Collecting Transfers from the Bus . 154
Number of Transfers . 155

7

Notifiers Emitted by the XBus Bus Monitor . 155
Checks and Coverage . 155

XBus Interface . 155

7
XBus Specification. 157

Introduction . 157
Motivation . 157
Bus Overview . 157

Bus Description . 157
Bus Signals . 157
Clocking . 159
Reset . 159

Arbitration Phase . 159
Address Phase . 160

NOP Cycle . 160
Normal Address Phase . 160

Data Phase . 161
Write Transfer . 161
Read Transfer . 161

What Drives What When . 162
Optional Pipelining Scheme . 163

Pipelined Arbitration Phase . 163
Pipelined Address Phase . 164
Pipelined Data Phase . 164

Example Timing Diagrams . 165

8

OVM User Guide

March 2010 9 Product Version 2.1.1

1
OVM Overview

This chapter describes:

■ How to use the Open Verification Methodology (OVM) for creating SystemVerilog
testbenches.

■ The recommended architecture of an OVM Verification Component (OVC).

This chapter contains the following sections:

■ “Introduction to OVM” on page 9

■ “OVC Overview” on page 11

■ “The SystemVerilog OVM Class Library” on page 15

Introduction to OVM

OVM and Coverage-Driven Verification (CDV)

OVM provides the best framework to achieve coverage-driven verification (CDV). CDV
combines automatic test generation, self-checking testbenches, and coverage metrics to
significantly reduce the time spent verifying a design. The purpose of CDV is to:

■ Eliminate the effort and time spent creating hundreds of tests.

■ Ensure thorough verification using up-front goal setting.

■ Receive early error notifications and deploy run-time checking and error analysis to
simplify debugging.

The CDV flow is different than the traditional directed-testing flow. With CDV, you start by
setting verification goals using an organized planning process. You then create a smart
testbench that generates legal stimuli and sends it to the DUT. Coverage monitors are added
to the environment to measure progress and identify non-exercised functionality. Checkers

OVM User Guide
OVM Overview

March 2010 10 Product Version 2.1.1

are added to identify undesired DUT behavior. Simulations are launched after both the
coverage model and testbench have been implemented. Verification then can be achieved.

Using CDV, you can thoroughly verify your design by changing testbench parameters or
changing the randomization seed. Test constraints can be added on top of the smart
infrastructure to tune the simulation to meet verification goals sooner. Ranking technology
allows you to identify the tests and seeds that contribute to the verification goals, and to
remove redundant tests from a test-suite regression.

CDV environments support both directed and constrained-random testing. However, the
preferred approach is to let constrained-random testing do most of the work before devoting
effort to writing time-consuming, deterministic tests to reach specific scenarios that are too
difficult to reach randomly.

Significant efficiency and visibility into the verification process can be achieved by proper
planning. Creating an executable plan with concrete metrics enables you to accurately
measure progress and thoroughness throughout the design and verification project. By using
this method, sources of coverage can be planned, observed, ranked, and reported at the
feature level. Using an abstracted, feature-based approach (and not relying on
implementation details) enables you to have a more readable, scalable, and reusable
verification plan.

OVM Testbench and Environments

An OVM testbench is composed of reusable verification environments called OVM verification
components (OVCs). An OVC is an encapsulated, ready-to-use, configurable verification
environment for an interface protocol, a design submodule, or a full system. Each OVC follows
a consistent architecture and consists of a complete set of elements for stimulating, checking,
and collecting coverage information for a specific protocol or design. The OVC is applied to
the device under test (DUT) to verify your implementation of the protocol or design
architecture. OVCs expedite creation of efficient testbenches for your DUT and are structured
to work with any hardware description language (HDL) and high-level verification language
(HVL) including Verilog, VHDL, e, SystemVerilog, and SystemC.

Figure 1-1 on page 11 shows an example of a verification environment with three interface
OVCs. These OVCs might be stored in a company repository and reused for multiple
verification environments. The interface OVC is instantiated and configured for a desired
operational mode. The verification environment also contains a multi-channel sequence
mechanism (that is, virtual sequencer) which synchronizes the timing and the data between
the different interfaces and allows fine control of the test environment for a particular test.

OVM User Guide
OVM Overview

March 2010 11 Product Version 2.1.1

Figure 1-1 Verification Environment Example

OVC Overview

The following subsections describe the components of an OVC:

■ “Data Item (Transaction)” on page 12

■ “Driver (BFM)” on page 12

Vi
rtu

al
 S

eq
ue

nc
er

CPU Mem

Periph Periph

DUT

Verification Environment OVC Repository

OVC 1

mon driver

mon driver

Bus OVC
mon driver

Bus OVC

OVC 2

mon driver

OVC 1

mon driver

mon

OVC 2

mon driver

Legend

monitor

sequencer

mon driver

interface OVC

OVM User Guide
OVM Overview

March 2010 12 Product Version 2.1.1

■ “Sequencer” on page 12

■ “Monitor” on page 13

■ “Agent” on page 14

■ “Environment” on page 14

Data Item (Transaction)

Data items represent the input to the DUT. Examples include networking packets, bus
transactions, and instructions. The fields and attributes of a data item are derived from the
data item’s specification. For example, the Ethernet protocol specification defines valid values
and attributes for an Ethernet data packet. In a typical test, many data items are generated
and sent to the DUT. By intelligently randomizing data item fields using SystemVerilog
constraints, you can create a large number of meaningful tests and maximize coverage.

Driver (BFM)

A driver is an active entity that emulates logic that drives the DUT. A typical driver repeatedly
receives a data item and drives it to the DUT by sampling and driving the DUT signals. (If you
have created a verification environment in the past, you probably have implemented driver
functionality.) For example, a driver controls the read/write signal, address bus, and data bus
for a number of clocks cycles to perform a write transfer.

Sequencer

A sequencer is an advanced stimulus generator that controls the items that are provided to
the driver for execution. By default, a sequencer behaves similarly to a simple stimulus
generator and returns a random data item upon request from the driver. This default behavior
allows you to add constraints to the data item class in order to control the distribution of
randomized values. Unlike generators that randomize arrays of transactions or one
transaction at a time, a sequencer captures important randomization requirements out-of-the-
box. A partial list of the sequencer’s built-in capabilities includes:

■ Ability to react to the current state of the DUT for every data item generated.

■ Captures the order between data items in user-defined sequences, which forms a more
structured and meaningful stimulus pattern.

■ Enables time modeling in reusable scenarios.

■ Supports declarative and procedural constraints for the same scenario.

OVM User Guide
OVM Overview

March 2010 13 Product Version 2.1.1

■ Allows system-level synchronization and control of multiple interfaces.

For more information about creating and using sequencers, refer to the OVM Class
Reference and to the following sections in this manual:

■ “Enabling Scenario Creation” on page 53.

■ “Using Sequences” on page 81.

■ “Creating a Virtual Sequence” on page 91.

Sequencers also can be layered on top of each other to model protocol layering. Refer to
“Using Layered Sequencers” on page 128 for more information.

Monitor

A monitor is a passive entity that samples DUT signals but does not drive them. Monitors
collect coverage information and perform checking. Even though reusable drivers and
sequencers drive bus traffic, they are not used for coverage and checking. Monitors are used
instead. A monitor:

■ Collects transactions (data items). A monitor extracts signal information from a bus and
translates the information into a transaction that can be made available to other
components and to the test writer.

■ Extracts events. The monitor detects the availability of information (such as a
transaction), structures the data, and emits an event to notify other components of the
availability of the transaction. A monitor also captures status information so it is available
to other components and to the test writer.

■ Performs checking and coverage.

❑ Checking typically consists of protocol and data checkers to verify that the DUT
output meets the protocol specification.

❑ Coverage also is collected in the monitor.

■ Optionally prints trace information.

A bus monitor handles all the signals and transactions on a bus, while an agent monitor
handles only signals and transactions relevant to a specific agent.

Typically, drivers and monitors are built as separate entities (even though they may use the
same signals) so they can work independently of each other. However, you can reuse code
that is common between a driver and a monitor to save time.

OVM User Guide
OVM Overview

March 2010 14 Product Version 2.1.1

Note: Do not have monitors depend on drivers for information so that an agent can operate
passively when only the monitor is present.

Agent

Sequencers, drivers, and monitors can be reused independently, but this requires the
environment integrator to learn the names, roles, configuration, and hookup of each of these
entities. To reduce the amount of work and knowledge required by the test writer, OVM
recommends that environment developers create a more abstract container called an agent.
Agents can emulate and verify DUT devices. They encapsulate a driver, sequencer, and
monitor. OVCs can contain more than one agent. Some agents (for example, master or
transmit agents) initiate transactions to the DUT, while other agents (slave or receive agents)
react to transaction requests. Agents should be configurable so that they can be either active
or passive. Active agents emulate devices and drive transactions according to test directives.
Passive agents only monitor DUT activity.

Environment

The environment (env) is the top-level component of the OVC. It contains one or more agents,
as well as other components such as a bus monitor. The env contains configuration
properties that enable you to customize the topology and behavior and make it reusable. For
example, active agents can be changed into passive agents when the verification
environment is reused in system verification. Figure 1-2 on page 15 illustrates the structure
of a reusable verification environment. Notice that an OVC may contain an environment-level
monitor. This bus-level monitor performs checking and coverage for activities that are not
necessarily related to a single agent. An agent’s monitors can leverage data and events
collected by the global monitor.

The environment class (ovm_env) is architected to provide a flexible, reusable, and
extendable verification component. The main function of the environment class is to model
behavior by generating constrained-random traffic, monitoring DUT responses, checking the
validity of the protocol activity, and collecting coverage.

You can use derivation to specialize the existing classes to their specific protocol. This manual
describes the process and infrastructure that OVM provides to replace existing component
behavior with IP-specific behavior.

OVM User Guide
OVM Overview

March 2010 15 Product Version 2.1.1

Figure 1-2 Typical OVC Environment

The SystemVerilog OVM Class Library

The SystemVerilog OVM Class Library provides all the building blocks you need to quickly
develop well-constructed, reusable, verification components and test environments (see
Figure 1-3 on page 16). The library consists of base classes, utilities, and macros.
Components may be encapsulated and instantiated hierarchically and are controlled through
an extendable set of phases to initialize, run, and complete each test. These phases are
defined in the base class library but can be extended to meet specific project needs. See the
OVM Class Reference for more information.

DUT

OVC Environment

Config:
...
...
name
has_...
...

bus

bus monitor

checks
coverage

sequencer

Config

Analysis

Master

ovm_drivemonitor

Analysis

driver

sequencer

Config

Analysis

Slave Agent

ovm_drivemonitor

Analysis

driver

sequencer

Config

Analysis

Master

ovm_drivemonitor

Analysis

driver

sequencer

Config

Analysis

Slave Agent

ovm_drivemonitor

Analysis

driver

OVM User Guide
OVM Overview

March 2010 16 Product Version 2.1.1

Figure 1-3 (Partial) OVM Class Hierarchy

The advantages of using the SystemVerilog OVM Class Library include:

■ A robust set of built-in features—The SystemVerilog OVM Class Library provides many
features that are required for verification, including complete implementation of printing,
copying, test phases, factory methods, and more.

■ Correctly-implemented OVM concepts—Each component in the block diagram in
Figure 1-2 on page 15 is derived from a corresponding SystemVerilog OVM Class
Library component. Figure 1-4 on page 17 shows the same diagram using the derived
SystemVerilog OVM Class Library base classes. Using these base-class elements
increases the readability of your code since each component’s role is predetermined by
its parent class.

OVM User Guide
OVM Overview

March 2010 17 Product Version 2.1.1

Figure 1-4 Typical OVM Environment Using OVM Library Classes

Other OVM Facilities

The SystemVerilog OVM Class Library also provides various utilities to simplify the
development and use of verification environments. These utilities support debugging by
providing a user-controllable messaging utility. They support development by providing a
standard communication infrastructure between verification components (TLM) and flexible
verification environment construction (OVM factory).

The SystemVerilog OVM Class Library provides global messaging facilities that can be used
for failure reporting and general reporting purposes. Both messages and reporting are
important aspects of ease of use.

This section includes the following:

■ “OVM Factory” on page 18

■ “Transaction-Level Modeling” on page 18

DUT

ovm_env

Config:
...
...
name
has_...
...

bus

ovm_monito

checks
coverage

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_sequence

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Master

ovm_driveovm_monitor

Analysis

ovm_drive

OVM User Guide
OVM Overview

March 2010 18 Product Version 2.1.1

OVM Factory

The factory method is a classic software design pattern that is used to create generic code,
deferring to run time the exact specification of the object that will be created. In functional
verification, introducing class variations is frequently needed. For example, in many tests you
might want to derive from the generic data item definition and add more constraints or fields
to it; or you might want to use the new derived class in the entire environment or only in a
single interface; or perhaps you must modify the way data is sent to the DUT by deriving a
new driver. The factory allows you to substitute the verification component without having to
provide a derived version of the parent component as well.

The SystemVerilog OVM Class Library provides a built-in central factory that allows:

■ Controlling object allocation in the entire environment or for specific objects.

■ Modifying stimulus data items as well as infrastructure components (for example, a
driver).

Use of the OVM built-in factory reduces the effort of creating an advanced factory or
implementing factory methods in class definitions. It facilitates reuse and adjustment of
predefined verification IP in the end-user’s environment. One of the biggest advantages of the
factory is that it is transparent to the test writer and reduces the object-oriented expertise
required from both developers and users.

Transaction-Level Modeling

OVM components communicate via standard TLM interfaces, which improves reuse. Using a
SystemVerilog implementation of TLM in OVM, a component may communicate via its
interface to any other component that implements that interface. Each TLM interface consists
of one or more methods used to transport data. TLM specifies the required behavior
(semantic) of each method but does not define their implementation. Classes inheriting a
TLM interface must provide an implementation that meets the specified semantic. Thus, one
component may be connected at the transaction level to others that are implemented at
multiple levels of abstraction. The common semantics of TLM communication permit
components to be swapped in and out without affecting the rest of the environment.

OVM User Guide

March 2010 19 Product Version 2.1.1

2
Transaction-Level Modeling (TLM)

Transaction-Level Modeling Overview

One of the keys to verification productivity is to think about the problem at a level of
abstraction that makes sense. When verifying a device under test (DUT) that handles packets
flowing back and forth, or processes instructions, or performs other types of functionality, you
must create a verification environment that supports the appropriate abstraction level. While
the actual interface to the DUT ultimately is represented by signal-level activity, experience
has shown that it is necessary to manage most of the verification tasks, such as generating
stimulus and collecting coverage data, at the transaction level, which is the natural way
engineers tend to think of the activity of a system.

OVM provides a set of transaction-level communication interfaces and channels that you can
use to connect components at the transaction level. The use of TLM interfaces isolates each
component from changes in other components throughout the environment. When coupled
with the phased, flexible build infrastructure in OVM, TLM promotes reuse by allowing any
component to be swapped for another, as long as they have the same interfaces. This
concept also allows OVM verification environments to be assembled with a transaction-level
model of the DUT, and the environment to be reused as the design is refined to RTL. All that
is required is to replace the transaction-level model with a thin layer of compatible
components to convert between the transaction-level activity and the pin-level activity at the
DUT.

The well-defined semantics of TLM interfaces between components also provide the ideal
platform for implementing mixed-language verification environments. In addition, TLM
provides the basis for easily encapsulating components into reusable components, called
OVM verification components (OVCs), to maximize reuse and minimize the time and effort
required to build a verification environment.

This chapter discusses the essential elements of transaction-level communication in OVM,
and illustrates the mechanics of how to assemble transaction-level components into a
verification environment. Later in this document we will discuss additional concerns in order
to address a wider set of verification issues. For now, it is important to understand these
foundational concepts first.

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 20 Product Version 2.1.1

TLM Basics

Before you can fully understand how to model verification at the transaction level, you must
understand what a transaction is.

Transactions

In OVM, a transaction is a class object, ovm_transaction (extended from ovm_object),
that includes whatever information is needed to model a unit of communication between two
components. In the most basic example, a simple bus protocol transaction would be modeled
as follows:

class simple_trans extends ovm_transaction;
rand data_t data;
rand addr_t addr;
rand enum {WRITE,READ} kind;
constraint c1 { addr < 16’h2000; }
...

endclass

The transaction object includes variables, constraints, and other fields and methods
necessary for generating and operating on the transaction. Obviously, there is often more
than just this information that is required to fully specify a bus transaction. The amount and
detail of the information encapsulated in a transaction is an indication of the abstraction level
of the model. For example, the simple_trans transaction above could be extended to
include more information, such as the number of wait states to inject, the size of the transfer,
or any number of other properties. The transaction could also be extended to include
additional constraints. It is also possible to define higher-level transactions that include some
number of lower-level transactions. Transactions can thus be composed, decomposed,
extended, layered, and otherwise manipulated to model whatever communication is
necessary at any level of abstraction.

Transaction-Level Communication

Transaction-level interfaces define a set of methods that use transaction objects as
arguments. A TLM port defines the set of methods (the API) to be used for a particular
connection, while a TLM export supplies the implementation of those methods. Connecting
a port to an export allows the implementation to be executed when the port method is called.

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 21 Product Version 2.1.1

Basic TLM Communication

Figure 2-1 Simple Producer/Consumer

The most basic transaction-level operation allows one component to put a transaction to
another. Consider Figure 2-1 on page 21.

The square box on the producer indicates a port, and the circle on the consumer indicates
the export. The producer generates transactions and sends them out its put_port:

class producer extends ovm_component;

ovm_blocking_put_port #(simple_trans) put_port; // 1 parameter

function new(string name, ovm_component parent);
put_port = new(“put_port”, this);

...

endfunction

virtual task run();
simple_trans t;
for(int i = 0; i < N; i++) begin

// Generate t.
put_port.put(t);

end
endtask

Note: The ovm_*_port is parameterized by the transaction type that will be communicated.
This may either be specified directly, or it may be a parameter of the parent component.

The actual implementation of the put() call is supplied by the consumer.

class consumer extends ovm_component;

ovm_blocking_put_imp #(simple_trans, consumer) put_export; // 2 parameters

...

task put(simple_trans t);
case(t.kind)

READ: // Do read.
WRITE: // Do write.

endcase
endtask

endclass

Note: The ovm_*_imp takes two parameters: the type of the transaction and the type of the
object that declares the method implementation.

Note: The semantics of the put operation are defined by TLM. In this case, the put() call in
the producer will block until the consumer’s put implementation is complete. Other than that,

producer consumer

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 22 Product Version 2.1.1

the operation of producer is completely independent of the put implementation
(ovm_put_imp). In fact, consumer could be replaced by another component that also
implements put and producer will continue to work in exactly the same way. The modularity
provided by TLM fosters an environment in which components may be easily reused since
the interfaces are well defined.

Figure 2-2 Consumer gets from Producer

The converse operation to put is get. Consider Figure 2-2 on page 22.

In this case, the consumer requests transactions from the producer via its get port:

class get_consumer extends ovm_component;

ovm_blocking_get_port #(simple_trans) get_port;

function new(string name, ovm_component parent);
get_port = new(“get_port”, this);

...

endfunction

virtual task run();
simple_trans t;
for(int i = 0; i < N; i++) begin

// Generate t.
get_port.get(t);

end
endtask

The get() implementation is supplied by the producer.

class get_producer extends ovm_component;

ovm_blocking_get_imp #(simple_trans, get_producer) get_export;

...

task get(output simple_trans t);
simple_trans tmp = new();
// Assign values to tmp.

t = tmp;
endtask

endclass

As with put() above, the get_consumer’s get() call will block until the get_producer’s
method completes. In TLM terms, put() and get() are blocking methods.

Note: In both these examples there is a single process running, with control passing from the
port to the export and back again. The direction of data flow (from producer to consumer) is
the same in both examples.

get_
producer

get_
consumer

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 23 Product Version 2.1.1

Communicating Between Processes

In the basic put example above, the consumer will be active only when its put() method is
called. In many cases, it may be necessary for components to operate independently, where
the producer is creating transactions in one process while the consumer needs to operate on
those transactions in another. OVM provides the tlm_fifo channel to facilitate such
communication. The tlm_fifo implements all of the TLM interface methods, so the
producer puts the transaction into the tlm_fifo, while the consumer independently gets the
transaction from the fifo, as shown in Figure 2-3 on page 23.

Figure 2-3 Using a tlm_fifo

When the producer puts a transaction into the fifo, it will block if the fifo is full, otherwise it will
put the object into the fifo and return immediately. The get operation will return immediately if
a transaction is available (and will then be removed from the fifo), otherwise it will block until
a transaction is available. Thus, two consecutive get() calls will yield different transactions
to the consumer. The related peek() method returns a copy of the available transaction
without removing it. Two consecutive peek() calls will return copies of the same transaction.

Blocking versus Nonblocking

The interfaces that we have looked at so far are blocking. That means that the tasks block
execution until they complete. They are not allowed to fail. There is no mechanism for any
blocking call to terminate abnormally or otherwise alter the flow of control. They simply wait
until the request is satisfied. In a timed system, this means that time may pass between the
time the call was initiated and the time it returns.

In contrast, a nonblocking call returns immediately. The semantics of a nonblocking call
guarantee that the call returns in the same delta cycle in which it was issued, that is, without
consuming any time, not even a single delta cycle. In OVM, nonblocking calls are modeled as
functions.

class consumer extends ovm_component;

ovm_get_port #(simple_trans) get_port;

task run;
...
for(int i=0; i<10; i++)
if(get_port.try_get(t))
//Do something with t.

tlm fifo get_
consumer producer

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 24 Product Version 2.1.1

...
endtask

endclass

If a transaction exists, it will be returned in the argument and the function call itself will return
TRUE. If no transaction exists, the function will return FALSE. Similarly, with try_peek().
The try_put() method returns TRUE if the transaction is sent.

Connecting Transaction-Level Components

With ports and exports defined for transaction-level components, the actual connection
between them is accomplished via the connect() method in the parent (component or env),
with an argument that is the object (port or export) to which it will be connected. In a
verification environment, the series of connect() calls between ports and exports
establishes a netlist of peer-to-peer and hierarchical connections, ultimately terminating at an
implementation of the agreed-upon interface. The resolution of these connections causes the
collapsing of the netlist, which results in the initiator’s port being assigned to the target’s
implementation. Thus, when a component calls

put_port.put(t);

the connection means that it actually calls

target.put_export.put(t);

where target is the connected component.

Peer-to-Peer connections

When connecting components at the same level of hierarchy, ports are always connected to
exports. All connect() calls between components are done in the parent’s connect()
method.

class my_env extends ovm_env;
...
virtual function void connect();

// component.port.connect(target.export);
producer.blocking_put_port.connect(fifo.put_export);
get_consumer.get_port.connect(fifo.get_export);
...

endfunction
endclass

Port/Export Compatibility

Another advantage of TLM communication in OVM is that all TLM connections are checked
for compatibility before the test runs. In order for a connection to be valid, the export must

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 25 Product Version 2.1.1

provide implementations for at least the set of methods defined by the port, and the
transaction type parameter for the two must be identical. For example, a
blocking_put_port, which requires an implementation of put() may be connected to
either a blocking_put_export or a put_export. Both exports supply an implementation
of put(), although the put_export also supplies implementations of try_put() and
can_put().

Encapsulation and Hierarchy

The use of TLM interfaces isolates each component in a verification environment from the
others. The environment instantiates a component and connects its ports/exports to its
neighbor(s), independent of any further knowledge of the specific implementation. Smaller
components may be grouped hierarchically to form larger components (see Developing
Reusable Open Verification Components (OVCs) on page 31). Access to child components
is achieved by making their interfaces visible at the parent level. At this level, the parent simply
looks like a single component with a set of interfaces on it, regardless of its internal
implementation.

Hierarchical Connections

Making connections across hierarchical boundaries involves some additional issues, which
are discussed in this section. Consider the hierarchical design shown in Figure 2-4 on
page 25.

Figure 2-4 Hierarchy in TLM

The hierarchy of this design contains two components, producer and consumer.
producer contains three components, gen, fifo, and conv. consumer contains two
components, fifo and driver. Notice that, from the perspective of top, the producer and
consumer appear identical to those in Figure 2-1 on page 21, in which the producer’s

convstim tlm_fi drivetlm_fi

top

A B C D E F
producer consumer

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 26 Product Version 2.1.1

put_port is connected to the consumer’s put_export. The two FIFOs are both unique
instances of the same tlm_fifo component.

In Figure 2-4 on page 25, connections A, B, D, and F are standard peer-to-peer connections
as discussed above. As an example, connection A would be coded in the producer’s
connect() method as:

gen.put_port.connect(fifo.put_export);

Connections C and E are of a different sort than what have been shown. Connection C is a
port-to-port connection, and connection E is an export-to-export connection. These two kinds
of connections are necessary to complete hierarchical connections. Connection C imports a
port from the outer component to the inner component. Connection E exports an export
upwards in the hierarchy from the inner component to the outer one. Ultimately, every
transaction-level connection must resolve so that a port is connected to an export. However,
the port and export terminals do not need to be at the same place in the hierarchy. We use
port-to-port and export-to-export connections to bring connectors to a hierarchical boundary
to be accessed at the next-higher level of hierarchy.

For connection E, the implementation resides in the fifo and is exported up to the interface of
consumer. All export-to-export connections in a parent component are of the form

export.connect(subcomponent.export)

so connection E would be coded as:

class consumer extends ovm_component;
ovm_put_export #(trans) put_export;
tlm_fifo #(trans) fifo;
...

function void connect();
put_export.connect(fifo.put_export); // E
bfm.get_port.connect(fifo.get_export); // F

endfunction

...
endclass

Conversely, port-to-port connections are of the form

subcomponent.port.connect(port);

so connection C would be coded as:

class producer extends ovm_component;
 ovm_put_port #(trans) put_port;
 conv c;
 ...

 function void connect();
 c.put_port.connect(put_port);
 ...
 endfunction

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 27 Product Version 2.1.1

The following table summarizes connection types and elaboration functions.

Note: The argument to the port.connect() method may be either an export or a port,
depending on the nature of the connection (that is, peer-to-peer or hierarchical). The
argument to export.connect() is always an export of a child component.

Analysis Communication

The put/get communication as described above allows verification components to be created
that model the “operational” behavior of a system. Each component is responsible for
communicating through its TLM interface(s) with other components in the system in order to
stimulate activity in the DUT and/or respond its behavior. In any reasonably complex
verification environment, however, particularly where randomization is applied, a collected
transaction should be distributed to the rest of the environment for end-to-end checking
(scoreboard), or additional coverage collection.

The key distinction between the two types of TLM communication is that the put/get ports
typically require a corresponding export to supply the implementation. For analysis, however,
the emphasis is on a particular component, such as a monitor, being able to produce a stream
of transactions, regardless of whether there is a target actually connected to it. Modular
analysis components are then connected to the analysis_port, each of which processes the
transaction stream in a particular way.

Analysis Ports

The ovm_analysis_port (represented as a diamond on the monitor in Figure 2-5 on
page 28) is a specialized TLM port whose interface consists of a single function, write().
The analysis port contains a list of analysis_exports that are connected to it. When the
component calls analysis_port.write(), the analysis_port cycles through the list and
calls the write() method of each connected export. If nothing is connected, the write()
call simply returns. Thus, an analysis port may be connected to 0, 1, or many analysis
exports, but the operation of the component that writes to the analysis port does not depend

connection
type connect() form

port-to-export comp1.port.connect(comp2.export);

port-to-port subcomponent.port.connect(port);

export-to-
export

export.connect(subcomponent.export);

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 28 Product Version 2.1.1

on the number of exports connected. Because write() is a void function, the call will always
complete in the same delta cycle, regardless of how many components (for example,
scoreboards, coverage collectors, and so on) are connected.

Figure 2-5 Analysis Communication

class get_ap_consumer extends get_consumer;
ovm_analysis_port #(my_trans) ap;
function new(...);

super.new()
ap = new(“analysis_port”, this);
...

endfunction

task run;
...
for(int i=0; i<10; i++)

if(get_port.try_get(t)) begin
//Do something with t.
ap.write(t); // Write transaction.
...

end
endtask

In the parent environment, the analysis port gets connected to the analysis export of the
desired components, such as coverage collectors and scoreboards.

Analysis Exports

As with other TLM connections, it is up to each component connected to an analysis port to
provide an implementation of write() via an analysis_export. OVM provides the
ovm_subscriber base component to simplify this operation, so a typical analysis
component would extend ovm_subscriber as:

class sub1 #(type T = simple_trans) extends ovm_subscriber #(T);
...

function void write(T t);
// Record coverage information of t.

endfunction

tlm fifo get_sp_
consumer producer

cov cov2 subsub2

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 29 Product Version 2.1.1

endclass

As with put() and get() described above, the TLM connection between an analysis port
and export, allows the export to supply the implementation of write(). If multiple exports
are connected to an analysis port, the port will call the write() of each export, in order.
Since all implementations of write() must be functions, the analysis port’s write()
function completes immediately, regardless of how many exports are connected to it.

class my_env extends ovm_env;
get_ap_component g;
sub1 s1;
sub2 s2;

...

function void connect();
g.ap.connect(s1.analysis_export);
g.ap.connect(s2.analysis_export);
...

endfunction

endclass

When multiple subscribers are connected to an analysis_port, each is passed a pointer to the
same transaction object, the argument to the write() call. Each write() implementation
must make a local copy of the transaction and then operate on the copy to avoid corrupting
the transaction contents for any other subscriber that may have received the same pointer.

OVM also includes an analysis_fifo, which is a tlm_fifo that also includes an analysis
export, to allow blocking components access to the analysis transaction stream. The
analysis_fifo is unbounded, so the monitor’s write() call is guaranteed to succeed
immediately. The analysis component may then get the transactions from the
analysis_fifo at its leisure.

OVM User Guide
Transaction-Level Modeling (TLM)

March 2010 30 Product Version 2.1.1

OVM User Guide

March 2010 31 Product Version 2.1.1

3
Developing Reusable Open Verification
Components (OVCs)

This chapter describes the basic concepts and components that make up a typical verification
environment. It also shows how to combine these components using a proven hierarchical
architecture to create reusable OVCs. The sections in this chapter follow the same order you
should follow when developing an OVC:

■ “Modeling Data Items for Generation” on page 31.

■ “Transaction-Level Components” on page 35.

■ “Creating the Driver” on page 38.

■ “Creating the Sequencer” on page 39.

■ “Creating the Monitor” on page 44.

■ “Instantiating Components” on page 46.

■ “Creating the Agent” on page 47.

■ “Creating the Environment” on page 49.

■ “Enabling Scenario Creation” on page 53.

■ “Managing End of Test” on page 61

■ “Implementing Checks and Coverage” on page 62.

Note: This chapter builds upon concepts described in OVM Overview on page 9 and
Transaction-Level Modeling (TLM) on page 19.

Modeling Data Items for Generation

Data items:

■ Are transaction objects used as stimulus to the device under test (DUT).

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 32 Product Version 2.1.1

■ Represent transactions that are processed by the verification environment.

■ Are classes that you define (“user-defined” classes).

■ Capture and measure transaction-level coverage and checking.

Note: The OVM SystemVerilog Class Library provides the ovm_sequence_item base
class. Every user-defined data item must be derived directly or indirectly from this base class.

To create a user-defined data item:

1. Review your DUT's transaction specification and identify the application-specific
properties, constraints, tasks, and functions.

2. Derive a data item class from the ovm_sequence_item base class (or a derivative of it).

3. Define a constructor for the data item.

4. Add control fields (“knobs”) for the items identified in Step 1 to enable easier test writing.

5. Use OVM field macros to enable printing, copying, comparing, and so on.

OVM has built-in automation for many service routines that a data item needs. For example,
you can use:

■ print() to print a data item.

■ copy() to copy the contents of a data item.

■ compare() to compare two similar objects.

OVM allows you to specify the automation needed for each field and to use a built-in, mature,
and consistent implementation of these routines.

To assist in debugging and tracking transactions, the ovm_transaction base class
includes the m_transaction_id field. In addition, the ovm_sequence_item base class
(extended from ovm_transaction) also includes the m_sequence_id field, allowing
sequence items to be correlated to the sequence that generated them originally. This is
necessary to allow the sequencer to route response transactions back to the correct
sequence in bidirectional protocols.

The class simple_item in this example defines several random variables and class
constraints. The OVM macros implement various utilities that operate on this class, such as
copy, compare, print, and so on. In particular, the ̀ ovm_object_utils macro registers the
class type with the common factory.

1 class simple_item extends ovm_sequence_item;
2 rand int unsigned addr;
3 rand int unsigned data;

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 33 Product Version 2.1.1

4 rand int unsigned delay;
5 constraint c1 { addr < 16'h2000; }
6 constraint c2 { data < 16'h1000; }
7 // OVM automation macros for general objects
8 `ovm_object_utils_begin(simple_item)
9 `ovm_field_int(addr, OVM_ALL_ON)
10 `ovm_field_int(data, OVM_ALL_ON)
11 `ovm_field_int(delay, OVM_ALL_ON)
12 `ovm_object_utils_end
13 // Constructor
14 function new (string name = "simple_item");
15 super.new(name);
16 endfunction : new
17 endclass : simple_item

Line 1 Derive data items from ovm_sequence_item so they can be generated in a
procedural sequence. See “Generating Stimulus with Sequences and Sequence Items” on
page 54 for more information.

Lines 5-6 Add constraints to a data item definition in order to:

■ Reflect specification rules. In this example, the address must be less than 16'h2000.

■ Specify the default distribution for generated traffic. For example, in a typical test most
transactions should be legal.

Lines 7-12 Use the OVM macros to automatically implement functions such as copy(),
compare(), print(), pack(), and so on. Refer to “OVM Macros” in the OVM Class
Reference for information on the `ovm_object_utils_begin,
`ovm_object_utils_end, `ovm_field_*, and their associated macros.

Note: OVM provides built-in macros to simplify development of the verification environment.
The macros automate the implementation of functions defined in the base class, such as
copy(), compare(), and print(), thus saving many lines of code. Use of these macros
is optional but recommended.

Inheritance and Constraint Layering

In order to meet verification goals, the OVC user might need to adjust the data-item
generation by adding more constraints to a class definition. In SystemVerilog, this is done
using inheritance. The following example shows a derived data item, word_aligned_item,
which includes an additional constraint to select only word-aligned addresses.

class word_aligned_item extends simple_item;
constraint word_aligned_addr { addr[1:0] == 2'b00; }
`ovm_object_utils(word_aligned_item)
// Constructor
function new (string name = "word_aligned_item");

super.new(name);

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 34 Product Version 2.1.1

endfunction : new
endclass : word_aligned_item

To enable this type of extensibility:

■ The base class for the data item (simple_item in this chapter) should use virtual
methods to allow derived classes to override functionality.

■ Make sure constraint blocks are organized so that they are able to override or disable
constraints for a random variable without having to rewrite a large block.

■ Do not use the protected or local keyword to restrict access to properties that may
be constrained by the user. This will limit your ability to constrain them with an inline
constraint.

Defining Control Fields (“Knobs”)

The generation of all values of the input space is often impossible and usually not required.
However, it is important to be able to generate a few samples from ranges or categories of
values. In the simple_item example in Modeling Data Items for Generation on page 31
above, the delay property could be randomized to anything between zero and the maximum
unsigned integer. It is not necessary (nor practical) to cover the entire legal space, but it is
important to try back-to-back items along with short, medium, and large delays between the
items, and combinations of all of these.To do this, define control fields (often called “knobs”)
to enable the test writer to control these variables. These same control knobs can also be
used for coverage collection. For readability, use enumerated types to represent various
generated categories.

Knobs Example
typedef enum {ZERO, SHORT, MEDIUM, LARGE, MAX} simple_item_delay_e;

class simple_item extends ovm_sequence_item;
rand int unsigned addr;
rand int unsigned data;
rand int unsigned delay;
rand simple_item_delay_e delay_kind; // Control field
// OVM automation macros for general objects
`ovm_object_utils_begin(simple_item)

`ovm_field_int(addr, OVM_ALL_ON)
`ovm_field_enum(simple_item_delay_e, delay_kind, OVM_ALL_ON)

`ovm_object_utils_end

constraint delay_order_c { solve delay_kind before delay; }
constraint delay_c {

(delay_kind == ZERO) -> delay == 0;
(delay_kind == SHORT) -> delay inside { [1:10] };
(delay_kind == MEDIUM) -> delay inside { [11:99] };
(delay_kind == LARGE) -> delay inside { [100:999] };
(delay_kind == MAX) -> delay == 1000;
delay >=0; delay <= 1000; }

endclass : simple_item

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 35 Product Version 2.1.1

Using this method allows you to create more abstract tests. For example, you can specify
distribution as:

constraint delay_kind_d {delay_kind dist {ZERO:=2, SHORT:=1,
MEDIUM:=1, LONG:=1, MAX:=2};}

When creating data items, keep in mind what range of values are often used or which
categories are of interest to that data item. Then add knobs to the data items to simplify
control and coverage of these data item categories.

Transaction-Level Components

As discussed in Transaction-Level Modeling (TLM) on page 19, TLM interfaces in OVM
provide a consistent set of communication methods for sending and receiving transactions
between components. The components themselves are instantiated and connected in the
testbench, to perform the different operations required to verify a design. A simplified
testbench is shown in Figure 3-1 on page 35.

Figure 3-1 Simplified Transaction-Level Testbench

The basic components of a simple transaction-level verification environment are:

1. A stimulus generator (sequencer) to create transaction-level traffic to the DUT

2. A driver to convert these transactions to signal-level stimulus at the DUT interface

3. A monitor to recognize signal-level activity on the DUT interface and convert it into
transactions

4. An analysis component, such as a coverage collector or scoreboard, to analyze
transactions

As we shall see, the consistency and modularity of the TLM interfaces in OVM allow
components to be reused as other components are replaced and/or encapsulated. Every
component is characterized by its interfaces, regardless of its internal implementation. This
chapter discusses how to encapsulate these types of components into a proven architecture,
an OVC, to improve reuse even further.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 36 Product Version 2.1.1

Driver

Consumes and
sends data to the

vi

Sequencer

Produces data.

seq_item_export

seq_item_port

Monitor

checking
coverage

vi

DUT

Analysis
Analysis

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 37 Product Version 2.1.1

Figure 3-2 Highly Reusable OVC Agent

Driver

Consumes and
sends data to the

vi

Sequencer

Produces data.

seq_item_expor

seq_item_port

Monitor

checking
coverage

vi

DUT

Config

Analysis

Analysis

Agent

Analysis

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 38 Product Version 2.1.1

Figure 3-2 on page 37 shows the recommended grouping of individual components into a
reusable interface-level OVC agent. Instead of reusing the low-level classes individually, the
developer creates a component that encapsulates it’s sub-classes in a consistent way.
Promoting a consistent architecture makes these components easier to learn, adopt, and
configure.

Creating the Driver

The driver's role is to drive data items to the bus following the interface protocol. The driver
obtains data items from the sequencer for execution. The OVM SystemVerilog Class Library
provides the ovm_driver base class, from which all driver classes should be extended,
either directly or indirectly. The driver has a run() method that defines its operation, as well
as a TLM port through which it communicates with the sequencer (see example below).

To create a driver:

1. Derive a driver from the ovm_driver base class.

2. If desired, add OVM infrastructure macros for class properties to implement utilities for
printing, copying, comparing, and so on.

3. Obtain the next data item from the sequencer and execute it as outlined above.

4. Declare a virtual interface in the driver to connect the driver to the DUT.

Refer to “Generating Stimulus with Sequences and Sequence Items” on page 54 for a
description of how a sequencer, driver, and sequences synchronize with each other to
generate constrained random data.

The class simple_driver in the example below defines a driver class. The example derives
simple_driver from ovm_driver (parameterized to use the simple_item transaction
type) and uses the methods in the seq_item_port object to communicate with the
sequencer. As always, include a constructor and the `ovm_component_utils macro to
register the driver type with the common factory.

1 class simple_driver extends ovm_driver #(simple_item);
2 simple_item s_item;
3 virtual dut_if vif;
4 // OVM automation macros for general components
5 `ovm_component_utils(simple_driver)
6 // Constructor
7 function new (string name = "simple_driver", ovm_component parent);
8 super.new(name, parent);
9 endfunction : new
10 task run();
11 forever begin
12 // Get the next data item from sequencer (may block).

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 39 Product Version 2.1.1

13 seq_item_port.get_next_item(s_item);
14 // Execute the item.
15 drive_item(s_item);
16 seq_item_port.item_done(); // Consume the request.
17 end
18 endtask : run
19
20 task drive_item (input simple_item item);
21 ... // Add your logic here.
22 endtask : drive_item
23 endclass : simple_driver

Line 1 Derive the driver.

Line 5 Add OVM infrastructure macro.

Line 13 Call get_next_item() to get the next data item for execution from the sequencer.

Line 16 Signal the sequencer that the execution of the current data item is done.

Line 21 Add your application-specific logic here to execute the data item.

More flexibility exists on connecting the drivers and the sequencer. See “Connecting the
Driver and Sequencer” on page 40.

Creating the Sequencer

The sequencer generates stimulus data and passes it to a driver for execution. The OVM
SystemVerilog Class Library provides the ovm_sequencer base class, which is
parameterized by the request and response item types. You should derive all sequencer
classes directly or indirectly from this class.

To create a sequencer:

1. Derive a sequencer from the ovm_sequencer base class and specify the request and
response type parameters.

2. Use `ovm_sequencer_utils and `ovm_update_sequence_lib_and_item to
indicate the generated data item type and field desired automation.

This is all that is required to define baseline behavior for a sequencer. Refer to “Generating
Stimulus with Sequences and Sequence Items” on page 54 for a description of how a
sequencer, driver, and sequences synchronize with each other to generate constrained-
random data.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 40 Product Version 2.1.1

The class simple_sequencer in the example below defines a sequencer class. The
example derives it from ovm_sequencer and parameterizes it to use the simple_item
type.

class simple_sequencer extends ovm_sequencer #(simple_item);
// OVM automation macro for sequencers
`ovm_sequencer_utils(simple_sequencer)
// Constructor
function new (string name="simple_sequencer", ovm_component parent);

super.new(name, parent);
`ovm_update_sequence_lib_and_item(simple_item)

endfunction : new
endclass : simple_sequencer

Note:

■ In the class definition, by default, the response type is the same as the request type. If a
different response type is desired, the optional second parameter must be specified for
the ovm_sequencer base type:

class simple_sequencer extends ovm_sequencer #(simple_item, simple_rsp);

■ The ̀ ovm_component_utils macro should not be used here because its functionality
is embedded in `ovm_sequencer_utils. Instead of using the
`ovm_component_utils use `ovm_sequencer_utils, as well as the regular
general automation this macro provides sequencer-specific infrastructure. Refer to “OVM
Macros” in the OVM Class Reference for more information.

■ Call `ovm_update_sequence_lib_and_item macro from the constructor of your
sequencer class. This macro registers all the sequence types that are associated with
the current sequencer and indicates the sequencer's generated transaction type as a
parameter. Refer to “OVM Macros” in the OVM Class Reference for more information.

Connecting the Driver and Sequencer

The driver and the sequencer are connected via TLM, with the driver’s seq_item_port
connected to the sequencer’s seq_item_export (see Figure 3-3 on page 41 below). The
sequencer produces data items to provide via the export. The driver consumes data items
through its seq_item_port, and optionally provides responses. The component that
contains the instances of the driver and sequencer makes the connection between them. See
“Creating the Agent” on page 47 below.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 41 Product Version 2.1.1

Figure 3-3 Sequencer-Driver Interaction

The seq_item_port in ovm_driver defines the set of methods used by the driver to obtain
the next item in the sequence. An important part of this interaction is the driver’s ability to
synchronize to the bus, and to interact with the sequencer to generate data items at the
appropriate time. The sequencer implements the set of methods that allows flexible and
modular interaction between the driver and the sequencer.

Basic Sequencer and Driver Interaction

Basic interaction between the driver and the sequencer is done using the tasks
get_next_item() and item_done(). As demonstrated in the example in Creating the
Driver on page 38, the driver uses get_next_item() to fetch the next randomized item to
be sent. After sending it to the DUT, the driver signals the sequencer that the item was
processed using item_done().Typically, the main loop within a driver resembles the
following pseudo code.

get_next_item(req);

// Send item following the protocol.

item_done();

Note: get_next_item() is blocking.

Driver

Consumes and
sends data to the

vi

Sequencer

Produces data.

ovm_seq_item_pull_export

ovm_seq_item_pull_port seq_item_port

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 42 Product Version 2.1.1

Querying for the Randomized Item

In addition to the get_next_item() task, the ovm_seq_item_pull_port class provides
another task, try_next_item(). This task will return in the same simulation step if no data
items are available for execution. You can use this task to have the driver execute some idle
transactions, such as when the DUT has to be stimulated when there are no meaningful data
to transmit. The following example shows a revised implementation of the run() task in the
previous example (in Creating the Driver on page 38), this time using try_next_item() to
drive idle transactions as long as there is no real data item to execute:

task run();
forever begin

// Try the next data item from sequencer (does not block).
seq_item_port.try_next_item(s_item);
if (s_item == null) begin

// No data item to execute, send an idle transaction.
...

end
else begin

// Got a valid item from the sequencer, execute it.
...
// Signal the sequencer; we are done.
seq_item_port.item_done();

end
end

endtask: run

Fetching Consecutive Randomized Items

In some protocols, such as pipelined protocols, the driver gets a few generated items to fill
the pipeline before the first items were completely processed. In such cases, the driver calls
item_done() without providing the response to the sequencer. In such scenarios the driver
logic may look like the following pseudo code:

while the pipeline is not empty{
get_next_item(req);
fork;

logic that sends item to the pipeline
join_none;
item_done();
for each completed process call{

...
}

}

Sending Processed Data Back to the Sequencer

In some sequences, a generated value depends on the response to previously generated
data. By default, the data items between the driver and the sequencer are copied by
reference, which means that changes the driver makes to the data item will be visible inside
the sequencer. In cases where the data item between the driver and the sequencer is copied

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 43 Product Version 2.1.1

by value, the driver needs to return the processed response back to the sequencer. Do this
using the optional argument to item_done().

item_done(rsp);

or using the built-in analysis port in ovm_driver:

rsp_port.write(rsp);

Note: Before providing the response, the response’s sequence and transaction id must be
set to correspond to the request transaction using rsp.set_id_info(req).

With the basic functionality of driver-sequencer communication outlined above, the steps
required to create a driver are straightforward.

Using TLM-Based Drivers

The seq_item_port, which is built into ovm_driver, is a bidirectional port. It also includes
the standard TLM methods get() and peek() for requesting an item from the sequencer,
and put() to provide a response. Thus, other components, which may not necessarily be
derived from ovm_driver, may still connect to and communicate with the sequencer. As with
the seq_item_port, the methods to use depend on the interaction desired.

// Pause sequencer operation while the driver operates on the transaction.
peek(req);

// Process req operation.
get(req);

Note:

❍ peek() is a blocking method, so the driver may block waiting for an item to be
returned.

❍ The get() operation notifies the sequencer to proceed to the next transaction.
It returns the same transaction as the peek(), so the transaction may be
ignored.

// Allow sequencer to proceed immediately upon driver receiving transaction.
get(req);

// Process req operation.

To provide a response using the blocking_slave_port, the driver would call

seq_item_port.put(rsp);

The response may also be sent back using an analysis_port as well.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 44 Product Version 2.1.1

Creating the Monitor

The monitor is responsible for extracting signal information from the bus and translating it into
events, structs, and status information. This information is available to other components and
to the test writer via standard TLM interfaces and channels. The monitor should never rely on
state information collected by other components, such as a driver, but it may need to rely on
request-specific id information in order to properly set the sequence and transaction id
information for the response.

The monitor functionality should be limited to basic monitoring that is always required. This
can include protocol checking—which should be configurable so it can be enabled or
disabled—and coverage collection. Additional high-level functionality, such as scoreboards,
should be implemented separately on top of the monitor.

If you want to verify an abstract model or accelerate the pin-level functionality, you should
separate the signal-level extraction, coverage, checking, and the transaction-level activities.
An analysis port should allow communication between the sub-monitor components (see
“Built-In TLM Channels” in the OVM Class Reference).

Monitor Example

The following example shows a simple monitor which has the following functions:

■ The monitor collects bus information through a virtual interface (xmi).

■ The collected data is used in coverage collection and checking.

■ The collected data is exported on an analysis port (item_collected_port).

Actual code for collection is not shown in this example. A complete example can be found in
the XBus example in xbus_master_monitor.sv.

class master_monitor extends ovm_monitor;
virtual bus_if xmi; // SystemVerilog virtual interface
bit checks_enable = 1; // Control checking in monitor and interface.
bit coverage_enable = 1; // Control coverage in monitor and interface.

ovm_analysis_port #(simple_item) item_collected_port;
event cov_transaction; // Events needed to trigger covergroups

protected simple_item trans_collected;

`ovm_component_utils_begin(master_monitor)
`ovm_field_int(checks_enable, OVM_ALL_ON)
`ovm_field_int(coverage_enable, OVM_ALL_ON)

`ovm_component_utils_end

covergroup cov_trans @cov_transaction;
option.per_instance = 1;
... // Coverage bins definition

endgroup : cov_trans

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 45 Product Version 2.1.1

function new (string name, ovm_component parent);
super.new(name, parent);
cov_trans = new();
cov_trans.set_inst_name({get_full_name(), ".cov_trans"});
trans_collected = new();
item_collected_port = new("item_collected_port", this);

endfunction : new

virtual task run();
fork

collect_transactions(); // Spawn collector task.
join

endtask : run

virtual protected task collect_transactions();
forever begin

@(posedge xmi.sig_clock);
...// Collect the data from the bus into trans_collected.
if (checks_enable)
perform_transfer_checks();

if (coverage_enable)
perform_transfer_coverage();

item_collected_port.write(trans_collected);
end

endtask : collect_transactions

virtual protected function void perform_transfer_coverage();
-> cov_transaction;

endfunction : perform_transfer_coverage

virtual protected function void perform_transfer_checks();
... // Perform data checks on trans_collected.

endfunction : perform_transfer_checks

endclass : master_monitor

The collection is done in a task (collect_transaction) which is spawned at the
beginning of the run() phase. It runs in an endless loop and collects the data as soon as the
signals indicate that the data is available on the bus.

As soon as the data is available, it is sent to the analysis port (item_collected_port) for
other components waiting for the information.

Coverage collection and checking are conditional because they can affect simulation run-time
performance. If not needed, they can be turned off by setting coverage_enable or
checks_enable to 0, using the configuration mechanism. For example:

set_config_int(“master0.monitor”, “checks_enable”, 0);

If checking is enabled, the task calls the perform_transfer_checks function, which
performs the necessary checks on the collected data (trans_collected). If coverage
collection is enabled, the task emits the coverage sampling event (cov_transaction)
which results in collecting the current values.

Note: SystemVerilog does not allow concurrent assertions in classes, so protocol checking
can also be done using assertions in a SystemVerilog interface.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 46 Product Version 2.1.1

Instantiating Components

The isolation provided by object-oriented practices and TLM interfaces between components
facilitate reuse in OVM enabling a great deal of flexibility in building environments. Because
each component is independent of the others, a given component can be replaced by a new
component with the same interfaces without having to change the parent’s connect()
method. This flexibility is accomplished through the use of the factory in OVM.

When instantiating components in OVM, rather than calling its constructor (in bold below),

class my_component extends ovm_component;
my_driver driver;
...

function build();
driver = new(“driver”,this);
...

endfunction

endclass

components are instantiated using the create() method.

class my_component extends ovm_component;
my_driver driver;

...

function build();
driver = my_driver::type_id::create("driver",this);

...
endfunction

endclass

The factory operation is explained in “The Built-In Factory and Overrides” on page 106. The
type_id::create() method is a type-specific static method that returns an instance of the
desired type (in this case, my_driver) from the factory. The arguments to create() are the
same as the standard constructor arguments, a string name and a parent component.The
use of the factory allows the developer to derive a new class extended from my_driver and
cause the factory to return the extended type in place of my_driver. Thus, the parent
component can use the new type without modifying the parent class.

For example, for a specific test, an environment user may want to change the driver.

To change the driver for a specific test:

1. Declare a new driver extended from the base component and add or modify functionality
as desired.

class new_driver extends my_driver;
... // Add more functionality here.

endclass: new_driver

2. In your test, environment, or testbench, override the type to be returned by the factory.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 47 Product Version 2.1.1

virtual function build();
set_type_override_by_type(my_driver::get_type(),

new_driver::get_type());
endfunction

The factory also allows a new type to be returned for the creation of a specific instance as
well. In either case, because new_driver is an extension of my_driver, and the TLM
interfaces are the same, the connections defined in the parent remain unchanged.

Creating the Agent

The agent (Figure 3-4 on page 48) instantiates and connects together a driver, monitor, and
sequencer using TLM connections as described in the preceding sections. To provide greater
flexibility, the agent also contains configuration information and other parameters. As
discussed in “Agent” on page 14, OVM recommends that the OVC developer create an agent
that provides protocol-specific stimuli creation, checking, and coverage for a device. In a bus-
based environment, an agent models either a master or a slave component. An agent has
two basic operating modes:

■ Active mode—the agent emulates a device in the system and drives DUT signals. This
mode requires that the agent instantiate a driver and sequencer. A monitor also is
instantiated for checking and coverage.

■ Passive mode—the agent does not instantiate a driver or sequencer and operates
passively. Only the monitor is instantiated and configured. Use this mode when only
checking and coverage collection is desired.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 48 Product Version 2.1.1

Figure 3-4 Agent

The class simple_agent in the example below instantiates a sequencer, a driver, and a
monitor in the recommended way. Instead of using the constructor, the OVM build() phase
is used to configure and construct the subcomponents of the agent. Unlike constructors, this
virtual function can be overridden without any limitations. Also, instead of hard coding the
allocation type_id::create() is used to instantiate the subcomponents. The example in
“To change the driver for a specific test:” on page 46 illustrates how you can override
existing behavior using extends.

1 class simple_agent extends ovm_agent;
2 ovm_active_passive_enum is_active;
3 ... // Constructor and OVM automation macros
4 simple_sequencer sequencer;
5 simple_driver driver;
6 simple_monitor monitor;
7 // Use build() phase to create agents's subcomponents.
8 virtual function void build();
9 super.build()
10 monitor = simple_monitor::type_id::create("monitor",this);
11 if (is_active == OVM_ACTIVE) begin
12 // Build the sequencer and driver.
13 sequencer = simple_sequencer::type_id::create("sequencer",this);
14 driver = simple_driver::type_id::create("driver",this);
15 end

Driver

Consumes and
sends data to the

is_active
...

Agent

interface

Monitor

checking
coverage

vi vi

Sequencer

Produces data.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 49 Product Version 2.1.1

16 endfunction : build
17 virtual function void connect();
18 if(is_active == OVM_ACTIVE) begin
19 driver.seq_item_port.connect(sequencer.seq_item_export);
20 end
21 endfunction : connect
22 endclass : simple_agent

Note: You should always call super.build() (see Line 9) to update the given component's
configuration overrides. This is crucial to providing the capability for an enclosing component
to be able to override settings of an instance of this component.

Line 10 The monitor is created using create().

Lines 11-15 The if condition tests the is_active property to determine whether the driver
and sequencer are created in this agent. If the agent is set to active (is_active =
OVM_ACTIVE), the driver and sequencer are created using additional create() calls.

Both the sequencer and the driver follow the same creation pattern as the monitor.

This example shows the is_active flag as a configuration property for the agent. You can
define any control flags that determine the component's topology. At the environment level,
this could be a num_masters integer, a num_slaves integer, or a has_bus_monitor flag.
See “XBus OVC Example” on page 137 for a complete interface OVC example that uses all
the control fields previously mentioned.

Note: Calling create() from the build() method is the recommended way to create any
multi-hierarchical component.

Lines 18-20 The if condition should be checked to see if the agent is active and, if so, the
connection between the sequencer and driver is made using connect().

Using connect() to Connect Components

The connect() phase, which happens after the build is complete, should be used to connect
the components inside the agent. See Lines 18-20 in the example above.

Creating the Environment

Having covered the basic operation of transaction-level verification components in a typical
environment above, this section describes how to assemble these components into a
reusable environment (Figure 3-5 on page 50). By following the guidelines here, you can
ensure that your environment will be architecturally correct, consistent with other OVCs, and
reusable. The following sections describe how to create and connect environment sub-
components.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 50 Product Version 2.1.1

Figure 3-5 Typical OVM Environment Architecture

The Environment Class

The environment class is the top container of reusable components. It instantiates and
configures all of its subcomponents. Most verification reuse occurs at the environment level
where the user instantiates an environment class and configures it and its agents for specific
verification tasks. For example, a user might need to change the number of masters and
slaves in a new environment as shown below.

class ahb_env extends ovm_env;
int num_masters;
ahb_master_agent masters[];

`ovm_component_utils_begin(ahb_env)
`ovm_field_int(num_masters, OVM_ALL_ON)

`ovm_component_utils_end
virtual function void build();

string inst_name;
super.build();
masters = new[num_masters];
for(int i = 0; i < num_masters; i++) begin

$sformat(inst_name, "masters[%0d]", i);
masters[i] = ahb_master_agent::type_id::create(inst_name,this);

DUT

ovm_env

Config:
...
...
name
has_...
...

bus

ovm_monito

checks
coverage

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_sequence

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Slave Agent

ovm_driveovm_monitor

Analysis

ovm_drive

ovm_sequenc

Config

ovm_agent

Analysis

Master

ovm_driveovm_monitor

Analysis

ovm_drive

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 51 Product Version 2.1.1

end
// Build slaves and other components.

endfunction

function void assign_vi(virtual interface ahb_bus ahb_all);
// Based on the configuration, assign master, slave, decoder and
// arbiter signals.

endfunction

function new(string name, ovm_component parent);
super.new(name, parent);

endfunction : new

endclass

Note: Similarly to the agent, create is used to allocate the environment sub-components.
This allows introducing derivations of the sub-components later.

The user is not required to call build() explicitly. The OVM SystemVerilog Class Library will
do this for all created components. Once all the components’ build() functions are
complete, the library will call each component's connect() function. Any connections
between child components should be made in the connect() function of the parent
component.

The OVM Configuration Mechanism

An OVC is created on a per-protocol basis for general-purpose protocol-related use. It may
support various features or operation modes that are not required in a particular project. OVM
provides a standard configuration mechanism which allows you to define the OVC’s
configuration to suit the current project’s requirements. The OVC can get the configuration
during run time or during the build process. Doing this during the build allows you to modify
the environment object structure without touching multiple classes.

Properties that are registered as OVM fields using the ovm_field_* macros will be
automatically updated by the component's super.build() method. These properties can
then be used to determine the build() execution for the component.

It is not required to call a created component's build() function. The OVM SystemVerilog
Class Library will do this for the user for all components that have not had their build()
function called explicitly by the user. However it is possible, if the user requires, to call the
component's build() function explicitly.

Connections among the created components is made in the connect() function of the
component. Since connect() happens after build(), the user can assume the
environment topology is fully created. With the complete topology, the user can then make
the necessary connections.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 52 Product Version 2.1.1

Making the OVC Reusable

There are times when you as the developer know the context in which the OVC you are
developing will be used. In such cases you should take care to separate the requirements of
the OVC’s protocol from those of the project. It is strongly recommended that you use only
the interface-protocol documentation in developing the OVC. Later, you can consult your
project’s documentation to see if there are some generic features which might be useful to
implement. For example, you should be able to configure slave devices to reside at various
locations within an address space.

As another example, if within a protocol frame a few bits are defined as reserved, they should
stay reserved within the OVC. The verification logic that understands how a specific
implementation uses these bits should be defined outside the global generic code.

As a developer, it is critical to identify these generic parameters and document them for the
environment users.

How to Create a Configurable Attribute

Making an attribute configurable is part of the built-in automation that the OVM SystemVerilog
Class Library provides. Using the automation macros for copy(), print(), compare(),
and so on, also introduces these attributes to the configuration mechanism. In the example
in “The Environment Class” on page 50, num_master is a configuration parameter that
allows changing the master agent numbers as needed. Since the `ovm_field_int
declaration is already provided for printing, there is no further action needed to allow the users
to configure it.

For example, to get three master agents, you can would specify:

set_config_int("my_env", "num_masters", 3);

This can be done in procedural code within the testbench. For more information, see “OVC
Configuration” on page 74.

Note:

❑ The values of parameters are automatically updated in the super.build() phase.
Make sure that you call super.build() before accessing these values.

❑ If you prefer not to use the automation macros, you can use get_config_int()
to fetch the configuration value of a parameter. You can also do this if you are
concerned that the num_masters field was overridden and you want to re-fetch the
original configuration value for it.

❑ A larger environment can integrate smaller ones and reconfigure their parameters
to suit the needs of the parent environment. In this case, if there are contradicting

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 53 Product Version 2.1.1

configuration directives, the first set_config directives from the parent
environment takes precedence.

Enabling Scenario Creation

The environment user will need to create many test scenarios to verify a given DUT. Since
the OVC developer is usually more familiar with the DUT's protocol, the developer should
facilitate the test writing (done by the OVC’s user) by doing the following:

■ Place knobs in the data item class to simplify declarative test control.

■ Create a library of interesting reusable sequences.

Note: The environment user controls the environment-generated patterns configuring its
sequencers. The user can:

■ Add a sequence of transactions to a sequencer.

■ Modify the sequencer to use specific sequences more often than others.

■ Override the sequencer's main loop to start with a user-defined sequence instead.

In this section we describe how to create a library of reusable sequences and review their use.
For more information on how to control environments, see “Creating Meaningful Tests” on
page 78.

Declaring User-Defined Sequences

Sequences are made up of several data items, which together form an interesting scenario
or pattern of data. Verification components can include a library of basic sequences (instead
of single-data items), which test writers can invoke. This approach enhances reuse of
common stimulus patterns and reduces the length of tests. In addition, a sequence can call
upon other sequences, thereby creating more complex scenarios.

Note: The OVM SystemVerilog Class Library provides the ovm_sequence base class. You
should derive all sequence classes directly or indirectly from this class.

To create a user-defined sequence:

1. Derive a sequence from the ovm_sequence base class and specify the request and
response item type parameters. In the example below, only the request type is specified,
simple_item. This will result in the response type also being of type simple_item.

2. Use the `ovm_sequence_utils macro to associate the sequence with the relevant
sequencer type and to declare the various automation utilities. This macro also provides

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 54 Product Version 2.1.1

a p_sequencer variable that is of the type specified by the second argument of the
macro. This allows access to derived type-specific sequencer properties.

3. Implement the sequence's body task with the specific scenario you want the sequence
to execute. In the body task, you can execute data items and other sequences using
“`ovm_do” on page 57 and “`ovm_do_with” on page 57.

The class simple_seq_do in the following example defines a simple sequence. It is derived
from ovm_sequence and uses the `ovm_sequence_utils macro to associate this
sequence with simple_sequencer, and to declare the various utilities
`ovm_object_utils would provide.

class simple_seq_do extends ovm_sequence #(simple_item);
rand int count;
constraint c1 { count >0; count <50; }
// Constructor
function new(string name="simple_seq_do");

super.new(name);
endfunction
// OVM automation macros for sequences
`ovm_sequence_utils(simple_seq_do, simple_sequencer)
// The body() task is the actual logic of the sequence.
virtual task body();

repeat(count)
`ovm_do(req)

endtask : body
endclass : simple_seq_do

Once you define a sequence, it is registered inside its sequencer and may be generated by
the sequencer’s default generation loop. The `ovm_sequence_utils macro creates the
necessary infrastructure to associate this sequence with the relevant sequencer type, and
declares the various automation utilities. This macro is similar to the `ovm_object_utils
macro (and its variations) except that it takes a second argument, which is the sequencer type
name this sequence is associated with.

Note: Do not use the `ovm_object_utils macro when using the
`ovm_sequence_utils macro. The functionality of `ovm_object_utils is included in
`ovm_sequence_utils.

Generating Stimulus with Sequences and Sequence Items

Sequences allow you to define:

■ Streams of data items sent to a DUT.

■ Streams of actions performed on a DUT interface.

You can also use sequences to generate static lists of data items with no connection to a DUT
interface.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 55 Product Version 2.1.1

Getting Started with Sequences

Previous sections have discussed the basics of creating sequences and sequence items
using the OVM SystemVerilog Class Library. This section discusses how to generate stimulus
using the sequence and sequence item macros provided in the class library.

Figure 3-6 on page 55 and Figure 3-7 on page 56 show the complete flow for sequence items
and sequences when used with the ovm_do macros. The entire flow includes the allocation
of an object based on factory settings for the registered type, which is referred to as “creation”
in this section. After creation, comes the initialization of class properties. Although the
balance of the object processing depends on whether the object is a sequence item or a
sequence, the pre_do(), mid_do() and post_do() callbacks of the parent sequence
and randomization of the objects are also called, but at different points of processing for each
object type as shown in the figures.

Note: You can use any of the macros with the SystemVerilog looping constructs.

Figure 3-6 Sequence Item Flow in Pull Mode

The ‘ovm_do macro and all related macros provide a convenient set of calls to create,
randomize, and send transaction items in a sequence. The ovm_do macro delays
randomization of the item until the driver has signaled that it is ready to receive it and the

`ovm_do(item)

Driver Sequence Sequencer

wait_for_grant().

End of do item

Call mid_do().

Call pre_do() task, with is_item = 1.

Randomize item.

wait_for_item_done().

Acknowledge the sequencer that item is ready to
be sent.

send_request(req);
Set item’s sequence_id and add item to the
sequencer’s request fifo

Call post_do().

Sends item to DUT

Note This flow occurs when the sequencer is set to 'pull_mode == 1'.

Wait until item is generated

Acknowledge the sequence

get_next_item()

item_done()

The do item is listed in the sequencer’s queue

Choose a do action to
be executed on the
arbitration basis,
considering grabbers, and
sequence.is_relevant().

Create the item using the factory

Deliver the item to the driver

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 56 Product Version 2.1.1

pre_do method has been executed. Other macro variations allow constraints to be applied
to the randomization (ovm_do_with), or bypass the randomization altogether. The individual
methods wrapped by ‘ovm_do in Figure 3-6 on page 55 may be called individually with no
loss of functionality:

1. Create the item using the factory.

2. Call wait_for_grant().

3. Call pre_do(), or some other functionality.

4. Optionally randomize item.

5. Call mid_do() or some other functionality, if desired.

6. Call send_request().

7. Call wait_for_item_done().

8. Optionally call post_do() or other functionality.

9. Optionally call get_response().

Figure 3-7 Subsequence Flow

Sequence Sequencer

The sequencer does not
schedule sequences but
only items. Therefore,
when do-ing a
sequence, no
synchronization is done
between the sequencer
and the doing sequence
or the done
subsequence.

Call mid_do()

Call post_do()

End of do subsequence

Note This flow does not depend on the driver interaction mode.

(1) n

trigger subsequence.started
Call subsequence.body()
trigger subsequence.ended

`ovm_do(subsequence);

Call pre_do() task with is_item = 0

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 57 Product Version 2.1.1

Sequence and Sequence Item Macros

This section describes the sequence and sequence item macros, `ovm_do and
`ovm_do_with.

 `ovm_do

This macro takes as an argument either a variable of type ovm_sequence or of type
ovm_sequence_item. An object is created using the factory settings and assigned to the
specified variable. Based on the processing in Figure 3-6 on page 55, when the driver
requests an item from the sequencer, the item is randomized and provided to the driver.

The simple_seq_do sequence declaration in the example in “Declaring User-Defined
Sequences” on page 53 is repeated here. The body of the sequence invokes an item of type
simple_item, using the `ovm_do macro.

class simple_seq_do extends ovm_sequence #(simple_item);
... // Constructor and OVM automation macros
// See “Creating and Adding a New Sequence” on page 82
virtual task body();

`ovm_do(req)
endtask : body

endclass : simple_seq_do

Similarly, a sequence variable can be provided and will be processed as shown in Figure 3-7
on page 56. The following example declares another sequence (simple_seq_sub_seqs),
which uses `ovm_do to execute a sequence of type simple_seq_do, which was defined
earlier.

class simple_seq_sub_seqs extends ovm_sequence #(simple_item);
... // Constructor and OVM automation macros
// See “Creating and Adding a New Sequence” on page 82.
simple_seq_do seq_do;
virtual task body();

`ovm_do(seq_do)
endtask : body

endclass : simple_seq_sub_seqs

`ovm_do_with

This macro is similar to “`ovm_do” on page 57. The first argument is a variable of a type
derived from ovm_sequence_item, which includes items and sequences. The second
argument can be any valid inline constraints that would be legal if used in
arg1.randomize() with inline constraints. This enables adding different inline
constraints, while still using the same item or sequence variable.

Example

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 58 Product Version 2.1.1

This sequence produces two data items with specific constraints on the values of addr and
data.

class simple_seq_do_with extends ovm_sequence #(simple_item);
... // Constructor and OVM automation macros
// See “Creating and Adding a New Sequence” on page 82.
virtual task body();

`ovm_do_with(req, { addr == 16'h0120; data == 16'h0444; })
`ovm_do_with(req, { addr == 16'h0124; data == 16'h0666; })

endtask : body
endclass : simple_seq_do_with

Predefined Sequences

There are three built-in sequences: ovm_random_sequence,
ovm_exhaustive_sequence, and ovm_simple_sequence. User-defined sequences are
loaded into the sequencer's sequence queue prior to the run simulation phase. Upon entering
the run phase, the sequencer starts the sequence named by its default_sequence
configurable property and the transactions begin to flow. The default value for
default_sequence is ovm_random_sequence.

ovm_random_sequence

This sequence is a built-in sequence pre-loaded into the sequencer. This sequence randomly
selects and executes sequences from the sequencer's library (excluding
ovm_random_sequence and ovm_exhaustive_sequence). The number of sequences
executed depends on the count field of the sequencer. If count is set to -1, the random
sequence will randomize a number between 0 and
ovm_sequencer::max_random_count. If count is not -1, then count sequences
will be executed by ovm_random_sequence.

The following task is the default sequence which all sequencers execute, unless you
configure their default_sequence attribute to a different value.

task ovm_random_sequence::body();
if (m_sequencer.count == -1) begin

assert(randomize(l_count) with { l_count > 0 && l_count <
m_sequencer.max_random_count; });

m_sequencer.count = l_count;
end
else

l_count = m_sequencer.count;
...
repeat (l_count) begin

assert(randomize(l_kind) with { l_kind > l_exhaustive_seq_kind &&l_kind
< max_kind; });

do_sequence_kind(l_kind);
end

endtask

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 59 Product Version 2.1.1

ovm_exhaustive_sequence

This sequence is a built-in sequence which is pre-loaded into the sequencer. This sequence
exhaustively executes all the user-defined sequences for the current sequencer. The pre-
defined ovm_simple_sequence will also be executed, but the other two pre-defined
sequence types (ovm_random_sequence and ovm_exhaustive_sequence) will not. The
sequences are executed exactly once and in a random order. The l_kind variable is
declared as randc in order to randomize without replacement.

task ovm_exhaustive_sequence::body();
l_count = m_sequencer.sequences.size() - 2;
max_kind = m_sequencer.sequences.size();
l_exhaustive_seq_kind =

m_sequencer.get_seq_kind("ovm_exhaustive_sequence");
repeat (l_count) begin

assert(randomize(l_kind) with {
l_kind > l_exhaustive_seq_kind &&l_kind < max_kind; });

// l_kind is randc.
do_sequence_kind(l_kind);

end
endtask

ovm_simple_sequence

This sequence is a built-in sequence which is pre-loaded into the sequencer. This sequence
calls ̀ ovm_do(item). item is a property in ovm_sequence. This sequence is provided to
allow default execution of the OVC without any user-defined sequences.

task ovm_simple_sequence::body();
`ovm_do(item)

endtask

Configuring the Sequencer's Default Sequence

Sequencers execute an ovm_random_sequence object by default. The sequencer has a
string property named default_sequence which can be set to a user-defined sequence-
type name. This sequence is used as the default sequence for the instance of the sequencer.

To override the default sequence:

1. Declare a user-defined sequence class which derives from an appropriate base
sequence class.

The example in “Declaring User-Defined Sequences” on page 53 provides a declaration
example of a sequence named simple_seq_do.

2. Configure the default_sequence property for a specific sequencer or a group of
sequencers. Typically, this is done inside the test class before creating the component
that includes the relevant sequencer(s). For example,

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 60 Product Version 2.1.1

set_config_string("*.master0.sequencer","default_sequence",
"simple_seq_do");

The first argument utilizes a wildcard mechanism. Here, any instance name containing
.master0.sequencer will have its default_sequence property (if it exists) set to
the value simple_seq_do.

Overriding Sequence Items and Sequences

In a user-defined ovm_test, for example base_test_xbus_demo (discussed in “Creating
the Base Test” on page 76), you can configure the simulation environment to use a modified
version of an existing sequence or a sequence item by using the common factory to create
instances of sequence and sequence-item classes. See “The Built-In Factory and Overrides”
on page 106 for more information.

To override any reference to a specific sequence or sequence-item type:

1. Declare a user-defined sequence or sequence item class which derives from an
appropriate base class. The following example shows the declaration of a basic
sequence item of type simple_item, and a derived item of type
word_aligned_item.

2. Invoke the appropriate ovm_factory override method, depending on whether you are
doing a global or instance-specific override. For example, assume the simple_seq_do
sequence is executed by a sequencer of type simple_sequencer (both defined in
“Declaring User-Defined Sequences” on page 53). You can choose to replace all
processing of simple_item types with word_aligned_item types. This can be
selected for all requests for simple_item types from the factory, or for specific
instances of simple_item. From within an OVM component, the user can execute the
following:

// Affect all factory requests for type simple_item.
set_type_override_by_type(simple_item::get_type(),

word_aligned_item::get_type());
// Affect requests for type simple_item only on a given sequencer.
set_inst_override_by_type("env0.agent0.sequencer.*",

simple_item::get_type(), world_aligned_item::get_type());
// Alternatively, affect requests for type simple_item for all
// sequencers of a specific env.
set_inst_override_by_type("env0.*.sequencer.*", simple_item::get_type(),

word_aligned_item::get_type());

3. Use any of the sequence macros that allocate an object (as defined in “Sequence and
Sequence Item Macros” on page 57), for example, the `ovm_do macro.

Since the sequence macros call the common factory to create the data item object, existing
override requests will take effect and a word_aligned_item will be created instead of a
simple_item.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 61 Product Version 2.1.1

Building a Reusable Sequence Library

A reusable sequence library is a set of user-defined sequences. Creating an OVC reusable
sequence library is an efficient way to facilitate reuse. The environment developer can create
a meaningful set of sequences to be leveraged by the test writer. Such sequence libraries
avoid code duplication in tests, making them more maintainable, readable, and concise.

Tips

■ Try to think of interesting protocol scenarios that many test writers can use.

■ Since some users may not want to use the reusable sequence library (because the
sequences may not match the design requirements of the user), do not `include your
reusable sequence library within the OVC files. Leave it to the user to decide whether to
use them.

Managing End of Test

OVM provides an objection mechanism to allow hierarchical status communication among
components. The built-in objection, ovm_test_done, provides a way for components and
objects to synchronize their testing activity and indicate when it is safe to end the test.

In general, the process is for a component or sequence to raise an ovm_test_done
objection at the beginning of an activity that must be completed before the simulation stops,
and to drop the objection at the end of that activity. Once all of the raised objections are
dropped, the run phase terminates via an implicit stop request.

In simulation, agents may have a meaningful agenda to be achieved before the test goals can
be declared as done. For example, a master agent may need to complete all its read and write
operations before the run phase should be allowed to stop. A reactive slave agent may not
object to the end-of-test as it is merely serving requests as they appear, without a well-defined
agenda.

A typical use model of objections is for a sequence from an active agent to raise an
ovm_test_done objection when it is started as a root sequence (a sequence which has no
parent sequence), and to drop the objection when it is finished as a root sequence. This would
look like the following:

class interesting_sequence extends ovm_sequence#(data_item);

task pre_body();
// raise objection if started as a root sequence
ovm_test_done.raise_objection(this);

endtask

task body();
//do interesting activity

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 62 Product Version 2.1.1

...
endtask

task post_body();
// drop objection if started as a root sequence
ovm_test_done.drop_objection(this);

endtask

endclass

When all objections are dropped, an implicit stop request is made to end the currently running
phase (that is, run). In practice, there are times in simulation when the “all objections
dropped” condition is temporary. For example, concurrently running processes may need
some additional cycles to convey the last transaction to a scoreboard.

To accommodate this, you may set a drain time to inject a delay between the time a
component’s total objection count reaches zero and when the drop is passed to its parent. If
any objections are re-raised during this delay, the drop is cancelled and the raise is not
propagated further. While a drain time can be set at each level of the component hierarchy
with the adding effect, typical usage would be to set a single drain time at the env or test
level. If you require control over drain times beyond a simple time value (for example, waiting
for a few clock cycles or other user-defined events), you can also use the all_dropped
callback to calculate drain times more precisely. For more information on the all_dropped
callback, refer to the ovm_objection section in the OVM Class Reference.

Vertical reuse means building larger systems out of existing ones. What was once a top-level
environment becomes a sub-environment of a large testbench. The objection mechanism
allows sub-system environment developers to define a drain time per sub-system.

Implementing Checks and Coverage

Checks and coverage are crucial to a coverage-driven verification flow. SystemVerilog allows
the usage shown in Table 3-1 on page 62 for cover, covergroup, and assert constructs.

Note: This overview is for concurrent assertions. Immediate assertions can be used in any
procedural statement. Refer to the SystemVerilog LRM for more information.

Table 3-1 SystemVerilog Checks and Coverage Construct Usage Overview

class interface package module initial always generate program

assert no yes no yes yes yes yes yes

cover no yes yes yes yes yes yes yes

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 63 Product Version 2.1.1

In an OVC, checks and coverage are defined in multiple locations depending on the category
of functionality being analyzed. In Figure 4-2 on page 71, checks and coverage are depicted
in the ovm_monitor and interface. The following sections describe how the cover,
covergroup, and assert constructs are used in the OVM XBus OVC example (described in
“XBus OVC Example” on page 137).

Implementing Checks and Coverage in Classes

Class checks and coverage should be implemented in the classes derived from
ovm_monitor. The derived class of ovm_monitor is always present in the agent, and thus
will always contain the necessary checks and coverage. The bus monitor is created by default
in an env, and if the checks and coverage collection is enabled the bus monitor will perform
these functions. The remainder of this section uses the master monitor as an example of how
to implement class checks and coverage, but they apply to the bus monitor as well.

You can write class checks as procedural code or SystemVerilog immediate assertions.

Tip: Use immediate assertions for simple checks that can be written in a few lines of code,
and use functions for complex checks that require many lines of code. The reason is that as
the check becomes more complicated, so does the debug of that check.

Note: Concurrent assertions are not allowed in SystemVerilog classes per the IEEE1800
LRM.

Following is a simple example of an assertion check. This assertion verifies that the size field
of the transfer is either 1, 2, 4, or 8. Otherwise the assertion fails.

function void xbus_master_monitor::check_transfer_size();
check_transfer_size : assert(trans_collected.size == 1 ||

trans_collected.size == 2 || trans_collected.size == 4 ||
trans_collected.size == 8) else begin
// Call DUT error: Invalid transfer size!

end
endfunction : check_transfer_size

Following is a simple example of a function check. This function verifies that the size field
value matches the size of the data dynamic array. While this example is not complex, it
illustrates a procedural-code example of a check.

function void xbus_master_monitor::check_transfer_data_size();
if (trans_collected.size != trans_collected.data.size())

covergroup yes yes yes yes no no yes yes

Table 3-1 SystemVerilog Checks and Coverage Construct Usage Overview

class interface package module initial always generate program

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 64 Product Version 2.1.1

// Call DUT error: Transfer size field / data size mismatch.
endfunction : check_transfer_data_size

The proper time to execute these checks depends on the implementation. You should
determine when to make the call to the check functions shown above. For the above example,
both checks should be executed after the transfer is collected by the monitor. Since these
checks happen at the same instance in time, a wrapper function can be created so that only
one call has to be made. This wrapper function follows.

function void xbus_master_monitor::perform_transfer_checks();
check_transfer_size();
check_transfer_data_size();

endfunction : perform_transfer_checks

The perform_transfer_checks() function is called procedurally after the item has been
collected by the monitor.

Functional coverage is implemented using SystemVerilog covergroups. The details of the
covergroup (that is, what to make coverpoints, when to sample coverage, and what bins to
create) should be planned and decided before implementation begins.

Following is a simple example of a covergroup.

// Transfer collected beat covergroup.
covergroup cov_trans_beat @cov_transaction_beat;

option.per_instance = 1;
beat_addr : coverpoint addr {

option.auto_bin_max = 16; }
beat_dir : coverpoint trans_collected.read_write;
beat_data : coverpoint data {

option.auto_bin_max = 8; }
beat_wait : coverpoint wait_state {

bins waits[] = { [0:9] };
bins others = { [10:$] }; }

beat_addrXdir : cross beat_addr, beat_dir;
beat_addrXdata : cross beat_addr, beat_data;

endgroup : cov_trans_beat

This embedded covergroup is defined inside a class derived from ovm_monitor and uses
the event cov_transaction_beat as its sampling trigger. For the above covergroup, you
should assign the local variables that serve as coverpoints in a function, then emit the
sampling trigger event. This is done so that each transaction data beat of the transfer can be
covered. This function is shown in the following example.

// perform_transfer_coverage
virtual protected function void perform_transfer_coverage();

-> cov_transaction;
for (int unsigned i = 0; i < trans_collected.size; i++) begin

addr = trans_collected.addr + i;
data = trans_collected.data[i];
wait_state = trans_collected.wait_state[i];
-> cov_transaction_beat;

end
endfunction : perform_transfer_coverage

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 65 Product Version 2.1.1

This function covers several properties of the transfer and each element of the dynamic array
data. SystemVerilog does not provide the ability to cover dynamic arrays. You should access
each element individually and cover that value, if necessary. The
perform_transfer_coverage() function would, like the
perform_transfer_checks() function, be called procedurally after the item has been
collected by the monitor.

Implementing Checks and Coverage in Interfaces

Interface checks are implemented as assertions. Assertions are added to check the signal
activity for a protocol. The assertions related to the physical interface are placed in the env's
interface. For example, an assertion might check that an address is never X or Y during a valid
transfer. Use assert as well as assume properties to express these interface checks.

An assert directive is used when the property expresses the behavior of the device under test.
An assume directive is used when the property expresses the behavior of the environment
that generates the stimulus to the DUT.

The mechanism to enable or disable the physical checks performed using assertions is
discussed in “Controlling Checks and Coverage” on page 65.

Controlling Checks and Coverage

You should provide a means to control whether the checks are enforced and the coverage is
collected. You can use an OVM bit field for this purpose. The field can be controlled using the
ovm_component set_config* interface. Refer to ovm_threaded_component in the
OVM Class Reference for more information. The following is an example of using the
checks_enable bit to control the checks.

if (checks_enable)
perform_transfer_checks();

If checks_enable is set to 0, the function that performs the checks is not called, thus
disabling the checks. The following example shows how to turn off the checks for the
master0.monitor.

set_config_int("masters[0].monitor", "checks_enable", 0);

The same facilities exist for the coverage_enable field in the XBus agent monitors and bus
monitor.

OVM User Guide
Developing Reusable Open Verification Components (OVCs)

March 2010 66 Product Version 2.1.1

OVM User Guide

March 2010 67 Product Version 2.1.1

4
Using OVCs

This chapter covers the steps needed to build a testbench from a set of reusable Open
Verification Components (OVCs). OVM accelerates the development process and facilitates
reuse. OVM users will have fewer hook-up and configuration steps and can exploit a library
of reusable sequences to efficiently accomplish their verification goals.

In this chapter, a distinction is made between the environment integrator and the test writer
who might have less knowledge about verification and wants to use OVM for creating tests.
The test writer may skip the configuration sections and move directly into the test-creation
sections.

The steps you need to perform to create a testbench from OVCs are:

1. Review the reusable OVC configuration parameters.

2. Instantiate and configure reusable OVCs.

3. Create reusable sequences for interface OVCs (optional).

4. Add a virtual sequencer (optional).

5. Add checking and functional coverage extensions.

6. Create tests to achieve coverage goals.

Before reading this chapter make sure you read the OVM Overview chapter of this manual. It
is also recommended (but not required) that you read Developing Reusable Open Verification
Components (OVCs) to get a deeper understanding of OVCs.

This chapter contains the following sections:

■ “Using an OVC” on page 68

■ “Instantiating OVCs” on page 72

■ “OVC Configuration” on page 74

■ “Creating and Selecting a User-Defined Test” on page 76

OVM User Guide
Using OVCs

March 2010 68 Product Version 2.1.1

■ “Creating Meaningful Tests” on page 78

■ “Virtual Sequences” on page 88

■ “Checking for DUT Correctness” on page 94

■ “Implementing a Coverage Model” on page 98

Using an OVC

As illustrated in Figure 4-1 on page 69, the environment integrator instantiates and configures
reusable components to build a desired testbench. The integrator also writes multiple tests to
follow the verification plan in an organized way.

OVM User Guide
Using OVCs

March 2010 69 Product Version 2.1.1

Figure 4-1 Verification Environment Example

Test Class

The ovm_test class defines the test scenario for the testbench specified in the test. The test
class enables configuration of the testbench and environment classes as well as utilities for
command-line test selection. Although IP developers provide default values for topological
and run-time configuration properties, if you require configuration customization, use the
configuration override mechanism provided by the SystemVerilog OVM Class Library. You

Vi
rtu

al
 S

eq
ue

nc
er

CPU Mem

Periph Periph

DUT

Verification Environment OVC Repository

OVC 1

mon driver

mon driver

Bus OVC
mon driver

Bus OVC

OVC 2

mon driver

OVC 1

mon driver

mon

OVC 2

mon driver

Legend

monitor

sequencer

mon driver

interface OVC

OVM User Guide
Using OVCs

March 2010 70 Product Version 2.1.1

can provide user-defined sequences in a file or package, which is included or imported by the
test class. A test provides data and sequence generation and inline constraints. Test files are
typically associated with a single configuration.

For usage examples of test classes refer to “Creating and Selecting a User-Defined Test” on
page 76.

Tests in OVM are classes that are derived from an ovm_test class. Using classes allows
inheritance and reuse of tests.

Testbench Class

The testbench is the container object that defines the testbench topology. The testbench
instantiates the reusable verification IP and defines the configuration of that IP as required by
the application.

Instantiating the reusable environment directly inside the tests has several drawbacks:

■ The test writer must know how to configure the environment.

■ Changes to the topology require updating multiple test files, which can turn into a big
task.

■ The tests are not reusable because they rely on a specific environment structure.

For these reasons, OVM recommends using a testbench class. The testbench class is
derived from the ovm_env class. The testbench instantiates and configures the reusable
components for the desired verification task. Multiple tests can instantiate the testbench class
and determine the nature of traffic to generate and send for the selected configuration.

Figure 4-2 on page 71 shows a typical verification environment that includes the test class
containing the testbench class. Other environments (OVCs) are contained inside the
testbench class.

OVM User Guide
Using OVCs

March 2010 71 Product Version 2.1.1

Figure 4-2 OVC Verification Environment Class Diagram

ovm_test

interface

DUT module(s) (RTL, signals)

interface ports

top module

virtual interface connections

checks &

ovm_env (testbench)

ovm_env

ovm_env

ovm_env

ovm_monitor

coverage
checks

ovm_sequencer

ovm_driver

ovm_monitor

coverage
checks

ovm_agent

ovm_sequences
ovm_sequence_base

ovm_sequencer

ovm_driver

ovm_monitor

coverage
checks

ovm_agent

ovm_sequences
ovm_sequence_base

ovm_sequencer

ovm_driver

ovm_monitor

coverage
checks

ovm_agent

ovm_sequence

ovm_sequencer
ovm_sequence

interface
checks &

interface
checks &

Arrows represent virtual-interface connections.

OVM User Guide
Using OVCs

March 2010 72 Product Version 2.1.1

Instantiating OVCs

This section describes how you can use OVCs to create a testbench that can be reused for
multiple tests. The following example uses the verification IP in “XBus OVC Example” on
page 137. This interface OVC can be used in many environments due to its configurability,
but in this scenario it will be used in a simple configuration consisting of one master and one
slave. The testbench sets the applicable topology overrides.

Note:

■ Examples for the set_config calls can be found within the build() function.

■ set_config must be called before the build() if it affects the testbench topology.

class xbus_demo_tb extends ovm_env;
// Provide implementations of virtual methods such as get_type_name().

`ovm_component_utils(xbus_demo_tb)

// XBus reusable environment
xbus_env xbus0;

// Scoreboard to check the memory operation of the slave
xbus_demo_scoreboard scoreboard0;

// new()
function new(string name, ovm_component parent);

super.new(name, parent);
endfunction : new

// build()
virtual function void build();

super.build(); // Configure before creating the subcomponents.
set_config_int("xbus0", "num_masters", 1);
set_config_int("xbus0", "num_slaves", 1);
xbus0 = xbus_env::type_id::create("xbus0", this);
scoreboard0 = xbus_demo_scoreboard::type_id::create("scoreboard0",

this);;
endfunction : build

virtual function connect();
// Connect slave0 monitor to scoreboard.
xbus0.slaves[0].monitor.item_collected_port.connect(
scoreboard0.item_collected_export);
// Assign interface for xbus0.
xbus0.assign_vi(xbus_tb_top.xi0);

endfunction : connect

virtual function void end_of_elaboration();
// Set up slave address map for xbus0 (basic default).
xbus0.set_slave_address_map("slaves[0]", 0, 16'hffff);

endfunction : end_of_elaboration

endclass : xbus_demo_tb

Other configuration examples include:

■ Set the masters[0] agent to be active:

set_config_int("xbus0.masters[0]", “is_active", OVM_ACTIVE);

OVM User Guide
Using OVCs

March 2010 73 Product Version 2.1.1

■ Do not collect coverage for masters[0] agent:

set_config_int("xbus0.masters[0].monitor", “coverage_enable", 0);

■ Set all slaves (using a wildcard) to be passive:

set_config_int("xbus0.slaves*", “is_active", OVM_PASSIVE);

Many test classes may instantiate the testbench class above, therefore test writers do not
need to understand all the details of how it is created and configured.

The xbus_demo_tb’s new() constructor is not used for creating the testbench
subcomponents because there are limitations on overriding new() in object-oriented
languages such as SystemVerilog. Instead, use a virtual build() function, which is a built-
in OVM phase.

The set_config_int calls specify that the number of masters and slaves should both be
1. These configuration settings are used by the xbus0 environment during the xbus0
build(). This defines the topology of the xbus0 environment, which is a child of the
xbus_demo_tb.

In a specific test a user might want to extend the xbus_env and derive a new class from it.
create() is used to instantiate the subcomponents (instead of the new() constructor) so that
the xbus_env or the scoreboard classes can be replaced with derivative classes without
changing the testbench file. See “Component Overrides” on page 107 for more information.

As required, super.build() is called as the first line of the xbus_demo_tb’s build()
function. This updates the configuration fields of the xbus_demo_tb.

connect() is used to make the connection between the slave monitor and the scoreboard.
The slave monitor contains a TLM analysis port which is connected to the TLM analysis
export on the scoreboard. The virtual interface variable for the XBus environment is also
assigned so that the environment topology can communicate with the top-level Verilog
module. connect() is a built-in OVM phase.

After the build() and connect() functions are complete, the user can make adjustments
to run-time properties since the environment is completely elaborated (that is, created and
connected). The end_of_elaboration() function makes the environment aware of the
address range to which the slave agent should respond.

The xbus_demo_tb defines the topology needed for the xbus demo tests. This object can
be used as is or can be overridden from the test level, if necessary.

OVM User Guide
Using OVCs

March 2010 74 Product Version 2.1.1

OVC Configuration

OVC Configurable Parameters

Based on the protocols used in a device, the integrator instantiates the needed environment
classes and configures them for a desired operation mode. Some standard configuration
parameters are recommended to address common verification needs. Other parameters are
protocol- and implementation-specific.

Examples of standard configuration parameters:

■ An agent can be configured for active or passive mode. In active mode, the agent drives
traffic to the DUT. In passive mode, the agent passively checks and collects coverage for
a device. A rule of thumb to follow is to use an active agent per device that needs to be
emulated, and a passive agent for every RTL device that needs to be verified.

■ The monitor collects coverage and checks a DUT interface by default. The user may
disable these activities by the standard checks_enable and coverage_enable
parameters.

Examples of user-defined parameters:

■ The number of master agents and slave agents in an AHB OVC.

■ The operation modes or speeds of a bus.

An OVM OVC should support the standard configuration parameters and provide user-
defined configuration parameters as needed. Refer to the OVC documentation for information
about its user-defined parameters.

OVC Configuration Mechanism

OVM provides a configuration mechanism (see Figure 4-3 on page 75) to allow integrators to
configure an environment without needing to know the OVC implementation and hook-up
scheme. Following are some examples.

set_config_int("xbus0", "num_masters", 1);
set_config_int("xbus0", "num_slaves", 1);
set_config_int("xbus0.masters[0]", “is_active", 1);
set_config_int("xbus0.slaves*", “is_active", 0);
set_config_int("xbus0.masters[0].monitor", “coverage_enable", 0);

OVM User Guide
Using OVCs

March 2010 75 Product Version 2.1.1

Figure 4-3 Standard Configuration Fields and Locations

Using a Configuration Class

Some OVCs randomize configuration attributes inside a configuration class. Dependencies
between these attributes are captured using constraints within the configuration object. In
such cases, users can extend the configuration class to add new constraints, or layer
additional constraints on the class using inline constraints. Once configuration is randomized,
the test writer can use set_config_object() to assign the configuration object to one or
more environments within the testbench. Similarly to set_config_int(),
set_config_object() allows you to set the configuration to multiple environments in the
testbench regardless of their location, and impact the build process of the testbench.

sequencer

driver

sequence

interfac

interfacmonitor

bit
coverage_enable

monitor

bit
coverage_enable

ovm_active_passive_enum

master agent

sequencer

driver

sequence

interfac

interfacmonitor

bit
coverage_enable

ovm_active_passive_enum

slave agent

int unsigned
num_masters
int unsigned

Environment

OVM User Guide
Using OVCs

March 2010 76 Product Version 2.1.1

Creating and Selecting a User-Defined Test

In OVM, a test is a class that encapsulates test-specific instructions written by the test writer.
This section describes how to create and select a test. It also describes how to create a test
family base class to verify a topology configuration. This section contains the following:

■ “Creating the Base Test” on page 76.

■ “Creating Tests from a Test-Family Base Class” on page 77.

■ “Test Selection” on page 77.

Creating the Base Test

The following example shows a base test that uses the xbus_demo_tb defined in
“Instantiating OVCs” on page 72. This base test is a starting point for all derivative tests that
will use the xbus_demo_tb. The complete test class is shown here:

class xbus_demo_base_test extends ovm_test;
`ovm_component_utils(xbus_demo_base_test)
xbus_demo_tb xbus_demo_tb0;
// The test’s constructor
function new (string name = "xbus_demo_base_test",

ovm_component parent = null);
super.new(name, parent);

endfunction

// Update this component's properties and create the xbus_demo_tb component.
virtual function build(); // Create the testbench.

super.build();
xbus_demo_tb0 = xbus_demo_tb::type_id::create("xbus_demo_tb0", this);

endfunction

endclass

The build() function of the base test creates the xbus_demo_tb. The SystemVerilog OVM
Class Library will execute the build() function of the xbus_demo_base_test for the user
when cycling through the simulation phases of the components. This creates the testbench
environment because each sub-component will create components that will create more
components in their build() functions.

All of the definitions in the base test will be inherited by any test that derives from
xbus_demo_base_test. This means that any derivative test will not have to build the
testbench if the test calls super.build(). Likewise, the run() task behavior can be
inherited. If the current implementation does not meet your needs, you can redefine both the
build() and run() methods because they are both virtual.

OVM User Guide
Using OVCs

March 2010 77 Product Version 2.1.1

Creating Tests from a Test-Family Base Class

You can derive from the base test defined in “Creating the Base Test” on page 76 to create
tests that reuse the same topology. Since the testbench is created by the base test's
build() function and the run() task defines the run phase, the derivative tests can make
minor adjustments. (For example, changing the default sequence executed by the agents in
the environment.) Below is an example of a simple test that inherits from
xbus_demo_base_test.

class test_read_modify_write extends xbus_demo_base_test;

`ovm_component_utils(test_read_modify_write)

// The test’s constructor
function new (string name = "test_read_modify_write",

ovm_component parent = null);
super.new(name, parent);

endfunction

// Register configurations to control which
// sequence is executed by the sequencers.
virtual function void build();

// Substitute the default sequence.
set_config_string("xbus_demo_tb0.xbus0.masters[0].sequencer",

"default_sequence", "read_modify_write_seq");
set_config_string("xbus_demo_tb0.xbus0.slaves[0].sequencer",

"default_sequence", "slave_memory_seq");
super.build();

endfunction

endclass

This test changes the default sequence executed by the masters[0] agent and the
slaves[0] agent. It is important that the settings for the default_sequence be set before
calling super.build(), which creates the testbench. When super.build() is called, the
xbus_demo_tb0 and all its subcomponents are created.

This test relies on the xbus_demo_base_test implementation of the run() phase.

Test Selection

After you have declared a user-defined test (described in “Creating Tests from a Test-Family
Base Class” on page 77), invoke the global OVM run_test() task in the top-level module
to select a test to be simulated. Its prototype is:

task run_test(string test_name="");

When a test name is provided to the run_test() task, the factory is called to create an
instance of the test with that type name. Simulation then starts and cycles through the
simulation phases.

OVM User Guide
Using OVCs

March 2010 78 Product Version 2.1.1

The following example shows how the test type name test_read_modify_write (defined
in “Creating Tests from a Test-Family Base Class” on page 77) can be provided to the
run_test() task.

A test name is provided to run_test() via a simulator command-line argument. If the top
module calls run_test() without an argument, the +OVM_TESTNAME=test_name
simulator command-line argument is checked. If present, run_test() will use
test_name. Using the simulator command-line argument avoids having to hardcode the
test name in the run_test() task. For example, in the top-level module, call the
run_test() as follows:

module tb_top;
// DUT, interfaces, and all non-testbench code
initial

run_test();
endmodule

To select a test of type test_read_modify_write (described in “Creating Tests from a
Test-Family Base Class” on page 77) using simulator command-line option, use the following
command:

% simulator-command other-options +OVM_TESTNAME=test_read_modify_write

If the test name provided to run_test() does not exist, the simulation will exit immediately
via a call to $fatal. If this occurs, it is likely the name was typed incorrectly or the
`ovm_component_utils macro was not used.

By using this method and only changing the +OVM_TESTNAME argument, you can run
multiple tests without having to recompile or re-elaborate the design or testbench.

Creating Meaningful Tests

The previous sections show how test classes are put together. At this point, random traffic is
created and sent to the DUT. The user can change the randomization seed to achieve new
test patterns. To achieve verification goals in a systematic way, the user will need to control
test generation to cover specific areas.

The user can control the test creation using these methods:

■ Add constraints to control individual data items. This method provides basic functionality.
It is described in “Constraining Data Items” on page 79.

■ Use OVM sequences to control the order of multiple data items. This method provides
more flexibility and control. It is described in the “Using Sequences” on page 81.

OVM User Guide
Using OVCs

March 2010 79 Product Version 2.1.1

Constraining Data Items

By default, sequencers repeatedly generate random data items. At this level, the test writer
can control the number of generated data items and add constraints to data items to control
their generated values.

To constrain data items:

1. Identify the data item classes and their generated fields in the OVC.

2. Create a derivation of the data item class that adds or overrides default constraints.

3. In a test, adjust the environment (or a subset of it) to use the newly-defined data items.

4. Run the simulation using a command-line option to specify the test name.

Data Item Example
typedef enum bit {BAD_PARITY, GOOD_PARITY} parity_e;

class uart_frame extends ovm_sequence_item;
rand int unsigned transmit_delay;
rand bit start_bit;
rand bit [7:0] payload;
rand bit [1:0] stop_bits;
rand bit [3:0] error_bits;
bit parity;
// Control fields
rand parity_e parity_type;

function new(input string name);
super.new(name);

endfunction

// Optional field declarations and automation flags
`ovm_object_utils_begin(uart_frame)

`ovm_field_int(start_bit, OVM_ALL_ON)
`ovm_field_int(payload, OVM_ALL_ON)
`ovm_field_int(parity, OVM_ALL_ON)
`ovm_field_enum(parity_e, parity_type, OVM_ALL_ON + OVM_NOCOMPARE)
`ovm_field_int(xmit_delay, OVM_ALL_ON + OVM_DEC + OVM_NOCOMPARE)

`ovm_object_utils_end

// Specification section 1.2: the error bits value should be
// different than zero.
constraint error_bits_c {error_bits != 4'h0;}

// Default distribution constraints
constraint default_parity_type {parity_type dist {

GOOD_PARITY:=90, BAD_PARITY:=10};}

// Utility functions
extern function bit calc_parity ();
...
endfunction

endclass: uart_frame

The uart_frame is created by the uart environment developer.

OVM User Guide
Using OVCs

March 2010 80 Product Version 2.1.1

A few fields in the derived class come from the device specification. For example, a frame
should have a payload that is sent to the DUT. Other fields are there to assist the test writer
in controlling the generation. For example, the field parity_type is not being sent to the
DUT, but it allows you to easily specify and control the parity distribution. Such control fields
are called “knobs”. The OVC documentation should list the data item's knobs, their roles, and
legal range.

Data items have specification constraints. These constraints can come from the DUT
specification to create legal data items. For example, a legal frame must have
error_bits_c not equal to 0. A different type of constraint in the data items constrains the
traffic generation. For example, in the constraint block default_parity_type (in the
example above), the parity bit is constrained to be 90-percent legal (good parity) and 10-
percent illegal (bad parity).

Creating a Test-Specific Frame

In tests, the user may wish to change the way data items are generated. For example, the test
writer may wish to have short delays. This can be achieved by deriving a new data item class
and adding constraints or other class members as needed.

// A derived data item example
// Test code
class short_delay_frame extends uart_frame;

// This constraint further limits the delay values.
constraint test1_txmit_delay {transmit_delay < 10;}

`ovm_object_utils(short_delay_frame)

function new(input string name="short_delay_frame");
super.new(name);

endfunction

endclass: short_delay_frame

Deriving the new class is not enough to get the desired effect. You also need to have the
environment use the new class (short_delay_frame) rather than the OVC frame. The
SystemVerilog OVM Class Library provides a mechanism that allows you to introduce the
derived class to the environment.

class short_delay_test extends ovm_test;
`ovm_component_utils(short_delay_test)
uart_tb uart_tb0;
function new (string name = "short_delay_test",ovm_component parent = null);

super.new(name, parent);
endfunction

virtual function build();
super.build();
// Use short_delay_frame throughout the environment.
factory.set_type_override_by_type(uart_frame::get_type(),

short_delay_frame::get_type());
uart_tb0 = uart_tb::type_id::create("uart_tb0", this);

endfunction

OVM User Guide
Using OVCs

March 2010 81 Product Version 2.1.1

task run();
ovm_top.print_topology();

endtask

endclass

Calling the factory function set_type_override_by_type() (in bold above) instructs the
environment to use short-delay frames.

At times, a user may want to send special traffic to one interface but keep sending the regular
traffic to other interfaces. This can be achieved by using set_inst_override_by_type()
inside an OVM component.

set_inst_override_by_type("uart_env0.master.sequencer.*",
uart_frame::get_type(), short_delay_frame::get_type());

You can also use wildcards to override the instantiation of a few components.

set_isnt_override_by_type("uart_env*.msater.sequencer.*",
uart_frame::get_type(), short_delay_frame::get_type());

Using Sequences

Constraint layering is an efficient way of uncovering bugs in your DUT. Having the constraint
solver randomly select values ensures a non-biased sampling of the legal input space.
However, constraint layering does not allow a user to control the order between consecutive
data items. Many high-level scenarios can only be captured using a stream of ordered
transactions. For example, simply randomizing bus transactions is unlikely to produce a legal
scenario for your device. OVM sequences are library base classes that allow you to create
meaningful ordered scenarios. This section describes OVM sequencers and sequences.

Important Randomization Concepts and Sequence Requirements

The previous section described the sequencer as a generator that can generate data items
in a loop. While this is the default behavior, the sequencer actually generates sequences.
User-defined sequences can be added to the sequencer’s sequence library and randomly
executed. If no user-defined sequences are added, then the only executed sequence is the
built-in sequence called simple_sequence that execute a single data item.

“Controlling the Number of Sequences Created by ovm_random_sequence” on page 82
shows how you can use the configuration mechanism to modify the count to adjust the
sequence generated pattern. This section introduces other advanced ways to control the
sequencer, including:

■ Creating and adding a new sequence to be executed.

■ Changing the distribution of executed sequences.

OVM User Guide
Using OVCs

March 2010 82 Product Version 2.1.1

■ Adjust the sequencer to start from a sequence other than the pre-defined random
sequence.

Controlling the Number of Sequences Created by ovm_random_sequence

The default number of generated sequences is a random number between 0 and
ovm_sequencer::max_random_count. The user can modify the number of generated
sequences (count). Use the configuration mechanism to change the value of count. For
example, to generate and send 10 sequences, use:

set_config_int("*.cpu_seqr", "count", 10);

You can disable a sequencer from generating any sequences by setting the count to 0.

set_config_int("*.cpu_seqr", "count", 0);

Note: Having more data items than count is not necessarily a bug. The sequencer does
not generate data items directly. By default, it generates count number of simple sequences
that translate into count number of items. The sequencer has more built-in capabilities,
which are described in the next section.

Creating and Adding a New Sequence

To create a user-defined sequence:

1. Derive a sequence from the ovm_sequence base class.

2. Use the `ovm_sequence_utils macro to associate the sequence with the relevant
sequencer type and to declare the various automation utilities. This macro is similar to
the `ovm_object_utils macro (and its variations) except that it takes another
argument, which is the sequencer type name this sequence is associated with. This
macro also provides a p_sequencer variable that is of the type specified by the second
argument of the macro. This allows access to derived type-specific sequencer
properties.

3. Implement the sequence's body task with the specific scenario you want the sequence
to execute. In the body, you can execute data items and other sequences using
“`ovm_do” on page 57 and “`ovm_do_with” on page 57.

Example

The class retry_seq in the example below defines a new sequence. It is derived from
ovm_sequence and uses the `ovm_sequence_utils macro to associate this sequence
with uart_tx_sequencer and to declare the various utilities `ovm_object_utils
provides.

OVM User Guide
Using OVCs

March 2010 83 Product Version 2.1.1

// Send one BAD_PARITY frame followed by a GOOD_PARITY
// frame with the same payload.

class retry_seq extends ovm_sequence #(uart_frame);
rand bit [7:0] pload; // Randomizable sequence parameter
...

// OVM automation for sequences
‘ovm_sequence_utils_begin(retry_seq, uart_tx_sequencer)

‘ovm_field_object(frame, OVM_ALL_ON)
‘ovm_field_int(pload, OVM_ALL_ON)

‘ovm_sequence_utils_end

// Constructor
function new(string name="retry_seq");

super.new(name);
endfunction

task body (); // Sequence behavior
‘ovm_do_with(req, {payload == pload; parity == BAD_PARITY;})
‘ovm_do_with(req, {payload == pload; parity == GOOD_PARITY;})

endtask : body

endclass: retry_seq

Sequences can have parameters which can be randomized (for example, pload in this
example). Use constraints to control the randomization of these parameters. Then use the
randomized parameters within the body() task to guide the sequencer’s behavior.

The body task defines the main behavior of a sequence. Since it is a task, you can use any
procedural code, loops, fork and join, wait for events, and so on.

The `ovm_do_with macro randomizes and executes an item with inline constraints. The
`ovm_do_with also sends the data item to the driver, which sends it to the DUT. The
execution of the body task is blocked until the driver has sent the item to the DUT. Use the
`ovm_do macro to randomize the item without inline constraints.

In the example above, when the retry sequence is executed, it will randomize the payload,
send a frame with the generated payload having illegal parity, and follow it with a frame with
a similar payload but with legal parity.

A sequencer type is provided as the second parameter to the `ovm_sequence_utils
macro, which means that this sequence is added to the sequencer pool and could be
randomly executed by the default random sequence. Since the sequencer type is provided,
the p_sequencer variable can be declared the appropriate type and initialized.

Describing Nested Sequences

You can define more abstract sequences using existing sequences. Doing so provides
additional reuse and makes it easier to maintain the test suite. For example, after defining the
configuration sequence per device in a block-level testbench, the user may define a system-
level configuration sequence which is a combination of the already-defined sequences.

OVM User Guide
Using OVCs

March 2010 84 Product Version 2.1.1

Executing (doing) a sequence is similar to doing a data item. For example:

// Call retry sequence wrapped with random frames.

class rand_retry_seq extends ovm_sequence #(uart_frame);
// Constructor, and so on

...
`ovm_sequence_utils(rand_retry_rand_seq, uart_tx_sequencer)
retry_seq retry_sequence; // Variable of a previously declared sequence

task body (); // Sequence behavior
`ovm_do (req)
`ovm_do_with(retry_sequence, {pload inside {[0:31]};})
`ovm_do(req)

endtask

endclass

The rand_retry_seq has a field called retry_sequence. retry_seq is a user-
predefined sequence.

The body() task is do-ing this sequence and layering inline constraints from above. This
layering from above is one of many advantages that OVM sequences have.

Adjusting the Sequencer

The sequencer has a string property named default_sequence which can be set to a
user-defined sequence type. This sequence type is used as the default sequence for the
current instance of the sequencer (Figure 4-4 on page 85).

OVM User Guide
Using OVCs

March 2010 85 Product Version 2.1.1

Figure 4-4 Sequencer with a Sequence Library

To override the default sequence:

1. Declare a user-defined sequence class which derives from an appropriate base
sequence class.

2. Configure the default_sequence property for a specific sequencer or a group of
sequencers. This is typically done inside the test class, before creating the component
that includes the relevant sequencer(s). For example,

set_config_string("*.master0.sequencer", "default_sequence","retry_seq");

ovm_random

default_sequence ovm_exhaustive
ovm_simple
retry_seq
rand_retry_seq

sequencer

interface

ovm_random

default_sequence ovm_exhaustive
ovm_simple
retry_seq
rand_retry_seq

sequencer

interface

In default mode, the sequencer executes the random
sequence, which randomly selects sequences and
executes them.

Setting default_sequence to “retry_seq” using
set_config_string("*.sequencer", "default_sequence", "retry_seq");
causes the sequencer to execute the “retry_seq” sequence.

OVM User Guide
Using OVCs

March 2010 86 Product Version 2.1.1

The first argument uses a wildcard to match any instance name containing
.master0.sequencer to set the default_sequence property (if it exists) to the
value retry_seq.

Sequence Libraries and Reuse

Use of sequences is an important part of OVC reuse. The environment developer who knows
and understands the OVC protocol specifications can create interesting parameterized
reusable sequences. This library of sequences enables the environment user to leverage
interesting scenarios to achieve coverage goals more quickly. Check to see if your OVCs
sequencer comes with a library of sequences. The example below shows a printout of a
sequencer.print() command.

--

Name Type Size Value

--

sequencer uart_tx_sequencer- @1011

default_sequence string 19 ovm_random_sequence

sequences da(string) 4 -

[0] string 19 ovm_random_sequence

[1] string 23 ovm_exhaustive_sequence

[2] string 19 ovm_simple_sequence

[3] string 9 retry_seq

[4] string 14 rand_retry_seq

count integral 32 -1

max_random_count integral 32 'd10

max_random_depth integral 32 'd4

The default sequence of this sequencer is ovm_random_sequence, which means that
sequences will be randomly generated in a loop by default.

This sequencer has five sequences associated with it. Three sequences are built-in
sequences (ovm_random_sequence, ovm_exhaustive_sequence, and
ovm_simple_sequence), and two are user-defined (retry_seq and rand_retry_seq).

The built-in exhaustive sequence is similar to random sequence. It randomly selects and
executes once each sequence from the sequencer’s sequence library, excluding
ovm_random_sequence and ovm_exhaustive_sequence. If count equals 0, the
sequencer will not automatically start a sequence. If desired, the user may start a sequence
manually. This operation typically is used for virtual sequencers. If count is not equal to 0,
the sequencer automatically starts the default sequence, which may use the count variable.

OVM User Guide
Using OVCs

March 2010 87 Product Version 2.1.1

The exhaustive sequence does not use the count variable. However, the subsequences
started by the exhaustive sequence may use count.

The value of count in this sequencer is -1, which means that the number of generated
sequences will be between 0 and max_random_count (10, the default value, in this
example).

For more information about sequences refer to “Advanced Sequence Control” on page 116.

Directed-Test Style Interface

The sequence style discussed in “Using Sequences” on page 81 is the recommended way to
create tests. Focus is placed on creating reusable sequences that you can use across many
tests, instead of placing stimulus scenarios directly inside the test. Each sequencer is
preloaded with the default traffic that will be generated at run time and sent to the DUT. Inside
the tests, the test writer needs to touch only the sequencers that need to be modified.

Some test writers, however, are accustomed to writing directed tests. In directed tests, you
write procedural code in which you explicitly request each interface to generate and send
items. While directed tests are not the recommended test-creation style, OVM support this
method using the sequencer's execute_item() task. Before using directed tests, consider
their disadvantages compared to the OVM-recommended test-creation method:

■ Directed tests require more code to write and maintain. This becomes critical in system-
level environments.

■ In directed tests, the high-level intention of the code is not as clear or as easy to read and
understand. In the recommended method, the code is focused on test-specific needs,
and other system-related aspects are present by default. For example, the arbitration
logic for slaves that service requests does not need to be coded in every test.

■ Directed tests are less reusable because they contain specific and unreusable
information.

■ In the recommended method, tests are random by default. All declared sequences are
candidates for execution by default. You must explicitly exclude a sequence from being
executed. This prevents the problem of missing sequences and creates a more random
pattern that can expose unanticipated bugs.

■ In the recommended method for many protocols, you should never have to touch the
high-level sequence, which serves as a template for other sub-sequences to be executed
in a certain order.

The following code is an example of a directed test.

OVM User Guide
Using OVCs

March 2010 88 Product Version 2.1.1

Note:

❑ The execute_item() task can execute a data item or a sequence. It blocks until
the item or the sequence is executed by the sequencer. You can use regular
SystemVerilog constructs such as fork/join to model concurrency.

❑ The default activity in the sequencers is disabled by setting the count parameters of
all sequencers to 0. The execute_item() task is used to send traffic in a
deterministic way.

❑ Using default random activity is a good practice. It is straightforward and a good
investment. The use of execute_item() should be minimized and limited to
specific scenarios.

class directed_test extends xbus_demo_base_test;
`ovm_component_utils(directed_test)

xbus_demo_tb xbus_demo_tb0;
function new (string name = "directed_test",

ovm_component parent = null);
super.new(name, parent);

endfunction

virtual function void build();
super.build();
set_config_int("*.sequencer", "count", 0);
// Create the testbench.
xbus_demo_tb0 = xbus_demo_tb::type_id::create("xbus_demo_tb0", this);

endfunction

virtual task run();
bit success; simple_item item;
#10;
item = new();
success = item.randomize();
tb.ahb.masters[1].sequencer.execute_item(item);
success = item.randomize() with { addr < 32'h0123; } ;
tb.ahb.masters[1].sequencer.execute_item(item);

endtask

endclass

Virtual Sequences

“Creating Meaningful Tests” on page 78 describes how to efficiently control a single-interface
generation pattern. However, in a system-level environment multiple components are
generating stimuli in parallel. The user might want to coordinate timing and data between the
multiple channels. Also, a user may want to define a reusable system-level scenario. Virtual
sequences are associated with a virtual sequencer and are used to coordinate stimulus
generation in a testbench hierarchy. In general, a virtual sequencer contains references to its
subsequencers, that is, driver sequencers or other virtual sequencers in which it will invoke
sequences. Virtual sequences can invoke other virtual sequences associated with its
sequencer, as well as sequences in each of the subsequencers. However, virtual sequencers

OVM User Guide
Using OVCs

March 2010 89 Product Version 2.1.1

do not have their own data item and therefore do not execute data items on themselves.
Virtual sequences can execute items on other sequencers that can execute items.

Virtual sequences enable centralized control over the activity of multiple verification
components which are connected to the various interfaces of the DUT. By creating virtual
sequences, you can easily reuse existing sequence libraries of the underlying interface
components and block-level environments to create coordinated system-level scenarios.

In Figure 4-5 on page 89 below, the virtual sequencer invokes configuration sequences on
the ethernet and cpu OVCs. The configuration sequences are developed during block-level
testing.

Figure 4-5 Virtual Sequence

There are three ways in which the virtual sequencer can interact with its subsequencers:

■ “Business as usual”—Virtual subsequencers and subsequencers send transactions
simultaneously.

■ Disable subsequencers—Virtual sequencer is the only one driving.

comm_env

ethernet_env

ethernet_agent
ethernet_sequencer

cpu_env

cpu_agent

virtual_sequencer

comm_sequence_s

cpu_config

eth_legal

seq

seq

seq

seq

driver driver

seq

seq

seq

seq

cpu_bus_sequencer

OVM User Guide
Using OVCs

March 2010 90 Product Version 2.1.1

■ Using grab() and ungrab()—Virtual sequencer takes control of the underlying
driver(s) for a limited time.

When using virtual sequences, most users disable the subsequencers and invoke sequences
only from the virtual sequence. For more information, see “Controlling Other Sequencers” on
page 92.

To invoke sequences, you can do one of the following:

■ Use the appropriate do macro

■ Use the sequence start() method.

Creating a Virtual Sequencer

For high-level control of multiple sequencers from a single sequencer, use a sequencer that
is not attached to a driver and does not process items itself. A sequencer acting in this role is
referred to as a virtual sequencer.

To create a virtual sequencer that controls several subsequencers:

1. Derive a virtual sequencer class from the ovm_sequencer class.

2. Add references to the sequencers on which the virtual sequences will coordinate the
activity. These references will be assigned by a higher-level component (typically the
testbench).

The following example declares a virtual sequencer with two subsequencers. Two interfaces
called eth and cpu are created in the build function, which will be hooked up to the actual
sub-sequencers.

class simple_virtual_sequencer extends ovm_sequencer;
eth_sequencer eth_seqr;
cpu_sequencer cpu_seqr;

// Constructor
function new(input string name="simple_virtual_sequencer",

input ovm_component parent=null);
super.new(name, parent);
// Automation macro for virtual sequencer (no data item)
`ovm_update_sequence_lib

endfunction

// OVM automation macros for sequencers
`ovm_sequencer_utils(simple_virtual_sequencer)

endclass: simple_virtual_sequencer

Note: The `ovm_update_sequence_lib macro is used in the constructor when defining
a virtual sequencer. This is different than (non-virtual) driver sequencers, which have an
associated data item type. When this macro is used, the ovm_simple_sequence is not

OVM User Guide
Using OVCs

March 2010 91 Product Version 2.1.1

added to the sequencer’s sequence library. This is important because the simple sequence
only does items, and a virtual sequencer is not connected to a driver that can process the
items. For driver sequencers, use the `ovm_update_sequence_lib_and_item macro.
See “Creating the Sequencer” on page 39 for more information.

Subsequencers can be driver sequencers or other virtual sequencers. The connection of the
actual subsequencer instances via reference is done later, as shown in “Connecting a Virtual
Sequencer to Subsequencers” on page 93.

Creating a Virtual Sequence

Creating a virtual sequence is similar to creating a driver sequence, with the following
differences:

■ A virtual sequence uses ̀ ovm_do_on or ̀ ovm_do_on_with to execute sequences on
any of the subsequencers connected to the current virtual sequencer.

■ A virtual sequence uses ̀ ovm_do or ̀ ovm_do_with to execute other virtual sequences
of this sequencer. A virtual sequence cannot use `ovm_do or `ovm_do_with to
execute items. Virtual sequencers do not have items associated with them, only
sequences.

To create a virtual sequence:

1. Declare a sequence class by deriving it from ovm_sequence, just like a driver
sequence.

2. Define a body() method that implements the desired logic of the sequence.

3. Use the `ovm_do_on (or `ovm_do_on_with) macro to invoke sequences in the
underlying subsequencers.

4. Use the `ovm_do (or `ovm_do_with) macro to invoke other virtual sequences in the
current virtual sequencer.

The following example shows a simple virtual sequence controlling two subsequencers: a
cpu sequencer and an ethernet sequencer. Assume that the cpu sequencer has a
cpu_config_seq sequence in its library and the ethernet sequencer provides an
eth_large_payload_seq sequence in its library. The following sequence example invokes
these two sequencers, one after the other.

class simple_virt_seq extends ovm_sequence;
... // Constructor and OVM automation macros
// See “Creating and Adding a New Sequence” on page 82.
// A sequence from the cpu sequencer library
cpu_config_seq conf_seq;
// A sequence from the ethernet subsequencer library
eth_large_payload_seq frame_seq;

OVM User Guide
Using OVCs

March 2010 92 Product Version 2.1.1

// A virtual sequence from this sequencer's library
random_traffic_virt_seq rand_virt_seq;

virtual task body();
// Invoke a sequence in the cpu subsequencer.
`ovm_do_on(conf_seq, p_sequencer.cpu_seqr)
// Invoke a sequence in the ethernet subsequencer.
`ovm_do_on(frame_seq, p_sequencer.eth_seqr)
// Invoke another virtual sequence in this sequencer.
`ovm_do(rand_virt_seq)

endtask : body

endclass : simple_virt_seq

Controlling Other Sequencers

When using a virtual sequencer, you will need to consider how you want the subsequencers
to behave in relation to the virtual sequence behavior being defined. There are three basic
possibilities:

■ Business as usual—You want the virtual sequencer and the subsequencers to generate
traffic at the same time, using the built-in capability of the original subsequencers. The
data items resulting from the subsequencers’ default behavior—along with those injected
by sequences invoked by the virtual sequencer—will be intermixed and executed in an
arbitrary order by the driver. This is the default behavior, so there is no need to do
anything to achieve this.

■ Disable the subsequencers—Using the set_config routines, you can set the count
property of the subsequencers to 0, thus disabling their default behavior. Recall that, by
default, sequencers start their ovm_random_sequence, which uses the count property
of the sequencer to determine how many sequences to execute.

The following code snippet disables the subsequencers in the example in
“Connecting a Virtual Sequencer to Subsequencers” on page 93 below.

// Configuration: Disable subsequencer sequences.
set_config_int("*.cpu_seqr", "count", 0);
set_config_int("*.eth_seqr", "count", 0);

■ Use grab() and ungrab()—Using grab() and ungrab(), a virtual sequence can
achieve full control over its subsequencers for a limited time and then let the original
sequences continue working.

Note: Only (non-virtual) driver sequencers can be grabbed. Therefore, you should make
sure that a given subsequencer is not a virtual sequencer before you attempt to grab it.
The following example illustrates this using the functions grab() and ungrab() in the
sequence consumer interface.

virtual task body();
// Grab the cpu sequencer if not virtual.
if (p_sequencer.cpu_seqr != null)

p_sequencer.cpu_seqr.grab(this);

OVM User Guide
Using OVCs

March 2010 93 Product Version 2.1.1

// Execute a sequence.
`ovm_do_on(conf_seq, p_sequencer.cpu_seqr)
// Ungrab.
if (p_sequencer.cpu_seqr != null)

p_sequencer.cpu_seqr.ungrab(this);
endtask

Note: When grabbing several sequencers, make sure to use some convention to avoid
deadlocks. For example, always grab in a standard order.

Connecting a Virtual Sequencer to Subsequencers

To connect a virtual sequencer to its subsequencers:

1. Assign the sequencer references specified in the virtual sequencer to instances of the
sequencers. This is a simple reference assignment and should be done only after all
components are created.

v_sequencer.cpu_seqr = cpu_seqr;

v_sequencer.eth_seqr = eth_seqr;

2. Perform the assignment in the connect() phase of the verification environment at the
appropriate location in the verification environment hierarchy.

The following more-complete example shows a top-level testbench, which instantiates the
ethernet and cpu components and the virtual sequencer that controls the two. At the
testbench level, the path to the sequencers inside the various components is known and that
path is used to get a handle to them and connect them to the virtual sequencer.

class simple_tb extends ovm_env;
cpu_env_c cpu0; // Reuse a cpu verification component.
eth_env_c eth0; // Reuse an ethernet verification component.
simple_virtual_sequencer v_sequencer;
... // Constructor and OVM automation macros
virtual function void build();

super.build();
// Configuration: Disable subsequencer sequences.
set_config_int("*.cpu_seqr", "count", 0);
set_config_int("*.eth_seqr", "count", 0);
// Configuration: Set the default sequence for the virtual sequencer.
set_config_string("v_sequencer", "default_sequence",

simple_virt_seq");
// Build envs with subsequencers.
cpu0 = cpu_env_c::type_id::create("cpu0", this);
eth0 = eth_env_c::type_id::create("eth0", this);
// Build the virtual sequencer.
v_sequencer = simple_virtual_sequencer::type_id::create("v_sequencer",

this);
endfunction : build

// Connect virtual sequencer to subsequencers.
function void connect();

v_sequencer.cpu_seqr = cpu0.master[0].sequencer;
v_sequencer.eth_seqr = eth0.tx_rx_agent.sequencer;

endfunction : connect

OVM User Guide
Using OVCs

March 2010 94 Product Version 2.1.1

endclass: simple_tb

Checking for DUT Correctness

Getting the device into desired states is a significant part of verification. The environment
should verify valid responses from the DUT before a feature is declared verified. Two types of
auto-checking mechanisms can be used:

■ Assertions—Derived from the specification or from the implementation and ensure
correct timing behavior. Assertions typically focus on signal-level activity.

■ Data checkers—Ensure overall device correctness.

As was mentioned in “Monitor” on page 13, checking and coverage should be done in the
monitor regardless of the driving logic. Reusable assertions are part of reusable components.
See “Developing Reusable Open Verification Components (OVCs)” on page 31 for more
information. Designers can also place assertions in the DUT RTL. Refer to your ABV
documentation for more information.

This section focuses on data checkers.

Scoreboards

A crucial element of a self-checking environment is the scoreboard. Typically, a scoreboard
verifies the proper operation of your design at a functional level. The responsibility of a
scoreboard varies greatly depending on the implementation. This section will show an
example of a scoreboard that verifies that a given XBus slave interface operates as a simple
memory. While the memory operation is critical to the XBus demonstration environment, you
should focus on the steps necessary to create and use a scoreboard in an environment so
those steps can be repeated for any scoreboard application.

XBus Scoreboard Example

For the XBus demo environment, a scoreboard is necessary to verify that the slave agent is
operating as a simple memory. The data written to an address should be returned when that
address is read. The desired topology is shown in Figure 4-6 on page 95.

In this example, the user has created a testbench containing one XBus environment that
contains the bus monitor, one active master agent, and one active slave agent. Every
component in the XBus environment is created using the build() methods defined by the
IP developer.

OVM User Guide
Using OVCs

March 2010 95 Product Version 2.1.1

Figure 4-6 XBus Demo Environment

Creating the Scoreboard

Before the scoreboard can be added to the xbus_demo_tb, the scoreboard component must
be defined.

To define the scoreboard:

1. Add the TLM export necessary to communicate with the environment monitor(s).

2. Implement the necessary functions and tasks required by the TLM export.

3. Define the action taken when the export is called.

Adding Exports to ovm_scoreboard

In the example shown in Figure 4-6 on page 95, the scoreboard requires only one port to
communicate with the environment. Since the monitors in the environment have provided an
analysis port write() interface via the TLM ovm_analysis_port(s), the scoreboard will
provide the TLM ovm_analysis_imp.

xbus0

sequencer

driver

monitor

master0

P

sequencer

driver

monitor

slave0

P

monitor

P

scoreboard0

item_collected_export

xbus_demo_tb0

OVM User Guide
Using OVCs

March 2010 96 Product Version 2.1.1

The xbus_demo_scoreboard component derives from the ovm_scoreboard and
declares and instantiates an analysis_imp. For more information on TLM interfaces, see
“TLM Interfaces” in the OVM Class Reference. The declaration and creation is done inside
the constructor.

1 class xbus_demo_scoreboard extends ovm_scoreboard;
2 ovm_analysis_imp #(xbus_transfer, xbus_demo_scoreboard)
3 item_collected_export;
4 ...
5 function new (string name, ovm_component parent);
6 super.new(name, parent);
7 item_collected_export = new("item_collected_export", this);
8 endfunction : new
9 ...

Line 2 declares the ovm_analysis_export. The first parameter, xbus_transfer,
defines the ovm_object communicated via this TLM interface. The second parameter
defines the type of this implementation's parent. This is required so that the parent’s write()
method can be called by the export.

Line 7 creates the implementation instance. The constructor arguments define the name of
this implementation instance and its parent.

Requirements of the TLM Implementation

Since the scoreboard provides an ovm_analysis_imp, the scoreboard must implement all
interfaces required by that export. This means you must define the implementation for the
write virtual function. For the xbus_demo_scoreboard, write() has been defined as:

virtual function void write(xbus_transfer trans);
if (!disable_scoreboard)

memory_verify(trans);
endfunction : write

The write() implementation defines what happens when data is provided on this interface.
In this case, if disable_scoreboard is 0, the memory_verify() function is called with
the transaction as the argument.

Defining the Action Taken

When the write port is called via write(), the implementation of write() in the parent of
the implementation is called. For more information, see “TLM Interfaces” in the OVM Class
Reference. As seen in the previous section, the write() function is defined to called the
memory_verify() function if disable_scoreboard is set to 0.

The memory_verify() function makes the appropriate calls and comparisons needed to
verify a memory operation. This function is not crucial to the communication of the scoreboard

OVM User Guide
Using OVCs

March 2010 97 Product Version 2.1.1

with the rest of the environment and will not be discussed. The
xbus_demo_scoreboard.sv file shows the implementation.

Adding the Scoreboard to the Environment

Once the scoreboard is defined, the scoreboard can be added to the XBus demo testbench.
First, declare the xbus_demo_scoreboard inside the xbus_demo_tb class.

xbus_demo_scoreboard scoreboard0;

After the scoreboard is declared, you can construct the scoreboard inside the build()
phase:

function xbus_demo_tb::build();
...
scoreboard0 = xbus_demo_scoreboard::type_id::create("scoreboard0", this);
...

endfunction

Here, the scoreboard0 of type xbus_demo_scoreboard is created using the create()
function and given the name scoreboard0. It is then assigned the xbus_demo_tb as its
parent.

After the scoreboard is created, the xbus_demo_tb can connect the port on the XBus
environment slaves[0] monitor to the export on the scoreboard.

function xbus_demo_tb::connect();
...
xbus0.slaves[0].monitor.item_collected_port.connect(

scoreboard0.item_collected_export);
...

endfunction

This xbus_demo_tb's connect() function code makes the connection, using the TLM
ports connect() interface, between the port in the monitor of the slaves[0] agent inside
the xbus0 environment and the implementation in the xbus_demo_scoreboard called
scoreboard0. For more information on the use of binding of TLM ports, see “TLM
Interfaces” in the OVM Class Reference.

Summary

The process for adding a scoreboard in this section can be applied to other scoreboard
applications in terms of environment communication. To summarize:

1. Create the scoreboard component.

❑ Add the necessary exports.

❑ Implement the required functions and tasks.

OVM User Guide
Using OVCs

March 2010 98 Product Version 2.1.1

❑ Create the functions necessary to perform the implementation-specific functionality.

2. Add the scoreboard to the environment.

❑ Declare and instantiate the scoreboard component.

❑ Connect the scoreboard implementation(s) to the environment ports of interest.

The XBus demo has a complete scoreboard example. See “XBus OVC Example” on
page 137 more information.

Implementing a Coverage Model

To ensure thorough verification, you need observers to represent your verification goals.
SystemVerilog provides a rich set of functional-coverage features.

Selecting a Coverage Method

No single coverage metric ensures completeness. There are two coverage methods:

■ Explicit coverage—is user-defined coverage. The user specifies the coverage goals, the
needed values, and collection time. As such, analyzing these goals is straightforward.
Completing all your coverage goals means that you have achieved 100% of your
verification goals and verification has been completed. An example of such a metric is
SystemVerilog functional coverage. The disadvantage of such metrics is that missing
goals are not taken into account.

■ Implicit coverage—is done with automatic metrics that are driven from the RTL or other
metrics already existing in the code. Typically, creating an implicit coverage report is
straightforward and does not require a lot of effort. For example, code coverage,
expression coverage, and FSM (finite-state machine) coverage are types of implicit
coverage. The disadvantage of implicit coverage is that it is difficult to map the coverage
requirements to the verification goals. It also is difficult to map coverage holes into
unexecuted high-level features. In addition, implicit coverage is not complete, since it
does not take into account high-level abstract events and does not create associations
between parallel threads (that is, two or more events occurring simultaneously).

Starting with explicit coverage is recommended. You should build a coverage model that
represents your high-level verification goals. Later, you can use implicit coverage as a “safety
net” to check and balance the explicit coverage.

Note: Reaching 100% functional coverage with very low code-coverage typically means that
the functional coverage needs to be refined and enhanced.

OVM User Guide
Using OVCs

March 2010 99 Product Version 2.1.1

Implementing a Functional Coverage Model

An OVC should come with a protocol-specific functional-coverage model. You may want to
disable some coverage aspects that are not important or do not need to be verified. For
example, you might not need to test all types of bus transactions in your system, or you might
want to remove that goal from the coverage logic that specifies all types of transactions as
goals. You might also want to extend the functional-coverage model and create associations
between the OVC coverage and other attributes in the system or other interface OVCs. For
example, you might want to ensure proper behavior when all types of transactions are sent
and the FIFO in the system is full. This would translate into crossing the transaction type with
the FIFO-status variable. This section describes how to implement this type of functional
coverage model.

Enabling and Disabling Coverage

The verification IP developer should provide configuration properties that allow you to control
the interesting aspects of the coverage (see “Controlling Checks and Coverage” on page 65).
The VIP documentation will tell you what properties can be set to affect coverage. The most
basic of controls would determine whether coverage is collected at all. The XBus monitors
demonstrate this level of control. If the you want to disable coverage before the environment
is created, use the set_config_int() interface.

set_config_int("xbus0.masters[0].monitor", "coverage_enable", 0);

Once the environment is created, you can set this property directly.

xbus0.masters[0].monitor.coverage_enable = 0;

This is a simple Verilog assignment to a class property (or variable).

OVM User Guide
Using OVCs

March 2010 100 Product Version 2.1.1

OVM User Guide

March 2010 101 Product Version 2.1.1

5
Advanced Topics

This chapter discusses OVM topics and capabilities of the SystemVerilog OVM Class Library
that are beyond the essential material covered in the previous chapters. Consult this chapter
as needed if you require more detailed information. This chapter discusses:

■ “The ovm_component Base Class” on page 101

■ “Simulation Phase Methods” on page 102

■ “The Built-In Factory and Overrides” on page 106

■ “Callbacks” on page 111

■ “Advanced Sequence Control” on page 116

The ovm_component Base Class

All the infrastructure components in an OVM verification environment, including environments
and tests, are derived either directly or indirectly from the ovm_component class. User-
defined classes derived from this class inherit built-in automation. Typically, you will derive
your classes from the methodology classes, which are themselves extensions of
ovm_component. However, understanding the ovm_component is important because many
of the facilities that the methodology classes offer are derived from this class.

Note: The ovm_threaded_component class has been deprecated in OVM 2.0 and is now
simply a typedef for ovm_component.

The following sections describe some of the capabilities that are provided by the
ovm_component base class and how to use them.The key pieces of functionality provided
by the ovm_component base class include:

■ Phasing and execution control.

■ Configuration methods.

■ Factory convenience methods.

OVM User Guide
Advanced Topics

March 2010 102 Product Version 2.1.1

■ Hierarchical reporting control.

Simulation Phase Methods

The SystemVerilog OVM Class Library provides built-in simulation phase methods. These
phases are hooks for you to include logic to be executed at critical points in time. For example,
if you need checking logic to be executed at the end of the simulation, you can extend the
check() phase and embed procedural code in it. Your code then will be executed at the
desired time during simulation. See ovm_phase in the OVM Class Reference for more
information on using built-in phases.

From a high-level view, the existing simulation phases (in simulation order) are:

■ “build()” on page 102.

■ “connect()” on page 103.

■ “end_of_elaboration()” on page 103.

■ “start_of_simulation()” on page 103.

■ “run()” on page 104.

■ “extract()” on page 104.

■ “check()” on page 105.

■ “report()” on page 105.

build()

The first phase of the OVM phasing mechanism is the build() phase, which is called
automatically for all components in a top-down fashion. The build() method creates its
component’s child components and optionally configures them. Since build() is called top-
down, the parent’s configuration calls will be completed before the child’s build() method
is called. Although not recommended, a parent component may explicitly call build() on its
children as part of the parent.build().

The top-down execution order allows each parent’s build() method to configure or
otherwise control child parameters before the child components’ build() method is
executed. To ensure that build() does not get called twice in this case, every build()
implementation should call super.build() as the first statement of build().

The build phase is a function and executes in zero time.

OVM User Guide
Advanced Topics

March 2010 103 Product Version 2.1.1

class my_comp extends ovm_component;
...

virtual void function build();
super.build();
// Get configuration information.
// Create child components.
// configure child components

endfunction

...

endclass

connect()

The connect() phase is executed after build(). Because the environment is created
during the component's build() in a top-down fashion, the user may rely on the fact that the
hierarchical test/environment/component topology has been fully created when connect()
is called.

This phase is a function and executes in zero time.

class my_comp extends ovm_component;
...

virtual void function connect();
if(is_active == OVM_ACTIVE)

driver.seq_item_port.connect(sequencer.seq_item_export);
for(int i = 0; i<num_subscribers; i++)

monitor.analysis_port.connect(subscr[i].analysis_export);
...

endfunction

...

endclass

end_of_elaboration()

The end_of_elaboration() phase allows you to make final adjustments to the
environment after it has been built and connected. The user can assume that the entire
environment is created and connected before this method is called. This phase is a function
and executes in zero time.

start_of_simulation()

The start_of_simulation() phase provides a convenient place to perform any pre-
run() activity such as displaying banners, printing final testbench topology and configuration
information.This phase is a function and executes in zero time.

OVM User Guide
Advanced Topics

March 2010 104 Product Version 2.1.1

run()

The run() phase is the only predefined time-consuming phase, which defines the
implementation of a component’s primary run-time functionality. Implemented as a task, it can
fork other processes. When a component returns from its run task, it does not signify
completion of its run phase. Any processes that it may have forked continue to run. The run
phase terminates in one of four ways:

■ stop—When a component's enable_stop_interrupt bit is set and
global_stop_request is called, the component's stop task is called. Components
can implement stop to allow completion of in-progress transactions, flush queues, and
so on. Upon return from stop by all enabled components, a kill is issued.

■ kill—When called, all component's run processes are killed immediately. While kill
can be called directly, it is recommended that components use the stopping mechanism.
This affords a more ordered and safe shutdown.

■ timeout—If a timeout was set, the phase ends if it expires before either stop or kill
occur.

■ Any ovm_test_done objections that have been raised are dropped (the objection count
goes to 0).

The following describe the run() phase task of sequencer and driver components.

■ Sequencer—The sequencer generates stimulus data, passes it to the driver for
execution, and starts the default sequence. The sequencer generates a data item with
the specified constraints and randomization and passes it to the driver. This activity is
handled by the SystemVerilog OVM Class Library automatically.

■ Driver—When reset is deasserted, the driver gets the next item to be performed from
the sequencer and drives the HDL signals as per the protocol. Once the current item is
completed, the driver gives the “item done” indication. A driver in a proactive agent
(master) initiates transfers on the bus according to test directives. A driver in a reactive
agent (slave) responds to transfers on the bus rather than initiating actions. This activity
is specified by the user.

extract()

This phase can be used to extract simulation results prior to checking in the next phase.
Typically, it is used for user-defined activities such as processing the simulation results.
Following are some examples of what you can do in this phase.

■ Collect assertion-error count.

OVM User Guide
Advanced Topics

March 2010 105 Product Version 2.1.1

■ Extract coverage information.

■ Extract the internal signals and register values of the DUT.

■ Extract internal variable values from components.

■ Extract statistics or other information from components.

This phase is a function and executes in zero time. It is called in bottom-up order.

check()

Having extracted vital simulation results in the previous phase, the check phase can be used
to validate such data and determine the overall simulation outcome. This phase is a function
and executes in zero time. It is called in bottom-up order.

report()

This phase executes last and is used to output results to files and/or the screen. This phase
is a function and executes in zero time. It is called in bottom-up order.

Adding User-Defined Phases

In addition to the predefined phases listed above, OVM provides the ovm_phase base class
that allows you to add your own phases anywhere in the list.

To define a new phase:

1. Derive a subclass of ovm_phase that implements either the call_task() or
call_func method, depending on whether the new phase is to be time-consuming (a
task) or not (a function).

1 class my_comp extends ovm_component;
2 ...
3 virtual my_task(); return; endtask // make virtual
4 ...
5 endclass
6
7 class my_task_phase extends ovm_phase;
8 function new();
9 super.new("my_task",1,1);
10 endfunction
11 task call_task(ovm_component parent);
12 my_comp_type my_comp;
13 if ($cast(my_comp,parent))
14 my_comp.my_task_phase()

OVM User Guide
Advanced Topics

March 2010 106 Product Version 2.1.1

15 endtask
16 virtual function string get_type_name ();
17 return "my_task";
18 endfunction
19 endclass

Line 9 When calling super.new() the new subclass must provide three arguments:

❑ The name of the phase, which is typically the name of the callback method.

❑ A bit to indicate whether the method is to be called top-down (1) or bottom-up (0).

❑ A bit to indicate whether the method is a task (1) or a function (0).

Note: OVM includes several macros to simplify the definition of new phases:

‘define ovm_phase_task_decl(NAME,TOP_DOWN)

‘define ovm_phase_func_topdown_decl(NAME) ‘ovm_phase_func_decl(NAME,1)

‘define ovm_phase_func_bottomup_decl(NAME) ‘ovm_phase_func_decl(NAME,0)

‘define ovm_phase_task_topdown_decl(NAME) ‘ovm_phase_task_decl(NAME,1)

‘define ovm_phase_task_bottomup_decl(NAME) ‘ovm_phase_task_decl(NAME,0)

2. Declare an instance of the new phase object

my_task_phase my_task_ph = new();

3. Register the phase with the OVM phase controller, ovm_top.

ovm_top.insert_phase(my_task_ph, run_ph);

The second argument, run_ph, is the phase after which the new phase will be
inserted.To insert a phase at the beginning of the list, this argument should be NULL.

The Built-In Factory and Overrides

About the Factory

OVM provides a built-in factory to allow components to create objects without specifying the
exact class of the object being creating. The factory provides this capability with a static
allocation function that you can use instead of the built-in new function. The function provided
by the factory is:

type_name::type_id::create(string name, ovm_component parent)

Since the create() method is automatically type-specific, it may be used to create
components or objects. When creating objects, the second argument, parent, is optional.

A component using the factory to create data objects would execute code like the following:

OVM User Guide
Advanced Topics

March 2010 107 Product Version 2.1.1

task mycomponent::run();
mytype data; // Data must be mytype or derivative.
data = mytype::type_id::create("data");

$display("type of object is: %0s", data.get_type_name());
...

endtask

In the code above, the component requests an object from the factory that is of type mytype
with an instance name of data.

When the factory creates this object, it will first search for an instance override that matches
the full instance name of the object. If no instance-specific override is found, the factory will
search for a type-wide override for the type mytype. If no type override is found then the type
created will be of type mytype.

Factory Registration

You must tell the factory how to generate objects of specific types. In OVM, there are a
number of ways to do this allocation.

■ Use the `ovm_object_utils(T) or `ovm_component_utils(T) macro in a
derivative ovm_object or ovm_component class declaration, respectively. These
macros expand code which will register the given type with the factory. The argument T
may be a parameterized type

`ovm_object_utils(packet)

‘ovm_component_utils(my_driver)

■ Use the registration macros `ovm_object_registry(T,S) or
`ovm_component_registry(T,S). These macros can appear anywhere in the
declaration space of the class declaration of T and will associate the string S to the object
type T. These macros are called by the corresponding ovm_*_utils macros, so you
might use them only if you do not use the ovm_*_utils macros.

Component Overrides

A global factory is provided that allows you to substitute a predefined-component type with
some other type that is specialized for your needs, without having to derive the container type.
The factory can replace a component type within the component hierarchy without changing
any other component in the hierarchy.

A global factory is available for this purpose. You need to know how to use the factory, but not
how the factory works.

OVM User Guide
Advanced Topics

March 2010 108 Product Version 2.1.1

Note: All type-override code should be executed in a parent prior to building the child(ren).
This means that environment overrides should be specified in the test.

Two interfaces, set_type_override_by_type and set_inst_override_by_type,
exist to replace default components. These interfaces will be examined one at a time.

To override a default component:

1. Define a class that derives from the appropriate OVM base class.

2. Execute the override (described in the following sections).

3. Build the environment.

Type Overrides

The first component override replaces all components of the specified type with the new
specified type. The prototype is.

set_type_override_by_type(orig_type, override_type, bit replace = 1);

The first argument (orig_type) is the type, obtained by calling the static get_type()
method of the type (orig_type:get_type()). That type will be overridden by the second
argument (override_type:get_type()). The third argument, replace, determines
whether to replace an existing override (replace = 1). If this bit is 0 and an override of the
given type does not exist, the override is registered with the factory. If this bit is 0 and an
override of the given type does exist, the override is ignored.

If no overrides are specified, the environment will be constructed using default types. For
example, the environment would be created using an xbus_master_driver type
component inside xbus_master_agent.build(). The set_type_override_by_type
interface allows you to override this behavior in order to have an
xbus_new_master_driver for all instances of xbus_master_driver.

set_type_override_by_type(xbus_master_driver::get_type(),
xbus_new_master_driver::get_type);

This overrides the default type (xbus_master_driver) to be the new type
(xbus_new_master_driver). In this case, we have overridden the type that is created
when the environment should create an xbus_master_driver. The complete hierarchy
would now be built as shown in Figure 5-1 on page 109.

Note: While only one xbus_master_driver instance is replaced in this example, any and
all xbus_master_driver instances would be replaced in an environment containing
multiple xbus_master_drivers.

OVM User Guide
Advanced Topics

March 2010 109 Product Version 2.1.1

Figure 5-1 Hierarchy Created with set_type_override() Applied

Instance Overrides

The second component override replaces targeted components of the matching instance
path with the new specified type. The prototype for ovm_component is

set_inst_override_by_type(string inst_path, orig_type, override_type);

The first argument, inst_path, is the relative component name of the instance override. It
can be considered the “target” of the override. The second argument, orig_type, is the type
to be overridden (specified by orig_type:get_type()) and replaced by the type specified
by the last argument, override_type (also using override_type:get_type()).

Assume the xbus_new_slave_monitor has already been defined. Once the following
code is executed, the environment will now create the new type,
xbus_new_slave_monitor, for all instances that match the instance path.

New type created by type override

xbus_demo_tb0 (xbus_demo_tb)

xbus0

masters[0] (xbus_master_agent)

monitor (xbus_master_monitor)

sequencer

driver (xbus_new_master_driver)

slaves[0] (xbus_slave_agent)

monitor (xbus_slave_monitor)

sequencer (xbus_slave_sequencer)

driver (xbus_slave_driver)

xserial0 (xserial_env)

tx (xserial_tx_agent)

bus_monitor

monitor (xserial_tx_monitor)

sequencer (xserial_tx_sequencer)

driver (xserial_tx_driver)

bus_monitor (xbus_bus_monitor)

OVM User Guide
Advanced Topics

March 2010 110 Product Version 2.1.1

set_inst_override_by_type(“slaves[0].monitor”,
xbus_slave_monitor::get_type(), xbus_new_slave_monitor::get_type());

In this case, the type is overridden that is created when the environment should create an
xbus_slave_monitor for only the slaves[0].monitor instance that matches the
instance path in the override. The complete hierarchy would now be built as shown in
Figure 5-2 on page 110.

For illustration purposes, this hierarchy assumes both overrides have been executed.

Figure 5-2 Hierarchy Created with Both Overrides Applied

Note: Instance overrides are used in a first-match order. For each component, the first
applicable instance override is used when the environment is constructed. If no instance
overrides are found, then the type overrides are searched for any applicable type overrides.
The ordering of the instance overrides in your code affects the application of the instance
overrides. You should execute more-specific instance overrides first. For example,

New type created by type override

xbus_demo_tb0 (xbus_demo_tb)

xbus0 (xbus_env)

masters[0] (xbus_master_agent)

monitor (xbus_master_monitor)

sequencer

driver (xbus_new_master_driver)

slaves[0] (xbus_slave_agent)

monitor (xbus_new_slave_monitor)

sequencer (xbus_slave_sequencer)

driver (xbus_slave_driver)

xserial0 (xserial_env)

tx (xserial_tx_agent)

bus_monitor

monitor (xserial_tx_monitor)

sequencer (xserial_tx_sequencer)

driver (xserial_tx_driver)

New type created by instance override

bus_monitor (xbus_bus_monitor)

OVM User Guide
Advanced Topics

March 2010 111 Product Version 2.1.1

set_inst_override_by_type("a.b.*", mytype::get_type(),
newtype::get_type());

set_inst_override_by_Type("a.b.c", mytype::get_type(),
different_type::get_type());

will create a.b.c with different_type. All other objects under a.b of mytype are created
using newtype. If you switch the order of the instance override calls then all of the objects
under a.b will get newtype and the instance override a.b.c is ignored.

set_inst_override_by_type("a.b.c", mytype::get_type(),
different_type::get_type());

set_inst_override_by_type("a.b.*", mytype::get_type(),
newtype::get_type());

Callbacks

Callbacks are an optional facility defined by component developers to allow end users to
augment component behavior. Callback facilities are easily abused and often limit a
component’s reuse potential. Their inclusion in OVM was primarily to facilitate migration of
VMM environments and end users accustomed to using them.

Problematic Nature of Callbacks

Callback registration order in large environments can be very difficult to control. Thus,
callback object implementations must not depend on the order in which they are called
relative to others. For example, a callback object must not “require” that it be the last callback
executed. Augmenting component behavior through inheritance using polymorphic overrides
and layered constraints affords deterministic execution order and better control over
constraint-driven stimulus generation.

To register a callback, you need to obtain instances of both the callback object and the target
component. Doing this in a real environment typically requires hierarchical references many
levels deep. Hierarchical references hard code a context dependency between the
component creating and registering the callback and the component using the callback. This
violates the principle of object encapsulation and inevitably leads to poor reuse, especially for
the components responsible for registering the callbacks.

Callbacks Use model

To provide a callback facility to end-users, the component developer needs to:

1. Derive a callback class from the ovm_callback base. It should declare one or more
methods that comprise the “callback interface”.

OVM User Guide
Advanced Topics

March 2010 112 Product Version 2.1.1

2. Optionally, define a typedef to the ovm_callbacks pool typed to our specific
component-callback combination.

3. Define the component to support the callback class defined in Step 1 by defining virtual
methods corresponding to each of the methods in the callback interface. Implement each
method to execute the corresponding method in all of the registered callbacks using a
default algorithm (for example, sequential, concurrent, random, and so on). Invoke each
virtual method at the desired location within a component main body of code, typically its
run task

To use callbacks, the user needs to:

1. Define a new callback class extending from the callback base class provided by the
developer, overriding one or more of the available callback methods.

2. Register one or more instances of the callback with the component(s) you wish to extend.

These steps are illustrated in the following simple example:

Callback Example

The example below demonstrates callback usage. The component developer defines a driver
component and a driver-specific callback class. The callback class defines the hooks
available for users to override. The component using the callbacks (that is, calling the callback
methods) also defines corresponding virtual methods for each callback hook. The developer
implements each virtual methods to call the corresponding callback method in all registered
callback objects using default algorithm. The end-user may then define either a callback or a
driver subtype to extend driver’s behavior.

Developer Code

1. Define a callback class extending from ovm_callback

The callback class defines an application-specific interface consisting of one or more
function or task prototypes. The signatures of each method have no restrictions.

In the example below, a new bus_driver_cb class extending from ovm_callback is
defined. The developer of the bus_driver component decides to add two hooks for
users, trans_received and trans_executed:

❑ trans_received, the bus driver calls this after it first receives a new transaction
item. It provides a handle to both itself and the new transaction. The return value
determines whether to drop (1) or execute (0) the transaction.

OVM User Guide
Advanced Topics

March 2010 113 Product Version 2.1.1

❑ trans_executed, the bus driver calls this after executing the transaction, passing
in a handle to itself and the transaction, which may contain read data or other status
information.

virtual class bus_driver_cb extends ovm_callback;

virtual function bit trans_received(bus_driver driver, bus_tr tr);
return 0;

endfunction

virtual task trans_executed(bus_driver driver, bus_tr tr);
endtask

function new(string name="bus_driver_cb_inst");
super.new(name);

endfunction

endclass

2. Define a typedef to the ovm_callbacks pool typed to our specific component-callback
combination.

OVM callbacks are type-safe, meaning that any attempt to register a callback to a
component not designed for that callback simply will not compile. In exchange for this
type-safety we must endure a bit of parameterized syntax as follows:

typedef ovm_callbacks #(bus_driver, bus_driver_cb) bus_driver_cbs_t;

The alias bus_driver_cbs_t can help both the component developer and the end-
user produce more readable code.

3. Embed the callback feature in the component that will use it

An important aspect of adding support for callbacks is to define virtual methods in the
component that correspond to each of the methods in the callback interface defined in Step
1. The definition for each of these virtual methods should implement the algorithm that
traverses and executes the potentially multiple callback objects registered with the
component. The algorithm may be to execute them sequentially, concurrently in separate
processes, or to aggregate return values. Encapsulating the algorithm in a virtual method
allows the end-user to override it, disable it, change the default execution order, or add a pre-
and post-callback logic.

The developer of the bus_driver adds the trans_received and trans_executed
virtual methods, with their default implementations utilizing some macros that implement the
most common algorithms for executing all registered callbacks. With this in place, end-users
can now customize component behavior in two ways:

■ extend bus_driver and override one or more of the virtual methods
trans_received or trans_executed. Then configure the factory to use the new
type via a type or instance override.

■ extend bus_driver_cb and override one or more of the virtual methods
trans_received or trans_executed. Then register an instance of the new callback

OVM User Guide
Advanced Topics

March 2010 114 Product Version 2.1.1

type with an instance of bus_driver. This of course requires access to the handle of
the bus_driver.

class bus_driver extends ovm_component;

ovm_blocking_put_imp #(bus_tr,bus_driver) in;
function new (string name, ovm_component parent=null);

super.new(name,parent);
in = new("in",this);

endfunction

`ovm_component_utils(bus_driver)

virtual function bit trans_received(bus_tr tr);
`ovm_do_callbacks_exit_on(bus_driver_cb,bus_driver,

trans_received(this,tr),1)
endfunction

virtual task trans_executed(bus_tr tr);
`ovm_do_callbacks(bus_driver_cb,bus_driver,trans_executed(this,tr))

endtask

virtual task put(bus_tr t);

ovm_report_info("bus_tr received",t.convert2string());
if (!trans_received(t)) begin

ovm_report_info("bus_tr dropped",
"user callback indicated DROPPED\n");

return;
end

#100;

trans_executed(t);

ovm_report_info("bus_tr executed",{t.convert2string(),"\n"});
endtask

endclass

The driver’s put task, which implements the component’s primary functionality, merely calls
the virtual methods at the appropriate times during execution.

End User Code

Using the callback feature of a component involves the following steps:

1. Extend the developer-supplied callback class

Define a new callback class that extends from the class provided by the component
developer, implementing any or all of the methods of the callback interface.

In our example, we define both hooks, trans_received and trans_executed. For
trans_received, we randomly choose whether to return 0 or 1. When 1, the
bus_driver will “drop” the received transaction. For trans_executed, we delay #10
to prevent back-to-back transactions.

class my_bus_driver_cb extends bus_driver_cb;

OVM User Guide
Advanced Topics

March 2010 115 Product Version 2.1.1

function new(string name="bus_driver_cb_inst");
super.new(name);

endfunction

`ovm_object_utils(my_bus_driver_cb)

virtual function bit trans_received(bus_driver driver, bus_tr tr);
driver.ovm_report_info("trans_received_cb",

{" bus_driver=",driver.get_full_name()," tr=",tr.convert2string()});
return $urandom & 1;
endfunction

virtual task trans_executed(bus_driver driver, bus_tr tr);
driver.ovm_report_info("trans_executed_cb",

{" bus_driver=",driver.get_full_name()," tr=",tr.convert2string()});
#10;

endtask

endclass

2. Create callback object(s) and register with component you wish to extend

To keep the example simple and focus on callback usage, we do not show a complete or
compliant OVM environment.

In the top module, we instantiate the bus_driver and an instance of our custom callback
class. To register the callback object with the driver, we first get a handle to the global callback
pool for our specific driver-callback combination. Luckily, the developer provided a convenient
typedef in his Step 2 that makes our code a little more readable.

Then, we associate (register) the callback object with a driver using the callback pool's
add_cb method. After calling display_cbs just to show that the registration was
successful, we push several transactions into the driver. The output shows that the methods
in our custom callback implementation are called for each transaction the driver receives.

module top;

bus_tr tr = new;

bus_driver driver = new("driver");

my_bus_driver_cb cb = new("cb");

bus_driver_cbs_t cbs = bus_driver_cbs_t::get_global_cbs();
initial begin

cbs.add_cb(driver,cb);
cbs.display_cbs();
for (int i=1; i<=5; i++) begin

tr.addr = i;
tr.data = 6-i;
driver.in.put(tr);

end
end

endmodule

OVM User Guide
Advanced Topics

March 2010 116 Product Version 2.1.1

Advanced Sequence Control

This section discusses advanced techniques for sequence control. It contains the following
subsections:

■ “Implementing Complex Scenarios” on page 116.

■ “Protocol Layering” on page 121.

■ “Advanced Sequence-Generation” on page 131.

Implementing Complex Scenarios

This section contains the following subsections:

■ Executing Multiple Sequences Concurrently on page 116

■ Interrupt Sequences on page 118

■ Controlling the Scheduling of Items on page 119

■ Run-Time Control of Sequence Relevance on page 120

Executing Multiple Sequences Concurrently

There are two ways you can create concurrently-executing sequences:

■ Using the ovm_do Macros with fork/join.

■ Starting Several Sequences in Parallel using the start() method.

The following sections show an example of each method.

Using the ovm_do Macros with fork/join

In this example, the sequences are executed with fork/join. The simulator schedules which
sequence requests interaction with the sequencer. The sequencer schedules which items are
provided to the driver, arbitrating between the sequences that are willing to provide an item
for execution and selects them one at a time. The a and b sequences are subsequences of
the fork_join_sequence.

class fork_join_sequence extends ovm_sequence #(simple_item);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.
a_seq a;
b_seq b;

OVM User Guide
Advanced Topics

March 2010 117 Product Version 2.1.1

virtual task body();
fork

`ovm_do(a)
`ovm_do(b)

join
endtask : body

endclass : fork_join_sequence

Starting Several Sequences in Parallel

In this example, the concurrent_seq sequence activates two sequences in parallel. It does
not wait for the sequences to complete. Instead, it immediately finishes after activating the
sequences. Also, the a and b sequences are started as root sequences.

class concurrent_seq extends ovm_sequence #(simple_item);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.
a_seq a;
b_seq b;

virtual task body();
// Initialize the sequence variables with the factory.
`ovm_create(a)
`ovm_create(b)
// Start each subsequence as a new thread.
fork

a.start(p_sequencer);
b.start(p_sequencer);

join
endtask : body

endclass : concurrent_seq

Note: The sequence.start() method allows the sequence to be started on any
sequencer.

See ovm_create in the OVM Class Reference for additional information.

Using the pre_body() and post_body() Callbacks

The SystemVerilog OVM Class Library provides two additional callback tasks, pre_body()
and post_body(), which are invoked before and after the sequence’s body() task,
respectively. These callbacks are invoked only when a sequence is started by its sequencer’s
start_sequence() task or the sequence’s start() task.

Examples for using the pre_body() and post_body() callbacks include:

■ Synchronization to some event before the body() task starts.

■ Calling a cleanup task when the body() task ends.

The following example declares a new sequence type and implements its callback tasks.

OVM User Guide
Advanced Topics

March 2010 118 Product Version 2.1.1

class revised_seq extends fork_join_sequence;
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.

task pre_body();
super.pre_body();
// Wait until initialization is done.
@p_sequencer.initialization_done;

endtask : pre_body

task post_body();
super.post_body();
do_cleanup();

endtask : post_body
endclass : revised_seq

The pre_body() and post_body() callbacks are not invoked in a sequence that is
executed by one of the `ovm_do macros.

Note: The initialization_done event declared in the sequencer can be accessed
directly via the p_sequencer variable. The p_sequencer variable is available since the
`ovm_sequence_utils macro was used. This prevents the user from having to declare a
variable of the appropriate type and initialize it using $cast.

Interrupt Sequences

A DUT might include an interrupt option. Typically, an interrupt should be coupled with some
response by the agent. Once the interrupt is serviced, activity prior to the interrupt should be
resumed from the point where it was interrupted. Your verification environment can support
interrupts using sequences.

To handle interrupts using sequences:

1. Define an interrupt handler sequence that will do the following:

a. Wait for the interrupt event to occur.

b. Grab the sequencer for exclusive access.

c. Execute the interrupt service operations using the proper items or sequences.

d. Ungrab the sequencer.

2. Start the interrupt-handler sequence in the sequencer or in the default sequence. (You
can configure the sequencer to run the default sequence when the simulation begins.)

Example

1. Define an interrupt handler sequence.

// Upon an interrupt, grab the sequencer, and execute a
// read_status_seq sequence.

OVM User Guide
Advanced Topics

March 2010 119 Product Version 2.1.1

class interrupt_handler_seq extends ovm_sequence #(bus_transfer);
... // Constructor and OVM automation macros here

// See “Creating and Adding a New Sequence” on page 82.

read_status_seq interrupt_clear_seq;
virtual task body();

forever begin
// Initialize the sequence variables with the factory.
@p_sequencer.interrupt;
grab(p_sequencer);
`ovm_do(interrupt_clear_seq)
ungrab(p_sequencer);

end
endtask : body

endclass : interrupt_handler_seq

2. Start the interrupt handler sequence in the sequencer. The example below does this in
the sequencer itself at the run phase:

class my_sequncer extends ovm_sequencer;
... // Constructor and OVM automation macros here

// See “Creating and Adding a New Sequence” on page 82.

interrupt_handler_seq interrupt_seq;

virtual task run();
interrupt_seq =

interrupt_handler_seq::type_id::create("interrupt_seq");
fork

interrupt_seq.start(this);
join_none
super.run();

endtask : run
endclass : my_sequncer

Note: In this step, we cannot use any of the `ovm_do macros since they can be used
only in sequences. Instead, we use utility functions in the sequencer itself to create an
instance of the interrupt handler sequence through the common factory.

Controlling the Scheduling of Items

There might be several sequences doing items concurrently. However, the driver can handle
only one item at a time. Therefore, the sequencer maintains a queue of do actions. When the
driver requests an item, the sequencer chooses a single do action to perform from the do
actions waiting in its queue. Therefore, when a sequence is doing an item, the do action is
blocked until the sequencer is ready to choose it.

The scheduling algorithm works on a first-come-first-served basis. You can affect the
algorithm using grab(), ungrab(), and is_relevant().

If a sequence is grabbing the sequencer, then the sequencer will choose the first do action
that satisfies the following conditions:

■ It is done by the grabbing sequence or its descendants.

OVM User Guide
Advanced Topics

March 2010 120 Product Version 2.1.1

■ The is_relevant() method of the sequence doing it returns 1.

If no sequence is grabbing the sequencer, then the sequencer will choose the first do action
that satisfies the following condition:

The is_relevant() method of the sequence doing it returns 1.

If there is no do action to choose, then get_next_item() is blocked. The sequencer will
try to choose again (that is, reactivate the scheduling algorithm) when one of the following
happens:

■ Another do action is added to the queue.

■ A new sequence grabs the sequencer, or the current grabber ungrabs the sequencer.

■ Any one of the blocked sequence’s wait_for_relevant() task returns. See “Run-
Time Control of Sequence Relevance” on page 120 for more information.

When calling try_next_item(), if the sequencer does not succeed in choosing a do action
before the time specified by ovm_driver::wait_for_sequences() elapses, then
ovm_driver::try_next_item() returns with null.

Run-Time Control of Sequence Relevance

In some applications, it is useful to invoke sequences concurrently with other sequences and
have them execute items under certain conditions. Such a sequence can therefore become
relevant or irrelevant, based on the current conditions, which may include the state of the
DUT, the state of other components in the verification environment, or both. To implement
this, you can use the sequence is_relevant() function. Its effect on scheduling is
discussed in “Controlling the Scheduling of Items” on page 119.

If you are using is_relevant(), you must also implement the wait_for_relevant()
task to prevent the sequencer from hanging under certain circumstances. The following
example illustrates the use of both.

class flow_control_seq extends ovm_sequence #(bus_transfer);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.

bit relevant_flag;
function bit is_relevant();

return(relevant_flag);
endfunction

// This task is started by the sequencer if none of the running
// sequences is relevant. The task must return when the sequence
// becomes relevant again.
task wait_for_relevant();

while(!is_relevant())
@(relevant_flag); // Use the appropriate sensitivity list.

endtask

OVM User Guide
Advanced Topics

March 2010 121 Product Version 2.1.1

task monitor_credits();
...
// Logic goes here to monitor available credits, setting
// relevant_flag to 1 if enough credits exist to send
// count frames, 0 otherwise.

endtask : monitor_credits

task send_frames();
my_frame frame;
repeat (count) `ovm_do(frame)

endtask : send_frames

virtual task body();
fork

monitor_credits();
send_frames();

join_any
endtask : body

endclass : flow_control_seq

Protocol Layering

This section discusses the layering of protocols and how to implement it using sequences.

This section includes:

■ “Introduction to Layering” on page 121

■ “Styles of Layering” on page 124

■ “Using Layered Sequencers” on page 128

Introduction to Layering

Some verification environments require layering of data items of different protocols.
Examples include TCP over IP and ATM over Sonet. Sequence layering and virtual
sequences are two ways in which sequencers can be composed to create a layered protocol
implementation.

Layering of Protocols

The classic example of protocol layering can be described by generic higher- and lower-levels
(or layers) of a protocol. An array of bytes may be meaningless to the lower-level protocol,
while in the higher-level protocol context, the array provides control and data messages to be
processed appropriately.

For example, assume that there are two sequencers. The low-layer sequencer drives
lower_layer_items, that are defined as:

OVM User Guide
Advanced Topics

March 2010 122 Product Version 2.1.1

class lower_layer_item extends ovm_sequence_item;
... // Constructor and OVM automation macros go here.

 // See “Creating and Adding a New Sequence” on page 82.
bit[`MAX_PL:0][`DATA_SIZE-1:0] payload;

endclass : lower_layer_item

The low-level sequences base class is defined as:

class lower_layer_seq_base extends ovm_sequence #(lower_layer_item);
... // Constructor and OVM automation macros go here.

// See “Using Sequences” on page 81.
lower_layer_item item;
virtual task body();

...
endtask : body

endclass : lower_layer_seq_base

In one case, you want to send lower_layer_items with random data. In another case, you
want the data to come from a higher-layer data protocol. The higher-layer protocol in this
example drives higher_layer_items which will be mapped to one or more
lower_layer_items. Therefore, the high-level sequence base class is defined as:

class higher_layer_seq_base extends ovm_sequence #(higher_layer_item);
... // Constructor and OVM automation macros

// See “Using Sequences” on page 81.
higher_layer_item item;
virtual task body();

...
endtask : body

endclass : higher_layer_seq_base

Layering and Sequences

Layering is best implemented with sequences. There are two ways to do layering using
sequences:

■ “Layering Inside One Sequencer” on page 122 applies for simple cases only.

■ “Using Layered Sequencers” on page 128 applies for all layering.

Layering Inside One Sequencer

For simple cases, you can layer inside one sequencer by generating a data item of the higher
layer within a lower-layer sequence. Do this by creating another sequence kind for the lower-
layer sequencer. For example:

class use_higher_level_item_seq extends lower_layer_base_seq;
... // Constructor and OVM automation macros go here.

// See “Using Sequences” on page 81.
higher_layer_item hli;
lower_layer_item lli;

task body();
// Create a higher-level item.

OVM User Guide
Advanced Topics

March 2010 123 Product Version 2.1.1

`ovm_create(hli)
... // Randomize it here.
send_higher_level_item(hli);

endtask : body

task send_higher_level_item(higher_layer_item hli);
for(int i = 0 ; i< hli.length; i++) begin

// Convert the higher-level item to lower-level items and send.
`ovm_create(lli);
... // Slice and dice hli to form property values of lli.
`ovm_send(lli)

end
endtask : send_higher_level_item

endclass: use_higher_level_item_seq

The use_higher_level_item_seq sequence generates a single higher_layer_item
and sends it in chunks, in one or more lower_layer_items, until the data of the
higher_layer_item is exhausted. See ovm_create in the OVM Class Reference for
more information.

Layering of Several Sequencers

This general approach to layering several sequencers uses multiple sequencers as shown in
Figure 5-3 on page 124 below.

OVM User Guide
Advanced Topics

March 2010 124 Product Version 2.1.1

Figure 5-3 Layering Architecture

Taking the higher_layer_item and lower_layer_item example, there is a lower-layer
sequence and a higher-layer sequence (complete with their sequencers). The lower-layer
sequence pulls data from the higher-layer sequencer (or from the higher-layer driver).

Each sequencer can be encapsulated in an OVC so that layering can be done by connecting
the OVCs.

Styles of Layering

This section includes the following sections:

DUT

seq

seq

seq

Packet Sequencer

packet driver

seq

seq

seq

Frame Sequencer

This lower-layer sequence
pulls information directly
from the higher-layer
sequencer.

DUT

seq

seq

seq

Packet Sequencer

packet driver

Multi-Layer
Architecture

Single-Layer
Architecture

OVM User Guide
Advanced Topics

March 2010 125 Product Version 2.1.1

■ “Basic Layering” on page 125

■ “One-to-One, One-to-Many, Many-to-One, Many-to-Many” on page 126

■ “Different Configurations at Pre-Run Generation and Run Time” on page 126

■ “Timing Control” on page 127

■ “Data Control” on page 127

■ “Controlling Sequences on Multiple Sequencers” on page 127

Basic Layering

The simplest general scenario of basic layering consists of:

■ The driver accepts layer1 items.

■ The layer1 items are constructed from layer2 items in some way. The layer2 items
are, in turn, constructed from layer3 items, and so on.

■ For every layerN and layerN+1, there is a mechanism that takes layerN+1 items and
converts them into layerN items.

You can also have multiple kinds of layer1 and layer2 items. In different configurations,
you might want to layer any kind of layer2 item over any kind of layer1 item.

The remainder of this section describes possible variations and complications, depending on
the particular protocol or on the desired test-writing flexibility.

Figure 5-4 Layering of Protocols

fielda fieldb fieldc fieldd

fielde fieldf

layer1

layer2 layerN+1

layerN

fielda = f(fielde, fieldf);
fieldb = f(fielde, fieldf);
fieldc = f(fielde, fieldf);

OVM User Guide
Advanced Topics

March 2010 126 Product Version 2.1.1

One-to-One, One-to-Many, Many-to-One, Many-to-Many

A conversion mechanism might need to cope with the following situations (see Figure 5-5 on
page 126):

■ One-to-one—One high-layer item must be converted into one low-layer item.

■ One-to-many—One large high-layer item must be broken into many low-layer items.

■ Many-to-one—Many high-layer items must be combined into one large low-layer item (as
in Sonet, for example).

■ Many-to-many—Multiple higher-layer items must be taken in and converted into multiple
lower-layer items. For example, high-layer packets are ten-bytes long, and low-layer
packets are three to 35 bytes long. In this case, there could be remainders.

Figure 5-5 Layer Mapping

Different Configurations at Pre-Run Generation and Run Time

A system might need to support different modes of operation defined by topology, data type,
or other application-specific requirements. For example, in one environment, you might have
only layer1 items. In another environment, layer1 items would be dictated by layer2
items. You might also want to decouple the layers further, for example, so that layer2 items
could drive either layer1 items or layer1 cells (on another interface) or both.

OVM User Guide
Advanced Topics

March 2010 127 Product Version 2.1.1

At times, you might have a mix of inputs from multiple sources at run time. For example, you
might want to have one low-layer sequencer send items that come from several high-layer
sequencers.

Timing Control

In some configurations, the high-layer items drive the timing completely. When high-layer
items are created, they are immediately converted into low-layer items.

In other configurations, the low-layer sequences pace the operation. When a low-layer do
macro is executed, the corresponding high-layer item should appear in zero time.

Finally, there is a case where items are driven to the DUT according to the timing of the low-
layer sequences, but the high-layer sequences are not reacting in zero time. Rather, if there
is no data available from the high-layer sequences, then some default value (for example, a
zero filler) is used instead. ovm_driver:try_next_item() would be used by the lower-
level driver in this case.

Data Control

In some configurations, the high-layer items completely dictate which low-layer items reach
the DUT. The low layer simply acts as a slave.

Often, however, both layers influence what reaches the DUT. For example, the high layer
might influence the data in the payload while the low layer influences other attributes of the
items reaching the DUT. In these cases, the choice of sequences for both layers is
meaningful.

Controlling Sequences on Multiple Sequencers

In the most general case, you have a graph consisting of several sequencers, some of which
may control sequence execution on other sequencers and some of which may generate items
directly. Some low-layer “driver sequencers” are connected to the DUT, some higher-layer
driver sequencers are layered above them, and some sequencers on top feed into all of the
driver sequencers below.

In the example configuration shown in Figure 5-6 on page 128, a low-layer sequencer (L1B)
gets input from multiple high-layer sequencers (two instances of L2A) as well as from a
controlling sequencer.

OVM User Guide
Advanced Topics

March 2010 128 Product Version 2.1.1

Figure 5-6 Most-General Case of Using Virtual Sequencers

Using Layered Sequencers

Layered sequencers work as follows:

■ Higher-layer sequencers operate as usual, generating upper-layer data items and
sending them through the seq_item_pull_export. In most cases, you will not need
to change the upper-layer sequencer or sequences that will be used in a layered
application.

■ The lower-layer sequencers connect to the higher-layer sequencer(s) from which
information must be pulled. The pulled information (a higher-layer item) is put in a
property of the sequence and is then used to constrain various properties in the lower-

DUT

seq

seq

seq

L1A

L1A driver

seq

seq

seq

L1B

L1B driver

seq

seq

seq

L2A

seq

seq

seq

L2B

L2B driver
seq

seq

seq

L2A

seq

seq

seq

 Control Sequencer

seq

seq

seq

L2A

Layering with virtual sequences
Layering with connector sequence

Sequencer

OVM User Guide
Advanced Topics

March 2010 129 Product Version 2.1.1

layer item(s). The actual connectivity between the layers is done in the same manner as
the connection between a sequencer and a driver. To connect to the higher-layer
sequencer, you must declare a corresponding ovm_seq_item_pull_port in the
lower-layer sequencer (see Example 5-1 on page 129). The connection itself is
performed at the time the containing object’s connect() method is invoked.

■ The lower-layer sequencers send information to a lower-layer driver that interacts with a
DUT’s physical interface.

Assuming you already have created (or are reusing) upper-layer and lower-layer sequencers,
follow these steps below to create the layering.

To layer sequencers:

1. Create a lower-layer sequence which does the following:

❑ Repeatedly pulls upper-layer items from the upper-layer sequencer.

❑ Translates them to lower-layer items.

❑ Sends them to the lower-layer driver.

To preserve late generation of the upper-layer items, pull the upper-layer items from
within the lower-sequence’s pre_do() task. This ensures that the upper-layer item will
be randomized only when the lower-layer driver is ready to start processing the matching
lower-layer items.

2. Connect the lower-layer sequencer to the upper-layer sequencer using the same
technique as when connecting a driver to a sequencer.

3. Configure the lower-layer sequencer’s default sequence to be the sequence you created
in step 1 above.

Example 5-1 Layer Sequencers Example

Assume you are reusing the upper- and lower-layer classes from components created earlier.
The lower-layer components are likely to be encapsulated inside an agent modeling the
interface protocol. This example shows how to achieve layering without introducing the
recommended reuse structure to keep the code compact.

// Upper-layer classes
class upper_item extends ovm_sequence_item;

...
endclass : upper_item

class upper_sequencer extends ovm_sequencer #(upper_item);
...

endclass : upper_sequencer

// Lower-layer classes
class lower_item extends ovm_sequence_item;

OVM User Guide
Advanced Topics

March 2010 130 Product Version 2.1.1

...
endclass : lower_item

class lower_sequencer extends ovm_sequencer #(lower_item);
ovm_seq_item_pull_port #(upper_item) upper_seq_item_port;
...
function new (string name, ovm_component parent);

super.new(name, parent);
upper_seq_item_port = new(“upper_seq_item_port”,this);
`ovm_update_sequence_lib_and_item(...)

endfunction : new
...

endclass : lower_sequencer

class lower_driver extends ovm_driver #(lower_item);
...

endclass : lower_driver

Now create a lower-layer sequence that pulls upper-layer items and translates them to lower-
layer items:

class higher_to_lower_seq extends ovm_sequence #(lower_item);
... // Constructor and OVM automation macros go here.

// See “Using Sequences” on page 81.
upper_item u_item;
lower_item l_item;

virtual task body();
forever begin

`ovm_do_with(l_item,
{ ... }) // Constraints based on u_item

end
endtask : body

// In the pre_do task, pull an upper item from upper sequencer.
virtual task pre_do(bit is_item);

p_sequencer.upper_seq_item_port.get_next_item(u_item);
endtask : pre_do

// In the post_do task, signal the upper sequencer we are done.
// And, if desired, update the upper-item properties for the
// upper-sequencer to use.
virtual function void post_do(ovm_sequence_item this_item);

p_sequencer.upper_seq_item_port.item_done(this_item);
endfunction : post_do

endclass : higher_to_lower_seq

The following example illustrates connecting a lower-layer sequencer with an upper-layer
sequencer.

Note: The lower-layer sequencer is likely to be encapsulated inside an interface OVC,
therefore it will be encapsulated in an env and an agent. This does not change the layering
scheme but changes the path to connect the sequencers to each other in the tb file. The
connection to the upper sequencer to the lower sequencer will typically happen in the tb env.
Where as the connection from lower sequencer to its driver will happen in the connect()
phase of the agent.

// This code resides in an env class.

OVM User Guide
Advanced Topics

March 2010 131 Product Version 2.1.1

lower_driver l_driver0;
lower_sequencer l_sequencer0;
upper_sequencer u_sequencer0;

function void build();
super.build();
// Make lower sequencer execute upper-to-lower translation sequence.
set_config_string("l_sequencer0", "default_sequence",

"higher_to_lower_seq");
// Build the components.
l_driver0 = lower_driver::type_id::create(“l_driver0”, this);
l_sequencer0 = lower_sequencer::type_id::create((“l_sequencer0”, this);
u_sequencer0 = upper_sequencer::type_id::create((“u_sequencer0”, this);

endfunction : build

// Connect the components.
function void connect();

// Connect the upper and lower sequencers.
l_sequencer0.upper_seq_item_port.connect(u_sequencer0.seq_item_export);
// Connect the lower sequencer and driver.
l_driver0.seq_item_port.connect(l_sequencer0.seq_item_export);

endfunction : connect

Advanced Sequence-Generation

This section contains the following subsection:

■ Randomizing the Kind of Generated Sequences on page 131

■ Generating the Item or Sequence in Advance on page 132

■ Executing Sequences and Items on Other Sequencers on page 134

Randomizing the Kind of Generated Sequences

It is useful in some cases to be able to create a sequence that can randomly select another
sequence type and then execute it. The following examples show several ways of achieving
this.

The use of ̀ ovm_sequence_utils registers a sequence type with a particular sequencer’s
sequence library. The seq_kind property is used to identify a specific type in the sequence
library based on the sequence type. For example, get_seq_kind(“simple_seq_do”)
returns an integer that can be used to identify the sequence type simple_seq_do.

Note: The integer value of seq_kind for a given sequence type can change from simulation
to simulation; therefore, you should use the get_seq_kind() function to guarantee the
correct mapping between the type and the seq_kind value.

Example 5-2 Distributed Sequence Generation

OVM User Guide
Advanced Topics

March 2010 132 Product Version 2.1.1

The following example executes a sequence ten times. Each time the sequence’s type
(seq_kind) is randomized using a distribution constraint.

class distribution_sequence extends ovm_sequence #(bus_transfer);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.

virtual task body();
repeat(10) begin

assert(this.randomize(seq_kind)
with { seq_kind dist { get_seq_kind("a_seq") := 1,

get_seq_kind("b_seq") := 2,
get_seq_kind("c_seq") := 5} ; });

// Invoke a sequence of the selected seq_kind.
do_sequence_kind(seq_kind);

end
endtask : body

endclass : distribution_sequence

Random Selection

The following example shows a sequence that randomly selects from any of the sequence
types registered to this sequencer, except the ones you want to avoid. This is a useful
approach as it can select from any user-defined sequences you might add in the future. In the
code example below, only the sequence type a_seq is prevented from being selected.

class infinity_minus_sequence extends ovm_sequence #(bus_transfer);
...// Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.

function new(string name="infinity_minus_sequence");
super.new(name);

endfunction

`ovm_sequence_utils(infinity_minus_sequence, xbus_master_sequencer)

virtual task body();
// Run any sequence in the sequence library except a_seq.
for (int i=0; i<p_sequencer.count; i++)
begin

assert(this.randomize(seq_kind) with {
seq_kind != get_seq_kind("ovm_simple_sequence"); });
// Invoke a sequence of the selected kind.
do_sequence_kind(seq_kind);

end
endtask : body

endclass

Generating the Item or Sequence in Advance

The various `ovm_do* macros perform several steps sequentially, including the allocation of
an object (sequence or sequence item), synchronization with the driver (if needed),
randomization, sending to the driver, and so on. The SystemVerilog OVM Class Library
provides additional macros that enable finer control of these various steps. This section
describes these macros.

OVM User Guide
Advanced Topics

March 2010 133 Product Version 2.1.1

`ovm_create

This macro allocates an object using the common factory and initializes its properties. Its
argument is a variable of type ovm_sequence_item or ovm_sequence. You can use the
macro with SystemVerilog’s constraint_mode() and rand_mode() functions to control
subsequent randomization of the sequence or sequence item.

In the following example, my_seq is similar to previous sequences that have been discussed.
The main differences involve the use of the ̀ ovm_create(item0) call. After the macro call,
there are the use of rand_mode() and constraint_mode() functions and some direct
assignments to properties of item0. The manipulation of the item0 object is possible since
memory has been allocated for it, but randomization has not yet taken place. Subsequent
sections will review the possible options for sending this pre-generated item to the driver.

class my_seq extends ovm_sequence #(my_item);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.
virtual task body();

`ovm_create(req)
req.addr.rand_mode(0); // Disables randomization of addr
req.dc1.constraint_mode(0); // Disables constraint dc1
req.addr = 27;
...

endtask : body
endclass: my_seq

You can also use a sequence variable as an argument to `ovm_create.

Note: You might need to disable a constraint to avoid a conflict.

`ovm_send

This macro processes the ovm_sequence_item or ovm_sequence class handle argument
as shown in Figure 3-6 on page 55 and Figure 3-7 on page 56, without any allocation or
randomization. Sequence items are placed in the sequencer’s queue to await processing
while subsequences are processed immediately. The parent pre_do(), mid_do(), and
post_do() callbacks still occur as shown.

In the following example, we show the use of ovm_create() to pre-allocate a sequence item
along with `ovm_send, which processes it as shown in Figure 3-6 on page 55, without
allocation or randomization.

class my_seq2 extends ovm_sequence #(my_item);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.
virtual task body();

`ovm_create(req)
req.addr = 27;
req.data = 4;
// No randomization. Use a purely pre-generated item.
`ovm_send(req)

OVM User Guide
Advanced Topics

March 2010 134 Product Version 2.1.1

endtask : body
endclass: my_seq2

Similarly, a sequence variable could be provided to the ̀ ovm_create and ̀ ovm_send calls
above, in which case the sequence would be processed in the manner shown in Figure 3-7
on page 56, without allocation or randomization.

`ovm_rand_send, `ovm_rand_send_with

These macros are identical to “`ovm_send” on page 133, with the single difference of
randomizing the given class handle before processing it. This enables you to adjust an object
as required while still using class constraints with late randomization, that is, randomization
on the cycle that the driver is requesting the item. `ovm_rand_send() takes just the object
handle. `ovm_rand_send_with() takes an extra argument, which can be any valid inline
constraints to be used for the randomization.

The following example shows the use of `ovm_create to pre-allocate a sequence item
along with the `ovm_rand_send* macros, which process it as shown in Figure 3-6 on
page 55, without allocation. The rand_mode() and constraint_mode() constructs are
used to show fine-grain control on the randomization of an object.

class my_seq3 extends ovm_sequence #(my_item);
... // Constructor and OVM automation macros go here.

// See “Creating and Adding a New Sequence” on page 82.
virtual task body();

`ovm_create(req)
req.addr.rand_mode(0);
req.dc1.constraint_mode(0);
req.addr = 27;
// Randomize and process the item.
`ovm_rand_send(req)

// Randomize and process again, this time with inline constraints.
`ovm_rand_send_with(req, {data < 1000;})

endtask : body
endclass: my_seq3

Executing Sequences and Items on Other Sequencers

In the preceding sections, all ovm_do macros (and their variants) execute the specified item
or sequence on the current p_sequencer. To allow sequences to execute items or other
sequences on specific sequencers, additional macro variants are included that allow
specification of the desired sequencer.

‘ovm_do_on, ‘ovm_do_on_with, ‘ovm_do_on_pri, ‘ovm_do_on_pri_with

All of these macros are exactly the same as their root versions, except that they all take an
additional argument (always the second argument) that is a reference to a specific sequencer.

OVM User Guide
Advanced Topics

March 2010 135 Product Version 2.1.1

‘ovm_do_on(s_seq, that_sequencer);

‘ovm_do_on_with(s_seq, that_sequencer, {s_seq.foo == 32’h3;})

OVM User Guide
Advanced Topics

March 2010 136 Product Version 2.1.1

OVM User Guide

March 2010 137 Product Version 2.1.1

6
XBus OVC Example

This chapter introduces the basic architecture of the XBus OVC. It also discusses an
executable demo you can run to get hands-on experience in simulation. The XBus source
code is provided as a further aid to understanding the OVC architecture. When developing
your own simulation environment, you should follow the XBus structure and not its protocol-
specific functionality.

All XBus OVC subcomponents inherit from some base class in the SystemVerilog OVM Class
Library, so make sure you have the OVM SV Class Reference available while reading this
chapter. It will be important to know, understand, and use the features of these base classes
to fully appreciate the rich features you get—with very little added code—right out of the box.

You should also familiarize yourself with the XBus specification in the XBus Specification
chapter. While not a prerequisite, understanding the XBus protocol will help you distinguish
XBus protocol-specific features from OVC protocol-independent architecture.

This chapter contains the following sections:

■ “XBus Demo” on page 138

■ “XBus Demo Architecture” on page 141

■ “XBus Top Module” on page 142

■ “The Test” on page 143

■ “Testbench Environment” on page 146

■ “XBus Environment” on page 148

■ “XBus Agent” on page 149

■ “XBus Sequencer” on page 151

■ “XBus Driver” on page 152

■ “XBus Agent Monitor” on page 153

■ “XBus Bus Monitor” on page 153

OVM User Guide
XBus OVC Example

March 2010 138 Product Version 2.1.1

■ “XBus Interface” on page 155

XBus Demo

The XBus demo constructs an verification environment consisting of a master and a slave. In
the default test, the XBus slave communicates using the slave_memory sequence. The
XBus master read_modify_write sequence validates the behavior of the XBus slave
memory device.

Instructions for running the XBus example can be found in the readme.txt file in the examples/
xbus/examples directory of the OVM kit.

The output from the simulation below shows the XBus testbench topology containing an
environment.The environment contains one active master and one active slave agent.

The test runs the read_modify_write sequence, which activates the read byte sequence
followed by the write byte sequence, followed by another read byte sequence. An assertion
verifies that the data read in the second read byte sequence is identical to the data written in
the write byte sequence. The following output is generated when the test is simulated with
OVM_VERBOSITY = OVM_LOW:

OVM_INFO @ 0: reporter [RNTST] Running test test_read_modify_write...
OVM_INFO @ 0: ovm_test_top [test_read_modify_write] Printing the test topology :

--

Name Type Size Value

--

ovm_test_top test_read_modify_w+ - @727

 xbus_demo_tb0 xbus_demo_tb - @841

 scoreboard0 xbus_demo_scoreboa+ - @942

 item_collected_ex+ ovm_ovm_analysis_imp - @1083

 disable_scoreboard integral 1 'h0

 num_writes integral 32 'd0

 num_init_reads integral 32 'd0

 num_uninit_reads integral 32 'd0

 recording_detail ovm_verbosity 32 OVM_FULL

 xbus0 xbus_env - @843

 bus_monitor xbus_bus_monitor - @1015

 masters[0] xbus_master_agent - @1150

 slaves[0] xbus_slave_agent - @1231

 has_bus_monitor integral 1 'h1

 num_masters integral 32 'h1

 num_slaves integral 32 'h1

OVM User Guide
XBus OVC Example

March 2010 139 Product Version 2.1.1

 intf_checks_enable integral 1 'h1

 intf_coverage_ena+ integral 1 'h1

 recording_detail ovm_verbosity 32 OVM_FULL

 recording_detail ovm_verbosity 32 OVM_FULL

--

OVM_INFO @ 110: ovm_test_top.xbus_demo_tb0.scoreboard0 [xbus_demo_scoreboard] READ
to empty address...Updating address : 12 with data : 4c

OVM_INFO @ 110: ovm_test_top.xbus_demo_tb0.xbus0.bus_monitor [xbus_bus_monitor]
Transfer collected :

--

Name Type Size Value

--

xbus_transfer_inst xbus_transfer - @1217

 addr integral 16 'h12

 read_write xbus_read_write_en+ 32 READ

 size integral 32 'h1

 data da(integral) 1 -

 [0] integral 8 'h4c

 wait_state da(integral) 0 -

 error_pos integral 32 'h0

 transmit_delay integral 32 'h0

 master string 10 masters[0]

 slave string 9 slaves[0]

 begin_time time 64 70

 end_time time 64 110

--

OVM_INFO @ 260: ovm_test_top.xbus_demo_tb0.scoreboard0 [xbus_demo_scoreboard]
WRITE to existing address...Updating address : 12 with data : 4d

OVM_INFO @ 260: ovm_test_top.xbus_demo_tb0.xbus0.bus_monitor [xbus_bus_monitor]
Transfer collected :

--

Name Type Size Value

--

xbus_transfer_inst xbus_transfer - @1217

 addr integral 16 'h12

 read_write xbus_read_write_en+ 32 WRITE

 size integral 32 'h1

 data da(integral) 1 -

 [0] integral 8 'h4d

 wait_state da(integral) 0 -

 error_pos integral 32 'h0

 transmit_delay integral 32 'h0

OVM User Guide
XBus OVC Example

March 2010 140 Product Version 2.1.1

 master string 10 masters[0]

 slave string 9 slaves[0]

 begin_time time 64 220

 end_time time 64 260

--

OVM_INFO @ 330: ovm_test_top.xbus_demo_tb0.scoreboard0 [xbus_demo_scoreboard] READ
to existing address...Checking address : 12 with data : 4d

OVM_INFO @ 330: ovm_test_top.xbus_demo_tb0.xbus0.bus_monitor [xbus_bus_monitor]
Transfer collected :

--

Name Type Size Value

--

xbus_transfer_inst xbus_transfer - @1217

 addr integral 16 'h12

 read_write xbus_read_write_en+ 32 READ

 size integral 32 'h1

 data da(integral) 1 -

 [0] integral 8 'h4d

 wait_state da(integral) 0 -

 error_pos integral 32 'h0

 transmit_delay integral 32 'h0

 master string 10 masters[0]

 slave string 9 slaves[0]

 begin_time time 64 290

 end_time time 64 330

--

OVM_INFO @ 380: ovm_test_done [TEST_DONE] All end-of-test objections have been
dropped, calling global_stop_request()

OVM_INFO @ 380: ovm_test_top.xbus_demo_tb0.scoreboard0 [xbus_demo_scoreboard]
Reporting scoreboard information...

--

Name Type Size Value

--

scoreboard0 xbus_demo_scoreboa+ - @942

 item_collected_export ovm_connector_base - @1083

 recording_detail ovm_verbosity 32 OVM_FULL

 disable_scoreboard integral 1 'h0

 num_writes integral 32 'd1

 num_init_reads integral 32 'd1

 num_uninit_reads integral 32 'd1

 recording_detail ovm_verbosity 32 OVM_FULL

OVM User Guide
XBus OVC Example

March 2010 141 Product Version 2.1.1

--

--- OVM Report Summary ---

** Report counts by severity

OVM_INFO : 10

OVM_WARNING : 0

OVM_ERROR : 0

OVM_FATAL : 0

** Report counts by id

[RNTST] 1

[TEST_DONE] 1

[test_read_modify_write] 1

[xbus_bus_monitor] 3

[xbus_demo_scoreboard] 4

Simulation complete via $finish(1) at time 380 NS + 7

XBus Demo Architecture

Figure 6-1 on page 142 shows the testbench topology of the XBus simulation environment in
the XBus demo example delivered with this release.

OVM User Guide
XBus OVC Example

March 2010 142 Product Version 2.1.1

Figure 6-1 XBus Demo Architecture

XBus Top Module

The XBus testbench is instantiated in a top-level module to create a class-based simulation
environment. The example below uses an example DUT with XBus-specific content. The
example is trivial intentionally so that the focus is on the XBus OVC environment.

The top module contains the typical HDL constructs and a SystemVerilog interface. This
interface is used to connect the class-based testbench to the DUT. The XBus environment

test_read_modify_write

xbus_demo_tb

xbus_env

xbus_master_agent

xbus_master_sequencer

main
random
simple
read_modify_write
incr_read
incr_read_write
seq_r8_w8_r4_w4
incr_write

xbus_slave_agent

xbus_slave_sequencer

main
random
simple
slave_memory

xbus_master_driver

xbus_master_monitor

simple_response

xbus_slave_driver

xbus_slave_monitor

xbus_bus_monitor
checks
coverage

checks

xbus_if

covergroups

checks

covergroups

checks &
coverage

xbus_demo_scoreboard

OVM User Guide
XBus OVC Example

March 2010 143 Product Version 2.1.1

inside the testbench uses a virtual interface variable to refer to the SystemVerilog interface.
The following example shows the XBus interface (xi0) and the example DUT connected
together. The run_test() command used to simulate the DUT and the testbench is covered
in the next section.

Example 6-1 xbus_tb_top.sv
1 module xbus_tb_top;
2
3 `include "xbus.svh"
4 `include "test_lib.sv"
5
6 xbus_if xi0(); // SystemVerilog interface to the DUT
7
8 dut_dummy dut(
9 xi0.sig_request[0],
10 ...
11 xi0.sig_error
12);
13
14 initial begin
15 run_test();
16 end
17
18 initial begin
19 xi0.sig_reset <= 1'b1;
20 xi0.sig_clock <= 1'b1;
21 #51 xi0.sig_reset = 1'b0;
22 end
23
24 //Generate clock.
25 always
26 #5 xi0.sig_clock = ~xi0.sig_clock;
27
28 endmodule

The XBus SystemVerilog interface is instantiated in the top-level testbench module. The
interface uses generally-accepted naming conventions for its signals to allow easy mapping
to any naming conventions employed by other implementations of the XBus protocol. The
DUT pins connect directly to the signal inside the interface instance. Currently, the signals are
simple non-directional variables that are driven either by the DUT or the class-based
testbench environment via a virtual interface. The XBus interface contains concurrent
assertions to perform physical checks. Refer to “Checking for DUT Correctness” on page 94
and “XBus Interface” on page 155 for more information.

The Test

In OVM, the test is defined in a separate class, test_read_modify_write. It derives from
xbus_demo_base_test that, in turn, derives from ovm_test. The

OVM User Guide
XBus OVC Example

March 2010 144 Product Version 2.1.1

xbus_demo_base_test test builds the xbus_demo_tb object and manages the run()
phase of the test. Subsequent derived tests, such as test_read_modify_write, can
leverage this functionality as shown in the example below.

All classes that use the `ovm_component_utils macros are registered with a common
factory, ovm_factory. When the top module calls run_test(test_name), the factory is
called upon to create an instance of a test with type test_name and then simulation is
started. When run_test is called without an argument, a +OVM_TESTNAME=test_name
command-line option is checked and, if it exists, the test with that type name is created and
executed. If neither are found, all constructed components will be cycled through their
simulation phases. Refer to “Creating and Selecting a User-Defined Test” on page 76 for
more information.

Example 6-2 test_lib.sv
1 `include "xbus_demo_tb.sv"
2
3 class xbus_demo_base_test extends ovm_test;
4
5 `ovm_component_utils(xbus_demo_base_test)
6
7 xbus_demo_tb xbus_demo_tb0; // XBus verification environment
8 ovm_table_printer printer;
9
10 function new(string name = "xbus_demo_base_test",
11 ovm_component parent=null);
12 super.new(name, parent);
13 endfunction
14 // OVM build() phase
15 virtual function void build();
16 super.build();
17 // Enable transaction recording.
18 set_config_int("*", "recording_detail", OVM_FULL);
19 // Create the testbench.
20 xbus_demo_tb0 = xbus_demo_tb::type_id::create("xbus_demo_tb0", this);
21 // Create a specific-depth printer for printing the topology.
22 printer = new();
23 printer.knobs.depth = 3;
24 endfunction
25 // Built-in OVM phase
26 function void end_of_elaboration();
27 // Set verbosity for the bus monitor.
28 xbus_demo_tb0.xbus0.bus_monitor.set_report_verbosity_level(OVM_FULL);
29 // Print the test topology.
30 this.print(printer);
31 endfunction : end_of_elaboration();
32 // OVM run() phase
33 task run();
34 // Set a drain time for the environment if desired.
35 ovm_test_done.set_drain_time(this, 50);
36 endtask: run
37 endclass

OVM User Guide
XBus OVC Example

March 2010 145 Product Version 2.1.1

Line 1 Include the necessary file for the test. The testbench used in this example is the
xbus_demo_tb that contains, by default, the bus monitor, one master, and one slave. See
“Testbench Environment” on page 146.

Lines 3-5 All tests should derive from the ovm_test class and use the
`ovm_component_utils or the `ovm_component_utils_begin/
`ovm_component_utils_end macros. See the OVM SV Class Reference for more
information.

Line 7 Declare the testbench. It will be constructed by the build() function of the test.

Line 8 Declare a printer of type ovm_table_printer, which will be used later to print the
topology. This is an optional feature. It is helpful in viewing the relationship of your topology
defined in the configuration and the physical testbench created for simulation. Refer to the
OVM SV Class Reference for different types of printers available.

Lines 15-24 Specify the build() function for the base test. As required, build first calls the
super.build() function in order to update any overridden fields. Then the xbus_demo_tb
is created using the create() function. The build() function of the xbus_demo_tb is
executed by the OVM library phasing mechanism during build(). The user is not required
to explicitly call xbus_demo_tb0.build().

Lines 26-31 Specify the end_of_elaboration() function for the base test. This function
is called after all the component's build() and connect() phases are executed. At this
point, the test can assume that the complete testbench hierarchy is created and all testbench
connections are made. The test topology is printed.

Lines 33-36 Specify the run() task for the base test. In this case, we set a drain time of 50
micro seconds. Once all of the end-of-test objections were dropped, a 50 micro second delay
is introduced before the run phase it terminated.

Now that the base test is defined, a derived test will be examined. The following code is a
continuation of the test_lib.sv file.

class test_read_modify_write extends xbus_demo_base_test;
`ovm_component_utils(test_read_modify_write)
function new(string name = "test_read_modify_write",

ovm_component parent=null);
super.new(name,parent);

endfunction

virtual function void build();
// Set the default sequence for the master and slave.
set_config_string("xbus_demo_tb0.xbus0.masters[0].sequencer",
"default_sequence", "read_modify_write_seq");
set_config_string("xbus_demo_tb0.xbus0.slaves[0].sequencer",
"default_sequence", "slave_memory_seq");
// Create the testbench.
super.build();

endfunction

OVM User Guide
XBus OVC Example

March 2010 146 Product Version 2.1.1

endclass

The build() function of the derivative test, test_read_modify_write, is of interest. The
build() function registers an override of read_modify_write_seq to the master agent's
sequence sequencer and also an override of slave_memory_seq to the slave agent's
sequence sequencer. Once these overrides are executed, super.build() is called which
creates the xbus_demo_tb0 as specified in the xbus_demo_base_test build function.

The run() task implementation is inherited by test_read_modify_write since this test
derives from the xbus_demo_base_test. Since that implementation is sufficient for this
test, no action is required by you. This greatly simplifies this test.

Testbench Environment

This section discusses the testbench created in “test_lib.sv” on page 144. The code that
creates the xbus_demo_tb is repeated here.

xbus_demo_tb0 = xbus_demo_tb::type_id::create("xbus_demo_tb0", this);

Figure 6-2 Testbench Derived from ovm_env

In general, testbenches can contain any number of envs (OVCs) of any type: xbus, pci, ahb,
ethernet, and so on. The XBus demo creates a simple testbench consisting of a single XBus
environment (OVC) with one master agent, one slave agent, and one bus monitor (see
Figure 6-2 on page 146). The following code defines a class that specifies this configuration.
The test will create an instance of this class.

Example 6-3 xbus_demo_tb.sv

xbus_demo_tb0

xbus_demo_tb

xbus_env

xbus_master_agent

xbus_slave_agent

xbus_demo_tb0.xbus0

xbus_bus_monitor

xbus_demo_tb0.scoreboard0
xbus_demo_scoreboard

OVM User Guide
XBus OVC Example

March 2010 147 Product Version 2.1.1

1 function void xbus_demo_tb::build();
2 super.build();
3 set_config_int("xbus0", "num_masters", 1);
4 set_config_int("xbus0", "num_slaves", 1);
5 xbus0 = xbus_env::type_id::create("xbus0", this);
6 scoreboard0 = xbus_demo_scoreboard::type_id::create("scoreboard0", this);
7 endfunction : build
8
9 function void xbus_demo_tb::connect();
10 // Connect the slave0 monitor to scoreboard.
11 xbus0.slaves[0].monitor.item_collected_port.connect(
12 scoreboard0.item_collected_export);
13 // Assign interface for xbus0.
14 xbus0.assign_vi(xbus_tb_top.xi0);
15 endfunction : connect
16
17 function void end_of_elaboration();
18 // Set up slave address map for xbus0 (basic default).
19 xbus0.set_slave_address_map("slaves[0]", 0, 16'hffff);
20 endfunction : end_of_elaborationct

Line 1 Declare the build() function.

Line 2 Call super.build() in order to update any overridden fields. This is important
because the test, which creates the testbench, may register overrides for the testbench.
Calling super.build() will ensure that those overrides are updated.

Lines 3-4 The set_config_int calls are adjusting the num_masters and num_slaves
configuration fields of the xbus_env. In this case, the xbus0 instance of the xbus_env is
being manipulated. Line 3 instructs the xbus0 instance of the xbus_env to contain one
master agent. The num_masters property of the xbus_env specifies how many master
agents should be created. The same is done for num_slaves.

Line 5 Create the xbus_env instance named xbus0. The create() call specifies that an
object of type xbus_env should be created with the instance name xbus0.

Line 6 As with xbus0, the scoreboard is created.

Line 9 Declare the connect() function.

Lines 10-14 Make the connections necessary for the xbus0 environment and the
scoreboard0. Two connections are made:

■ The TLM connection between the analysis port on the xbus0.slaves[0].monitor
and the analysis export on the scoreboard0 instance.

■ The assignment, or “connection”, to the SystemVerilog interface instantiated in the XBus
top module. This assignment will allow the testbench to communicate with the DUT.

Line 17 Declare the end_of_elaboration() built-in OVM phase.

OVM User Guide
XBus OVC Example

March 2010 148 Product Version 2.1.1

Line 19 Assign the slave address map for the slaves[0]. This can be done once the
build() and connect() functions are complete since the end_of_elaboration()
function expects the complete testbench to be created and connected.

XBus Environment

The xbus_env component contains any number of XBus master and slave agents. In this
demo, the xbus_env (shown in Figure 6-3 on page 148) is configured to contain just one
master and one slave agent.

Note: The bus monitor is created by default.

Figure 6-3 Instance of xbus_env

The build() function of the xbus_env creates the master agents, slave agents, and the
bus monitor. Three properties control whether these are created. The source code is shown
here.

1 function void xbus_env::build();
2 string inst_name;
3 super.build();
4 if(has_bus_monitor == 1) begin
5 bus_monitor = xbus_bus_monitor::type_id::create("bus_monitor", this);
6 end
7 masters = new[num_masters];
8 for(int i = 0; i < num_masters; i++) begin
9 $sformat(inst_name, "masters[%0d]", i);

xbus_demo_tb0.xbus0

xbus_env

xbus_master_agent

xbus_demo_tb0.xbus0.master0

xbus_slave_agent

xbus_demo_tb0.xbus0.slave0

xbus_bus_monitor

xbus_demo_tb0.xbus0.bus_monitor

OVM User Guide
XBus OVC Example

March 2010 149 Product Version 2.1.1

10 masters[i] = xbus_master_agent::type_id::create(inst_name, this);
11 set_config_int({inst_name, "*"}, "master_id", i);
12 end
13 slaves = new[num_slaves];
14 for(int i = 0; i < num_slaves; i++) begin
15 $sformat(inst_name, "slaves[%0d]", i);
16 slaves[i] = xbus_slave_agent::type_id::create("xbus_slave_agent",
17 this);
18 inst_name));
19 end
20 endfunction: build

Line 1 Declare the build() function.

Line 3 Call super.build(). This guarantees that the configuration fields (num_masters,
num_slaves, and has_bus_monitor) are updated per any overrides.

Lines 4-6 Create the bus monitor if the has_bus_monitor control field is set to 1. The
create function is used for creation.

Lines 7-12 The master’s dynamic array is sized per the num_masters control field. This
allows the for loop to populate the dynamic array according to the num_masters control field.
The instance name that is used for the master agent instance is built using $sformat so that
the instance names match the dynamic-array identifiers exactly. The iterator of the for loop is
also used to register a configuration override targeted at the master_id properties of the
master agent and all its children (through the use of the asterisk). This defines which request-
grant pair is driven by the master agent.

Lines 13-19 As in the master-agent creation code above, this code creates the slave agents
using num_slaves and does not require the configuration override.

XBus Agent

The xbus_master_agent (shown in Figure 6-4 on page 150) and xbus_slave_agent
are structured identically; the only difference is the protocol-specific function of its
subcomponents.

The XBus master agent contains up to three subcomponents: the sequencer, driver, and
monitor. By default, all three are created. However, the configuration can specify the agent as
passive (is_active=OVM_PASSIVE), which disables the creation of the sequencer and
driver. The xbus_master_agent is derived from ovm_agent.

OVM User Guide
XBus OVC Example

March 2010 150 Product Version 2.1.1

Figure 6-4 Instance of xbus_master_agent

The build() function of the xbus_master_agent is specified to create the driver,
sequencer, and the monitor. The is_active property controls whether the driver and
sequencer are created.

1 function void xbus_master_agent::build();
2 super.build();
3 monitor = xbus_master_monitor::type_id::create("monitor", this);
4 if (is_active == OVM_ACTIVE) begin
5 sequencer = xbus_master_sequencer::type_id::create("sequencer", this);
6 driver = xbus_master_driver::type_id::create("driver", this);
7 end
8 endfunction : build
9
10 function void xbus_master_agent::connect();
11 if (is_active == OVM_ACTIVE) begin
12 driver.seq_item_port.connect(sequencer0.seq_item_export);
13 end
14 endfunction

Line 1 Declare the build() function.

Line 2 Call super.build(). This guarantees that the configuration field (is_active) is
updated per any overrides.

Line 3 Create the monitor. The monitor is always created. Creation is not conditional on a
control field.

Lines 4-7 Create the sequencer and driver if the is_active control field is set to
OVM_ACTIVE. The create_component function is used for creation.

Line 10 Declare the connect() function.

Lines 11-13 Since the driver expects transactions from the sequencer, the interfaces in both
components should be connected using the connect() function. The agent (which creates
the monitor, sequencer, and driver) is responsible for connecting the interfaces of its children.

xbus_master_agent

xbus_master_sequencer

xbus_master_driver

xbus_master_monitor

xbus_demo_tb0.xbus0.master0

OVM User Guide
XBus OVC Example

March 2010 151 Product Version 2.1.1

XBus Sequencer

This component controls the flow of sequence items to the driver (see Figure 6-5 on
page 151). The sequencer controls which sequence items are provided to the driver. The
ovm_sequencer base class includes three built-in sequences: ovm_random_sequence,
ovm_exhaustive_sequence, and ovm_simple_sequence. Refer to “Predefined
Sequences” on page 58 for more information. The default_sequence property selects the
sequence to start. By default, a sequence of type ovm_random_sequence is started.

Figure 6-5 Instance of xbus_master_sequencer

A user-defined sequencer provides an optional virtual interface to enable sequences to
synchronize with the protocol’s physical signals. The xmi variable is a simple SystemVerilog
virtual interface reference which is assigned to the physical SystemVerilog interface. After the
XBus environment is built, the xmi variable is still undefined. You must set this variable before
starting simulation using direct assignment or the assign_vi() convenience method
provided by the IP developer. The XBus example provides a function called assign_vi() in
the environment that assigns the virtual interfaces of the agent’s children. This use can be
seen in the XBus demo database.

The sequencer’s constructor begins with the required super.new() call, followed by a
`ovm_update_seqeunce_lib_and_item macro. This macro expands to a function call
that copies all of the statically-registered sequences into the sequencer’s local sequence
library, which contains all of the sequences available for execution by this sequencer. You can
easily create sequences that randomly select from among the other available sequences and
scenarios.

xbus_demo_tb0.xbus0.master0.sequencer

xbus_master_sequencer

random
exhaustive
simple
read_modify_write_seq
incr_read_seq
incr_read_write_seq
r8_w8_r4_w4_seq
incr_write_seq

xbus_master_agent

sequences

default
start

xmi

pointer to xbus_if ‘interface’

OVM User Guide
XBus OVC Example

March 2010 152 Product Version 2.1.1

XBus Driver

This component drives the XBus bus-signals interface by way of the xmi virtual interface
property (see Figure 6-6 on page 152 below). The xbus_master_driver fetches
xbus_transfer transactions from the sequencer and processes them based on the
physical-protocol definition. In the XBus example, the seq_item_port methods
get_next_item() and item_done() are accessed to retrieve transactions from the
sequencer.

Figure 6-6 Instance of xbus_master_driver

The primary role of the driver is to drive (in a master) or respond (in a slave) on the XBus bus
according to the signal-level protocol. This is done in the run() task that is automatically
invoked as part of OVM’s built-in simulation phasing (discussed in “Simulation Phase
Methods” on page 102). For the master driver, the core routine is summarized as follows:

task xbus_master_driver::run();
...
@(negedge xmi.sig_reset);

forever begin // Repeat the following forever.
@(posedge xmi.sig_clock);
seq_item_port.get_next_item(item); // Pull item from sequencer.
...
drive_transfer(item); // Drive item onto signal-level bus.
...
seq_item_port.item_done(); // Indicate we are done.

end

endtask

Once the sig_reset signal is deasserted, the driver’s run task runs forever until stopped
by way of the global_stop_request() task. You are encouraged to study the XBus driver
source code to gain a deeper understanding of the implementation specific to the XBus
protocol.

xbus_demo_tb0.xbus0.master0.driver

xbus_master_driver

xbus_master_agent

pointer to xbus_if ‘interface’

xmi

signal-driving methods
from event pool

OVM User Guide
XBus OVC Example

March 2010 153 Product Version 2.1.1

XBus Agent Monitor

The XBus monitor collects xbus_transfers seen on the XBus signal-level interface (see
Figure 6-7 on page 153). If the checks and coverage are present, those corresponding
functions are performed as well.

Figure 6-7 Instance of xbus_master_monitor

The primary role of the XBus master monitor is to sample the activity on the XBus master
interface and collect the xbus_transfer transactions that pertain to its parent master agent
only. The transactions that are collected are provided to the external world by way of a TLM
analysis port. The monitor performs this duty in the run task that is automatically invoked as
part of simulation phasing. The run task may fork other processes and call other functions or
tasks in performance of its duties. The exact implementation is protocol- and programmer-
dependent, but the entry point, the run task, is the same for all components. Refer to
“Simulation Phase Methods” on page 102 for more information about simulation phases.

The monitor’s functionality is contained in an infinite loop defined with the run() task. Once
all of the end_of_test objections were dropped, the global_stop_request() is called
causing the run() tasks to finish, allowing other simulation phases to complete, and the
simulation itself to end.

The checks are responsible for enforcing protocol-specific checks, and the coverage is
responsible for collecting functional coverage from the collected xbus_transfers.

XBus Bus Monitor

The XBus bus monitor collects xbus_transfers seen on the XBus signal-level interface
and emits status updates via a state transaction, indicating different activity on the bus. The

xbus_demo_tb0.xbus0.master0.monitor

xbus_master_monitor

xbus_master_agent

pointer to xbus_if ‘interface’

checks

covergroups

xmi

OVM User Guide
XBus OVC Example

March 2010 154 Product Version 2.1.1

XBus bus monitor has class checks and collects coverage if checks and coverage collection
is enabled. The XBus bus monitor is instantiated within an the XBus environment.

The xbus_env build() function has a control field called has_bus_monitor, which
determines whether the xbus_bus_monitor is created or not. The bus monitor will be
created by default since the default value for this control field is one. You can use the
set_config_int interface to override this value.

set_config_int("xbus0", "has_bus_monitor", 0);

Here, the xbus0 instance of xbus_env has its has_bus_monitor control field overridden
to 0. Therefore, the xbus_bus_monitor in xbus0 will not be present. The build()
function for the xbus_env that uses the has_bus_monitor control field can be found in
“XBus Environment” on page 148.

Collecting Transfers from the Bus

The XBus bus monitor populates the fields of xbus_transfer including the master and
slave, which indicate which master and slave are performing a transfer on the bus. These
fields are required to ensure that a slave responds to the appropriate address range when
initiated by a master.

In the XBus protocol, each master on the bus has a dedicated request signal and a dedicated
grant signal defined by the master agent’s ID. To determine which master is performing a
transfer on the bus, the XBus bus monitor checks which grant line is asserted.

To keep the XBus bus monitor example simple, an assumption has been made that the nth
master connects to the nth request and grant lines. For example, master[0] is connected
to grant0, master[1] is connected to grant1, and so on. Therefore, when the XBus bus
monitor sees that grant0 is asserted, it assumes that master[0] is performing the transfer
on the bus.

To determine which slave should respond to the transfer on the bus, the XBus bus monitor
needs to know the address range supported by each slave in the environment. The
environment developer has created the user interface API,
xbus_env::set_slave_address_map(), to set the address map for the slave as well as
the bus monitor. The prototype for this function is

set_slave_address_map(string slave_name, int min_addr, int max_addr);

For each slave, call set_slave_address_map() with the minimum and maximum address
values that the slave should respond to. This function sets the address map for the slave and
provides information to the bus monitor about each slave and its address map.

OVM User Guide
XBus OVC Example

March 2010 155 Product Version 2.1.1

Using the address map information for each slave and the address that is collected from the
bus, the bus monitor determines which slave has responded to the transfer.

Number of Transfers

The bus monitor has a protected field property, num_transactions, which holds the
number of transfers that were monitored on the bus.

Notifiers Emitted by the XBus Bus Monitor

The XBus bus monitor contains two analysis ports, which provide information on the different
types of activity occurring on the XBus signal-level interface. They are:

■ state_port—This port provides an xbus_status object which contains an
enumerated bus_state property. The bus_state property reflects bus-state changes.
For example, when the bus enters reset, the bus_state property is set to RST_START
and the xbus_status object is written to the analysis port.

■ item_collected_port—This port provides the XBus transfer that is collected from
the signal interface after a transfer is complete. This collected transfer is written to the
item_collected_port analysis port.

Note: Any component provided by the appropriate TLM interfaces can attach to these TLM
ports and listen to the information provided.

Checks and Coverage

The XBus bus monitor performs protocol-specific checks using class checks and collects
functional coverage from the collected xbus_transfers.

The OVM field coverage_enable and checks_enable are used to control whether
coverage and checks, respectively, will be performed or not. Refer to “Implementing a
Coverage Model” on page 98 for more information.

XBus Interface

The XBus interface is a named bundle of nets and variables such that the master agents,
slave agents, and bus monitor can drive or monitor the signals in it. Any physical checks to
be performed are placed in the interface. Refer to “Implementing a Coverage Model” on
page 98.

OVM User Guide
XBus OVC Example

March 2010 156 Product Version 2.1.1

Assertions are added to perform physical checks.The xbus_env field
intf_checks_enable controls whether these checks are performed. Refer to
“Implementing a Coverage Model” on page 98 for more information.

The code below is an example of a physical check for the XBus interface, which checks that
a valid address is driven during the normal address phase. A concurrent assertion is added
to the interface to perform the check and is labeled assertAddrUnknown. This assertion
evaluates on every positive edge of sig_clock if checks_enable is true. The
checks_enable bit is controlled by the intf_checks_enable field. If any bit of the
address is found to be at an unknown value during the normal address phase, an error
message is issued.

always @(posedge sig_clock)
begin

assertAddrUnknown:assert property (
disable iff(!checks_enable)

(sig_grant |-> ! $isunknown(sig_addr)))
else

$error("ERR_ADDR_XZ\n Address went to X or Z during Address Phase");
end

OVM User Guide

March 2010 157 Product Version 2.1.1

7
XBus Specification

Introduction

Motivation

The motivation for the XBus specification is to provide an example of a simple bus standard
for demonstration purposes and to illustrate the methodology required for a bus-based OVC.
As such, the XBus specification is designed to demonstrate all of the important features of a
typical modern bus standard while keeping complexity to a minimum.

Bus Overview

The XBus is a simple non-multiplexed, synchronous bus with no pipelining (so as to ensure
simple drivers). The address bus is 16 bits wide and the data bus is byte-wide (so as to avoid
alignment issues). Simple burst transfers are allowed and slaves are able to throttle data rates
by inserting wait states.

The bus can have any number of masters and slaves (the number of masters is only limited
by the arbitration implementation). Masters and slaves are collectively known as “bus agents”.

The transfer of data is split into three phases: Arbitration Phase, Address Phase and Data
Phase. Because no pipelining is allowed, these phases happen sequentially for each burst of
data. The Arbitration and Address Phases each take exactly one clock cycle. The Data Phase
may take one or more clock cycles.

Bus Description

Bus Signals

The list of bus signals (not including arbitration signals) is shown in Table 7-1 on page 158.
All control signals are active high.

OVM User Guide
XBus Specification

March 2010 158 Product Version 2.1.1

Table 7-1 Bus Signals

Signal
Name

Width
(bits) Driven By Purpose

clock 1 n/a Master clock for bus

reset 1 n/a Bus reset

start 1 arbiter This signal is high during the Arbitration Phase and
low during the Address and Data Phases.

addr 16 master Address of first byte of a transfer

size 2 master Indicates how many bytes will be transfers:

■ 00 => 1 byte

■ 01 => 2 bytes

■ 10 => 4 bytes

■ 11 => 8 bytes

read 1 master This signal is high for read transfers (write must be
low).

write 1 master This signal is high for write transfers (read must be
low).

bip 1 master Burst In Progress—driven high by master during
Data Phase for all bytes except the last byte of the
burst. This signal, when combined with wait and
error, can be used by the arbiter to determine if the
bus will start a new transfer in the next clock cycle.

data 8 master/
slave

Data for reads and writes

wait 1 slave High if slave needs master to wait for completion of
transfer

error 1 slave High if slave error condition applies to this transfer

OVM User Guide
XBus Specification

March 2010 159 Product Version 2.1.1

Clocking

All bus agents operate synchronous to the rising edge of the clock signal with the exception
of gnt signals (see “Arbitration Phase” on page 159).

Reset

The active high reset signal is synchronous to the rising edge of clock. reset shall be asserted
during power up and shall remain asserted for a minimum of five rising edges of clock* after
power and clock have stabilized. Thereafter, reset shall be de-asserted synchronous to a
rising edge of clock.

reset may be asserted at any time during operation. In such cases, reset must be asserted
for at least three clock cycles and must be both asserted and de-asserted synchronous to the
rising edge of clock. The assertion of reset cancels any pending transfer at the first rising
edge of clock where reset is asserted. Any bytes that have been transferred prior to assertion
of reset are considered to have succeeded. Any byte that would have succeeded at the rising
edge of clock where reset is first asserted is considered to have failed.

While reset is asserted, all agents should ignore all bus and arbitration signals. While reset is
asserted, the arbiter should drive start and all gnt signals low. At the first rising edge of clock
where reset is de-asserted, the arbiter should drive start high. Thereafter, the normal bus
operation should occur.

Arbitration Phase

Each XBus shall have a single, central arbiter to perform arbitration and certain other central
control functions.

The Arbitration Phase always lasts for one clock cycle. During the Arbitration Phase, the
arbiter shall drive the start signal high. At all other times, the arbiter should drive the start
signal low. The start signal can therefore be used by slaves to synchronize themselves with
the start of each transfer. The arbiter shall always drive start high in the cycle following the
last cycle of each Data Phase or in the cycle following a NOP Address Phase. The last cycle
of a Data Phase is defined as a Data Phase cycle in which either the error signal is high, or
both the bip and wait signals are low.

Each master on the bus has a dedicated req signal and a dedicated gnt signal. The arbiter
samples all req signals at each falling edge of clock where start is asserted and asserts a
single gnt signal based on an unspecified priority system. At all falling edges of clock where
start is not asserted, the arbiter shall drive all gnt signals low. Thus a master can see
assertion of its gnt signal not only as an indication that it has been granted the bus, but also

OVM User Guide
XBus Specification

March 2010 160 Product Version 2.1.1

as an indication that it must start an Address Phase. It is not necessary for the master to
check the start signal before starting its Address Phase.

Once a master is granted the bus, it must drive a transaction onto the bus immediately. No
other master is allowed to drive the bus until the current master has completed its transaction.

Note: Only the arbiter is allowed to drive a NOP transfer. This means that a master must drive
a real transfer if it is granted the bus. Therefore, masters should not request the bus unless
they can guarantee they will be ready to do a real transfer.

Arbitration signals shall be active high and shall be named according to a convention whereby
the first part of the name is the root signal name (“req_” for the request signal; “gnt_” for the
grant signal) and the second part of the name is the logical name or number of the master.
Although the arbitration signals form part of the XBus specification, they are not considered
to be “bus” signals as they are not connected to all agents on the bus.

It is up to individual implementations to decide upon an appropriate arbitration system.
Arbiters might allocate different priorities to each master or might choose randomly with each
master having equal priority.

Address Phase

The Address Phase lasts for a single clock cycle and always immediately follows the
Arbitration Phase.

NOP Cycle

Where no master has requested the bus and the start signal is asserted at the falling edge of
clock, no gnt signal is asserted at the start of the Address Phase and the arbiter itself is
responsible for driving the bus to a “no operation” (NOP) state. It does this by driving the addr
and size signals to all zeroes and both the read and write signals low. A NOP address phase
has no associated data phase so the arbiter shall assert the start signal in the following clock
cycle.

Note: This means that the arbiter is connected to certain bus signals in addition to the
arbitration signals and behaves as a “default master”.

Normal Address Phase

If, at the rising edge of clock, a master sees its gnt signal asserted, then it must drive a valid
Address Phase in the following cycle. The master should also de-assert its req signal at this
clock edge unless it has a further transfer pending.

OVM User Guide
XBus Specification

March 2010 161 Product Version 2.1.1

During the Address Phase, the granted master should drive the addr and size signals to valid
values and should drive either read or write (but not both) high.The address driven on addr
represents the address of the first byte of a burst transfer. It is up to the slave to generate
subsequent addresses during burst transfers.

The master shall only drive the addr, size, read and write signals during the Address Phase.
During the subsequent Data Phase, the master should not drive these signals.

Data Phase

The Data Phase may last for one or more clock cycles. The Data Phase follows immediately
after the Address Phase (and is immediately followed by the Arbitration Phase).

Write Transfer

On clock cycle after driving a write Address Phase, the master shall drive the first byte of data
onto the bus. If at the end of this clock cycle, the slave has asserted the wait signal, then the
master shall continue to drive the same data byte for a further clock cycle. The data signal
may only change at the end of a cycle where wait is not asserted. Thus, the slave can insert
as many wait states as it requires. The master shall drive the bip signal high throughout the
Data Phase until the point at which the final byte of the transfer is driven onto the bus, at which
point it shall be driven low.

At the end of the transfer (the end of the cycle where both bip and wait are low) the master
shall cease to drive all bus signals.

Error during Write Transfer

The slave shall drive the error throughout the Data Phase. If a slave encounters an error
condition at any point during the Data Phase of a write transfer, it may signal this by asserting
the error signal. To signal an error condition, the slave must drive the error signal high while
driving the wait signal low. This indicates to the master that the associated byte of the transfer
failed—any previous bytes in the burst are considered to have succeeded; any subsequent
bytes in the burst are abandoned. The assertion of error always terminates the Data Phase
even if bip is asserted simultaneously.

Read Transfer

On the clock cycle after the master drives a read Address Phase, the slave can take one of
two actions. It can either drive the first byte of data onto the bus while driving the wait signal

OVM User Guide
XBus Specification

March 2010 162 Product Version 2.1.1

low or it can drive the wait signal high to indicate that it is not yet ready to drive data. Each
byte of data is latched only by the master at the end of a cycle where wait is low—thus the
slave can insert as many wait states as is required. The master shall drive the bip signal high
throughout the Data Phase until the point at which the master is ready to receive the final byte
of the transfer, at which point it shall be driven low.

At the end of the transfer (the end of the cycle where both bip and wait are low) the master
shall cease to drive all bus signals.

Error during Read Transfer

The slave shall drive the error throughout the Data Phase. If a slave encounters an error
condition at any point during a read transfer, it may signal this by asserting the error signal.
To signal an error condition, the slave must drive the error signal high while driving the wait
signal low. This indicates to the master that the associated byte of the transfer failed—any
previous bytes in the burst are considered to have succeeded; any subsequent bytes in the
burst are abandoned. The assertion of error always terminates the Data Phase even if bip is
asserted simultaneously.

What Drives What When
Table 7-2 What Drives What When

Signal
Name Arbitration Phase Address Phase Data Phase

start Driven to 1 by
arbiter

Driven to 0 by arbiter Driven to 0 by arbiter

addr Not driven Driven by master (or to 0 by
arbiter for NOP)

Not driven

size Not driven Driven by master (or to 0 by
arbiter for NOP)

Not driven

read Not driven Driven by master (or to 0 by
arbiter for NOP)

Not driven

write Not driven Driven by master (or to 0 by
arbiter for NOP)

Not driven

OVM User Guide
XBus Specification

March 2010 163 Product Version 2.1.1

Optional Pipelining Scheme

As previously stated, the XBus standard does not normally support pipelining. However,
pipelining can optionally be implemented.

Note: All agents (including arbitration) on a bus must agree either to pipeline or not to
pipeline. Mixing pipelined and non-pipelined agents on the same bus is not supported.

Because pipelining overlaps the Arbitration, Address, and Data Phases, two levels of
pipelining are provided. That is, there are a total of three transfers in progress at any one time.

Note: Pipelining results in different bus agents driving the same signals in consecutive clock
cycles. As such, there is no period where the signal is not driven as part of a change of
sequencers. As a result, care is necessary in the physical design of the bus to ensure that
bus contention does not occur. A multiplexed approach will be required (in the form of either
a ring or a star).

Pipelined Arbitration Phase

In a pipelined system, the Arbitration Phase is performed in parallel with the Address and
Data Phases. Arbitration is carried out in every clock cycle regardless of whether this is

bip Not driven Not driven Driven to 1 by master for all
but last byte of transfer

data Not driven Not driven Driven by master during
writes. Driven by slave
during reads in cycles
where wait is low;
otherwise, don’t care (may
be driven to unknown state
or not driven at all).

wait Not driven Not driven Driven by slave

error Not driven Not driven Driven by slave

Table 7-2 What Drives What When (continued)

Signal
Name Arbitration Phase Address Phase Data Phase

OVM User Guide
XBus Specification

March 2010 164 Product Version 2.1.1

necessary or not. This is because the arbiter cannot predict whether the next clock cycle will
mark the start of a new Address Phase.

The Arbiter asserts the start signal in the clock cycle after the end of each Data Phase as in
the non-pipelined system. However, this start signal marks the start of all three Phases in
parallel.

The end of a Data Phase can be recognized by either assertion of error or de-assertion of
both bip and wait.

Pipelined Address Phase

A master that has its gnt signal asserted at the clock edge where a Data Phase completes is
granted the Address Phase of the bus. It must immediately start driving an Address Phase.
Unlike in the non-pipelined bus, where the Address Phase lasts a single clock cycle, the
Address Phase in a pipelined bus lasts until the end of the next Data Phase.

Where no master requests the bus and therefore no master is granted the bus, the arbiter is
responsible for driving NOP until the end of the next Data Phase.

Pipelined Data Phase

The Data Phase of a pipelined bus is similar to that of a non-pipelined bus. Where the arbiter
drives a NOP for the preceding Address Phase, the master must drive error, bip and wait low
during the Data Phase (which will last for a single clock cycle in this case).

OVM User Guide
XBus Specification

March 2010 165 Product Version 2.1.1

Example Timing Diagrams

Figure 7-1 Example Write Waveform

clock

req

gnt

addr

size

read

write

bip

wait

error

data

0b01

Address
Phase

Data
Phase

Arbitration
Phase

start

OVM User Guide
XBus Specification

March 2010 166 Product Version 2.1.1

Figure 7-2 Example Read Waveform

clock

req

gnt

addr

size

write

read

bip

wait

error

data

0b00

Address
Phase

Data
Phase

Arbitration
Phase

start

	Contents
	OVM Overview
	Introduction to OVM
	OVM and Coverage-Driven Verification (CDV)
	OVM Testbench and Environments

	OVC Overview
	Data Item (Transaction)
	Driver (BFM)
	Sequencer
	Monitor
	Agent
	Environment

	The SystemVerilog OVM Class Library
	Other OVM Facilities

	Transaction-Level Modeling (TLM)
	Transaction-Level Modeling Overview
	TLM Basics
	Transactions
	Transaction-Level Communication
	Basic TLM Communication
	Communicating Between Processes
	Blocking versus Nonblocking
	Connecting Transaction-Level Components
	Peer-to-Peer connections
	Port/Export Compatibility

	Encapsulation and Hierarchy
	Hierarchical Connections

	Analysis Communication
	Analysis Ports
	Analysis Exports

	Developing Reusable Open Verification Components (OVCs)
	Modeling Data Items for Generation
	Inheritance and Constraint Layering
	Defining Control Fields (“Knobs”)

	Transaction-Level Components
	Creating the Driver
	Creating the Sequencer
	Connecting the Driver and Sequencer
	Fetching Consecutive Randomized Items
	Sending Processed Data Back to the Sequencer
	Using TLM-Based Drivers

	Creating the Monitor
	Instantiating Components
	Creating the Agent
	Creating the Environment
	The Environment Class
	The OVM Configuration Mechanism

	Enabling Scenario Creation
	Declaring User-Defined Sequences
	Generating Stimulus with Sequences and Sequence Items
	Predefined Sequences
	Configuring the Sequencer's Default Sequence
	Overriding Sequence Items and Sequences
	Building a Reusable Sequence Library

	Managing End of Test
	Implementing Checks and Coverage
	Implementing Checks and Coverage in Classes
	Implementing Checks and Coverage in Interfaces
	Controlling Checks and Coverage

	Using OVCs
	Using an OVC
	Test Class
	Testbench Class

	Instantiating OVCs
	OVC Configuration
	OVC Configurable Parameters
	OVC Configuration Mechanism
	Using a Configuration Class

	Creating and Selecting a User-Defined Test
	Creating the Base Test
	Creating Tests from a Test-Family Base Class
	Test Selection

	Creating Meaningful Tests
	Constraining Data Items
	Using Sequences

	Virtual Sequences
	Creating a Virtual Sequencer
	Creating a Virtual Sequence
	Controlling Other Sequencers
	Connecting a Virtual Sequencer to Subsequencers

	Checking for DUT Correctness
	Scoreboards

	Implementing a Coverage Model
	Selecting a Coverage Method
	Implementing a Functional Coverage Model

	Advanced Topics
	The ovm_component Base Class
	Simulation Phase Methods
	build()
	connect()
	end_of_elaboration()
	start_of_simulation()
	run()
	extract()
	check()
	report()
	Adding User-Defined Phases

	The Built-In Factory and Overrides
	About the Factory
	Factory Registration
	Component Overrides

	Callbacks
	Problematic Nature of Callbacks
	Callbacks Use model
	Callback Example

	Advanced Sequence Control
	Implementing Complex Scenarios
	Protocol Layering
	Advanced Sequence-Generation

	XBus OVC Example
	XBus Demo
	XBus Demo Architecture
	XBus Top Module
	The Test
	Testbench Environment
	XBus Environment
	XBus Agent
	XBus Sequencer
	XBus Driver
	XBus Agent Monitor
	XBus Bus Monitor
	Collecting Transfers from the Bus
	Number of Transfers
	Notifiers Emitted by the XBus Bus Monitor
	Checks and Coverage

	XBus Interface

	XBus Specification
	Introduction
	Motivation
	Bus Overview

	Bus Description
	Bus Signals
	Clocking
	Reset

	Arbitration Phase
	Address Phase
	NOP Cycle
	Normal Address Phase

	Data Phase
	Write Transfer
	Read Transfer

	What Drives What When
	Optional Pipelining Scheme
	Pipelined Arbitration Phase
	Pipelined Address Phase
	Pipelined Data Phase

	Example Timing Diagrams

