Anoma Research Topics (2023)
DOI:10.5281/zenod0.8252903

Juvix to VamplIR Pipeline

Lukasz Czajka

Heliax AG lukasz@heliax.dev

(Received April 25, 2023; Published: August 16, 2023)

Abstract

This report explores two alternatives to Geb for Juvix-to-VamplIR compilation. The first alternative is a
straightforward approach based on full normalisation, which may be implemented relatively quickly and
used as a comparison baseline for all other approaches. The second alternative is based on a pipeline of
several compiler transformations that together convert Juvix programs into a form that can be directly
translated to VamplR input.

Keywords: Juvix; Vamp-IR; Geb; compilation; normalisation; arithmetic circuits

1. Introduction

VamplR® is a language for writing arithmetic circuits with support for Halo2" and Plonk-ish proving
systems. Juvix targets VamplR as one of its backends, currently through an external Geb-to-VamplR
compiler®. Juvix programs are first translated into the JuvixCore language and then transformed in
a series of steps into a form that can be translated directly into Geb.

This report describes two possible alternative Juvix-to-VamplR compilation approaches which
do not depend on Geb.

(1) Normalisation approach (Section 5).
Relatively easy to implement. Perhaps the most straightforward approach possible. Could
serve as a baseline comparison for other approaches and the quickest way to get a working
Juvix-to-VamplIR compiler, but suffers from the (super-)exponential blow-up problem.

(2) Transformation pipeline (Section 6).
Based on a pipeline of traditional compiler transformations which together convert JuvixCore
programs into a form that can be directly translated to VamplR. A crucial transformation
is that of defunctionalisation which removes higher-order functions (see Appendix B.3).
The pipeline is more robust than the normalisation approach, but more time-consuming to
implement. It probably would be more efficient than unoptimised Geb, but it is less general
and harder to extend.

The conclusion of this report is the recommendation to implement the normalisation approach
in order to have a first working version of Juvix-to-VamplIR compilation and a simple baseline
compilation strategy against which other approaches can be compared. The transformation pipeline

2https://github.com/anoma/vamp-ir
Phttps://github.com/zcash/halo2.git
‘https://github.com/anoma/geb
dhttp://github.com/anoma/juvix

Copyright © Heliax AG

https://doi.org/10.5281/zenodo.8252903
mailto:lukasz@heliax.dev
https://github.com/anoma/vamp-ir
https://github.com/zcash/halo2.git
https://github.com/anoma/geb
http://github.com/anoma/juvix

from Section 6 can be considered as an “emergency’ alternative approach in case of significant
unforeseen issues with Geb in the future.

In the rest of this report, we first present a brief overview of the features supported by Juvix,
JuvixCore, Geb 0.4.1 and VamplR (Section 2). Then, we discuss the fundamental (super-) expo-
nential blow-up problem for highly-branching programs and its implications for any compilation
strategy (Section 4). In Section 3, we discuss the issues with and limitations of the current im-
plementation of Geb. Sections 5 and 6 describe the normalisation approach and the proposed
transformation pipeline. Section 7 presents a comparison of the two approaches with Geb and each
other. Section 8 contains some recommendations and their justifications. The appendices contain
technical details relevant to the normalisation approach (Appendix A) and the transformation
pipeline (Appendix B), and discussions of a few more tangential technical issues (Appendix C).

Remark 1 (Update). As of Juvix version 0.3.5, the normalisation approach has been implemented.
It exhibits the limitations predicted in this report with regard to compiling highly-branching
programs. The report has been slightly updated to reflect the current state of the implementation of
the normalisation approach and of Geb.

2. Language features overview

The following table provides an overview of the language features supported by Juvix, JuvixCore,
Geb version 0.4.1, and VamplR.

Feature Juvix JuvixCore Geb VamplR
General recursion (functions) Yes Yes No No
First-class functions Yes Yes Yes No*
Inductive data types Yes Yes No No
Finite data structures Yes Yes Yes” No¢
Prenex polymorphism Yes Yes No No
Higher-rank polymorphism Some Yes No No
Primitive integer type Yes Yes No Yes®
Errors Yes Yes Yes No

“VamplR higher-order and anonymous functions are not fully “first-class” because they cannot nontrivially interact with the
field elements - they are essentially compilation-time-only.

bEncodable via products and coproducts.
€Pairs and lists in VamplIR cannot nontrivially interact with the field elements. In general, finite JuvixCore data structures

cannot be translated into them.

4Polymorphic functions are supported, but not polymorphic data types which can interact non-trivially with field elements.
Hence, monomorphisation is still necessary to translate from JuvixCore.

“VamplR “integers” are the field elements, not integers strictly speaking.

3. Current state of the Geb implementation (v0.4.1)
Currently, Geb lacks the following features necessary for Juvix integration.

* Primitive integers and arithmetic operations.
* Support for bounded algebraic data types (needed for recursive data structures).
* Polymorphism (Juvix could alternatively implement monomorphisation).

These features are currently being worked on by the Geb team.

4. The branching problem

Compiling highly-branching functional programs to circuits may result in (super-)exponential
circuit size blow-up. This branching problem is a fundamental limitation on any direct non-
interpretive compilation strategy. The difficulty lies in the fact that circuits encode all potential
computation routes.

The proposed pipeline would translate Juvix programs into VamplR programs, with the size of
the program increasing only by a factor polynomial in the unrolling depth limit. However, when
compiling the generated programs into circuits, VamplR needs to insert the bodies of functions at
all call sites, which can cause the size of the circuit to become (super-)exponential in comparison
to the size of the VamplR input program. The recursive inlining done by VamplIR is essentially a
full normalisation process, which involves the sharing of common normal subexpressions of type
integer.

The branching problem occurs, in particular, with recursive functions that have more than one
recursive function call occurrence in the body. For example, consider the filter function defined
as follows.

filter : (a -> Bool) -> List a -> List a
filter p Nil = Nil
filter p (Cons x xs) = if p x then Cons x (filter p xs) else filter p xs

The filter function would be completely expanded up to the given recursion depth limit,
with each recursive call being expanded independently, leading to a circuit size that increases
exponentially with the recursion depth limit. In this example, the blow-up could be avoided by
hoisting the common subexpression filter p xs, as follows.

filter p (Cons x xs) =
let xs' = filter p xs
in if p x then Cons x xs' else xs'

However, this is not always possible if there are two or more recursive calls with essentially
different arguments.

Fortunately, there is a large class of functional programs that can be guaranteed to not cause
an exponential blow-up (assuming the circuits are DAGs not trees): those which use recursion
linearly, i.e., for which there is only one recursive call occurrence in each function body. Note
that folds over non-branching data structures (e.g. lists) fall into this category. In fact, the class of
functions definable with linear recursion is quite large (though it might be difficult or inconvenient
to reformulate programs into this format). All primitive recursive functions on natural numbers are
definable with first-order linear recursion.

For first-order linearly recursive programs, the size of the final circuit DAG should be at most
proportional to the program size multiplied by a factor polynomial in the recursion unrolling depth
limit, with the degree of the polynomial depending on the number of functions in the program
source.

For higher-order linearly recursive programs, to guarantee the lack of blow-up, one also needs
to require that functions provided as arguments to higher-order recursive functions are themselves
not recursive.

With the normalisation approach discussed in the next section, to obtain an absolute guarantee
for the lack of blow-up, one also needs to restrict to programs which use only numbers and
booleans.

5. The normalisation approach

One can prove that, for appropriate reduction rules, any closed JuvixCore normal-form lambda-
term ¢ of type Int — . . . — Int — Int must have the form ¢ = Ax; . . . x,.b where b is an expression
built up from:

e the variables xi, . . . , xp,

 number literals,

* arithmetic operations and comparisons,
o if-then-else,

* runtime error nodes.

See Appendix A for a more detailed analysis. After removing the error nodes, any lambda-term in
such a form can be directly translated to VamplR.
This suggests a straightforward compilation strategy with two main steps:

(1) Unrolling of recursive functions (already implemented).
(2) Normalisation (partly implemented).

Once recursion is unrolled, all typed terms are strongly normalising, and normalisation can be
performed without looping. After normalisation, the runtime error nodes need to be removed, but
the effort required is low (see Appendix B.7).

For normalisation to work on anything but the tiniest toy programs one needs to use the
Normalisation by Evaluation (NbE) technique.® One also needs to take care to propagate “stuck”
runtime error nodes’, share common normal subexpressions of type Int using lets and perform ap-
propriate permutative conversions (explained below). Implementing NbE with these modifications
is more involved than a naive repetition of f3-reductions. The implementation effort is still much
smaller than for the remaining parts of the pipeline from Section 6.

The problem with the normalisation approach is that normalising a (simply-typed) lambda-term
may increase its size super-exponentially. In fact, the blow-up may be non-elementary, that is, the
size of the output may be greater than

on
Py
22

for any tower of 2s, where 7 is the size of the original term. See (Sgrensen and Urzyczyn, 20006,
Section 3.7).

Naive normalisation without sharing of subexpressions of type Int may cause an exponential
blow-up of the program size even for numeric first-order linearly recursive programs. For example,
normalising the n-times composition of Ax. fxx results in a normal form of size exponential in 7.
A remedy is to reduce (Ax.t)s to letx := sin¢ when s is a non-constant normal form of type Int.
After normalisation, the lets need to be hoisted (see Appendix B.5).

The difference between evaluation and normalisation is that evaluation does not reduce under binders, e.g., Ax.(Ay.y)x is a
value but not a normal form. Evaluation is what mainstream functional programming languages do (e.g., Haskell, OCaml,
Lisp). Normalisation is what dependently-typed proof assistants do (e.g., Coq, Agda, Idris).

fE.g. reducing (if error M N) to error.

If normalisation is implemented to share subexpressions of type Int, it can be guaranteed that
numeric first-order linearly recursive programs do not cause an exponential blow-up. Nonlinearly
recursive programs may still increase in size super-exponentially.

Unfortunately, it is not possible to use the trick with lets for non-numeric data types. First-order
linearly recursive programs that use data structures other than numbers or booleans may still cause
a super-exponential blow-up.

Because JuvixCore has case-expressions on booleans (i.e., “if-then-else”), in order to obtain the
desired kind of normal forms the reduction rules need to be extended with appropriate permutative
conversions which move around case and let-expressions to expose “stuck” redexes (see (Troelstra
and Schwichtenberg, 1996, Chapter 6)). Permutative conversions may cause an exponential blow-
up for linearly recursive programs even if common subexpressions of type Int are shared. This
happens because for non-boolean A1, A2, a case-expression

case (case M of {C1 -> Al; C2 -> A2}) of
D1 -> B1
D2 -> B2

needs to be converted into

case M of
Cl -> case Al of

D1 -> B1
D2 -> B2
C2 -> case A2 of
D1 -> B1
D2 -> B2

to expose potential redexes in the case analysis on A1, A2. But this duplicates B1 and B2.

However, if we ultimately target circuits and the blow-up does not happen during Juvix-to-
VamplR compilation, it may happen when VamplR tries to generate the final circuit. VamplIR
needs to essentially fully inline all functions, which amounts to full normalisation (with sharing of
common normal subexpressions of numeric type). With the pipeline from Section 6 the blow-up is
delayed until VamplR generates the circuit. With the normalisation approach, it already happens
when compiling Juvix to VamplR.

Nonetheless, it is a major disadvantage that the (super-)exponential blow-up happens already
when compiling to VamplR, which could make it impossible in practise to generate any VamplR
input at all. This would prevent VampIR from optimising the programs in the particular special
cases when the blow-up could be avoided. Also, if parts of the circuit programs are to ultimately be
interpreted in a VM, then the right VM/interpreter code format is probably closer to Geb/VamplR
than to the initial JuvixCore without further transformations.

6. The transformation pipeline

The proposed pipeline for compiling Juvix to VamplR directly, without going through Geb, consists
of several JuvixCore transformations which together convert a JuvixCore program into a form that
can be straightforwardly translated into the input format of VampIR. The transformations remove
step-by-step the features of JuvixCore not supported by VamplR (see Section 2).

(1) Lambda-lifting (already implemented).
— Removes anonymous lambda-abstractions by converting them into top-level named function definitions.
(2) Monomorphisation (necessary for polymorphism).

— Instantiates all type parameters in functions and datatypes with concrete types.
(3) Defunctionalisation.
— Removes higher-order functions.
(4) Unrolling of recursive functions (already implemented).
— Unrolls recursion up to some specified depth.
(5) Hoisting of lets.
— Moves lets upwards, out of applications.
(6) Encoding of datatypes.
— Encodes datatypes into tuples of numbers.
(7) Encoding of runtime errors.
— Encodes runtime errors with pairs.

See Appendix B for more detailed descriptions of the transformations.
After performing the above transformations, we are left with a collection of non-recursive
first-order function definitions of the form

fun £ x1 ... xn =
let y1 = v1
ym = vm
in
v
where xi,...,X,, V1, - .., Ym have the types of numbers or tuples of numbers, and vy, ..., v,V

are applicative expressions built from:

¢ variables,

 number literals,

* fully applied functions,

* arithmetic operations and comparisons,

* tuple operations (tuple creation and destruction).

Any definition of this form can be directly translated to a VamplIR function definition. VampIR
supports local definitions, arithmetic and tuples (at circuit generation time).

7. Comparison
7.1 Efficiency

The proposed pipeline relies on traditional compiler transformations to convert Juvix programs
into a form that can be straightforwardly translated to VamplR. The transformations are “syntactic”
and relatively “low-level”. Such an approach might give better control over the details of the
generated VamplR code and make it easier to generate good VamplIR code (which can be compiled
to smaller circuits that need less proving and verification time). The code generated with the
proposed transformation pipeline should be reasonably efficient without further optimisations.

The normalisation approach essentially “fully inlines” the program by normalizing it. This may
result in super-exponential blow-up at compilation stage and thus failure to compile. But the code
that does compile without blow-up should be reasonably efficient.

Efficiency of Geb-generated code improved since the first version of this report, but Geb is still
missing some features to allow for compilation from Juvix and a thorough comparison.

7.2 Generality

Geb is more abstract and general, which in the long term might make it more amenable to modular,
structured extensions, and to formal verification. For example, according to Terence Rokop sup-
porting higher-rank polymorphism is not problematic. With the proposed pipeline, it is not clear
how to handle higher-rank polymorphism. Also, adding support for dependent types may be more
challenging with the proposed pipeline than with Geb.

7.3 The branching problem

The Geb approach, in the long run, might be better suited to address the branching problem.
Interpreting (parts of) the programs might avoid circuit size blow-up at the cost of significant
interpretation overhead. We are not sure to what extent the current version of Geb avoids the
branching problem.

8. Conclusion
We recommend the following.

(1) Regardless of any other choices, implement the normalisation approach from Section 5 as a
reference baseline.

Justification:

— The normalisation approach is perhaps the most straightforward compilation method
possible for Juvix-to-VamplR. It can serve as a reference point for more sophisticated
methods.

— The normalisation approach can be implemented relatively quickly.

— Implementing the normalisation approach will give the Geb team more time to design the
incorporation of the features needed by Juvix in a structured and modular manner.

(2) Continue the work on Geb. In case of significant unexpected difficulties with the Geb
approach, implementing the pipeline from Section 6 could be considered.

Justification:

— Geb is more general than the proposed pipeline, which in the long term may make it easier
to extend it with higher-rank polymorphism, dependent types or other features. Potential
formalisation might also be easier.

— Geb might make it easier to solve the branching problem.

Appendix A. Analysis of normal forms

We consider the problem of compiling a Juvix program with the main function of type Int — Int into
a one-argument VamplR function f. One would then use this function e.g. in a VamplIR equation
Jfx =y with the input variables x, y.

A generalisation to multiple arguments of type Int is straightforward. To handle first-order
algeraic data types as the arguments/result of the main function, one needs to specify how to encode
them into (tuples of) numbers.

Note that we restrict only the type of the main function. Other parts of the program can use
arbitrary types, be polymorphic, higher-order, etc.

We consider an extended polymorphic lambda calculus without recursion which essentially
corresponds to JuvixCore after compilation of pattern matching and the unrolling of recursion. For
the sake of brevity, we omit some features of JuvixCore (integer comparisons, if-then-else, errors)
but the analysis extends to them with small modifications.

In the presence of case-expressions on booleans and integer comparisons (or other functions
which produce booleans from integers), the reduction rules need to be extended with appropriate
permutative conversions (see (Troelstra and Schwichtenberg, 1996, Chapter 6)).

The types 7, © are:

e primitive integer type Int,

* type variables a, 3,

e parameterised inductive types I7] . . . Ty,
* function types T — O,

* type quantification Vo. 7.

The terms #, s, r are:

integer literals n, m,

arithmetic operations t © s where © € {+, —, %, /},
variables x, y,

application s,

lambda-abstraction Ax : 7.z,

type application 77,

type abstraction Ac.t,

inductive type constructors c,

* case-expressions: caser of {cix; ... x, =1t |i=1,...,n}.

The reductions are:

(Ax:Tt)s —ptlx:=ys]
(Ao.t)T —pt[o:= 1]

Case CmS1 . . . Sk, of {cix1 ... xp, =t |i=1,...,n} =ty =51, ..., X, =5k,

We omit the standard typing rules. The arithmetic operations have type ® : Int — Int — Int.

Lemma 2. Any closed (i.e. without free variables) Bi-normal term t of type Int — Int must have
the form t = Ax : Int.s where s is a B1-normal term of type Int built up from:

e the variable x,
e integer literals n, m,
e arithmetic operations (©.

Proof. This is an easy lambda-calculus exercise in normal form analysis. Because ¢ : Int — Int is
Bi-normal and closed, it must be a lambda-abstraction Ax : Int.s with s : Int also S1-normal and
FV(s) = {x}. Then one proves by induction on the size of f1-normal s : Int with FV(s) = {x} that s
has the required shape. The crucial observation is that if s is an application s = hsj . . . s, then
h cannot be a lambda-abstraction (because s is f-normal), so it must be an arithmetic operation
(because there are no other terms available having a function type with target Int). To exclude the
possibility that s (or & or ¢ above) is a case-expression, one also needs to show by induction on
Bi-normal r: It ... T, with FV(r) = {x} that r =cry . . . r,, for some constructor ¢ of I. O

Any term in the form specified by the above lemma can be directly translated into a VamplIR
function definition.

Appendix B. Pipeline transformations

In this appendix, we describe in more detail the transformations for the pipeline proposed in
Section 6.

B.1 Lambda-lifting
* Necessity: required
* Workload: already implemented

Lambda-lifting removes anonymous lambda-abstractions by converting them into top-level named
function definitions.

For example,
fyz=map (\x ->x+y)z
is transformed into

lamy x =x +y
fyz=map (lam y) z

This transformation has already been implemented for the WebAssembly pipeline.

B.2 Monomorphisation
* Necessity: required for polymorphism
* Workload: medium

Monomorphisation instantiates all type parameters in functions and datatypes with concrete types.

For example,
data List a = Nil | Cons a (List a)

map : (a -> b) -> List a -> List b
map f Nil = Nil
map £ (Cons x xs) = Cons (f x) (map f xs)

is transformed into

data List_Nat = Nil_Nat | Cons_Nat Nat List_Nat
data List_String = Nil_String | Cons_String String List_String

map_Nat_Nat : (Nat -> Nat) -> List_Nat -> List_Nat
map_Nat_Nat f Nil_Nat = Nil_Nat
map_Nat_Nat f (Cons_Nat x xs) = Cons_Nat (f x) (map_Nat_Nat f xs)

map_String_Nat : (String -> Nat) -> List_String -> List_Nat
map_String_Nat f Nil_String = Nil_Nat
map_String_Nat f (Cons_String x xs) = Cons_Nat (f x) (map_String_Nat f xs)

10

provided that map occurs in the program with a = b = Nat and with a = String, b = Nat.

Note that not all Juvix programs can be monomorphised, because Juvix supports some higher-
rank polymorphism. For example, the following is a valid Juvix definition

f : {A : Type} -> ({B : Type} -> B -> B) -> A -> A;
f x :=x x;

It is not possible to (directly) monomorphise £ because Ax.xx is not simply-typable.

With this approach, any program with non-monomorphisable higher-rank polymorphism would
cause a compilation error. One could also consider a more general approach to monomorphisa-
tion, which would duplicate the higher-rank polymorphic function arguments and move the type
quantifiers to the top, e.g., first changing the above f to

f: {ABC: Type} > (B ->B) -> (C ->C) -> A -> A;
f x1 x2 := x1 x2;

and adjusting all call sites appropriately. At this point, it is not clear how to formulate this
transformation in full generality.

According to Terence Rokop, higher-rank polymorphism is not a problem for Geb, in principle.
Geb is expected to support higher-rank polymorphism in the future.

B.3 Defunctionalisation
* Necessity: required
¢ Workload: medium

Defunctionalisation removes higher-order functions by representing them as data structures and
encoding unknown function applications as case distinctions on this data structure.

For example,
map : (Nat -> Nat) -> List Nat -> List Nat
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)
z = map (g 0) (map f xs)

is transformed into
data Fun_Nat_Nat = F | G Nat
app_Nat_Nat : Fun_Nat_Nat -> Nat -> Nat
app_Nat_Nat F x = f x
app_Nat_Nat (G x) y=gxy
map : Fun_Nat_Nat -> List Nat -> List Nat
map f Nil = Nil
map f (Cons x xs) = Cons (app_Nat_Nat f x) (map f xs)

z = map (G 0) (map F xs)

11

assuming that £, g are the only functions in the entire program which occur as the head of a partial
application of type Nat -> Nat.

Note that, in general, one cannot use VamplR higher-order functions to encode Juvix higher-
order functions, because VamplR higher-order functions are compile-time only and cannot interact
nontrivially with the field elements. Thus, they cannot be, e.g., directly stored in a data structure
encoded as a tuple of field elements.

In many cases, one could optimise by using VamplR higher-order functions instead of defunc-
tionalising, but not in general. In terms of the effect on the final circuit, however, this seems
equivalent to doing the specialisation optimisation on the JuvixCore level (i.e. duplicating the
higher-order functions with each known function argument “pasted in”). The downside of this
optimisation is that it might result in program/circuit size blow-up (see also Sections 4,5). It should
probably be performed only selectively.

B.4 Unrolling of recursive functions

* Necessity: required for recursion
* Workload: already implemented

Unrolls recursion up to some specified depth.
For example,

fact x = if x == 0 then 1 else x * fact (x - 1)
is transformed into

fact0 x = error "recursion too deep"
factl x = if x == 0 then 1 else x * fact0 (x - 1)
fact2 x = if x == 0 then 1 else x * factl (x - 1)

X

fact3 = if x == 0 then 1 else x * fact2 (x - 1)

fact{D} x = if x == 0 then 1 else x * fact{D-1} (x - 1)
fact x = fact{D} x

This transformation has already been implemented for the Geb pipeline.
B.5 Hoisting of lets
* Necessity: required

* Workload: low

Hoisting of lets moves lets upwards, out of applications and other subexpressions.

For example,
f (let x = let z=gain z + 2 in x * b)
is transformed into

let z =g a
in

12

let x =z + 2
in
f (x * b)

B.6 Encoding of datatypes
* Necessity: required
* Workload: medium

Elements of each datatype (i.e. the constructors) need to be encoded into (tuples of) numbers
(field elements). Any unambiguous bit encoding of constructors can be used. For example,

* the first 8 bits for the constructor tag (indicating which constructor),
* the remaining bits for the encodings of constructor arguments in the order from left to right.

Note that after defunctionalisation all data types are first-order, so every constructor argument
is itself a constructor or an integer. For finite bounded datatypes, the maximum number of bits
needed for the encoding can be calculated at compile time. If the number of bits needed exceeds the
number of bits available in a field element, then we use an appropriate tuple of field elements. For
unbounded datatypes, one needs to set some bound on the depth of the data structure and calculate
the number of bits based on that. Pattern matching on data types is then encoded by appropriate
arithmetic and tuple operations.

For finite datatypes which are not too deep, a simpler and more readable encoding by nested
tuples can be used. Let n be the maximum number of constructor arguments in any inductive type
in the entire program. Then a constructor with k arguments is encoded by an n + 1-tuple where:

* the first element is the tag,

* the next k elements are the encodings of the constructor arguments,

* the remaining n — k elements are arbitrary elements of appropriate tuples (they’re irrelevant
since they’ll never be accessed).

For the types to match, any integer that is a constructor argument must also be encodable as an

n + 1-tuple, e.g., by encoding it in the tag field.
The nested-tuple encoding is a bit simpler but not very efficient with datatypes of larger depth.

B.7 Encoding of runtime errors
* Necessity: required
* Workload: low

Runtime errors need to be encoded, for example, using pairs.

For instance,

Int -> Int

f
f x = if x == 0 then error "Runtime error" else x - 1

is transformed into

13

f : (Int, Int) -> (Int, Int)
f (1, x) = (1, x)
f (0, x) = if x == 0 then (1, 0) else (0, x - 1)

where the first component of the pair indicates whether a runtime error occurred.

Appendix C. Other technical issues
C.1 Recursion unrolling before defunctionalisation

Unrolling recursion without defunctionalising first may result in counterintuitive effective recursion
depth limit. This is because with higher-order functions one can “cheat” the recursion depth limit.
For instance, consider the following Juvix program:

iterate : {A : Type} — (A — A) — Nat — A — A;
iterate f zero x := x;
iterate f (suc n) x := f (iterate f n x);

plus : Nat — Nat — Nat;
plus := iterate suc;

mult : Nat — Nat — Nat;
mult m n := iterate (plus n) m O;

exp : Nat — Nat — Nat;
exp m n := iterate (mult m) n 1;

If one unrolls iterate up to depth k without defunctionalising (i.e. independently of its function
argument), then the effective recursion depth limit for the entire program (and the size of the normal
form) can be proportional to k¥, because the exp function iterates an iteration of iterations, each
with idependent depth limit k. Note that the normal-form size blow-up may happen even if exp
is never actually expected to be called with arguments that would result in exponential recursion
depth.

After defunctionalisation, the depth limits will depend on each other — in iterate the calls via
app to plus and mult will ensure a decreasing depth limit for them.

C.2 Geb encoding of higher-order functions
As far as we understand, Geb essentially encodes higher-order functions as field elements in a
generic way (i.e., not depending on the particular program but encoding the entire lambda-term
generically) and later essentially “interprets” them upon application (via the eval morphism
associated with the exponential object). The difference with defunctionalisation seems to be that in
defunctionalisation we just do a simple switch to choose between a finite number of functions that
were present in the original program and compiled “normally”, while when the entire lambda-term
is encoded as a data structure all of it needs to be “interpreted”’. This might be several orders of
magnitude less efficient than defunctionalisation (depending on the notion of “efficiency” relevant
to the circuit model). At this point, we are unable to investigate this more thoroughly, because, in
the current state, Geb does not compile any programs using higher-order functions.

However, this issue will disappear after Geb implements the planned use of higher-order VamplIR
functions.

14

Acknowledgements

The author expresses his gratitude to the organisers of the Valencia Heliax retreat 2023, where
the possibility of direct compilation from Juvix to VampIR was discussed with Jonathan Prieto-
Cubides and Murisi Turesenga. Jan Mas Rovira implemented let-hoisting used in the normalisation
pipeline. Also, thanks to the entire VamplIR team for their ongoing support and updates during the
implementation process. The Geb team, in particular Terence Rokop, clarified many Geb-related
issues. Last but not least, special thanks to Jonathan Prieto-Cubides for reviewing this report and
suggesting improvements.

References

Heliax AG. 2023a. Geb Lisp Implementation. https://github.com/anoma/geb/
Heliax AG. 2023b. Juvix Haskell Compiler. https://github.com/anoma/juvix/
Heliax AG. 2023c. VampIR Rust Implementation. https://github.com/anoma/vamp-ir/
M. H. Sgrensen and P. Urzyczyn. 2006. Lectures on the Curry-Howard Isomorphism. Elsevier.
A.S. Troelstra and H. Schwichtenberg. 1996. Basic Proof Theory. Cambridge University Press.

https://github.com/anoma/geb/
https://github.com/anoma/juvix/
https://github.com/anoma/vamp-ir/

	Introduction
	Language features overview
	Current state of the Geb implementation (v0.4.1)
	The branching problem
	The normalisation approach
	The transformation pipeline
	Comparison
	Conclusion
	Analysis of normal forms
	Pipeline transformations
	Other technical issues

