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1. Overview

1.1. MIMPID (core implementation ID)

This specification is relevant for SCR1 core with MIMPID value of 0x19083000.

1.2. Features

Summary of key features:

* Harvard architecture (separate instruction and data buses)
* Machine privilege level
* 32 or 16 32-bit general purpose integer registers
* Instruction set is RV32I/RV32E with optional M and C extensions
o 47 Integer (32-bit) instructions
o 27 Compact (16-bit) instructions
o 8 Multiply/Divide instructions
* Configurable high-performance or area-optimized multiply/divide unit
* Configurable 2 to 4 stage pipeline implementation
» 32-bit AXI4/AHB-Lite external memory interface
* Tightly coupled memory support
* Optional Integrated Programmable Interrupt Controller
o Low interrupt latency
o up to 16 IRQ lines
* Optional RISC-V Debug Module with JTAG interface
* Optional Hardware Trigger Module
* 3 embedded 64bit performance counters
- Real time clock
o Cycle counter
o Instructions-retired counter

* Optimized for area and power consumption



1.3. Core configuration

The core features a number of configurable parameters described in Table 1. These parameters can
be changed in scr1_arch_description.svh include file.

« for on/off parameters, comment/uncomment the "define directive

 for numeric parameters, change the SystemVerilog parameter value

Table 1: SCR1 configurable options

Name

SCR1_RVE_EXT

SCR1_RVM_EXT

SCR1_RVC_EXT

SCR1_IFU_QUEUE_BYPASS

SCR1_EXU_STAGE_BYPASS

SCR1_FAST_MUL

SCR1_CLKCTRL_EN

SCR1_VECT_IRQ_EN

SCR1_CSR_MCOUNTEN_EN
SCR1_CSR_MTVEC_BASE_RW_BITS

SCR1_DBGC_EN

SCR1_BRKM_EN
SCR1_BRKM_BRKPT NUMBER
SCR1_IPIC_EN

SCR1_IPIC_SYNC_EN
SCR1_CFG_EXCL_UNCORE
SCR1_TCM_EN
SCR1_IMEM_AHB_IN_BP

Description
ISA options

Enable RV32E base integer instruction set; when this
option is disabled, RV32I base is used

Enable M extension (hardware multiplication and
division)
Enable C extension

Core options

Pipeline bypass after IFU (see "Pipeline configurations"
in docs/scrl_eas.pdf)

Pipeline bypass before EXU (see "Pipeline
configurations" in docs/scrl_eas.pdf)

Enable fast one-cycle multiplication; when this option is
disabled, multiplication takes 32 cycles

Enable global clock gating; please note that for
synthesis, code in scr1_cg.sv should be replaced with
implementation-specific clock gate cod

Enable vectored mode (see MTVEC [0x305])
Enable counter control CSR (see MCOUNTEN [0x7EO0])

Number of writable bits in MTVEC BASE field (see
MTVEC [0x305])

Uncore options

Enable Debug Subsystem (TAPC, DM, SCU, HDU) (see
Debug)

Enable Trigger Module (see Hardware Trigger Module)
Number of hardware triggers/breakpoints

Enable interrupt controller (see Integrated
Programmable Interrupt Controller)

Enable 2-stage input synchronizer for IRQ lines
Exclude Debug Subsystem, Trigger Module, IPIC
Enable tightly-coupled memory, default size is 64K

Enable bypass on instruction memory AHB bridge
inputs



Name

SCR1_IMEM_AHB_OUT_BP

SCR1_DMEM_AHB_IN_BP
SCR1_DMEM_AHB_OUT_BP
SCR1_IMEM_AXI_REQ_BP

SCR1_IMEM_AXI_RESP_BP

SCR1_DMEM_AXI_REQ_BP
SCR1_DMEM_AXI_RESP_BP

SCR1_ARCH_RST_VECTOR
SCR1_ARCH_CSR_MTVEC_BASE

SCR1_TCM_ADDR_MASK

SCR1_TCM_ADDR_PATTERN
SCR1_TIMER_ADDR_MASK
SCR1_TIMER_ADDR_PATTERN

NOTE

Description

Enable bypass on instruction memory AHB bridge
outputs

Enable bypass on data memory AHB bridge inputs
Enable bypass on data memory AHB bridge outputs

Enable bypass on instruction memory AXI bridge
request

Enable bypass on instruction memory AXI bridge
response

Enable bypass on data memory AXI bridge request

Enable bypass on data memory AXI bridge response

Address constants

User-defined reset vector (default 0x200)

MTVEC BASE field reset value, or constant value for
MTVEC BASE bits that are hardwired (default 0x1CO0)

Set TCM mask and size; size in bytes is two’s
complement of the mask value (default 0OXFFFF0000)

Set TCM address match pattern (default 0x00480000)
Set timer mask (default OXFFFFFFEO)
Set timer address match pattern (default 0x00490000)

Currently Trigger Module requires Debug Subsystem and vice versa, so both options

should be either enabled or disabled.



1.4. Block Diagram

The core is load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on integer registers. The core provides a 32-bit user address
space that is byte-addressed and little-endian. The execution environment will define what portions
of the address space are legal to access.

Block diagram of the core is shown in Figure 1.

SCR1 core top cluster
SCR1 core
TAG
B _ TAP ) J N
Trigger Module (TM) SCU
IRQ
MPRF CSRF IPIC >
IFU IDU EXU LSU
A A
v v
A A A A A
» 64KB TCM <
AXI4/ AX14/
AHB-Lite . AHB-Lite
bridge dimer ™« bridge
A A

v v

Figure 1: SCR1 Block Diagram
SCR1 core contains:

¢ Instruction Fetch Unit (IFU)

¢ Instruction Decode Unit (IDU)

* Execution Unit (incl. integer ALU) (EXU, IALU)

* Load-Store Unit (LSU)

» Multi-port register file (MPRF)

» Control/Status register file (CSRF)

* Integrated programmable interrupt controller (IPIC)
» Trigger Module / Trigger Debug Unit (TM / TDU)

* Tightly-coupled memory (TCM)

» External AXI4/AHB-Lite instruction memory interface



» External AXI4/AHB-Lite data memory interface
* Debug Subsystem:

o Test access point controller (TAPC)

o System Control Unit (SCU)

> Debug Module (DM)



2. Privilege Levels

The core implements only one of four RISC-V privilege levels defined in [2] as shown in Table 2.

Table 2: Implemented privilege levels

Numeric 2-hit
level encoding
0 00
1 01
2 10
3 11

Level name /| Mode

User level / U-mode
Supervisor level / S-mode
Hypervisor level / H-mode

Machine level / M-mode

Implementation

No
No
No
Yes

The machine level has the highest privileges. Code running in machine-mode (M-mode) is

inherently trusted, as it has low-level access to all implememted functions of the core.

The core runs any application code in M-mode. Some trap, such as exception or asynchronous
external interrupt, forces a switch to a trap handler, which runs in the same privilege mode. The
core will then execute the trap handler, which will eventually resume execution at or after the

original trapped instruction.



3. Registers

3.1. General-purpose Integer Registers

Figure 2 shows the user-visible general-purpose integer registers of the core. There are 31 (or 15 for
RV32E) general-purpose registers x1-x31 (or x1-x15), which are designed to hold integer values.
Register X0 is hardwired to the constant 0 and can be used as a source of constant zero or as a don’t
care destination register.

Don’t care destination x0 is used to ignore the result of instruction execution provided that
destination register is mandatory for instruction structure.

All general-purpose registers in the core are 32-bits wide.

The core implements 32-bit pc register, which is used as program counter, meaning that it holds the
address of the current instruction.

31 0
XLT 0 N

2
3
x4
5
X6
7
(9

General

> Purpose

Registers

4 5 e o e e o e o e o o B st

UIOINIDNINININININININY
= CCOA~JTIU N UWINI= OGO~ OIU TN =

=]
o

~

32 bits

Figure 2: General-purpose integer registers



3.2. Control and Status Registers

3.2.1. Overview and definitions

Control/status registers (CSR) of the core are accessed atomically using instructions specifically
designed for CSR access. CSR access instructions are listed in Instruction set summary section of this
specification.

According to the RISC-V specification [2], the core uses 12-bit encoding space to address up to 4096
control/status registers (CSR) in the instructions which atomically read and modify CSRs. The core
implements subset of CSRs according to the mapping shown in the next paragraphs. The core
follows RISC-V convention, where the upper 4 bits of the CSR address [11:8] are used to encode the
read and write accessibility of the CSRs according to the privilege level. The top two bits [11:10]
indicate whether the register is read/write (00, 01, or 10) or read-only (11). The next two bits [9:8]
indicate the lowest privilege level that can access the CSR.

The following definitions are used to designate bit or bit field properties throughout the individual
CSR descriptions:

* RO - read only (write attempt results in illegal instruction exception)

* QRO - quiet read only (write attempt is ignored)

* RZ -read as zero

e RW -read/write

RW1S - read/write one to set

RW1C - read/write one to clear

RW1P - read/write one to pulse
The core implements the following rules for CSR access:

1. Attempts to access a non-existent CSR raise an illegal instruction exception;
2. Attempts to write a read-only CSR also raise illegal instruction exception;

3. If a read/write register contains some bits that are read-only, then writes to the read-only bits
are ignored.



3.2.2. CSR Map

Map of control/status registers is shown in Table 3.
All of the standard CSRs do comply with [2], unless explicitly stated otherwise.
Table 3: CSR map

Address Name
Standard CSRs

User Counters/Timers (read-only)

0xC00 CYCLE
0xC01 TIME
0xC02 INSTRET
0xC80 CYCLEH
0xC81 TIMEH
0xC82 INSTRETH

Machine Information Registers (read-only)

OxF11 MVENDORID
0xF12 MARCHID
0xF13 MIMPID
0xF14 MHARTID

Machine Trap Setup (read-write)

0x300 MSTATUS
0x301 MISA
0x304 MIE
0x305 MTVEC

Machine Trap Handling (read-write)

0x340 MSCRATCH
0x341 MEPC
0x342 MCAUSE
0x343 MTVAL
0x344 MIP
Standard read/write debug CSRs (0x7A0..0x7AF)
0x7A0 TSELECT
0x7A1 TDATA1
0x7A2 TDATA2

0x7A4 TINFO

10



Address

0x7B0
0x7B1
0x7B2

0xB00
0xB02
0xB80
0xB82

0x7EO0
0xBF0..0xBF7

0x00490000 (default)
0x00490004 (default)
0x00490008 (default)
0x0049000C (default)
0x00490010 (default)
0x00490014 (default)

Name
Debug-mode-only CSRs (0x7B0..0x7BF)
DSCR
DPC
DSCRATCHO

Machine Counters/Timers (read-write)
MCYCLE
MINSTRET
MCYCLEH
MINSTRETH
Non-standard CSRs (read-write)
MCOUNTEN
IPIC registers
Memory-mapped CSRs (read-write)
TIMER_CTRL
TIMER_DIV
MTIME
MTIMEH
MTIMECMP
MTIMECMPH

11



3.2.3. User Mode CSRs

All user-mode CSR registers are implemented in full compliance with the RISC-V specification [2].
Please note that the term "user-mode CSRs" here does not imply support for user mode in the core,
but is rather used for coherence with the RISC-V specification.

CYCLE [0xCO00] (read-only mirror of MCYCLE)

TIME [0xCO01] (read-only mirror of MTIME)

INSTRET [0xCO02] (read-only mirror of MINSTRET)

CYCLEH [0xC80] (read-only mirror of MCYCLEH)

TIMEH [0xC81] (read-only mirror of MTIMEH)

INSTRETH [0xC82] (read-only mirror of MINSTRETH)

For more information, see MCYCLE/MCYCLEH [0xB00/0xB80], MINSTRET/MINSTRETH
[0xB02/0xB82] and MTIME/MTIMEH [TIMER_BASE + 0x8/TIMER_BASE + 0xC].

12



3.2.4. Machine Mode Standard CSRs

3.2.4.1. MVENDORID [0xF11]

MVENDORID is hardwired to 0x0.

3.2.4.2. MARCHID [0xF12]

MARCHID is hardwired to 0x8.

3.2.4.3. MIMPID [0xF13]

MIMPID is hardwired to 0x19083000.

Structure of MIMPID register is shown in Table 4.

Table 4: Structure of MIMPID register

Bits Name Attributes

31..24 Year RO
23..16 Mon RO
15..8 Day RO
7.0 REL RO

3.2.4.4. MHARTID [0xF14]

Description

BCD-coded value of the year
BCD-coded value of the month
BCD-coded value of the day

8-bit value of an intra-day release number

MHARTID is defined by external fuses.

3.2.4.5. MSTATUS [0x300]

Structure of MSTATUS register is shown in Table 5.

Table 5: Structure of MSTATUS register

Bits Name Attributes  Description
2..0 RSV RZ Reserved
3 MIE RW Global interrupt enable
6.4 RSV RZ Reserved
7 MPIE RW Previous global interrupt enable
10..8 RSV RZ Reserved
12..11  MPP QRO Previous privilege mode (hardwired to 11)
31..13 RSV RZ Reserved

Default value after reset is 0x1880.

3.2.4.6. MISA [0x301]

Structure of MISA register is shown in Table 6.

13



Table 6: Structure of MISA register

Bits
1..0

2

3

4

7..5

8
11.9
12
22..13
23
29..24
31..30

Name Attributes

RSV
RVC
RSV
RVE
RSV
RVI
RSV
RVM
RSV
RVX
RSV
MXL

RZ
QRO
RZ
QRO
RZ
QRO
RZ
QRO
RZ
QRO
RZ
QRO

3.2.4.7. MIE [0x304]

Description

Reserved

Compressed instruction extension implemented
Reserved

RV32E base integer instruction set

Reserved

RV32I base integer instruction set

Reserved

Integer Multiply/Divide extension implemented
Reserved

Non-standard extensions

Reserved

Machine XLEN (hardwired to 01)

Structure of MIE register is shown in Table 7.

Table 7: Structure of MIE register

Bits
2.0
3
6.4
7
10..8
11
31..12

Name  Attributes Description

RSV RZ
MSIE RW
RSV RZ
MTIE RW
RSV RZ
MEIE RW
RSV RZ

3.2.4.8. MTVEC [0x305]

Reserved.

Machine Software Interrupt Enable.
Reserved.

Machine Timer Interrupt Enable.
Reserved

Machine External Interrupt Enable.

Reserved

Structure of MTVEC register is shown in Table 8.

Table 8: Structure of MTVEC register

Bits
1..0

5.2

31..6

MODE

Name  Attributes Description

RZ

BASE RW/QRO

RW/RZ

Vector mode (0-direct mode, 1-vectored mode)
Read as zero

Vector base address (upper 26 bits)

MODE field can be either RW or RZ depending on the SCR1_VECT_IRQ_EN parameter value. BASE
field can be QRO, RW, or partially RW depending on SCR1_CSR_MTVEC_BASE_RW_BITS parameter

14



value. SCR1_ARCH_CSR_MTVEC_BASE_RST_VAL parameter is used to set constant values for QRO
bits and reset values for RW bits. See SCR1 configurable options for details.

In direct mode, all exceptions set PC to BASE. In vectored mode, asynchronous

NOTE .
interrupts set PC to BASE+4xcause.

3.2.4.9. MSCRATCH [0x340]
Structure of MSCRATCH register is shown in Table 9.

Table 9: Structure of MSCRATCH register

Bits Name  Attributes Description

31..0 RW As defined by the RISC-V specification [2]
3.2.4.10. MEPC [0x341]

Structure of MEPC register is shown in Table 10.

Table 10: Structure of MEPC register

Bits Name  Attributes Description
0 RSV RZ Reserved
31.1 RW As defined by the RISC-V specification [2]

3.2.4.11. MCAUSE [0x342]

Structure of MCAUSE register is shown in Table 11.

Table 11: Structure of MCAUSE register

Bits Name  Attributes Description

3.0 EC RW Exception Code
30.4 RSV RZ Reserved
31 INT RW Interrupt

List of MCAUSE Exception Codes is shown in Table 12.

Table 12: List of MCAUSE Exception Codes

INT EC Description

Instruction address misaligned
Instruction access fault

Ilegal instruction

Breakpoint

Load address misaligned

Load access fault

o O o o o o o
D U W NdD = O

Store/AMO address misaligned

15



INT EC Description

7 Store/AMO access fault

10..8 Not supported

11 Ecall from M-mode

>=12 Reserved

2.0 Reserved

Machine Software Interrupt
6.4 Reserved

7 Machine Timer Interrupt
10..8 Reserved

11  Machine External Interrupt

S S S O = N = T = N
w

>=12 Reserved

Interrupts have priority over exceptions, as defined by the specification. The priority is determined
when the instruction that causes exception is at the decode stage.

3.2.4.12. MTVAL [0x343]
Structure of MTVAL register is shown in Table 13.

Table 13: Structure of MTVAL register

Bits Attributes  Description

31..0 RW As defined by the RISC-V specification [2]

MTVAL 1is written with the faulting instruction bits on an illegal instruction

NOTE .
exception.

3.2.4.13. MIP [0x344]
Structure of MIP register is shown in Table 14.

Table 14: Structure of MIP register

Bits Name  Attributes Description
2..0 RSV RZ Reserved.
3 MSIP QRO Machine Software Interrupt Pending.
6.4 RSV RZ Reserved.
7 MTIP QRO Machine Timer Interrupt Pending.
10..8 RSV RZ Reserved
11 MEIP QRO Machine External Interrupt Pending.
31..12 RSV RZ Reserved

16



3.2.4.14. MCYCLE/MCYCLEH [0xB00/0xB80]

MCYCLE/MCYCLEH CSRs represent the number of clock cycles since some arbitrary point of time in
the past, at which both MCYCLE and MCYCLEH were equal to zero, and since which the counting
has started. By default, MCYCLE and MCYCLEH are equal to zero after core reset (which also starts
counting). Another option to start counting for MCYCLE/MCYCLEH is by writing some value to the
MCYCLE/MCYCLEH.

MCYCLE/MCYCLEH CSRs are optional when RV32E base integer instruction set is

NOTE
used.

Structure of MCYCLE/MCYCLEH registers is shown in Table 15.

Table 15: Structure of MCYCLE/MCYCLEH registers

Bits Attributes  Description

31..0 RW As defined by the RISC-V specification [2]

3.2.4.15. MINSTRET/MINSTRETH [0xB02/0xB82]

MINSTRET/MINSTRETH CSRs represent the number of instructions executed by the core from some
arbitrary time in the past, at which both MINSTRET and MINSTRETH were equal to zero, and since
which the counting has started. By default, MINSTRET and MINSTRETH are equal to zero after core
reset (which also starts counting). Another option to start counting for MINSTRET/MINSTRETH is by
writing some value to the MINSTRET/MINSTRETH.

MINSTRET/MINSTRETH value reflects the number of instructions successfully
NOTE executed by the core, which means instructions that cause exceptions are not
counted.

MINSTRET/MINSTRETH CSRs are optional when RV32E base integer instruction set

NOTE .
is used.

Structure of MINSTRET/MINSTRETH registers is shown in Table 16.

Table 16: Structure of MINSTRET/MINSTRETH registers

Bits Attributes  Description

31..0 RW As defined by the RISC-V specification [2]

3.2.5. Standard read/write debug CSRs [0x7A0..0x7AF]

For description of Trigger CSRs refer to the Trigger CSRs section.

3.2.6. Debug-mode-only CSRs [0x7B0..0x7BF]

For description of Debug-mode-only CSRs refer to the Debug CSRs section.
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3.2.7. Machine Mode Non-standard CSRs

3.2.7.1. MCOUNTEN [0x7E0]

MCOUNTEN CSR allows to disable counters via software if they are not needed by the application.
This CSR does not exist if CYCLE[H] and INSTRET[H] CSRs are disabled. Structure of MCOUNTEN
register is shown in Table 17.

Table 17: Structure of MCOUNTEN register

Bits Name Attributes Description

0 CcY RW Enable cycle counter

1 RSV RZ Reserved

2 IR RW Enable retired instructions counter
31..3 RSV RZ Reserved

3.2.7.2. IPIC registers [0xBF0..0xBF7]

For more information, refer to the Map of IPIC registers section.
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3.2.8. Memory-mapped CSRs

Memory-mapped CSRs do not support byte and halfword access, an

IMPORTANT . . .
corresponding attempt will cause a load/store access fault exception.

Timer memory-mapped CSRs addresses are given below relative to the
IMPORTANT TIMER BASE = SCR1_TIMER ADDR PATTERN (see SCR1 configurable
options).

3.2.8.1. TIMER_CTRL [TIMER_BASE]

Structure of TIMER_CTRL register is shown in Table 18.

Table 18: Structure of TIMER_CTRL register

Bits Name Attributes Description
0 ENABLE RW Timer enable
1 CLKSRC RW Timer clock source: 0 - internal core clock (default)

1 - external real-time clock

31..2 RZ Reserved, read as zero

3.2.8.2. TIMER_DIV [TIMER_BASE + 0x4]

Structure of TIMER_DIV register is shown in Table 19.

Table 19: Structure of TIMER_DIV register

Bits Name  Attributes Description
9..0 DIV RW Timer divider: timer tick occurs every DIV+1 clock ticks

31..10 RZ Reserved, read as zero

3.2.8.3. MTIME/MTIMEH [TIMER_BASE + 0x8/TIMER_BASE + 0xC]

MTIME/MTIMEH CSRs represent wall-clock real time (number of timer ticks) from some arbitrary
time in the past, at which both MTIME and MTIMEH were equal to zero, and since which the
counting has started. By default, MTIME and MTIMEH are equal to zero after core reset (which also
starts counting). Another option to start counting for MTIME/MTIMEH is by writing some value to
the MTIME/MTIMEH.

Structure of MTIME/MTIMEH registers is shown in Table 20.

Table 20: Structure of MTIME/MTIMEH registers

Bits Name  Attributes Description

31..0 RW As defined by the RISC-V specification [2]

3.2.8.4. MTIMECMP/MTIMECMPH [TIMER_BASE + 0x10/TIMER_BASE + 0x14]

Structure of MTIMECMP/MTIMECMPH registers is shown in Table 21.

19



Table 21: Structure of MTIMECMP/MTIMECMPH registers

Bits Name  Attributes Description

31..0 RW As defined by the RISC-V specification [2]
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4. Memory Model

4.1. Bit and byte order

The core does access instruction and data words in memory assuming generic little endian
organization as illustrated in Figure 3. With little-endian format, the byte with the lowest address in
a word is the least-significant byte of the word. The byte with the highest address in a word is the
most significant. For instance, the byte at address 0 of the data memory bus connects to least
significant data lines 7-0.

Bit numbering within a word

( A

31 24 23 16 15 8 7 0
Byte at Byte at Byte at Byte at
address OXF address OXE | address 0xD | address 0xC Word at address 0xC
L A J
Halfword at address 0XE Halfword at address 0xC
Byte at Byte at Byte at Byte at
address 0xB | address 0xA| address 0x9 address 0x8 Word at address 0x8
L A J
Halfword at address 0xA Halfword at address 0x8
Byte at Byte at Byte at Byte at
address 0x7 address 0x6 address 0x5 address 0x4 Word at address 0x4
L A J
Halfword at address 0x6 Halfword at address 0x4
Byte at Byte at Byte at Byte at
address 0x3 address 0x2 address 0x1 address 0x0 Word at address 0x0

L L J
Halfword at address 0x2 Halfword at address 0x0

Figure 3: Generic little endian memory organization

Regardless of memory access width the numbering of bits always assumes that bit 0 is least
significant bit and it is also rightmost bit in all illustrative diagrams within the specification.

4.2. Data access width and alignment

The core supports following memory access widths:

* 32-bit words for instruction and data memory;
* 16-bit halfwords for data memory only;

+ 8-bit bytes for data memory only.

The core considers data memory as a contiguous collection of bytes numbered in ascending order
in the range 0x00000000-0XFFFFFFFF (32-bit address).

The core considers instruction memory as a contiguous collection of 32-bit words for base 32-bit
instruction set (RV32I) or as a contiguous collection of 16-bit halfwords for compact instruction set

21



(RV320). Instructions in memory must be aligned to 4-byte boundary or 2-byte boundary
correspondingly. Byte numbering in memory starts from 0. In case of compact instruction set the
last instruction address is OXFFFFFFFE. In case of non-compact instruction set the last instruction
address is OXFFFFFFFC. Instruction fetch from memory is physically done as 32-bit words aligned to
4-byte boundary ignoring any unnecessary portion of the word during instruction decode.

4.3. Stack behavior

The core supports stack handling with implemented base and compact instruction sets. No special
register is used to implement return address link register or stack pointer during subroutine call.
However, any subset of general purpose registers x1..x31 can be used for these purposes.

As soon as the register is chosen to be a stack pointer, after appropriate register initialization the
implementation of context save/restore or access to local variables during subroutine call becomes
straightforward. Standard software calling convention uses register x2 as a stack pointer.

As soon as the register is chosen to be a link register, implemented instruction sets (both base and
compact) provide adequate means to memorize the return address during subroutine call and to
use this address on return from subroutine. Standard software calling convention uses register x1
to hold the return address during subroutine calls.

4.4. Memory access ordering

The core uses strong memory access ordering, meaning that the sequence and the number of
memory accesses are guaranteed to correspond one-to-one to underlying sequence of instructions
executed. Given that, FENCE instruction is executed as NOP, FENCE.I instruction flushes the
instruction fetch queue.

4.5. System memory map

The core implements Harward architecture characterized by independent access to instruction
memory and data memory through dedicated external memory interfaces.

Figure 4 shows the illustrative view of the system memory map for the core.
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Instruction memory Data memory

O0XxFFFFFFFE OXFFFFFFFF
AHB/AXI
space
AHB/AXI P
space
0x0049001F
Timer
0x00490000
0x0048FFFF Tightly-coupled memory 0X0048FFFF
(64 KB, dual port memory)
0x00480000 0x00480000
AHB/AXI AHB/AXI
space space
0x00000000 0x00000000

Figure 4: System memory map

The core provides dual-port tightly-coupled memory (TCM) which can be used for both instructions
and data. TCM is charactrized by short memory response to support time critical code and/or data
of the application. TCM is mapped to system memory map with fixed base address 0x00480000.
Detailed description of TCM is given in Tightly-Coupled Memory section of this specification.
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4.6. Tightly-Coupled Memory

Tightly-Coupled Memory (TCM) is random access memory (RAM) with guaranteed single-cycle
response time. TCM is desinged for both instruction and data sections of the code which require
maximum throughput.

TCM is implemented as dual-port memory with independent access from Instruction and Data
memory interfaces (I/F).

Instruction memory I/F does always read TCM as 32-bit words (read only access).
Data memory I/F supports 8/16/32 bits wide access to TCM (read/write access).

TCM size is up to 64 kBytes. TCM base address is 0x00480000.
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5. Exceptions and Interrupts

The term exception is used to refer to an unusual condition occurring in the core at run time.

The term trap is used to refer to the synchronous transfer of control to a supervising environment
when it is caused by an exceptional condition occurring within a core.

The term interrupt is used to refer to the asynchronous transfer of control to a supervising
environment caused by an event outside of the core.

Some instructions under certain conditions (as described in [2]) raise an exception during
execution. Whether and how these are converted into traps is dependent on the execution
environment, though the expectation is that most environments will take a precise trap when an
exception is signaled.

Exception codes supported by the core are listed in Table 22.

Table 22: List of supported exception codes

Code Exception cause/description
0 Misaligned instruction fetch address
Instruction fetch access fault
Illegal instruction
Breakpoint
Misaligned load address
Load access fault
Misaligned store address
Store access fault

Reserved

© 0 g9 o U1 bk W N e

Reserved

—_
o

Reserved
11 Ecall from M-mode
31..12 Reserved

Interrupt codes supported by the core are listed in Table 23. Non-Maskable Interrupts are not
implemented in SCR1.

Table 23: List of supported interrupt codes

Code Interrupt cause/description
2.0 Reserved
3 Machine software interrupt
6.4 Reserved
7 Machine timer interrupt
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Code
10..8
11
31..12

Interrupt cause/description
Reserved
Machine external interrupt

Reserved



6. Pipeline theory of operations

6.1. Instruction execution phases

SCR1 has simple in-order pipeline. Functional phases of instruction execution are listed below.

Request to Instruction Memory
¢ Instruction fetch
* Instruction decode
* Execution
o Operand fetch
o Arithmetical and logical operations
- Load/store operations
o Instruction flow control
* Commit point

Depending on the frequency targets, these functional phases can be configured into 2, 3 or 4 stages.
2-stages is the default pipeline configuration.

6.1.1. Request to Instruction Memory

In this phase CPU requests instruction words from Instruction Memory using the address contained
in the IMEM_ADDR register. The phase can take arbitrary number of cycles depending on the
memory latency. Fetching an instruction word from TCM always takes one clock cycle.

In the SCR1 this phase is implemented in Instruction Fetch Unit (IFU).

6.1.2. Instruction fetch

In this phase the instruction words received from the Instruction Memory are placed into the
instruction fetch queue, or, in case of queue bypass (SCR1_IFU_QUEUE_BYPASS parameter is
defined), are passed directly to the instruction decode unit.

Instruction fetch unit is responsible for assembling the instruction from parts in case when more
than one memory access is needed to fetch that instruction.

In SCR1 this phase is implemented in Instruction Fetch Unit (IFU).

6.1.3. Instruction decode

Instruction is decoded and provided to the execution unit as a set of control signals and immediate
operand. All decoded signals are placed into the queue, or, in case of a queue bypass
(SCR1_EXU_STAGE_BYPASS parameter is defined), are passed directly to the execution logic.

In SCR1 this phase is implemented in Instruction Decode Unit (IDU).
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6.1.4. Operand fetch

The required operands are fetched from the registers (GPRs or CSRs) or from the immediate field of
the instruction buffer. This phase is required only for instructions which have operands.

In SCR1 operand fetch is always a part of the execution stage and is implemented in Execution Unit
(EXU), which requests data from MPRF or CSRF.

6.1.5. Arithmetical and logical operations

This covers arithmetical and logical operations with integer values, including multiplication and
division operations. This phase is required only for instructions which need the results of
arithmetical and logical operations.

Iterative multiplication (configuration with undefined SCR1_FAST MUL parameter) takes 32 clock
cycles and division takes 33 clock cycles. Execution of the other operations including 1-cycle
multiplication (configuration with defined SCR1_FAST MUL) are implemented on a completely
combinatorial logic.

In SCR1 this phase is always a part of execution stage and implemented in Arithmetic Logic Unit
(ALU).

6.1.6. Load/store operations

In this phase all operations with Data Memory are executed. This phase is required only for
instructions which perform load/store operations.

The phase can take arbitrary number of cycles depending on memory latency (no timeout is
implemented). Loads and stores data from/to TCM always take two clock cycles.

In SCR1 this phase is always a part of the execution stage and implemented in Load-Store Unit
(LSU).

6.1.7. Instruction flow control

During the normal program flow the next instruction address (PC) is PC+4 for regular instructions
or PC+2 for RVC instructions. Below is the list of instructions and events that can alter normal
program flow or cause the transition to another state:

* Jump instruction

» Taken branch instruction

* Instruction fence

* Wait for interrupt instruction

» Exception

Interrupt

MRET instruction

* Debug mode redirection event
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Detection of such cases is function of the instruction flow control phase as well as calculation of all
required control signals, the next PC value and the next status of CPU.

MRET instruction and change of MSTATUS or MIE CSRs always takes two clock cycles.

In SCR1 this phase is always part of execution stage and implemented in Execution Unit (EXU).

6.1.8. Commit point

Commit point is a moment, when GPRs, CSRs and PC registers are updated with new values,
calculated in previous phases. After this point, the instruction is considered completed.

In SCR1 this phase update of GPRs and CSRs is implemented in MPRF, CSRF and update of PC is
implemented in the EXU.

6.2. Pipeline configurations

Pipeline can be configured for 2, 3 or 4 stages depending on the required target frequency. 2-stages
is the default pipeline configuration.

6.2.1. 2-stage pipeline
SCR1 2-stage pipeline configuration is shown in the Figure 5. It includes the following stages:

* Request to Instruction Memory stage

* Instruction fetch, decode and execution stage

Commit point
________________ .
__________________________________________________________________ 1 1
. r ] [ | T v nstruction flow control 1 |
\ Request to Instruction U Instruction fetch | \Instruction decode |1 Operand fetch |1 | +Arithmetical and " . !
1 . . . 1
! Memory ' I 1 v I | | logical operations Lnd/event | INStruction T 1
! ' N 1, N ' o) 1 \
! ' " 1, ow
! g " ' ! CSRF o " control T :
: > . i . N e L T T
T < Instruction  instr. y| Instruction v ! L
1 g | addr S > o ALU
h = Memory Decoder ] HE
! < " | MPRF H——> 1Lty ader
I ' '
. i . ¥ PAN ro . . Data Memory
i i h A LA 1 fedata i
L} 1 1 Ll
S o R S A ¢ L I P
e L 1 Leadstoreoperarions |
1

Figure 5: SCR1 2-stage pipeline
Configuration is enabled if both SCR1_IFU_QUEUE_BYPASS and SCR1_EXU_STAGE_BYPASS

parameters are defined. This is default pipeline configuration.

‘define SCR1_IFU_QUEUE_BYPASS // enables bypass between IFU and IDU stages
‘define SCR1_EXU_STAGE BYPASS // enables bypass between IDU and EXU stages

Instruction retirement delays in cycles for a 2-stage pipeline are shown in the Table 24. Latency
column shows the number of clock cycles from the start of the instruction fetching until the
instruction retirement. Throughput column shows the minimum number of clock cycles from the
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previous instruction retirement to the current instruction retirement. The given data is valid if TCM
is used for instruction fetch, using slower memory will cause additional delays.

Table 24: Instruction execution time for 2-stage pipeline

Instruction Latency Throughput Notes
L[B,BU,H,HU,W], S[B,H,W] 3+ [DMEM 2 + [DMEM DMEM Latency = 0, if TCM is
Latency] Latency] used

MUL[H,HSU,HU] if 2 1 -

SCR1_FAST MUL

MUL[H,HSU,HU] if not 33 32 Throughput = 1, if any of the

SCR1_FAST MUL operands equals zero

DIV[U], REM[U] 34 33 Throughput = 1, if any of the
operands equals zero

MRET 3 2 -

CSRR[W,S,C][I] for MSTATUS 3 2 -

or MIE

Other instructions 2 1 -

6.2.2. 3-stage pipeline
SCR1 3-stage pipeline configuration is shown in the Figure 6. It includes the following stages:

* Request to Instruction Memory stage
* Instruction fetch and decode stage

» Execution stage

Connnit point
________________ .
__________________________________________________________________ !
i ' ) | N T Vi Instruction flow control 1
| Request to Instruction 1 Instruction fetch | \Instruction decode | 1 Operand fetch | | 1 Arithmetical and " h
' Memory ! ' | Vlogical operations i
. Yy \ 2N I /3 ! ndlevent Instruction T
AN — flow
n - L]
CSRF DY " control ;
| 1 n !
- ) N . PAN R N B
e Instruction inste > Instruction 'mm ALU
Memory ~ “ords " Decoder Vo H i -7
MPRF  H— N
LT
'
AN . Data Memory

' 1
Nl 1
1 N :
1 h !
1 h !
T
1
! | !
1 h ! 1
1 \ ! 1
! T1 [N 1 1 i 1 !
' 1 1 1 ! '
! o e ' | A | h v ' |sdata rdata '
" N 1 | h T
1 L] 1 1
_______________________________________________ 1 — [ |
'
B 7N h H 1 'Loadstore operations !
______ Y (i tp e

Figure 6: SCR1 3-stage pipeline

3-stage pipeline configuration is enabled if only one of parameters SCR1_IFU_QUEUE_BYPASS or
SCR1_EXU_STAGE_BYPASS is defined. @Recommended configuration is to define
SCR1_IFU_QUEUE_BYPASS and undefine SCR1_EXU_STAGE_BYPASS.

‘define SCR1_IFU_QUEUE_BYPASS // enables bypass between IFU and IDU stages
//"define SCR1_EXU_STAGE_BYPASS // enables bypass between IDU and EXU stages

Instruction retirement delays in cycles for a 3-stage pipeline are shown in the Table 25. Latency
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column shows the number of clock cycles from the start of the instruction fetching until the
instruction retirement. Throughput column shows the minimum number of clock cycles from the
previous instruction retirement to the current instruction retirement. The given data is valid if TCM
is used for instruction fetch, using slower memory will cause additional delays.

Table 25: Instruction execution time for a 3-stage pipeline

Instruction Latency Throughput

L[B,BU,H,HU,W], S[B,H,W] 4+ [DMEM 2 + [DMEM
Latency] Latency]

MUL[H,HSU,HU] if 3 1

SCR1_FAST_MUL

MUL[H,HSU,HU] if not 34 32

SCR1_FAST_MUL

DIV[U], REM[U] 35 33

MRET 4 2

CSRR[W,S,C][I] for MSTATUS 4 2

or MIE

Other instructions 3 1

6.2.3. 4-stage pipeline

Notes

DMEM Latency = 0, if TCM is
used

Throughput = 1, if any of the
operands equals zero

Throughput = 1, if any of the
operands equals zero

SCR1 4-stage pipeline configuration is shown in the Figure 7. It includes the following stages:

Request to Instruction Memory stage
* Instruction fetch stage
¢ Instruction decode stage

» Execution stage

_______________________________________________________

' K] | N
| Requiest to Instruction ' Instruction fetch | \Instruction decode | 1 Operand fetch
[N 1

Conunit point

................
1
B viInstruction flow control 1
1 | vArithmetical and " H
1
T

———
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:‘Memom r . :logzca/' operations o - Illst{uctlon
y tlow
CSRE - control
Instruction instr TInstruction pZ U EEE N e
e or ALU
Memory words Decoder Ty : =
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M
'
H Data Memory

'y Jsdata rdata

Figure 7: SCR1 4-stage pipeline

4-stage pipeline configuration is enabled
SCR1_EXU_STAGE_BYPASS parameters are undefined.

if both

SCR1_IFU_QUEUE_BYPASS and
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//"define SCR1_IFU_QUEUE_BYPASS // enables bypass between IFU and IDU stages
//*define SCR1_EXU_STAGE_BYPASS // enables bypass between IDU and EXU stages

Instruction retirement delays in cycles for a 4-stage pipeline are shown in Table 26. Latency column
shows the number of clock cycles from the start of the instruction fetching until the instruction
retirement. Throughput column shows the minimum number of clock cycles from the previous
instruction retirement to the current instruction retirement. The given data is valid if TCM is used
for instruction fetch, using slower memory will cause additional delays.

Table 26: Instruction execution time for 4-stage a pipeline

Instruction Latency Throughput Notes
L[B,BU,H,HU,W], S[B,H,W] 5+ [DMEM 2 + [DMEM DMEM Latency = 0, if TCM is
Latency] Latency] used

MUL[H,HSU,HU] if 4 1 -

SCR1_FAST MUL

MUL[H,HSU,HU] if not 35 32 Throughput = 1, if any of the

SCR1_FAST MUL operands equals zero

DIV[U], REM[U] 36 33 Throughput = 1, if any of the
operands equals zero

MRET 5 2 -

CSRR[W,S,C][I] for MSTATUS 5 2 -

or MIE

Other instructions 4 1 -

6.3. Hazards handling

6.3.1. Data hazards

SCR1 pipeline has no data hazards by design, because operand fetch and results commit are
executed in the same stage.

6.3.2. Structural hazards

Structural hazards in the SCR1 pipeline are resolved as described below: When two or more
instructions need the same hardware resource at the same time (structural hazard), the later
instructions are stalled till the older instruction finish with the resource and release it.

6.3.3. Control hazards

Control hazards in the SCR1 pipeline are resolved as described below: When pipeline is not
executing instructions continuously and the new value for the instruction address is defined in the
execution phase (is not PC+4 or PC+2), all the following instructions are flushed and pipeline is
restart from the instruction fetch phase with the new PC value.
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7. Integrated Programmable Interrupt
Controller

7.1. Introduction

SCR1 core can optionally include Integrated Programmable Interrupt Controller (IPIC) with low
latency IRQ response. IPIC can be configured using IPIC Control Status Registers.

The term Interrupt Line has the meaning of corresponding IPIC external pin where suitable source
of external interrupt may be connected to.

The term Interrupt Vector has the meaning of external interrupt number which will be generated
by IPIC in response to external interrupt.

IPIC supports maximum 16 Interrupt vectors [0..15] and 16 Interrupt lines [0..15], each line is
statically mapped to the corresponding vector.

Interrupt Vectors are given fixed priorities. The lowest Interrupt Vector number has the highest
priority.

IPIC supports nested interrupts. Only one interrupt can be serviced at a time.

"Void interrupt vector" is defined as a non-existent vector number 0x10. This value is used to
indicate absence of a valid interrupt vector.

Write access to the IPIC control status registers is implemented only through

IMPORTANT the use of the CSRRW(I) instructions, the CSRRS(I) and CSRRC(I) instructions
are not supported.
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7.2. IPIC Block Diagram and description

Figure 8 shows block diagram of the IPIC.

n -
L - = IRQ_M
s — = = BIIIE u ~
- 3 - -1 2
B> ™ .-
= —™MEr™ ™l
) > > & el
g —> z > — —
= D A D &l 1l Is
‘»3 8 w %)
A D N D D D
NV s
z
g | m
8 - = P
2]
]
[IE] " f

Figure 8: IPIC Block Diagram

IPIC can be configured with (default) or without IRQ lines 2-stage

IMPORTANT )
synchronizer.

» Without synchronizer, all IRQ lines must be synchronous to the internal core clock

* With a 2-stage synchronizer, there is a requirement that for IRQ line edge detection, input pulse
must be at least 2 clock cycles wide

Depending on the IM (interrupt mode), INV (line inversion) values for each vector, one of four
conditions for IP (interrupt pending) bit activation is selected: high level, low level, rising edge,
falling edge. Of all vectors with IP and IE (interrupt enable) bits active, the lowest numbered vector
has the highest priority. Software is responsible for writing the SOI and EOI registers, thus notifying
IPIC of the start and end of interrupt processing, respectively.

7.3. IPIC Programming Model

7.3.1. Register Map
Following notation is used to specify properties of bit fields within IPIC registers:

* RO - Read Only
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WO - Write Only

RW - Read/Write

R/W1S - Read/Write 1 to Set

R/W1C - Read/Write 1 to Clear

IPIC control status registers file access rights are defined by the current privelege mode. All
registers are accessible only from the Machine Mode (M-mode).

IPIC registers in M-mode are mapped relative to the given IPIC base address offset 0XBFO in the CSR
space as shown in Table 27.

Table 27: Map of IPIC registers

Offset Mnemonic Name

0x00 IPIC_CISV Current Interrupt Vector in Service

0x01 IPIC_CICSR Current Interrupt Control Status Register
0x02 IPIC_IPR Interrupt Pending Register

0x03 IPIC_ISVR Interrupts in Service Register

0x04 IPIC_EOI End Of Interrupt

0x05 IPIC_SOI Start of Interrupt

0x06 IPIC_IDX Index Register

0x07 IPIC_ICSR Interrupt Control Status Register

7.4. Detailed IPIC Registers Description

7.4.1. IPIC_CISV: Current Interrupt Vector in Service
Structure of IPIC_CISV register is shown in Table 28.

Table 28: Structure of IPIC_CISV register

Bit number Attributes Description
4..0 QRO Number of the interrupt vector currently in service
31..5 RZ Reserved

IPIC_CISV Register contains number of the interrupt vector currently in service (also, it is the
number of the lowest assigned bit in the IPIC_ISVR). When no interrupts are in service, this register
contains number of the void interrupt vector (0x10).
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7.4.2. IPIC_CICSR: Current Interrupt Control Status Register
Structure of IPIC_CICSR register is shown in Table 29.

Table 29: Structure of IPIC_CICSR register
Bit number Mnemonic Attributes Description
0 1P R/W1C Interrupt pending:
0 - no interrupt
1 - Interrupt pending
1 IE RW Interrupt Enable Bit:
0 - Interrupt disabled
1 - Interrupt enabled

31..2 Reserved RZ Reserved

Control Status register for the interrupt vector currently in service.
This register is RW for IE bits and W1C for IP bit. Register read returns 0 when there are no
interrupts currently in service.

7.4.3. IPIC_IPR: Interrupt Pending Register
Structure of IPIC_IPR register is shown in Table 30.

Table 30: Structure of IPIC_IPR register

Bit number Attributes Description

0 RW1C Interrupt vector 0 pending status (1- pending)
1 RW1C Interrupt vector 1 pending status (1- pending)
15 RW1C Interrupt vector 15 pending status (1- pending)
31..16 RZ Reserved

Contains aggregated status for all the pending interrupts. Corresponding bits are set to 1 for the
pending interrupts.
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7.4.4. IPIC_ISVR: Interrupt Serviced Register
Structure of IPIC_ISVR register is shown in Table 31.

Table 31: Structure of IPIC_ISVR register

Bit number Attributes Description

0 QRO Interrupt vector 0 processing status (1- in service)
1 QRO Interrupt vector 1 processing status (1- in service)
15 QRO Interrupt vector 15 processing status (1- in service)
31..16 RZ Reserved

Contains aggregated status of the interrupts vectors, which are currently in service.

In other words, all those vectors, for which processing has started, but is not finished yet, including
nested interrupts.

When corresponding bit is set (1) - this interrupt vector is in service. When corresponding bit is in 0
- the interrupt vector is not in service.

7.4.5. IPIC_EOI: End Of Interrupt

Structure of IPIC_EOI register is shown in Table 32.

Table 32: Structure of IPIC_EOI register

Bit number Attributes Description

31..0 RZW End-of-interrupt (any value can be written)

Writing any value to EOI register ends the interrupt which is currently in service.
Register values are updated to reflect the state change:

» IPIC_CISV is set to its previous value if some interrupt was active prior to the current interrupt,
otherwise set to void interrupt vector (0x10).

» IPIC_CICSR is set to its previous value if some interrupt was active prior to the current interrupt,
otherwise set to zero.

» IPIC_ISVR: a bit corresponding to the current interrupt is cleared.

7.4.6. IPIC_SOI: Start Of Interrupt

Structure of IPIC_SOI register is shown in Table 33.

Table 33: Structure of IPIC_SOI register

Bit number Attributes Description

31..0 RZW Start-of-interrupt (any value can be written)

Writing any value to SOI activates start of interrupt if one of the following conditions is true:

» There is at least one pending interrupt with IE and ISR is zero (no interrupts in service).
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* There is at least one pending interrupt with IE and this interrupt has higher priority than the
interrupts currently in service.

Register values are updated to reflect the state change:

» IPIC_CISV is set to the highest priority pending interrupt number.
» IPIC_CICSR is set to reflect the values for the highest priority pending interrupt.
» IPIC_IPR: a bit corresponding to the highest priority pending interrupt is cleared.

» IPIC_ISVR: a bit corresponding to the highest priority pending interrupt is set.

7.4.7. IPIC_IDX: Index Register
Structure of IPIC_IDX register is shown in Table 34.

Table 34: Structure of IPIC_IDX register

Bit number Attributes Description
3.0 RW Interrupt vector index to access through IPIC_ICSR
31.4 RZ Reserved

The value in IPIC_IDX register defines the number of interrupt vector which is accessed through the
IPIC_ICSR register.

7.4.8. IPIC_ICSR: Interrupt Control Status register
Structure of IPIC_ICSR register is shown in Table 35.

Table 35: Structure of IPIC_ICSR register

Bit number Mnemonic Attributes Description
0 IP RW1C Interrupt pending:
0 - no interrupt
1 - Interrupt pending
1 IE RW Interrupt Enable Bit:
0 - Interrupt disabled
1 - Interrupt enabled
2 IM RW Interrupt Mode:
0 - Level interrupt
1 - Edge interrupt
3 INV RW Line Inversion:
0 - no inversion
1 - line inversion
4 IS RW In Service
7..5 Reserved RZ
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Bit number

9.8

11..10
15..12

31..16

Mnemonic

PRV

Reserved

LN

Reserved

Attributes
QRO

RZ
QRO

RZ

Description

Privilege mode: hardwired to 11
(machine mode)

External IRQ Line Number assigned to
this interrupt vector. This value is
always equal to IPIC_IDX, because of
the static line to vector mapping.

This is control status register for the interrupt vector, defined by the Index register (IPIC_IDX).
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7.5. IPIC timing diagrams

Figure 9, Figure 10 show IPIC and core signals timing to illustrate IRQ latency. See Table 36 for
signals description.
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curr_pc(31:0) X oxico X oxica X

Figure 9: IRQ timing for level IRQs (IPIC synchronizer disabled)
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Figure 10: IRQ timing for level IRQs (IPIC synchronizer enabled)
NOTE For edge IRQs, latency is increased by one clock cycle.

Table 36: Signals description

Name Description

clk Core clock
irq_lines[15:0] External IPIC IRQ lines
ext_irq IPIC to core IRQ request

csr_mstatus_mie  Global interrupt enable

csr_mie_meie External interrupt enable
csr_mip_meip External interrupt pending
new_pc_req New program counter request
new_pc[31:0] New program counter
curr_pc[31:0] Current program counter
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8. Debug

8.1. Overview

The core’s debug sub-system is implemented in compliance with the RISC-V External Debug
Support specification [5]. Its block diagram is shown in Figure 11.

Processor Pipeline {Hart)
TAP Controller — ] System Control
(TAPC) —¥]  Unit (SCU)
Debug Transport
Module (DTh)
JTAGUF | __Instuctions: ! 4 SYNC [—
DTMCS X Debug Module
DMI_ACCESS (DM)
SCU_ACCESS ‘ A J\ D::: Trigger
| Dmi \g Module
d ]/ Unit (TM)
\ {HDU)

TAPC TAPC
Scan I'F, Scan I/F,

TCK oore

clock clock Hart
domain domaln Debug

IiF
Figure 11: Debug Sub-System Block Diagram
An external debugger communicates with the core’s debug sub-system via JTAG interface and TAP
Controller (TAPC), playing a role of the Debug Transport Module (DTM) in terms of the RISC-V
Debug Specification [5]. The TAPC implements several private TAP instructions allowing debugger
to interact with internal debug units:

* DTMCS provides general control over DTM;

* DMI_ACCESS provides access to the Debug Module (DM);

* SCU_ACCESS provides access to the System Control Unit (SCU).
Internal connection between TAPC and DM, DM and SCU, is a form of serial scan interface. Source
and destination of the TAPC scan interface are in different clock domains: TAPC is fully running in

JTAG’s TCK clock domain, whereas DM and SCU are in the core clock domain. Therefore, the TAPC
scan interface passes through the clock syncronization unit (SYNC).

The System Control Unit (SCU) provides control over implementation-specific reset circuitry, and
allows to monitor states of main reset signals. For details about it refer to the "System Control Unit
(SCU)" section.

Using the Debug Module Interface (DMI), the Debug Module (DM) exposes a standard register
interface to the core’s debug features:

* run control of the core’s single hart;
* access to its internal registers (GPRs, CSRs);

* access to its memory space;
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* capability to execute arbitrary instructions from the Program Buffer.
The register interface is compliant with the RISC-V Debug Specification [5].

Implementation of this debug functionality within the hart is distributed between several units,
and from external prospective the most important among them are:

» Hart Debug Unit (HDU) - provides the hart’s Debug Interface, connecting the hart with the DM,
and contains Debug CSRs;

» Trigger Module (TM) - provides a capability of hardware breakpoints, and contains Trigger
CSRes.

8.2. TAP Controller (TAPC)

8.2.1. JTAG frequency requirement

The following ratio between System Clock (sys_clk) and JTAG Clock (tck)

IMPORTANT
frequencies must be met: SysClkFreq / TckFreq >= 12.

8.2.2. TAPC Instruction Register (IR)

Instruction Register has length of 5 bits. After TAPC reset its value is 0x01, selecting the IDCODE
instruction.
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8.2.3. TAPC Instructions
TAP Controller Instructions are listed in Table 37.

Table 37: TAP Controller Instructions

IR code Mnemonic Instruction full name Description

0x00 - Reserved Equivalent to BYPASS.

0x01 IDCODE IDCODE IDCODE DR Read

0x02 - 0x03 - Reserved Equivalent to BYPASS.

0x04 BLD ID Build Identifier BLD ID DR Read

0x05 - 0x08 - Reserved Equivalent to BYPASS.

0x09 SCU_ACCESS System Control Unit Access Executes 4 operations over SCU registers:
read, write, set bits, clear bits.

0x0A - 0xOF - Reserved Equivalent to BYPASS.

0x10 DTMCS DTM Control and Status  General control over Debug Transport
Module (DTM).

0x11 DMI_ACCESS Debug Module Interface Performs reading/writing of the Debug

(DMI) Access Module registers via Debug Module

Interface.

0x12 - Ox1E - Reserved Equivalent to BYPASS.

Ox1F BYPASS BYPASS instruction

8.2.4. TAPC Data Registers

8.2.4.1. IDCODE

The IDCODE register is used to capture Device ID as shown in Table 38. It is mandatory IEEE 1149.1
compliant register [3].

Table 38: IDCODE, DR-Capture Value

Bits Name Access ResetValue Description

0.31 IDCODE RO 0xDEB11001  IDCODE Value. Current value of the IDCODE
register for the core is 0XDEB11001.

8.2.4.2. BYPASS

The BYPASS register is 1-bit mandatory IEEE 1149.1 compliant register [3]. The BYPASS register is
described in Table 39.

Table 39: BYPASS, DR-Capture Value

Bits Name Access Reset Description
Value
0 Zero RO 0 When TAP FSM is in DR-Capture state, the BYPASS

register latches zero value at TCK rising edge.
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8.2.4.3. DTMCS (DTM Control and Status)

The DTMCS register is described in Table 40.

Table 40: DTMCS

Bits Name

0..3 version

4.9 abits

10.. dmistat
11

12.. idle
14

15 reserved

16 dmireset
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Access

RO

RO

RO

RO

RO
RW1P

Reset
Value

0x1

0x7

0x0

0x0

0x0
0x0

Description

DTM Version. The value corresponds to the one
described in the RISC-V Debug Specification 0.13
(0x1).

Address Bits. The size of DMI_ACCESS.address bit
field.

DMI Status. Encoding:

* 0x0 - No error.

* 0x1 - Reserved. Must be interpreted the same as
2.

* 0x2 - An operation is failed (resulted in
DMI_ACCESS.op of 2).

* 0x3 - An operation was attempted while a DMI
access was still in progress (resulted in
DMI_ACCESS.op of 3).

This is a hint to the debugger of the minimum
number of cycles a debugger should spend in
RunTest/Idle after every DMI scan to avoid a "busy"”
return code (DTMCS.dmistat of 3). A debugger must
still check DTMCS.dmistat when necessary.

The given DMI implementation does not require
entering to the RunTest/Idle state for proper
operation, therefore the field indicates zero value.

Reserved for future use.

Writing 1 to this bit clears the sticky error state and
allows the DTM to retry or complete the previous
transaction.

Reading of the bit always returns 0.



Bits Name Access Reset Description
Value

17 dmihardreset = RWI1P 0x0 Writing 1 to this bit does a hard reset of the DTM,
causing the DTM to forget about any outstanding
DMI transactions.

In general this should only be used when the
Debugger has reason to expect that the outstanding
DMI transaction will never complete (e.g. a reset
condition caused an inflight DMI transaction to be
cancelled).

Reading of the bit always returns 0.

18.. reserved RO 0x0 Reserved for future use.
31

8.2.4.4. DMI_ACCESS (DMI)

This register allows access to the Debug Module Interface (DMI).

In Capture-DR, the DTM updates DMI_ACCESS.data with the result from previous operation,
updating DMI_ACCESS.op if the current op isn’t sticky.

In Update-DR, the DTM starts the operation specified in DMI_ACCESS.op unless the current status
reported in DMI_ACCESS.op is sticky.

The DMI_ACCESS register is described in Table 41.

Table 41: DMI_ACCESS (DMI)

45



Bits Name Access Reset Description
Value

0.1 op RW 0 Operation. When the debugger writes this field (in
Update-DR state), it has the following meaning:

e 0 - Ignore DMI_ACCESS.data and
DMI_ACCESS.address  (nop). Don’t send
anything over the DMI during Update-DR. This
operation should never result in a busy or error
response. The address and data reported in the
following Capture-DR are undefined.

1 - Read register specified by
DMI_ACCESS.address (read).

* 2 - Write data to the register specified by
DMI_ACCESS.address (write).

e 3 -Reserved.

When the debugger reads this field (in Capture-DR
state), it means the following:

* 0 - The previous operation completed
successfully.

e 1-Reserved.

* 2 - A previous operation failed. The data
scanned into DMI_ACCESS in this access will be
ignored. This status is sticky and can be cleared
by writing DTMCS.dmireset. This indicates that
the DM itself responded with an error. There
are no specified cases in which the DM would
respond with an error, and DMI is not required
to support returning errors.

* 3 - An operation was attempted while a DMI
request is still in progress. The data scanned
into DMI_ACCESS in this access will be ignored.
This status is sticky and can be cleared by
writing DTMCS.dmireset. If a debugger sees this
status, it needs to give the target more TCK
edges between Update-DR and Capture-DR. The
simplest way to do that is to add extra
transitions in Run-Test/Idle.

2.. data RW 0 The data to send to the DM over the DMI during
33 Update-DR, and the data returned from the DM as a
result of the previous operation.
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Bits Name Access Reset Description
Value

34.. address RW 0 Address used for DMI access. In Update-DR this
40 value is used to access the DM over the DMI.

8.2.4.5. SCU_ACCESS

This register allows access to the System Control Unit (SCU). It is described in Table 42.

Table 42: SCU_ACCESS
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Bits Name

0.1 op

2.3 addr
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Access

RW

RW

Reset
Value

0

Description

Operation. When the debugger writes this field (in
Update-DR state), it has the following meaning:

* 0 - Write data to the register specified by
SCU_ACCESS.addr (WRITE).

SCU_reg[SCU_ACCESS.addr] := SCU_ACCESS.data

*1 - Read the register specified by
SCU_ACCESS.addr (READ). The read value
(temp_data) could be received by Debugger in
Capture-DR state during the next JTAG access
cycle. SCU_ACCESS.data field is ignored.

temp_data := SCU_reg[SCU_ACCESS.addr]

e 2 - Set Bits (SET BITS). Sets bits in the SCU
register  specified by  SCU_ACCESS.addr
(SCU_reg[SCU_ACCESS.addr]) in accordance
with the bit mask provided in
SCU_ACCESS.data.

SCU_reg[SCU_ACCESS.addr] := SCU_ACCESS.data |
SCU_reg[SCU_ACCESS.addr]

e 3 - Clear Bits (CLR_BITS). Clears bits in the SCU
register  specified by  SCU_ACCESS.addr
(SCU_reg[SCU_ACCESS.addr]) in accordance
with the bit mask  provided in
SCU_ACCESS.data.

SCU_reg[SCU_ACCESS.addr] := (~SCU_ACCESS.data)
& SCU_reg[SCU_ACCESS.addr]

When the debugger reads this field (in Capture-DR
state), it contains the SCU_ACCESS.op value of the
previous access.

Address used for SCU access. In Update-DR this
value is used to specify the SCU register for the
access.

In Capture-DR this field contains the
SCU_ACCESS.addr value used during the previous
access.



Bits Name Access Reset Description
Value

4.7 data RW 0 Data used for SCU access. In Update-DR this value is
used to access the SCU register.

In Capture-DR this field contains the result of the
previous access (temp_data).

8.3. System Control Unit (SCU)

8.3.1. Overview

The System Control Unit (SCU) contains main components of the core reset sub-system, including a
set of control/status registers and reset signals circuitry.

The registers provide the following capabilities:

assertion/de-assertion of the System Reset;

* control over implementation-specific modes of the core reset signals behavior;
* monitoring of key reset signals' states, including their sticky status;

* convenient set of operations over a register value: read/write/set bits/clear bits.

Access to the SCU registers is performed via the TAP Controller and scan-chain interface (for details
refer to the "SCU_ACCESS" section, Table 42).

The SCU’s reset signals circuitry performs input reset signals synchronization, and provides
necessary dependencies between reset inputs, internally generated resets and SCU’s main product:
reset outputs for key core components. It also supports Design-For-Test (DFT) mode of operation.

8.3.2. Block Diagram
SCU block diagram is shown in Figure 12.

The SCU contains register file with scan-chain interface, and reset circuitry. The reset circuitry is
composed from a set of DFT-friendly cells supporting Test Mode capability. All of them have
connection with the SCU’s test_mode and test_rst_n inputs.

The reset circuitry has the following reset inputs:
* Power-Up Reset, pin pwrup_rst_n - the signal is intended for unconditional resetting of all logic

inside the core after switching power on.

* Reset, pin rst_n - the regular core reset used to put the core into a known state during a normal
power session. In accordance with the RISC-V External Debug Support specification [5], the
signal may not influence some core’s components (e.g., Debug Module). This influence depends
on the SCU’s MODE register value (refer to the Table 45).

* CPU reset - the regular hardware reset input for putting the CPU into a known state. It doesn’t
reset the TAPC, DM logic.
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* Non-DM Reset, pin ndm_rst_n - the reset signal from the Debug Module (DM), intended to reset
all platform’s components except DM itself. In the SCU it is used to assert Core Reset.
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Figure 12: System Control Unit (SCU) Block Diagram

There are two options for Power-Up Reset and Reset inputs:
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* ASYNCHRONOUS - the inputs are supposed to be asynchronous with the core’s clock (clk); in
that case Reset Synchronization Cells are instantiated inside SCU for those inputs.

* SYNCHRONOUS - the inputs are synchronous with the core’s clock; in this case internal
synchronous reset nets are connected immediately to the corresponding reset inputs.
SCR1 Processor Clusters have SCU instance with the SYNCHRONOUS Reset Inputs option.

The SCU generates the following key reset signals:

» System Reset (pin sys_rst_n) - the signal is used for regular resetting of all core’s logic except DM
and hart’s debug components in certain reset sub-system modes (refer to the Table 45).
Additionally to Power-Up Reset and Reset inputs, the signal can be asserted also by software via
the CONTROL.sys_reset bit (Table 44).

* Core Reset (pin core_rst_n) - the signal for resetting of the Pipeline (Hart) and all dependent
units like memory sub-system, timer etc. It is influenced by the System Reset, CPU Reset and
Non-DM Reset.

* DM Reset (pin dm_rst_n) - the signal for the Debug Module resetting. There are two modes of its
operation in dependance of the MODE.dm_rst_mux bit value:

o 0 (default/normal) - only Power-Up Reset activates the reset;
o 1 (special) - the reset might be activated by the System Reset.

* HDU Reset (pin hdu_rst_n) - the reset signal for debug units inside the Pipeline (Hart): Hart
Debug Unit (HDU) and Trigger Module (TM). This reset has also two operational modes
controlled by the MODE.hdu_rst_mux bit:

o 0 (default) - Core Reset influences the hart debug units;

> 1 (special) - Core Reset DOES NOT activate resetting of the hart debug units. The mode might
be convenient for use of all debug facilities like HW breakpoints through the core reset
cycling process.

The reset circuitry provides capability of asynchronous/synchronous assertion and synchronous
de-assertion of all output reset signals.

The SCU also contains logic for monitoring of the states of those generated output reset signals.
Their instant states are reflected in the STATUS register (Table 46), and result of event accumulation
- in the STICKY_STATUS register (Table 47).

8.3.3. Registers
SCU registers are listed in Table 43.

Table 43: SCU Register Map

Address Mnemonic Full name

0x0 CONTROL SCU Control Register
0x1 MODE SCU Mode Register

0x2 STATUS SCU Status Register
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Address Mnemonic

0x3 STICKY_STATUS

8.3.3.1. CONTROL

The CONTROL register is described in Table 44.

Table 44: SCU CONTROL Register

Bits Name Access Reset
Value
0 sys_reset RW 0
1..3 rsrv0 RW 0
8.3.3.2. MODE

The MODE register is described in Table 45.

Table 45: SCU MODE Register

Bits Name Access Reset
Value

0 dm_rst mux RW 0

1 hdu_rst mux RW 0

2.3 rsrv0 RW 0

Full name

SCU Sticky Status Register

Description

System Reset. If 1, activates System Reset of the
core (equivalent to activation of the core’s
hardwire rst_n input). Reading returns just state of
the bit.

Reserved for future use.

Description

DM Reset Multiplexor. Encoding:

* 0 - System Reset DOES NOT activate hardwire
DM Reset.

* 1 - System Reset DOES activate hardwire DM
Reset.

Reading returns state of the bit.

HDU Reset Multiplexor. Encoding:

e 0 - HART reset DOES activate reset of Hart
Debug Unit (HDU) and Trigger Module (TM)
inside HART.

e 1-HART reset DOES NOT affect HDU and TM, so
Debug/Trigger CSRs stay intact.

Reading returns state of the bit.

Reserved for future use.
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8.3.3.3. STATUS

The STATUS register is described in Table 46.

Table 46: SCU STATUS Register

Description

System Reset. Reading returns current state of the
System Reset:

e 0-de-asserted;

e 1 -asserted.

Core Reset. Reading returns current state of the
Core Reset:

e 0 -de-asserted;

e 1 -asserted.

DM Reset. Reading returns current state of the DM

e 0 -de-asserted;

e 1 -asserted.

Bits Name Access Reset
Value
0 sys_reset RO 0
1 core_reset RO 0
2 dm_reset RO 0
Reset:
3  hdu_reset RO 0

8.3.3.4. STICKY_STATUS

HDU Reset. Reading returns current state of the
HDU Reset:

e 0 -de-asserted;

e 1 -asserted.

The STICKY_STATUS register is described in Table 47.

Table 47: SCU STICKY_STATUS Register
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Bits Name Access Reset Description
Value

0 sys_reset RW1C 0 System Reset. Reading returns sticky state of the
System Reset:
* 0 - the reset has not been asserted after the last
bit clearing;

1 - the reset has been asserted at least once.
Clearing of the bit should be performed via
CLR_BITS operation.

1 core_reset RW1C 0 Core Reset. Reflects sticky state of the Core Reset.
Behavior is the same as for
STICKY_STATUS.sys_reset bit.

2 dm_reset RW1C 0 DM Reset. Reflects sticky state of the DM Reset.
Behavior is the same as for
STICKY_STATUS.sys_reset bit.

3 hdu_reset RW1C 0 HDU Reset. Reflects sticky state of the HDU Reset.
Behavior is the same as for
STICKY_STATUS.sys_reset bit.

Note: the register supports only READ and CLR_BITS operations.

8.4. Debug Module (DM)

8.4.1. Overview
The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:
1. Give the debugger necessary information about the implementation.
. Allow the core’s single hart to be halted and resumed.
. Provide status if the hart is halted.

2

3

4. Provide abstract read and write access to a halted hart’s GPRs.

5. Provide access to a reset signal that allows debugging from the very first instruction after reset.
6

. Provide a mechanism to allow debugging hart immediately out of reset (regardless of the reset
cause).

7. Provide abstract access to non-GPR hart registers.
8. Provide a Program Buffer to force the hart to execute arbitrary instructions.

9. Allow memory access from a hart’s point of view.
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8.4.2. Debug Module Interface (DMI)

Debug Module is a slave to a virtual bus called the Debug Module Interface (DMI). The master of the
bus is the TAP Controller (TAPC) playing a role of the Debug Transport Module (DTM).

The DMI in the given core implements 7 address bits. It supports read and write operations. The
bottom of the address space is used for the DM.

The Debug Module is controlled via register accesses to its DMI address space.

8.4.3. Hart States

In accordance with the RISC-V Debug Specification 0.13 every hart is in exactly one of four states.
Which state the hart is in is reflected by DMSTATUS.allnonexistent, anynonexistent, allunavail,
anyunavail, allrunning, anyrunning, allhalted, and anyhalted.

Harts are nonexistent if they will never be part of this system, no matter how long a user waits.
Harts are unavailable if they might exist/become available at a later time, or if there are other harts
with higher indexes than this one. The given core has only single hart, and it is always existent and
available, so DMSTATUS.allnonexistent, anynonexistent, allunavail, anyunavail bits are hardwired
to zero.

The single hart is running when it is executing normally, as if no debugger was attached. This
includes being in a low power mode or waiting for an interrupt, as long as a halt request will result
in the hart being halted.

The hart is halted when it is in Debug Mode, only performing tasks on behalf of the debugger.

8.4.4. Reset Control

The Debug Module controls a global reset signal, ndmreset (non-debug module reset), which can
reset, or hold in reset, every component in the platform, except for the Debug Module and Debug
Transport Modules. Exactly what is affected by this reset is implementation dependent, as long as it
is possible to debug programs from the first instruction executed. The Debug Module’s own state
and registers should only be reset at power-up and while dmactive in dmcontrol is 0. The halt state
of harts should be maintained across system reset provided that dmactive is 1, although trigger
CSRs may be cleared.

Due to clock and power domain crossing issues, it is not possible to perform arbitrary DMI accesses
across system reset. While ndmreset or any external reset is asserted, the only supported DM
operation is accessing dmcontrol. The behavior of other accesses is undefined.

There is no requirement on the duration of the assertion of ndmreset. The implementation must
ensure that a write of ndmreset to 1 followed by a write of ndmreset to 0 triggers system reset. The
system may take an arbitrarily long time to come out of reset, as reported by allunavail, anyunavail.

When hart has been reset, it sets a sticky havereset state bit. The conceptual havereset state bits can
be read for the hart in DMSTATUS.anyhavereset and allhavereset. These bits are set regardless of
the cause of the reset. The havereset bits for the hart can be cleared by writing 1 to
DMCONTROL.ackhavereset. The havereset bits are cleared when DMCONTROL.dmactive is low.
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8.4.5. Run Control

For the hart, the Debug Module tracks 2 conceptual bits of state: halt request and resume ack. These
2 bits reset to 0. The DM receives from the hart the following status signals: halted, running and
havereset. The debugger can observe the state of resume ack in allresumeack and anyresumeack,
and the state of halted, running, and havereset signals in allhalted, anyhalted, allrunning,
anyrunning, allhavereset, and anyhavereset. The state of the other bits cannot be observed directly.

When a debugger writes 1 to DMCONTROL.haltreq, the hart’s halt request bit is set. When a
running hart sees its halt request bit high, it responds by halting, deasserting its running signal, and
asserting its halted signal. Halted hart ignore their halt request bit.

When a debugger writes 1 to DMCONTROL.resumereq, the hart’s resume ack bit is cleared and
halted hart is sent a resume request. Hart responds by resuming, clearing its halted signal, and
asserting its running signal. At the end of this process the resume ack bit is cleared. These status
signals of the hart are reflected in DMSTATUS.allresumeack, anyresumeack, allrunning, and
anyrunning. Resume request is ignored by running hart.

8.4.6. Abstract Commands

The DM supports a set of abstract commands, including those ones which might be performed
when the hart is not halted. Debuggers can only determine which abstract commands are
supported by the hart in a given state by attempting them and then looking at ABSTRACTCS.cmderr
to see if they were successful. Commands may be supported with some options set, but not with
other options set. If a command has unsupported options set, the DM sets ABSTRACTCS.cmderr to 2
(not supported).

Debuggers execute abstract commands by writing them to COMMAND. They can determine
whether an abstract command is complete by reading ABSTRACTCS.busy. After completion,
ABSTRACTCS.cmderr indicates whether the command was successful or not. Commands may fail
because a hart is not halted, not running, unavailable, or because they encounter an error during
execution.

If the command takes arguments, the debugger must write them to the DATAOQ/1 registers before
writing to COMMAND. If a command returns results, the Debug Module puts them in the DATA0/1
registers before ABSTRACTCS.busy is cleared. Which DATA registers are used for the arguments is
described in Table 48. In all cases the least-significant word is placed in the lowest-numbered DATA
register. The argument width depends on the command being executed.

Table 48: Use of DATA Registers

Argument Width arg0/return value argl

32 DATAQ DATA1

Before starting an abstract command, a debugger must ensure that DMCONTROL.haltreq,
resumere(, and ackhavereset are all 0.

While an abstract command is executing (ABSTRACTCS.busy is high), a debugger must not write 1
to DMCONTROL.haltreq, resumereq, or ackhavereset.
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If an abstract command does not complete in the expected time and appears to be hung, the
following procedure can be attempted to abort the command: first the debugger resets the hart
(using DMCONTROL.ndmreset), and then it resets the Debug Module (using DMCONTROL.dmactive).

The Abstract Command interface is designed to allow a debugger to write commands as fast as
possible, and then later check whether they completed without error. In the common case the
debugger will be much slower than the target and commands succeed, which allows for maximum
throughput. If there is a failure, the interface ensures that no commands execute after the failing
one. To discover which command failed, the debugger has to look at the state of the DM (e.g.
contents of DATAO) or hart (e.g. contents of a register modified by a Program Buffer program) to
determine which one failed.

8.4.6.1. Supported Abstract Commands

Each abstract command is a 32-bit value. The top 8 bits contain cmmdtype bit field which determines
the kind of command. The core supports two commands listed in Table 49.

Table 49: Supported Abstract Commands

cmdtype Command Description Reference
0 Access Register Access Register

1 - Not supported

2 Access Memory Access Memory

8.4.6.2. Access Register

This command gives the debugger access to hart registers and allows it to execute the Program
Buffer. Its format and fields are described in Table 50.
Table 50: Access Register Command

Bits Name Description

0..15 regno Number of the register to access, as described in the Table 51.
DPC may be used as an alias for PC when this command is
supported on a non-halted hart.

16 write When transfer is set:

* 0 - Copy data from the specified register into arg0 portion of
data.

* 1 - Copy data from arg0 portion of data into the specified
register.
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Bits Name

17 transfer

18 postexec

19 aarpostincrement

20..22 aarsize

23 rsrv0
24..31 cmdtype

Description

Encoding:

* 0-Don’t do the operation specified by write.
* 1-Do the operation specified by write.
Zeroing of this bit can be used to just execute the Program Buffer

without having to worry about placing valid values into aarsize
or regno.

Encoding:

* 0 - No effect.

* 1 - Execute the program in the Program Buffer exactly once
after performing the transfer, if any.

The feature is not supported. So, the bit must be zero.

Encoding:

* 2 - Access the lowest 32 bits of the register.

 others - not supported.

If aarsize specifies a size larger than the register’s actual size,
then the access fails. If a register is accessible, then reads of
aarsize less than or equal to the register’s actual size is
supported. This field controls the Argument Width as referenced
in the Table 48.

Reserved for future use. Must be zero.

This is 0 to indicate Access Register Command.

Mapping of regno indexes into the hart registers is listed in Table 51.

Table 51: Abstract Register Numbers Mapping

regno value

0x0000 .. 0XOFFF
0x1000 .. 0x101F
0xC000 .. OXFFFF

Hart registers category
CSRs. The "PC" can be accessed here through DPC.
GPRs

Reserved for future use.

The command performs the following sequence of operations:

1. If write is clear and transfer is set, then copy data from the register specified by regno into the
arg0 region of data, and perform any side effects that occur when this register is read from M-

mode.

2. If write is set and transfer is set, then copy data from the arg0 region of data into the register
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specified by regno, and perform any side effects that occur when this register is written from M-
mode.

3. Execute the Program Buffer, if postexec is set.
If any of these operations fail, ABSTRACTCS.cmderr is set and none of the remaining steps are

executed. If the failure is that the requested register does not exist in the hart, cmderr is set to 3
(exception).

The Debug Module supports read and write access to all GPRs, CSRs and FPRs when the hart is
halted. Besides of that, the Debug Module supports reading of the following registers, when the hart
is running:

* MISA CSR (0x301)

* MVENDORID CSR (0xF11)

* MARCHID CSR (0xF12)

* MIMPID CSR (0xF13)

* MHARTID CSR (0xF14)

* MVENDORID CSR (0xF11)

* DPC CSR (0x7B1) - used as alias for PC register for its sampling.

8.4.6.3. Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and
permissions as the hart has. This includes access to hart-local memory-mapped registers, etc. Its
format and fields are described in Table 52.

Table 52: Access Memory Command

Bits Name Description
0..15 rsrv0 Reserved for future use. Must be zero.
16 write Encoding:

* 0 - Copy data from the memory location specified in argl into
arg0 portion of data.

* 1 - Copy data from arg0 portion of data into the memory
location specified in argl.

17..18 rsrvl Reserved for future use. Must be zero.

19 aampostincrement  The feature is not supported. So, the bit must be zero.
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Bits Name Description

20..22 aamsize Encoding:

* 0 - Access the lowest 8 bits of the memory location.
* 1- Access the lowest 16 bits of the memory location.
* 2 - Access the lowest 32 bits of the memory location.
* others - not supported.

This field controls the Argument Width as referenced in the
Table 48.

23 aamvirtual The core supports only physical addresses. So, the bit is
hardwired to zero.

24..31 cmdtype This is 2 to indicate Access Memory Command.

The command performs the following sequence of operations:

1. Copy data from the memory location specified in argl into the arg0 portion of data, if write is
clear.

2. Copy data from the arg0 portion of data into the memory location specified in argl, if write is
set.

If any of these operations fail, ABSTRACTCS.cmmderr is set and none of the remaining steps are
executed. An access may only fail if the hart, running M-mode code, might encounter that same
failure when it attempts the same access.

The Debug Module supports read and write access to memory locations only when the hart is
halted.

This command modifies arg0 only when memory is read. The other data registers are not changed.

8.4.7. Program Buffer

To support executing arbitrary instructions on a halted hart, the Debug Module includes the
Program Buffer that a debugger can write small programs to.

A debugger can write a small program to the Program Buffer, and then execute it exactly once with
the Access Register Abstract Command, setting the postexec bit in command. The debugger can
write whatever program it likes (including jumps out of the Program Buffer), but the program must
end with ebreak or c.ebreak. The core implementation supports an implied ebreak that is executed
when a hart runs off the end of the Program Buffer. This is indicated by DMSTATUS.impebreak.

ABSTRACTCS.progbufsize indicates the actual size of the Program Buffer. It is possible that the
Program Buffer can hold only one 32- or 16-bit instruction, so the debugger must only write a single
instruction in this case, regardless of its size. This instruction can be a 32-bit instruction, or a
compressed instruction in the lower 16 bits accompanied by a compressed nop in the upper 16 bits.

While these programs are executed, the hart does not leave Debug Mode. If an exception is
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encountered during execution of the Program Buffer, no more instructions are executed, the hart
remains in Debug Mode, and ABSTRACTCS.cmderr is set to 3 (exception error). If the debugger
executes a program that doesn’t terminate with an ebreak instruction, the hart will remain in
Debug Mode and the debugger will lose control of the hart.

Executing the Program Buffer does not clobber DPC. However, the debugger must attempt to save
DPC between halting and executing a Program Buffer, and then restore DPC before leaving Debug
Mode.

8.4.8. DM Registers

8.4.8.1. Register Map

DM registers are listed in Table 53.

Table 53: DM Register Map

Address Mnemonic Full name

0x00.. 0x03 - Reserved

0x04 DATAOQ Abstract Data 0

0x05 DATA1 Abstract Data 1

0x06.. 0xOF - Reserved

0x10 DMCONTROL Debug Module Control
0x11 DMSTATUS Debug Module Status
0x12 HARTINFO Hart Info

0x13.. 0x15 - Reserved

0x16 ABSTRACTCS Abstract Control and Status
0x17 COMMAND Abstract Command
0x18 ABSTRACTAUTO Abstract Command Autoexec
0x19.. 0X1F - Reserved

0x20.. 0x25 PROGBUFJ[0:5] Program Buffer O .. Program Buffer 5
0x26.. 0x3F - Reserved

0x40 HALTSUMO Halt Summary 0

0x41.. 0x7F - Reserved

8.4.8.2. Debug Module Control (DMCONTROL)

The DMCONTROL register is described in Table 54.

Table 54: DMCONTROL Register
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Bits Name

0

15

16..

25

26..

27
28

29
30

31

8.4.8.3. Debug Module Status (DMSTATUS)

dmactive

ndmreset

rsrv0

hartsello

rsrvl

ackhavereset

rsrv2

resumereq

haltreq

Access

RW

RW

RO

RO

RO

RW1P

RO
RW1P

RW1P

Description

This bit serves as a reset signal for the Debug
Module itself. Meaning:

* 0 - The module’s state, including authentication
mechanism, takes its reset values. In that state
the DMCONTROL.dmactive bit is the only bit
which can be written to something other than
its reset value.

* 1-The module functions normally.

A debugger may pulse this bit low to get the Debug
Module into a known state.

This bit controls the reset signal from the DM to the
rest of the system. To perform a system reset the
debugger writes 1, and then writes 0 to deassert the
reset.

Reserved for future use.

The low 10 bits of hartsel: the DM-specific index of

the hart to select. In the given implementation core
has only 1 HART, therefore the field is hardwired to
Zero.

Reserved for future use.

Writing 0 has no effect. Writing 1 clears
DMSTATUS.havereset.

Reserved for future use.

Writing 1 causes the hart to resume once, if it is
halted when the write occurs. It also clears the
resume ack bit.

DMCONTROL.resumereq is ignored if haltreq is set.

Writing 0 clears the halt request bit. This may
cancel outstanding halt request for the hart.
Writing 1 sets the halt request bit for hart. Running
hart will halt whenever its halt request bit is set.

The DMSTATUS register is described in Table 55.

Table 55: DMSTATUS Register
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Bits

10
11
12

13

14

15

16

17

18

19

20..

21
22

29
31

8.4.8.4. Hart Info (HARTINFO)

Name

version

rsrv0

authenticated

anyhalted
allhalted
anyrunning
allrunning

anyunavail

allunavail

anynonexistent

allnonexistent

anyresumeack

allresumeack

anyhavereset

allhavereset

rsrvl

impebreak

rsrv2

Access

RO

RO
RO

RO
RO
RO
RO
RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

RO

Reset
Value

Description

The value of 2 means that Debug Module conforms
to the RISC-V Debug Spec version 0.13.

Reserved for future use.

The bit is hardwired to 1, as authentication is not
implemented.

This field is 1 when the hart is halted.
This field is 1 when the hart is halted.
This field is 1 when the hart is running.
This field is 1 when the hart is running.

The bit is hardwired to 0 as the only hart is always
available.

The bit is hardwired to 0 as the only hart is always
available.

The bit is hardwired to 0 as the only hart is always
existent.

The bit is hardwired to 0 as the only hart is always
existent.

This field is 1 when the hart has acknowledged its
last resume request.

This field is 1 when the hart has acknowledged its
last resume request.

This field is 1 when the hart has been reset, and
reset has not been acknowledged for the hart.

This field is 1 when the hart has been reset, and
reset has not been acknowledged for the hart.

Reserved for future use.

If 1, then there is an implicit ebreak instruction at
the non-existent word immediately after the
Program Buffer. This saves the debugger from
having to write the ebreak itself, and allows the
Program Buffer to be one word smaller.

Reserved for future use.

The HARTINFO register is described in Table 56.

Table 56: HARTINFO Register
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Bits Name Access Reset Description

Value
0.. dataaddr RO 0x7b2 The fields indicates the index of the first CSR
11 dedicated to shadowing the DM DATA registers.
12.. datasize RO 1 The fields indicates the number of CSRs dedicated
15 to shadowing the DM DATA registers.
16 dataaccess RO 0 The field is hardwired to 0 to indicate that the DM
DATA registers are shadowed in the hart by CSRs.
17.. rsrv0 RO 0 Reserved for future use.
19
20.. nscratch RO 1 The field reflects the number of DSCRATCH CSRs
23 available for the debugger to use during Program
Buffer execution, starting from DSCRATCHO. The
debugger can make no assumptions about the
contents of these registers between commands.
24.. rsrvl RO 0 Reserved for future use.
31

8.4.8.5. Halt Summary 0 (HALTSUMO)
The HALTSUMO register is described in Table 57.

Table 57: HALTSUMO Register

Bits Name Access Reset Description
Value
0 hart0 RO 0 The bit indicates whether the only existent hart
(hart0) is halted or not.
1.. rsrv0 RO 0 Reserved for future use.
31

8.4.8.6. Abstract Control and Status (ABSTRACTCS)

The ABSTRACTCS register is described in Table 58.

Table 58: ABSTRACTCS Register

Bits Name Access Reset Description
Value
0..3 datacount RO 2 The fields indicates the number of Abstract Data

registers that are implemented as part of the
abstract command interface.

4..7 rsrv0 RO 0 Reserved for future use.
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Bits Name Access Reset Description
Value

8.. cmderr RW1C 0 Gets set if an abstract command fails. The bits in

10 this field remain set until they are cleared by
writing 1 to them. No abstract command is started
until the value is reset to 0. This field only contains
a valid value if busy is 0.

Encoding:

* 0 (none) - No error.

* 1 (busy) - An abstract command was executing
while command or abstractcs was written, or
when one of the DATA or PROGBUF registers
was read or written. This status is only written
if ABSTRACTCS.cmderr contains 0.

* 2 (not supported) - The requested command is
not supported, regardless of whether the hart is
running or not.

* 3 (exception) - An exception occurred while
executing the command (e.g. while executing
the Program Buffer).

e 4 (halt/resume) - The abstract command
couldn’t execute because the hart wasn’t in the
required state (running/halted), or unavailable.

e 7 (other) - The command failed for another
reason.

11 rsrvil RO 0 Reserved for future use.

12 busy RO 0 If 1, an abstract command is currently being
executed. This bit is set as soon as COMMAND is
written, and is not cleared until that command has
completed.

13.. rsrv2 RO 0 Reserved for future use.
23

24.. progbufsize RO 6 Size of the Program Buffer, in 32-bit words.
28

29.. rsrv3 RO 0 Reserved for future use.
31

8.4.8.7. Abstract Command (COMMAND)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes ABSTRACTCS.cmderr to be set
to 1 (busy) if it is 0.
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If ABSTRACTCS.cmderr is non-zero, writes to this register are ignored.
The COMMAND register is described in Table 59.

Table 59: COMMAND Register

Bits Name Access Reset Description
Value
0.. control w 0 This field is interpreted in a command-specific
23 manner, described for each abstract command.
24.. cmdtype w 0 The type determines the overall functionality of
31 this abstract command.

8.4.8.8. Abstract Command Autoexec (ABSTRACTAUTO)

This register is intended to make burst accesses more efficient.

Writing this register while an abstract command is executing causes ABSTRACTCS.cmderr to be set
to 1 (busy) if it is 0.

The ABSTRACTAUTO register is described in Table 60.

Table 60: ABSTRACTAUTO Register

Bits Name Access Reset Description
Value
0..1 autoexecdata RW 0 When a bit in this field is 1, read or write accesses

to the corresponding DATA word cause the
command in COMMAND to be executed again.

2.. rsrv0 RO 0 Reserved for future use.
31

8.4.8.9. Abstract Data 0/1 (DATAO0/1)

DATAO/DATA1 are basic read/write registers that may be read or changed by abstract commands.

Accessing these registers while an abstract command is executing causes ABSTRACTCS.cmderr to be
set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.

The values in these registers may not be preserved after an abstract command is executed. The only
guarantees on their contents are the ones offered by the command in question. If the command
fails, no assumptions can be made about the contents of these registers.

The DATA registers are described in Table 61.

Table 61: DATA Register
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Bits Name Access Reset Description
Value

0.. data RW 0 The field contains the data used in abstract
31 command.

8.4.8.10. Program Buffer [0:5] (PROGBUF[0:5])

PROGBUF[0:5] provide read/write access to the Program Buffer.

Accessing the registers while an abstract command is executing causes ABSTRACTCS.cmderr to be
set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.
The PROGBUF[0:5] registers are described in Table 62.

Table 62: PROGBUFJ[0:5] Registers

Bits Name Access Reset Description
Value
0.. instr RW 0 The field contains an instruction to be executed by
31 the hart in Debug Mode as a part of abstract

command execution (if postexec bit is set).

8.5. Hart Debug Unit (HDU)

8.5.1. Overview

Hart Debug Unit (HDU) is a component inside a hart implementing control over its debug features
and providing interface to the Debug Module for that. It drives transitions between hart debug
states (reset/running/halted), as well as process of execution instructions from the Program Buffer.

HDU is the unit where Debug CSRs are situated.

8.5.2. Debug Mode
Debug Mode is a special processor mode used only when a hart is halted for external debugging.

When executing code from the Program Buffer, the hart stays in Debug Mode and the following
apply:
1. All operations are executed at machine mode privilege level, except that MSTATUS.mprv may be
ignored according to DCSR.mprven.
2. All interrupts (including NMI) are masked.

3. Exceptions don’t update any registers. That includes CAUSE, EPC, TVAL, DPC, and MSTATUS.
They do end execution of the Program Buffer.

4. No action is taken if a trigger matches.

5. Counters are not stopped in the given core implementation.

68



6. Timers are not stopped in the given core implementation.
7. The wfi instruction acts as a nop.

8. Almost all instructions that change the privilege level have undefined behavior. This includes
ecall, mret, and uret. The only exception is ebreak. When that is executed in Debug Mode, it
halts the hart again but without updating DPC or DCSR.

9. Completing Program Buffer execution is considered output for the purpose of fence
instructions.

8.5.3. Reset

There are two modes of hart reset behavior:

1. Hardware hart reset signal influences all hart registers, including Debug CSRs (Table 63) and
Trigger CSRs (Table 68). This mode is default after Power-Up Reset.

2. Hardware hart reset signal as usual influences architectural hart registers but DOES NOT reset
Debug and Trigger CSRs keeping them intact. The mode is activated when SCU’s
MODE.hdu_rst_ mux = 1.

The 2nd mode allows for debugger software to utilize debug features (e.g., hardware breakpoints)
over hart reset cycling.

HDU also provides a mechanism to allow debugging the hart immediately out of reset. If the halt
signal (driven by the hart’s halt request bit in the Debug Module) is asserted when the hart comes
out of reset, the hart enters Debug Mode before executing any instructions, but after performing
any initialization that would usually happen before the first instruction is executed.

8.5.4. Single Step

A debugger can cause a halted hart to execute a single instruction and then re-enter Debug Mode by
setting DCSR.step before setting DMCONTROL.resumereq.

If executing or fetching that instruction causes an exception, Debug Mode is re-entered
immediately after the PC is changed to the exception handler and the appropriate TVAL and CAUSE
registers are updated.

If executing or fetching the instruction causes a trigger to fire, Debug Mode is re-entered
immediately after that trigger has fired. In that case DCSR.cause is set to 2 (trigger) instead of 4
(single step). In the given core implementation the instruction caused that trigger firing, is not
executed.

If the instruction that is executed causes the PC to change to an address where an instruction fetch
causes an exception, that exception does not occurr until the next time the hart is resumed.
Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that
instruction.

If the instruction being stepped over is wfi and would normally stall the hart, then instead the
instruction is treated as nop.
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8.5.5. Debug CSRs

They are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug
commands.

These registers are only accessible from Debug Mode.

8.5.5.1. Register Map

Debug CSRs are listed in Table 63.

Table 63: Hart Debug CSRs Map

Address Mnemonic Full name
0x7B0 DCSR Debug Control and Status
0x7B1 DPC Debug PC
0x7B2 DSCRATCHO Debug Scratch Register 0
0x7B3.. 0X7BF - Reserved

8.5.5.2. Debug Control and Status (DCSR)

The DCSR register is described in Table 64.

Table 64: DCSR Register

Bits Name Access Reset Description
Value
0.1 prv RW 3 Contains the privilege level the hart was operating

in when Debug Mode was entered. The SCR1 core
has the field hardwired to 3 - Machine Mode.

2 step RW 0 When set and not in Debug Mode, the hart will only
execute a single instruction and then enter Debug
Mode. If the instruction does not complete due to
an exception, the hart will immediately enter
Debug Mode before executing the trap handler,
with appropriate exception registers set. The
debugger must not change the value of this bit
while the hart is running.

3..5 rsrv0 RO 0 Reserved for future use.
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Bits Name

6..8 cause
9.. rsrvl
10
11 stepie
12.. rsrv2
14

15 ebreakm

16.. rsrv3
27

28.. xdebugver
31

Access

RO

RO

RW

RO

RW

RO

RO

Reset
Value

0

Description

Explains why Debug Mode was entered. When
there are multiple reasons to enter Debug Mode in
a single cycle, hardware should set cause to the
cause with the highest priority.

Encoding:
* 1- An ebreak instruction was executed (priority
3);

* 2 - The Trigger Module caused a breakpoint
exception (priority 4, highest);

* 3 - The debugger requested entry to Debug
Mode using haltreq (priority 1);

* 4 - The hart single stepped because step was set
(priority 0, lowest);

Other values are reserved for future use

Reserved for future use.

Encoding:

* 0 - Interrupts are disabled during single
stepping.
* 1 - Interrupts are enabled during single
stepping.

The debugger must not change the value of this bit
while the hart is running.

Reserved for future use.

Encoding:

e 0 - ebreak instructions in M-mode behave as
described in the Privileged Spec.

* 1 - ebreak instructions in M-mode enter Debug
Mode.

Reserved for future use.

The field’s value (4) indicates that debug support
exists as described in the RISC-V Debug Spec
version 0.13.
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8.5.5.3. Debug PC (DPC)

Upon entry to debug mode, DPC is updated with the virtual address of the next instruction to be

executed. The behavior is described in more detail in Table 65.

Table 65: Virtual address in DPC upon Debug Mode Entry

Cause Virtual Address in DPC
ebreak Address of the ebreak instruction.
Single Step Address of the instruction that would be executed next if no debugging

was going on. Ie. PC + 4 for 32-bit instructions that don’t change program

flow, the destination PC on taken jumps/branches, etc.

Trigger Module The address of the instruction which caused the trigger to fire (as
MCONTROL.timing is always 0 in the given core).

Halt request Address of the next instruction to be executed at the time that debug
mode was entered.

When resuming, the hart’s PC is updated to the virtual address stored in DPC. A debugger may write

DPC to change where the hart resumes.
The DPC register is described in Table 66.

Table 66: DPC Register

Bits Name Access Reset Description
Value
0.. dpc RW - The field contains the Debug PC value.
31

8.5.5.4. Debug Scratch Register 0 (DSCRATCHO)

The DSCRATCHO register is described in Table 67.

Table 67: DSCRATCHO Register

Bits Name Access Reset Description
Value
0.. data RW 0 The field contains the data might be used by
31 instructions executed from the Program Buffer.
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9. Hardware Trigger Module

9.1. Overview

Triggers can cause a breakpoint exception or entry into Debug Mode. This makes them invaluable
when debugging code from ROM. They can trigger on execution of instructions at a given memory
address, or on the address in loads/stores. These are all features that can be useful without having
the Debug Module present, so the Trigger Module is represented as a separate unit that can be
implemented separately.

Triggers do not fire while in Debug Mode.

9.2. Reset

There are two modes of reset behavior:
1. Hardware hart reset signal influences all hart registers, including Debug CSRs (Table 63) and
Trigger CSRs (Table 68). This mode is default after Power-Up Reset.

2. Hardware hart reset signal as usual influences architectural hart registers but DOES NOT reset
Debug and Trigger CSRs keeping them intact. The mode is activated when SCU’s
MODE.hdu_rst_ mux = 1.

The 2nd mode allows for debugger software to utilize debug features (e.g., hardware breakpoints)
over hart reset cycling.

9.3. Operation Basics

9.3.1. Enumeration

Each RISC-V Debug Spec compliant trigger may support a variety of features. A debugger can build
a list of all triggers and their features as follows:

1. Write 0 to TSELECT.

2. Read back TSELECT and check that it contains the written value. If not, exit the loop.
3. Read TINFO.
4

. If that caused an exception, the debugger must read TDATA1 to discover the type. (If type is 0,
this trigger doesn’t exist. Exit the loop.)

“

If TINFO.info is 1, this trigger doesn’t exist. Exit the loop.
6. Otherwise, the selected trigger supports the types discovered in TINFO.info.

7. Repeat, incrementing the value in TSELECT.

9.4. Trigger CSRs

These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract
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debug commands.

Some combinations of activated features might be unsupported. All TDATA registers follow write-
any-read-legal semantics. If a debugger writes an unsupported configuration, the register will read
back a value that is supported (which may simply be a disabled trigger). This means that a
debugger must always read back values it writes to TDATA registers, unless it already knows
already what is supported. Writes to one TDATA register may not modify the contents of other
TDATA registers, nor the configuration of any trigger besides the one that is currently selected.

The trigger registers are only accessible in Machine and Debug Mode to prevent untrusted user
code from causing entry into Debug Mode without the OS’s permission.

9.4.1. Register Map
Trigger CSRs are listed in Table 68.

Table 68: Hart Trigger CSRs Map

Address Mnemonic Full name

0x7A0 TSELECT Trigger Select

0x7A1 TDATA1 / MCONTROL / Trigger Data 1 / Match Control / Instruction
ICOUNT Count

0x7A2 TDATA2 Trigger Data 2

0x7A3 - Reserved

0x7A4 TINFO Trigger Info

0x7A5.. 0X7AF - Reserved

9.4.2. Trigger Select (TSELECT)

This register determines which trigger is accessible through the other trigger registers. The set of
accessible triggers starts at 0, and is contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different
value in this register than what was written. To verify that what they wrote is a valid index,
debuggers can read back the value and check that tselect holds what they wrote.

Since triggers can be used both by Debug Mode and M-mode, the debugger must restore this
register if it modifies it.

The TSELECT register is described in Table 69.

Table 69: TSELECT Register

Bits Name Access Reset Description
Value
0..1 index RW 0 The field determines which trigger is accessible

through the other trigger registers.

Maximal index supported in the given core is 2.
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Bits Name Access Reset Description
Value

2.. rsrv0 RO 0 Reserved for future use.
31

9.4.3. Trigger Data 1 (TDATA1)
The TDATA1 register is described in Table 70.

Table 70: TDATA1 Register

Bits Name Access Reset Description
Value
0.. data RW 0 Trigger-specific data.
26
27 dmode RW 0 Encoding:

* 0 - Both Debug and M-mode can write the
TDATA registers at the selected TSELECT.

* 1 - Only Debug Mode can write the TDATA
registers at the selected TSELECT. Writes from
other modes are ignored. This bit is only
writable from Debug Mode.

28.. type RW 0 Encoding:
31
* 0 - There is no trigger at this TSELECT.

* 2 - The trigger is an address match trigger. The
remaining bits in this register act as described
in MCONTROL.

* 3 - The trigger is an instruction count trigger.
The remaining bits in this register act as

described in ICOUNT.

* 15 - This trigger exists (so enumeration
shouldn’t terminate), but is not currently
available.

Other values are reserved for future use.

9.4.4. Match Control (MCONTROL)
This register is accessible as tdatal when type is 2.
The MCONTROL register is described in Table 71.

Table 71: MCONTROL Register
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Bits

11
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Name

load

store

execute

rsrv0
m

match

chain

Access

RW

RW

RW

RO
RW
RW

RW

Reset
Value

Description

When set, the trigger fires on the virtual address of
a load.

When set, the trigger fires on the virtual address of
a store.

When set, the trigger fires on the virtual address of
an instruction that is executed.

Reserved for future use.
When set, enable this trigger in M-mode.

Encoding:
* 0 - Matches when the value equals TDATAZ2.

Other values are reserved for future use.

Encoding:

* 0 - When this trigger matches, the configured
action is taken.

* 1 - While this trigger does not match, it prevents
the trigger with the next index from matching.

A trigger chain starts on the first trigger with chain
=1 after a trigger with chain = 0, or simply on the
first trigger if that has chain = 1. It ends on the first
trigger after that which has chain = 0. This final
trigger is part of the chain. The action on all but the
final trigger is ignored. The action on that final
trigger will be taken if and only if all the triggers in
the chain match at the same time.

Because chain affects the next trigger, hardware
must zero it in writes to MCONTROL that set
MCONTROL.dmode to 0 if the next trigger has
dmode of 1. In addition hardware should ignore
writes to MCONTROL that set dmode to 1 if the
previous trigger has both dmode of 0 and chain of
1. Debuggers must avoid the latter case by checking
chain on the previous trigger if they’re writing
MCONTROL.



Bits Name Access Reset Description

Value
12.. action RW 0 The action to take when the trigger fires. Encoding:
15
* 0 - Raise a breakpoint exception. (Used when
software wants to use the trigger module
without an external debugger attached.)
* 1 - Enter Debug Mode. (Only supported when
the trigger’s dmode is 1.)
» 2..5 - Reserved for use by the trace specification.
» Others - Reserved for future use.

16.. sizelo RO 0 The field is hardwired to zero. Thus, the trigger will

17 attempt to match against an access of any size.

18 timing RO 0 The bit is hardwired to 0.

That means the action for this trigger will be taken
just before the instruction that triggered it is
executed, but after all preceding instructions are
committed.

19 select RO 0 The bit is hardwired to 0.

That means the trigger performs a match only on
the virtual address.

20 it RW 0 The hardware sets this bit when the given trigger
matches. The trigger’s user can set or clear it at any
time.

It is used to determine which trigger(s) matched.

21.. rsrvl RO 0 Reserved for future use.

26

27 dmode RW 0 The bit is described as a part of TDATA1 register.

28.. type RW 0 The bit field is described as a part of TDATA1

31 register.

9.4.5. Instruction Count (ICOUNT)
This register is accessible as TDATA1 when type is 3.

This trigger type is intended to be used as a single step that’s useful both for external debuggers and
for software monitor programs. For that case count must be equal 1.

The ICOUNT register is described in Table 72.

Table 72: ICOUNT Register
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Bits Name Access Reset

Value

0..5 action RW 0
6..8 rsrv0 RO 0
9 m RW 0
10.. count RW 1
23

24 it RW 0
25.. rsrvl RO 0
26

27 dmode RW 0
28.. type RW 0
31

9.4.6. Trigger Data 2 (TDATA2)

The TDATAZ register is described in Table 73.

Table 73: TDATAZ2 Register

Bits Name Access Reset
Value
0.. data RW -
31

9.4.7. Trigger Info (TINFO)

The TINFO register is described in Table 74.

Table 74: TINFO Register
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Description

The action to take when the trigger fires. Encoding:

* 0 - Raise a breakpoint exception. (Used when
software wants to use the trigger module
without an external debugger attached.)

* 1 - Enter Debug Mode. (Only supported when
the trigger’s dmode is 1.)

» 2..5 - Reserved for use by the trace specification.

* Others - Reserved for future use.

Reserved for future use.

When set, every instruction completed or exception
taken in M-mode decrements count by 1.

When count is decremented to 0, the trigger fires.

The hardware sets this bit when the given trigger
matches. The trigger’s user can set or clear it at any
time.

It is used to determine which trigger(s) matched.

Reserved for future use.
The bit is described as a part of TDATA1 register.

The bit field is described as a part of TDATA1
register.

Description

The field contains trigger-specific data.



Bits Name Access Reset Description

Value
0.. info RO 0 The bit field indicates supported types for the
15 selected trigger: one bit for each possible type
enumerated in TDATA1. Bit N corresponds to type
N. If the bit is set, then that type is supported by the
currently selected trigger.
If the currently selected trigger doesn’t exist, this
field contains 1.
Trigger capabilities in the given core are
distributed as follows:
* 0.1 - support trigger of type = 2 only
(MCONTROL), info = 0x04;
* 2 - supports trigger of type = 3 only (ICOUNT),
info = 0x08;
« other indexes indicate info = 0x01.
16.. rsrv0 RO 0 Reserved for future use.

31
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10. External Interfaces

10.1. AHB-Lite Interface

AHB-Lite external interface consists of two separate AHB-Lite master buses for instructions and
data. Interface signals are listed in Table 75.

Table 75: AHB-Lite external interface
Name Direction Description
AHB-Lite instruction interface

imem_hprot[3:0] output The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to implement
some level of protection

imem_hburst[2:0] output Indicates if the transfer forms part of a burst

imem_hsize[2:0] output Indicates the size of the transfer

imem_htrans[1:0] output Indicates the type of the current transfer

imem_hmastlock output Indicates that the current transfer is part of a locked
sequence

imem_haddr[31:0] output The 32-bit address bus

imem_hready input  When '1' the HREADY signal indicates that a transfer has

finished on the bus

imem_hrdata[31:0] input The read data bus is used to transfer data from bus slaves
to the bus master during read operations

imem_hresp[1:0] input  The transfer response provides additional information on
the status of a transfer

AHB-Lite data interface

dmem_hprot[3:0] output The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to implement
some level of protection

dmem_hburst[2:0] output Indicates if the transfer forms part of a burst

dmem_hsize[2:0] output Indicates the size of the transfer

dmem_htrans[1:0] output Indicates the type of the current transfer

dmem_hmastlock output Indicates that the current transfer is part of a locked
sequence

dmem_haddr[31:0] output The 32-bit address bus

dmem_hwrite output 1 -write transfer; 0 - read transfer

dmem_hwdata[31:0] output The write data bus is used to transfer data from the master

to the bus slaves during write operations

dmem_hready input  When '1' the HREADY signal indicates that a transfer has
finished on the bus
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Name Direction Description

dmem_hrdata[31:0] input The read data bus is used to transfer data from bus slaves
to the bus master during read operations

dmem_hresp[1:0] input  The transfer response provides additional information on
the status of a transfer

Both AHB-Lite bridges (instruction and data) have optional input and output registers, which can be

switched on to meet design timing requirements. The registers are disabled by default. See SCR1
configurable options for details.

10.2. AHB-Lite Timing diagrams

Figure 13 shows example of data memory AHB-Lite read/write.
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Figure 13: Data memory AHB-Lite read/write

SCR1 does not perform sequential read or write requests to data memory, it

IMPORTANT . . . NP
always waits for a transaction to finish before initiating another one.

Figure 14 shows example of instruction memory AHB-Lite read with delay.
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imem_haddr(31.0)
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imem_hready TN/
imem_hrdata(31:0)
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w
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II

imem_hsize(2:0)

imem_hresp(1:0)

Figure 14: Instruction memory AHB-Lite read with delay
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10.3. AX14 Interface

Instruction memory AXI4 write data channel signals are shown in Table 76.

The IMEM AXI4 write data channel, IMEM AXI4 write response channel, and IMEM AXI4 write
address channel are provided for compatibility with AXI4 specification. All output ports of these
three channels are hardwired to 0. All input ports of these three channels must be connected to

constant 0.

Table 76: IMEM AXI4 write data channel signals

Name Direction Description

io_axi_imem_wdata[31:0] output Master Write data

io_axi_imem_wstrb[3:0] output  Master Write strobes. This signal indicates which byte
lanes hold valid data. There is one write strobe bit for each
eight bits of the write data bus

io_axi_imem_wlast output Master Write last. This signal indicates the last transfer in
a write burst

io_axi_imem_wuser[3:0] output Master User signal. Optional User-defined signal in the
write data channel

io_axi_imem_wvalid output Master Write valid. This signal indicates that valid write
data and strobes are available

i0o_axi_imem_wready input  Slave Write ready. This signal indicates that the slave can

accept the write data

Instruction memory AXI4 write response channel signals are shown in Table 77.

Table 77: IMEM AXI4 write response channel signals

Name Direction Description

io_axi_imem_bid[3:0] input Slave Response ID tag. This signal is the ID tag of the write
response

io_axi_imem_bresp[1:0] input Slave Write response. This signal indicates the status of
the write transaction

io_axi_imem_bvalid input Slave Write response valid. This signal indicates that the
channel is signaling a valid write response

io_axi_imem_buser[3:0] input Slave User signal. Optional User-defined signal in the write
response channel

io_axi_imem_bready output  Master Response ready. This signal indicates that the

master can accept a write response

Instruction memory AXI4 write address channel signals are shown in Table 78.

Table 78: IMEM AXI4 write address channel signals

Name Direction Description

io_axi_imem_awid[3:0] output
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Master Write address ID. This signal is the identification
tag for the write address group of signals



Name

io_axi_imem_awaddr[31:0

]

io_axi imem_awlen[7:0]

io_axi_imem_awsize[2:0]

io_axi_imem_awburst[1:0]

io_axi imem_awlock

io_axi_imem_awcache[3:0]

io_axi_imem_awprot[2:0]

io_axi_imem_awregion[3:0

]

io_axi_imem_awuser[3:0]

io_axi_imem_awqos[3:0]

io_axi_imem_awvalid

io_axi_imem_awready

Direction Description

output

output

output

output

output

output

output

output

output

output

output

input

Master Write address. The write address gives the address
of the first transfer in a write burst transaction

Master Burst length. The burst length gives the exact
number of transfers in a burst. This information
determines the number of data transfers associated with
the address

Master Burst size. This signal indicates the size of each
transfer in the burst

Master Burst type. The burst type and the size
information, determine how the address for each transfer
within the burst is calculated

Master Lock type. Provides additional information about
the atomic characteristics of the transfer

Master Memory type. This signal indicates how
transactions are required to progress through a system

Master Protection type. This signal indicates the privilege
and security level of the transaction, and whether the
transaction is a data access or an instruction access

Master Region identifier. Permits a single physical
interface on a slave to be used for multiple logical
interfaces

Master User signal. Optional User-defined signal in the
write address channel

Master Quality of Service, QoS. The QoS identifier sent for
each write transaction

Master Write address valid. This signal indicates that the
channel is signaling valid write address and control
information

Slave Write address ready. This signal indicates that the
slave is ready to accept an address and associated control
signals

Instruction memory AXI4 read address channel signals are shown in Table 79.

Table 79: IMEM AXI4 read address channel signals

Name

io_axi_imem_arid[3:0]

io_axi_imem_araddr[31:0]

io_axi_imem_arlen[7:0]

Direction Description

output

output

output

Master Read address ID. This signal is the identification
tag for the read address group of signals. This output is
hardwired to constant 0

Master Read address. The read address gives the address
of the first transfer in a read burst transaction

Master Burst length. This signal indicates the exact
number of transfers in a burst. This output is hardwired to
constant 0
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Name

io_axi_imem_arsize[2:0]

io_axi_imem_arburst[1:0]

io_axi_imem_arlock

io_axi_imem_arcache[3:0]

io_axi_imem_arprot[2:0]

io_axi_imem_arregion[3:0]

io_axi_imem_aruser[3:0]

io_axi_imem_arqos[3:0]

io_axi_imem_arvalid

io_axi_imem_arready

Direction Description

output

output

output

output

output

output

output

output

output

input

Master Burst size. This signal indicates the size of each
transfer in the burst. This output is hardwired to constant
2

Master Burst type. The burst type and the size information
determine how the address for each transfer within the
burst is calculated. This output is hardwired to constant 1

Master Lock type. This signal provides additional
information about the atomic characteristics of the
transfer. This output is hardwired to constant 0

Master Memory type. This signal indicates how
transactions are required to progress through a system.
This output is hardwired to constant 2

Master Protection type. This signal indicates the privilege
and security level of the transaction, and whether the
transaction is a data access or an instruction access. This
output is hardwired to constant 0

Master Region identifier. Permits a single physical
interface on a slave to be used for multiple logical
interfaces. This output is hardwired to constant 0

Master User signal. Optional User-defined signal in the
read address channel. This output is hardwired to
constant 0

Master Quality of Service, QoS. QoS identifier sent for each
read transaction. This output is hardwired to constant 0

Master Read address valid. This signal indicates that the
channel is signaling valid read address and control
information

Slave Read address ready. This signal indicates that the
slave is ready to accept an address and associated control
signals

Instruction memory AXI4 read data channel signals are shown in Table 80.

Table 80: IMEM AXI4 read data channel signals

Name

io_axi_imem_rid[3:0]

io_axi_imem_rdata[31:0]

io_axi_imem_rresp[1:0]

io_axi_imem_rlast

io_axi_imem_ruser[3:0]
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Direction Description

input

input

input

input

input

Slave Read ID tag. This signal is the identification tag for
the read data group of signals generated by the slave

Slave Read data

Slave Read response. This signal indicates the status of the
read transfer

Slave Read last. This signal indicates the last transfer in a
read burst

Slave User signal. Optional User-defined signal in the read
data channel



Name

io_axi_imem_rvalid

io_axi_imem_rready

Direction Description

input

output

Slave Read valid. This signal indicates that the channel is
signaling the required read data

Master Read ready. This signal indicates that the master
can accept the read data and response information

Data memory AXI4 write address channel signals are shown in Table 81.

Table 81: DMEM AXI write address channel signals

Name

io_axi_dmem_awid[3:0]

io_axi_dmem_awaddr[31:0

]

io_axi_dmem_awlen[7:0]

io_axi_dmem_awsize[2:0]

io_axi_dmem_awburst[1:0

]

io_axi_dmem_awlock

io_axi_dmem_awcache[3:0

]

io_axi_dmem_awprot[2:0]

io_axi_dmem_awregion[3:

0]

io_axi_dmem_awuser[3:0]

io_axi_dmem_awqos[3:0]

io_axi_dmem_awvalid

Direction Description

output

output

output

output

output

output

output

output

output

output

output

output

Master Write address ID. This signal is the identification
tag for the write address group of signals. This output is
hardwired to constant 1

Master Write address. The write address gives the address
of the first transfer in a write burst transaction

Master Burst length. The burst length gives the exact
number of transfers in a burst. This output is hardwired to
constant 0

Master Burst size. This signal indicates the size of each
transfer in the burst

Master Burst type. The burst type and the size
information, determine how the address for each transfer
within the burst is calculated. This output is hardwired to
constant 1

Master Lock type. Provides additional information about
the atomic characteristics of the transfer. This output is
hardwired to constant 0

Master Memory type. This signal indicates how
transactions are required to progress through a system.
This output is hardwired to constant 2

Master Protection type. This signal indicates the privilege
and security level of the transaction, and whether the
transaction is a data access or an instruction access. This
output is hardwired to constant 0

Master Region identifier. Permits a single physical
interface on a slave to be used for multiple logical
interfaces. This output is hardwired to constant 0

Master User signal. Optional User-defined signal in the
write address channel. This output is hardwired to
constant 0

Master Quality of Service, QoS. The QoS identifier sent for
each write transaction. This output is hardwired to
constant 0

Master Write address valid. This signal indicates that the
channel is signaling valid write address and control
information

85



Name

io_axi_dmem_awready input

Direction Description

Slave Write address ready. This signal indicates that the
slave is ready to accept an address and associated control
signals

Data memory AXI4 write data channel signals are shown in Table 82.

Table 82: DMEM AXI write data channel signals

Name

io_axi_dmem_wdata[31:0] output
io_axi_dmem_wstrb[3:0] output
io_axi_dmem_wlast output
io_axi_dmem_wuser[3:0] output
io_axi_dmem_wvalid output
io_axi_dmem_wready input

Direction Description

Master Write data

Master Write strobes. This signal indicates which byte
lanes hold valid data. There is one write strobe bit for each
eight bits of the write data bus

Master Write last. This signal indicates the last transfer in
a write burst

Master User signal. Optional User-defined signal in the
write data channel. This output is hardwired to constant 0

Master Write valid. This signal indicates that valid write
data and strobes are available

Slave Write ready. This signal indicates that the slave can
accept the write data

Data memory AXI4 write response channel signals are shown in Table 83.

Table 83: DMEM AXI4 write response channel signals

Name

io_axi_dmem_bid[3:0] input
io_axi_dmem_bresp[1:0] input
io_axi_dmem_bvalid input
io_axi_dmem_buser[3:0] input
io_axi_dmem_bready output

Direction Description

Slave Response ID tag. This signal is the ID tag of the write
response

Slave Write response. This signal indicates the status of
the write transaction

Slave Write response valid. This signal indicates that the
channel is signaling a valid write response

Slave User signal. Optional User-defined signal in the write
response channel

Master Response ready. This signal indicates that the
master can accept a write response

Data memory AXI4 read address channel signals are shown in Table 84.

Table 84: DMEM AXI read address channel signals

Name

io_axi_ dmem_arid[3:0] output
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Direction Description

Master Read address ID. This signal is the identification
tag for the read address group of signals. This output is
hardwired to constant 0



Name

io_axi_ dmem_araddr[31:0]

io_axi_dmem_arlen[7:0]

io_axi_dmem_arsize[2:0]

io_axi_dmem_arburst[1:0]

io_axi_dmem_arlock

io_axi_dmem_arcache[3:0]

io_axi_dmem_arprot[2:0]

io_axi_dmem_arregion[3:0

]

io_axi_dmem_aruser[3:0]

io_axi_dmem_arqos[3:0]

io_axi_dmem_arvalid

io_axi_dmem_arready

Direction Description

output

output

output

output

output

output

output

output

output

output

output

input

Master Read address. The read address gives the address
of the first transfer in a read burst transaction

Master Burst length. This signal indicates the exact
number of transfers in a burst. This output is hardwired to
constant 0

Master Burst size. This signal indicates the size of each
transfer in the burst

Master Burst type. The burst type and the size information
determine how the address for each transfer within the
burst is calculated. This output is hardwired to constant 1

Master Lock type. This signal provides additional
information about the atomic characteristics of the
transfer. This output is hardwired to constant 0

Master Memory type. This signal indicates how
transactions are required to progress through a system.
This output is hardwired to constant 2

Master Protection type. This signal indicates the privilege
and security level of the transaction, and whether the
transaction is a data access or an instruction access. This
output is hardwired to constant 0

Master Region identifier. Permits a single physical
interface on a slave to be used for multiple logical
interfaces. This output is hardwired to constant 0

Master User signal. Optional User-defined signal in the
read address channel. This output is hardwired to
constant 0

Master Quality of Service, QoS. QoS identifier sent for each
read transaction. This output is hardwired to constant 0

Master Read address valid. This signal indicates that the
channel is signaling valid read address and control
information

Slave Read address ready. This signal indicates that the
slave is ready to accept an address and associated control
signals

Data memory AXI4 read data channel signals are shown in Table 85.

Table 85: DMEM AXI4 read data channel signals

Name

io_axi_dmem_rid[3:0]

io_axi_dmem_rdata[31:0]

io_axi_dmem_rresp[1:0]

Direction Description

input

input

input

Slave Read ID tag. This signal is the identification tag for
the read data group of signals generated by the slave

Slave Read data

Slave Read response. This signal indicates the status of the
read transfer
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Name

io_axi_dmem_rlast

io_axi_dmem_ruser[3:0]

io_axi_dmem_rvalid

io_axi_dmem_rready
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Direction Description

input

input

input

output

Slave Read last. This signal indicates the last transfer in a
read burst

Slave User signal. Optional User-defined signal in the read
data channel

Slave Read valid. This signal indicates that the channel is
signaling the required read data

Master Read ready. This signal indicates that the master
can accept the read data and response information



10.4. AXI4 Timing diagrams

The AXI4 interface of the core defines the following independent transaction channels between the
core (master) and external memory (slave) [4]:

* read address channel,;

e read data channel,;

e write address channel;

» write data channel,;

* write response channel.
An address channel carries control information that describes the nature of the data to be
transferred. The data is transferred between master and slave using either:
- A write data channel to transfer data from the master to the slave. In a write transaction, the slave

uses the write response channel to signal to the master the completion of the transfer;
- A read data channel to transfer data from the slave to the master.

The AXI4 interface of the core permits address information to be issued ahead of the actual data
transfer.

Figure 15 shows read and write transaction from perspective of used channels.

Read transaction Write transaction
Read address channel Write address channel
Read Write
address :> address I;‘>
Master Slave Master Slave

Read data channel Write data channel

Read Writ
<:| dea dartlae I;‘>

Write reponse channel
Write

<:| response

Figure 15: AXI4 read and write channels

Following timing diagrams show example of two read transactions and two write transactions that
could happen in the following sequence scenario:

1) Read RDO data word from address RAO;
2) Read RD1 data word from address RA1;
3) Write WDO data word to address WADO;
4) Write WD1 data word to address WA1.
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Figure 16 shows read word transaction from perspective of interface signals.
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axi_dmem_arvalid
axi_dmem_arready
axi_dmem_araddr(31:0)
axi_dmem_arid(3:0)
axi_dmem_arlen(7:0)
axi_dmem_arsize(2:0)
axi_dmem_arburst(1:0)
axi_dmem_arcache(3:0)
axi_dmem_rid(3:0)
axi_dmem_rdata(31:0)
axi_dmem_rresp(1:0)
axi_dmem_rready
axi_dmem_rvalid
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Figure 16: AXI4 read word transaction

Figure 17 shows write word transaction from perspective of interface signals.
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axi_dmem_awvalid
axi_dmem_awready
axi_dmem_awaddr(31:0)
axi_dmem_awid(3:0)
axi_dmem_awlen(7:0)
axi_dmem_awsize(2:0)
axi_dmem_awburst(1:0)
axi_dmem_awcache(3:0)
axi_dmem_wvalid
axi_dmem_wready
axi_dmem_wlast
axi_dmem_wstrb(3:0)
axi_dmem_wdata(31:0)
axi_dmem_bvalid
axi_dmem_bready
axi_dmem_bid

axi_dmem_bresp(1:0)
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Figure 17: AXI4 write word transaction
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AXI4 interface has no ordering restrictions between read and write transactions. They can
complete in any order, even if the axi_dmem_arid value of a read transaction is the same as the
axi_dmem_awid value of a write transaction. If a master requires a given relationship between a
read transaction and a write transaction then it must ensure that the earlier transaction is complete
before it issues the later transaction.

A master can only consider the earlier transaction is complete when:

e for a read transaction, it receives the last of the read data;

« for a write transaction, it receives the write response.

Sending all of the write data for the write transaction must not be considered as completion of that
transaction.

AXI4 interface is able to flag as an error the DECERR and SLVERR types of responses that may
appear in bresp[1:0] or rresp[1:0] signals, as presented in [4]. The EXOKAY type of response is also
considered as error since the exclusive access is never requested by the core. All types of errors are
processed in the same way and flagged as memory access fault, resulting in instruction, load or
store access fault synchronous exception in the core.
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10.5. Control Interface

Control interface signals of the SCR1 core are shown in Table 86.

Table 86: Control interface signals

Name Direction Description

pwrup_rst_n input  Power-Up Reset

rst_n input  Reset (regular reset for entire cluster)

cpu_rst_n input  CPU Reset (does not affect AXI bridges and TCM)
test_mode input  DFT Test Mode

test_rst n input DFT Test Reset

clk input  System clock

ndm_rst_n_out output Non-Debug Module Reset Output (from DM for peripherals)
rtc_clk input  Real-time clock

fuse_mhartid[31:0] input CPU Hardware Thread ID (HART ID)
fuse_idcode[31:0] input  CPU TAPC IDCODE

10.6. JTAG Interface

Standard JTAG inteface is provided by SCR1 core to access TAP registers and DBGC module registers.
JTAG interface signals do comply with IEEE 1149.1 [3]. JTAG interface signals are shown in Table 87.

Table 87: JTAG Interface Signals

Name Direction Description

trst_ n input Test reset (active low)
tck input  Test clock

tms input  Test mode select

tdi input  Test data input

tdo output Test data output
tdo_en output Test data output enable

10.7. IRQ Interface

IRQ interface signals are shown in Table 88.

Table 88: IRQ Interface Signals

Name Direction Description

soft_irq * input  Software interrupt

ext_irq ™ input  External interrupt (only with IPIC disabled)
irq_lines[15:0] input  External IRQ lines (only with IPIC enabled)
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* Must be synchronous to the internal clock.
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11. Clocks and Resets

11.1. Clock Distribution

As shown in Figure 18 and Figure 19, the core supports three clock domains, :

e Core clock domain (clk);
¢ Real-Time clock domain (rtc_clk);

e TAP controller (TAPC) clock domain (tck).

SCR1 core top cluster
tck
SCR1 core
clk
T ‘ """ CORE CLOCK DOMAIN
IMEM/

DMEM
routers

RTC DOMAIN
AXI"” RTC CDC
AHB-Lite Synchronizer
bridges \
¥ NNNAN x\\\\\\\\\\\\\
h rtc_clk

Figure 18: Clock distribution in SCR1 core top cluster
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tek B : 2

Figure 19: Clock distribution in SCR1 core

Different clock domains have clocks which may have a different frequency, a different phase (due
to either differing clock latency or a different clock source), or both. Either way, the relationship
between the clock edges in the various domains cannot be relied upon and may cause undesired
metastability in some cases. The core assumes that clk frequency is higher than frequency of both
rtc_clk and tck.

Synchronizing a single bit signal to a clock domain with a higher frequency is accomplished by
registering the signal through a flip-flop that is clocked by the source domain, thus holding the
signal long enough to be detected by the higher frequency clocked destination domain.

Real-Time clock is always sampled by the core clock. Synchronized rtc_clk can be used instead of clk
as a clock source for the timer, if RTC is selected in TIMER_CTRL CSR. For more information, see
TIMER_CTRL [TIMER_BASE].

The TAP Controller works on tck, but the Debug Module, which is integrated into the core, and
which interfaces with the TAP Controller, is timed by the core clock. The signals between TAP
Controller and Debug Module are going through the synchronization logic. For its proper
functioning JTAG clock frequency has to fulfill the following relation: SysClkFreq/TckFreq >= 12.
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11.2. Power saving features

The core has power saving features that can be used for low-power applications.

11.2.1. Global clock gating in wait-for-interrupt state

The clock gating circuit (controlled by the SCR1_CLKCTRL_EN configurable parameter) allows to
optimize the energy efficiency by switching off the main system clock. If WFI instruction is
executed and no enabled pending interrupts are present at the moment, the core switches into the
sleep mode. In this mode, the system clock is stopped from the entire core logic except the following
modules:

Clock Gating Circuit;

MCYCLE counter;

IPIC, to generate external interrupt for the core;

DM, to allow debug;

All the top level modules, which can be controlled directly from the top level (MTIMER, TCM,
AXI/AHB bridges).

The core returns to the normal operation after any enabled interrupt becomes pending.
When debug session is in progress, i.e., DMCONTROL.dmactive = 1, pipeline sleep mode is disabled.

By default, the clock gating is not enabled in the core configuration (SCR1_CLKCTRL_EN parameter
is not defined). In this case, WFI instruction causes the pipeline to stop without pruning the clock
tree.

11.2.2. Software control of performance counters

It is possible to switch off individual performance counters (TIMER, CYCLE, INSTRET) via software
by modifying TIMER_CTRL and MCOUNTEN CSRs. By default, after reset, all three performance
counters are switched on. MCOUNTEN CSR is available if SCR1_CSR_MCOUNTEN_EN parameter is
defined (enabled in default core configuration). For more information, see MCOUNTEN [0x7E0],
TIMER_CTRL [TIMER_BASE].

11.3. Core Reset Circuit

The core reset circuit is shown in Figure 20.
The core may receive reset signal from the following sources:

* Power-Up Reset (input pwrup_rst_n) - the signal unconditionally resets all logic inside the core
after powering up.

* Reset (input rst_n) - the regular hardware reset input for putting the core into a known state. It
doesn’t reset the TAPC and DM logic. The active clock is required for resetting the core.

* CPU reset - the regular hardware reset input for putting the CPU into a known state. It doesn’t
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reset the TAPC, DM logic, TCM and AXI bridges. The active clock is required for reseting the core.

» System Reset (SCU, bit CONTROL.sys_reset) - software-generated reset signal, equivalent to the

regular Reset signal.

» TAP Reset (trst_n) - hardware reset input for the TAP Controller.

» Test Reset (test_rst_n) - the reset signal being used in the Test Mode (DFT requirements,

activated by test_mode input).

The reset circuit generates also ndm_rst_n_out signal which is intended for resetting of hardware
components outside of the core. It might be used as a HW platform reset in small systems.

The main part of the reset circuitry is placed within the System Control Unit (SCU). For its

description refer to the "System Control Unit (SCU)" section.
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Figure 20: Core reset circuit

97



12. Initialization

12.1. Reset

After reset signal is de-asserted, the following happens:

* Core begins instruction fetch at address 0x200
* General-purpose registers are reset to zero

* Control and status registers are reset to their default values (Table 89)

Table 89: CSR reset values

CSR name Reset value
MSTATUS 0x1880
MIE 0
MTVEC 0x1CO
MSCRATCH 0
MEPC 0
MCAUSE 0
MTVAL 0
MIP 0
MCYCLE[H] 0
MINSTRET[H] 0
MTIME[H] 0
MTIMECMP[H] 0
TIMER_CTRL 0x1
TIMER_DIV 0
DBG_SCRATCH 0
MCOUNTEN 0x5

Figure 21 shows reset de-assertion and instruction fetch start on the AHB-Lite bus.
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Figure 21: Reset timing diagram

12.2. C-runtime code example

The following is a CRT code example, which can be used to initialize the core (assuming that .text
section is linked at 0x1CO0).

#include "riscv_csr_encoding.h"

# define LREG 1w
# define SREG sw
# define REGBYTES 4

.globl _start

.globl main

.globl trap_entry

.globl handle_trap

.globl sc_exit

.weak trap_entry, handle_trap, sc_exit

.text

.align 6
machine_trap_entry:

j trap_entry

.align 6

_start:
auipc  gp, %hi(_gp)
addi  gp, gp, %lo(_gp)

# clear bss
la al, __BSS_START__
1a a2, __BSS_END _
j 4f
3: sw zero, 0(al)

add al, al, 4
4: bne al, a2, 3b
1a sp, __C_STACK_TOP__
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1i t0, mtime_ctrl

1i t1, (1 << SCR1_MTIME_CTRL_EN)

SW t1, (t0)

1i t0, mtime_div

1i t1, (100-1)

SW t1, (t0)

1i t@, mtimecmp

1i t1, -1

SW t1, (t0)

SW t1, 4(t0)

1i ad, o

1i al, 0

jal main

j sc_exit
trap_entry:

// Timer init

addi sp, sp, -124

SREG x1, 1*REGBYTES(sp)
SREG x2, 2*REGBYTES(sp)
SREG x3, 3*REGBYTES(sp)
SREG x4, 4*REGBYTES(sp)
SREG x5, 5*REGBYTES(sp)
SREG x6, 6*REGBYTES(sp)
SREG x7, 7*REGBYTES(sp)
SREG x8, 8*REGBYTES(sp)
SREG x9, 9*REGBYTES(sp)
SREG x10, 10*REGBYTES(sp)
SREG x11, 11*REGBYTES(sp)
SREG x12, 12*REGBYTES(sp)
SREG x13, 13*REGBYTES(sp)
SREG x14, 14*REGBYTES(sp)
SREG x15, 15*REGBYTES(sp)

#ifndef __RVE_EXT
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SREG x16, 16*REGBYTES(sp)
SREG x17, 17*REGBYTES(sp)
SREG x18, 18*REGBYTES(sp)
SREG x19, 19*REGBYTES(sp)
SREG x20, 20*REGBYTES(sp)
SREG x21, 21*REGBYTES(sp)
SREG x22, 22*REGBYTES(sp)
SREG x23, 23*REGBYTES(sp)
SREG x24, 24*REGBYTES(sp)
SREG x25, 25*REGBYTES(sp)
SREG x26, 26*REGBYTES(sp)
SREG x27, 27*REGBYTES(sp)
SREG x28, 28*REGBYTES(sp)
SREG x29, 29*REGBYTES(sp)



SREG x30, 30*REGBYTES(sp)
SREG x31, 31*REGBYTES(sp)

#endif // __RVE_EXT

csrr ad, mcause
csrr al, mepc
mv a2, sp

jal handle_trap

LREG x1, 1*REGBYTES(sp)
LREG x2, 2*REGBYTES(sp)
LREG x3, 3*REGBYTES(sp)
LREG x4, 4*REGBYTES(sp)
LREG x5, 5*REGBYTES(sp)
LREG x6, 6*REGBYTES(sp)
LREG x7, 7*REGBYTES(sp)
LREG x8, 8*REGBYTES(sp)
LREG x9, 9*REGBYTES(sp)
LREG x10, 10*REGBYTES(sp)
LREG x11, 11*REGBYTES(sp)
LREG x12, 12*REGBYTES(sp)
LREG x13, 13*REGBYTES(sp)
LREG x14, 14*REGBYTES(sp)
LREG x15, 15*REGBYTES(sp)

#ifndef __RVE_EXT

LREG x16, 16*REGBYTES(sp)
LREG x17, 17*REGBYTES(sp)
LREG x18, 18*REGBYTES(sp)
LREG x19, 19*REGBYTES(sp)
LREG x20, 20*REGBYTES(sp)
LREG x21, 21*REGBYTES(sp)
LREG x22, 22*REGBYTES(sp)
LREG x23, 23*REGBYTES(sp)
LREG x24, 24*REGBYTES(sp)
LREG x25, 25*REGBYTES(sp)
LREG x26, 26*REGBYTES(sp)
LREG x27, 27*REGBYTES(sp)
LREG x28, 28*REGBYTES(sp)
LREG x29, 29*REGBYTES(sp)
LREG x30, 30*REGBYTES(sp)
LREG x31, 31*REGBYTES(sp)

#endif // __RVE_EXT

addi sp, sp, 124
mret

handle_trap:
sc_exit:

1:

wfi
j 1b
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13. Instruction set summary

Table 90 and Table 91 present the summary for RV32I instruction set.

Table 90: RV32I instruction set summary

3L 25 24............. 20 19............. 15 14...12 11............. T B 0 Name
imm[31:12] rd 0110111 LUI
imm([31:12] rd 0010111 AUIPC
imm[20]10:1]11]19:12] rd 1101111 JAL
imm[11:0] rsl 000 rd 1100111 JALR
imm([12]10:5] rs2 rsi 000 imml[4:1]11] 1100011 BEQ
imm[12]10:5] rs2 rsi 001 imm[4:1]11] 1100011 BNE
imm([12]10:5] rs2 rsi 100 imm[4:1]11] 1100011 BLT
imm[12]10:5] rs2 rsi 101  imm[4:1]|11] 1100011 BGE
imm([12]10:5] rs2 rsi 110 imm[4:1]11] 1100011 BLTU
imm[12]10:5] rs2 rsi 111  imm[4:1]|11] 1100011 BGEU
imm[11:0] rsi 000 rd 0000011 LB
imm[11:0] rsl 001 rd 0000011 LH
imm[11:0] rsl 010 rd 0000011 LW
imm[11:0] rsl 100 rd 0000011 LBU
imm([11:0] rsl 101 rd 0000011 LHU
imm[11:5] rs2 rsl 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rsl 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rsl 010 imm[4:0] 0100011 SwW
imm[11:0] rsi 000 rd 0010011 ADDI
imm[11:0] rsl 010 rd 0010011 SLTI
imm[11:0] rsi 011 rd 0010011 SLTIU
imm[11:0] rsl 100 rd 0010011 XORI
imm[11:0] rsi 110 rd 0010011 ORI
imm[11:0] rsl 111 rd 0010011 ANDI
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Table 91: RV32I instruction set summary (continued)

K 25 24.......u... 20 19............. 15 14...12 11............... T B 0 Name
0000000 shamt rsl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAI
0000000 shamt rsl 000 rd 0110011 ADD
0100000 shamt rsl 000 rd 0110011 SUB
0000000 shamt rsl 001 rd 0110011 SLL
0000000 shamt rsl 010 rd 0110011 SLT
0000000 shamt rsl 011 rd 0110011 SLTU
0000000 shamt rsl 100 rd 0110011 XOR
0000000 shamt rsl 101 rd 0110011 SRL
0100000 shamt rsl 101 rd 0110011 SRA
0000000 shamt rsl 110 rd 0110011 OR
0000000 shamt rsl 111 rd 0110011 AND

0000 pred succ 00000 000 00000 0001111 FENCE
0000 0000 0000 00000 001 00000 0001111 FENCE.I
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK
001100000010 00000 000 00000 1110011 MRET
000100000101 00000 000 00000 1110011 WFI
csr rsi 001 rd 1110011 CSRRW
Ccsr rs1 010 rd 1110011 CSRRS
csr rsi 011 rd 1110011 CSRRC
csr zimm 101 rd 1110011 CSRRWI
csr zimm 110 rd 1110011 CSRRSI
csr zimm 111 rd 1110011 CSRRCI
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Table 92 presents the summary for RV32M instruction set.

Table 92: RV32M instruction set summary

104

0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001

000
001
010
011
100
101
110
111

0110011
0110011
0110011
0110011
0110011
0110011
0110011
0110011

MULH
MULHSU
MULHU
DIV
DIVU
REM
REMU



Table 93 and Table 94 present the summary for RVC instruction set.

Table 93: RVC instruction set summary

15..13

000
000
010
110

000
000
001
010
011
011

100
100
100
100
100
100
100
101
110
111

12 11 10 9 8 7 6 5 4 3 2
Quadrant 0
0 0
nzimm[5:4|9:6|2| 3] rd'
imm[5:3] rsl’ imm[2 | 6] rd'
imm[5:3] rsl’' imm[2 | 6] rs2'
Quadrant 1
0 0 0
nzimm/[5] rs1/rd#0 nzimm[4:0]
offset[11]49:8|10|6|7|3:1|5]
imm[5] rs1/rd#0 imm[4:0]
nzimm[9] 2 nzimm[4|6]8:7|5]
nzimm[17] rs1/rd+{0, 2} nzimm/[16:12]
nzimm/[5] 00 rsl'/rd’ nzimm[4:0]
nzimm[5] 01 rs1'/rd’ nzimm[4:0]
imm[5] 10 rsl'/rd’ imm[4:0]
0 11 rs1'/rd’ 00 rs2'
0 11 rsl'/rd’ 01 rs2'
0 11 rs1'/rd’ 10 rs2'
0 11 rsl'/rd’ 11 rs2'

offset[11]49:8|10|6|7|3:1|5]
offset[8|4:3] offset[7:6]2:1|5]
offset[8 | 4:3] offset[7:6]2:1|5]

rsl'

rsl’

1.0

00
00
00
00

Name

Illegal instruction
C.ADDI4SPN (RES,nzimm=0)
C.LW

C.SwW

C.NOP

C.ADDI (HINT,nzimm=0)
C.JAL (RV32)

C.LI (HINT,rd=0)
C.ADDI16SP (RES,nzimm=0)

C.LUI (RES,nzimm=0;
HINT,rd=0)

C.SRLI (RV32 NSE,nzimm[5]=1)
C.SRAI (RV32 NSE,nzimm[5]=1)
C.ANDI

C.SUB

C.XOR

C.OR

C.AND

CJ

C.BEQZ

C.BNEZ
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Table 94: RVC instruction set summary (continued)

15..13

000

010
100
100
100
100
100
110

106

12 11 10 9 8
nzimm/|[5] rd=0
imm|[5] rd=0
0 rs1+0
0 rd=0
1 0
1 rs1+0
1 rd=0
imm[5:27:6]

7

6 5 4 3
Quadrant 2

nzimm/[4:0]

imm[4:2|7:6]
0
rs2#0
0
0
rs2+0

rs2

2

1.0

10

10
10
10
10
10
10
10

Name

C.SLLI (HINT,rd=0; RV32
NSE,nzimm[5]=1)

C.LWSP (RES,rd=0)
C.JR (RES,rs1=0)
C.MV (HINT,rd=0)
C.EBREAK

CJALR

C.ADD (HINT,rd=0)
C.SWSP
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