Privacy-Aware Crowd Monitoring and WiFi Traffic
Emulation for Effective Crisis Management

Riccardo Ruscat, Alex Carlucciof, Diego Gasco', Paolo Giaccone*¥

T Department of Control and Computer Engineering, Politecnico di Torino, Italy
* Department of Electronics and Telecommunications, Politecnico di Torino, Italy
t Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Parma (PR), Italy

Abstract—Estimating the number of people in a given area,
denoted as “people counting” process, plays a vital role in crisis
management and disaster response, enabling accurate monitoring
of crowd dynamics and facilitating effective decision-making.
In this work, we focus on WiFi fingerprint technique which
exploits the MAC address of the mobile devices as proxy for
people counting. Due to the European GDPR regulation and the
strict actions undertaken by the major smart-devices vendors
to enhance users’ privacy (e.g., MAC randomization), most of
the techniques investigated in the past must be redesigned and
rethought. Here, we propose an ad-hoc WiFi traffic generator,
tailored to emulate a realistic behaviour of the WiFi cards
and to provide the ground truth for the counting algorithms.
Furthermore, we propose a technique for crowd monitoring
that leverages Bloom filters to guarantee a formal ‘“‘deniability”
property, which preserves users’ privacy. Our solution is also
compatible with trajectory-based crowd monitoring.

I. INTRODUCTION

In crisis management and disaster response scenarios, ac-
curate people counting and crowd monitoring play a pivotal
role in facilitating effective decision-making and ensuring
public safety. The ability to precisely assess crowd dynam-
ics, estimate resource requirements, and optimize emergency
response efforts is crucial for authorities. However, the task of
counting and tracking individuals in large gatherings or chaotic
situations has never been an easy one. Traditional techniques,
such as surveillance cameras, LiDAR and infrared systems,
WiFi and Bluetooth fingerprints, have been extensively utilized
but they are now facing challenges due to the recent European
General Data Protection Regulation (GDPR) [1] and height-
ened user privacy concerns by major smart-devices vendors.

This paper focuses on addressing the evolving landscape
of people counting and crowd monitoring techniques in light
of the GDPR and the need for enhanced privacy protection.
Specifically, we consider the approach based on counting WiFi
probe requests and we propose an ad-hoc probe request gen-
erator which emulates in details real-world behavior patterns
observed in our recent work [2]. The traces obtained by our
generator can be used as ground truth for counting algorithms,
allowing their enhancement and fine tuning.

Furthermore, we present a novel crowd-monitoring tech-
nique that effectively utilizes probe request messages in con-
junction with Bloom filters. By leveraging the formal denia-
bility property, defined vy-deniability in [3], we demonstrate
the preservation of users’ privacy, making our solution GDPR
compliant.

In summary, this paper addresses the challenges posed by
GDPR and the evolving landscape of user privacy concerns

in the context of people counting and crowd-monitoring.
We propose a one-of-a-kind probe request generator and a
privacy-preserving crowd monitoring technique, based on a
novel idea of “anonymization noise”. We aim to contribute
to the development of effective solutions that enable accurate
monitoring of crowd dynamics while upholding the highest
standards of privacy protection.

The rest of the paper is organized as follows. Section II
discusses some relevant related work. Section III describes
the realistic probe request generator. Section IV presents the
Bloom filter system used to store data in a privacy preserving
manner. Section V describes our experimental settings to
derive some metrics that enable us to validate the proposed
generator, and it shows the effectiveness of our solution to
infer the trajectory of flows of people. Finally, Section VI
draws our conclusions.

II. RELATED WORKS

In the last few years crisis management has underlined
an important factor in emergency events: crowd estimation.
Indeed, having an estimate of how many people are present
in a certain environment and how they are moving, can be
very useful to manage in a better way each situation. During
the last few years, several techniques have been proposed
to address the challenge of people counting. In [4], the au-
thors discuss the problem of people counting in multi-camera
surveillance systems. The proposed method combines partial
body detection and person re-identification to accurately count
the number of people in the overlapping area. Similarly, in [5]
the authors explain a system for detecting and counting people
using computer vision techniques, focusing on overhead view-
based detection. Both the previous articles demonstrated good
results, but, on the other hand, techniques leveraging video
camera have several problems. First of all, the high hardware
cost due to the high resource-computation demand required,
secondly, outdoor scenarios are very challenging due to light
variations and in presence of large density of people; finally,
recording and storing face detection is subject to privacy
issues. Furthermore, recent works [6], [7] exploited the use of
LiDAR sensors, which compared to video camera techniques
solve the privacy issues, but still the hardware cost and
the environment use case remain a problem. Conversely, the
works in [8] and [9] analyze the use of WiFi probe request
messages as a method to monitor crowds in various scenarios
by collecting WiFi fingerprints of mobile devices. Solutions
that leverage such messages can be used in both indoor and

Fig. 1: State-machine probe requests generator diagram

outdoor scenarios, they require low-budget equipment, low
computational requirements, and can tackle privacy issues.
At the same time, WiFi fingerprints have some drawbacks,
primarily related to the lack of ground truth data, needful to
test and fine-tune counting algorithms.

Regarding the recent advancements in terms of European
regulations, the GDPR [1] heavily restricts the storage and
handling of sensitive data. As mentioned earlier, mobile
devices emit frequent probe request messages, containing
information (such as the MAC address), useful for device
identification and monitoring. MAC addresses are classified
as personal data by the GDPR, for this reason, they must
be subject to privacy protection mechanisms [10]. Several
solutions have been presented in the literature to address this
issue, including [11], [12]. Both of these solutions address
the privacy problems by leveraging Bloom filters to store
MAC addresses information and by using an asymmetric
homomorphic encryption system, applied to the Bloom filter
data. The homomorphic encryption preserves the possibility
of computing intersection between different Bloom filters,
allowing the computation of crowd flow trajectories.

As demonstrated in [3], Bloom filters can be used to
preserve privacy of stored data, but to achieve a formal level of
anonymity required by the GDPR they require some minimum
number of data insertions. In few words, few inserted data do
not guarantee anonymity. This observation is not considered
in [11], [12], thus their proposed solutions become valid
only for enough large crowd. Furthermore, [3] introduces two
fundamental concepts for anonymity protection: ~y-deniability
and - K -anonymity. The first property tells us that an element
stored in the Bloom filter is deniable if it can be replaced by
other elements not originally inserted into the filter without
changing the Bloom filter bitmap. The second property extends
the first by stating that an element in a Bloom filter is ~y-K-
anonymous if the element can be “covered”, with a probability
of v, by K — 1 other elements not originally inserted into the
filter. We will exploit the concept of ~y-deniability, which is
nicely tailored to GDPR requirements, in Section IV.

Our work differs from the prior art as we focused on
creating a probe requests generator addressing the lack of
datasets with the related ground truth data. Moreover, we

analyzed and proposed a GDPR-compliant solution to store
users’ sensitive data allowing at the same time the use of
people counting and crowd estimation algorithms.

III. REALISTIC GENERATOR OF PROBE REQUEST TRACES

To properly design a realistic probe request generator, we
started by understanding the probe request behaviour, how
their sending process is implemented by different device
vendors in current generation smartphones, and how the user
interaction with the device itself influences the sending of
probe request messages. We sum up all the work done in [2].
Starting from the learned knowledge, we created a state-
machine probe request generator, as the one in Figure 1, to
have tunable traces as ground truth, where it would be possible
to vary the number of devices and their models as desired and
then validate counting algorithms.

It is noteworthy to highlight that upon powering on a device,
we assign three probabilities for it to initiate in any of the
three potential phases. Additionally, following a timeout, the
device can undergo a state change, either transitioning to a
different phase or entering a dead phase, indicating that the
device is once again turned off. During the Locked, Awake,
and Active states, the device has the capability to enter a
transient state called “send burst”, wherein it emits a burst and
subsequently returns to its previous state. In [2] we underlined
how each smartphone has a different way of acting in probe
request sending, depending on vendor implementation and user
interaction with the device. For this reason, we decided to
extract and save for each device the following metrics:

o whether a randomized MAC address is used;

« number of packets inside a burst (burst length);

o 802.11 VHT capabilities;

o 802.11 Extended capabilities;

o 802.11 HT capabilities;

« time between packets inside the same burst (inter-packet

time);

o time between different bursts (inter-burst time).

Since 2014, device vendors have been implementing MAC
address randomization to protect user privacy [13]. Coherently,
in our past study [2], we observed MAC randomization,
especially for more recent devices. Based on our findings, we

opted to utilize a fully randomized MAC address, except for
the observed devices where only the second half of the MAC
address is modified while retaining the first 3 bytes (i.e., the
OUI). Moreover, in order to generate random MAC addresses,
we set the global/local bit (the second-least-significant bit in
the first byte) to 1 and we randomly choose all the other values.
Regarding the VHT and Extended capabilities, as well as burst
length, inter-packet time, and burst rate statistics, we created
a database of value-probability pairs, divided for each device
state (i.e., locked, awake, and active), coherently with what
observed in [2]. The state machine is realized as a scheduling
queue, where each event has its starting time, and the queue is
ordered based on that time. The events that are handled inside
the generator are the following:

o CreateDevice: event that creates a new object of type
Device. The initial phase of the device is decided with
an experimentally chosen probability distribution. The
same event is responsible for the creation of other related
events, such as DeleteDevice, ChangePhase, CreateBurst,
and CreateDevice. To decide which vendor and model of
the device to create with the latter event, we referred
to [14].

o DeleteDevice: an event that deletes the device object and
all the events associated with it that are in the queue, if
any.

o ChangePhase: event that chooses the next device phase,
based on the current one and on the aforementioned
probabilistic distribution. Then we schedule the events
ChangePhase and CreateBurst.

o CreateBurst: event that creates several events of type
SendPacket according to the device’s probabilistic dis-
tribution of the burst length value.

o SendPacket: event that contains the built probe request
packet and saves it to the output .pcap file.

In order to maintain a consistent presence of a specific
number of devices within the simulated environment, it is
possible to configure two parameters in the simulator: the
average number of devices and the duration of their presence
in the area. To set the proper arrival rate of new devices, we
adopted the well-known Little’s Formula:

L=\W e))

where L represents the average number of customers in a
system (i.e., devices in the area) at any given time, \ represents
the average arrival rate of customers into the system (i.e.,
arrival rate of new devices) and W represents the average
time a customer spends in the system (i.e., duration of device
presence). Following this law, we can compute A and schedule
the arrival of the next device according to a Poisson process,
while maintaining a given average number of devices in our
generator.

An open-source implementation of the complete probe
request generator has been made accessible to the research
community', facilitating the effortless and practical generation
of new datasets.

Thttps://github.com/riccardo-rusca/ProbeRequestGenerator

TABLE I: Notations and definitions

[Notation | Definition
U Set of elements in the universe
S Set of elements stored in the Bloom filter
BF'(S) | Bloom filter storing a set .S
n = |S| | Number of elements stored in the Bloom filter
m Size in bit of the Bloom filter
k Number of hash functions
t; Number of bits set to 1 in the Bloom filter BF;
Hiding Set

IV. BLOOM FILTERS FOR PEOPLE COUNTING

We decided to leverage Bloom filters for people count-
ing and crowd monitoring. However, we faced two primary
challenges: ensuring privacy preservation and enabling the
identification of people’s movement patterns.

In order to provide some background, we remind that a
Bloom filter is a probabilistic data structure used to represent
a set of elements. It is implemented using an array of bits
BF € {0,1}™ of length m and k independent hash functions
H,...Hy, that maps an input z to one of the m bits of the bit
array. Let BF[i] be the ith bit of BF. Initially, all bits are set
to 0. To insert an element x into the Bloom filter, the k hash
functions are applied to x, and the bits of BF' corresponding
to the generated positions from the hash functions are set to 1:

BF[Hy(z)]=1 Vi=1,...,m)

In order to verify if an element is present in the Bloom
filter, the element is hashed through to the same % functions,
and the output is compared to the current values of the
corresponding bits in BF'. If the 1s in the output match the
corresponding bits in BF' (i.e., both are set to 1), the element
is considered “probably present” in the Bloom filter. However,
if even a single bit in the match is set to 0, the element
is considered definitely not present in the Bloom filter. It is
important to notice that a Bloom filter can potentially provide
false positives, meaning that it may mistakenly indicate that
an element is present even if it is not. However, it does not
provide false negatives, meaning that it cannot mistakenly
indicate that an element is not present when it actually is.
Based on the available memory m, it is possible to compute
the optimal value of k such that a given value of probability
of false positive is achieved.

1.0

0.8

=4
o

y-Deniability
o
=

0.2

0.0

0 10 20 30 40 50 60
Num Inserted MACs

Fig. 2: y-deniability value in relation to the number of inserted
MAC addresses.

We now describe how Bloom filters can be used to preserve
anonymity, as proposed in [3]. Before going further, we need
to introduce some definitions, still derived from [3]:

e Set S C U of elements stored in the Bloom filter from
an universe U.

« Bloom filter BF'(S) storing S.

 Hiding set: V' = {v;} is defined as hiding set for BF'(S)
if it contains all the elements v; € U such that v is not
stored in BF(S) (i.e., v; ¢ S) and a query for v; returns
true, i.e., present in BF(S).

o Deniable: An element x € S inserted in BF'(.S) is defined
deniable if Vi € {1...k} it exists at least one hiding
set element v € V for which 35 € {1...k} such that
H;(z) = H;(v). In other words, an element is deniable
if it can be replaced by another element not inserted in
the Bloom filter without changing the bitmap.

e ~y-deniability: A BF(S) is v-deniable whenever a ran-
domly chosen element = € S is deniable with probability
5.

In order to manage the privacy concern in accordance with
the General Data Protection Regulation [1], we propose to
employ ~-deniability property as proposed in [3], specifically
with v = 1 to ensure that all the elements in the Bloom filters
(i.e., the stored MAC addresses) are deniable.

As shown in [3], given a Bloom filter it is possible to
compute v for the level of -deniability according to:

WBF(S)) = (1 — exp (m(l_h’“/m)» 3

where n is the number of stored elements in the Bloom filter,
and h = (|U| — n)(1 — e~™*/™)* is the average hiding set
cardinality and |U]| is 248 ~ 2.8 104

Figure 2 shows the level of deniability after inserting n
MAC addresses, according to (3), for m = 10,000 bits and
k = 7 hash functions. It can be shown that the chosen value
of k is the optimal one minimizing the probability of false
positive when n = 1, 000 elements are stored. From the figure,
it can be seen that after 30 insertions in the Bloom filter, the
value of v reaches 1, thus providing the certainty that there
will be always at least one element belonging to the hiding
set that can be used to deny an element inserted in the Bloom
filter.

We thus propose to define an anonymization noise com-
posed of n,i, elements randomly generated to be inserted into
the Bloom filter as soon as it is instantiated. In the scenario of
Figure 2, nmin = 30. This will provide the ability to guarantee
1-deniability and thus ensure the anonymity of the data from
the first insertion of a MAC address into the Bloom filter.

Consider now the scenario in which many WiFi counting
sensors are located in a large area, and each sensor stored
the MAC addresses in a local Bloom filter. By knowing
the common MAC addresses between different Bloom filters,
it is possible to identify the people’s movement patterns.
Fortunately, it is to possible to compute approximately the
intersection of different Bloom filters by computing a bitwise
AND operation between Bloom filters. To estimate the num-
ber of elements present in the intersection as accurately as
possible, we compared two formulas. Assume to have two

Locked Awake Active

. Il
il

N w
o o

o
o

Packets
[occurrences]

M ‘XIHH. 1 ..1‘ L

o

N
v

i
i
i
|
|
i
|

in burst
[ms]
Y

w

-
o

Inter packet time

H
3
H
3
L
3
3
$
;
|
8
1E
i
|

Burst length

per burst
[occurrences]

= N

o o
§
9

$ §

3 3
#
3

H 3
i

{

8

I
w

Number of packets

o)
o

S
N
o

N
o
.

oo

Inter burst time

w o
oo o
2. o 20,

2000

5
bp 30 o
1500

2 o2l
1000

E;:

0 500 2500

Time of capture [s]

Fig. 3: Trace of emulated bursts for Apple iPhone 11 as
a function of time, for different device phases. Different
colored bands are used to highlight the different phases of
the experiment, according to the legend on top.

Bloom filters BF; and BF5. Let BF;3 = BF}, AND BF; be
their intersection. Let f; be the number of ones in the Bloom
filter k: ¢, = .-, BFi]. The simplest way to estimate the
number of MAC addresses in BF3 is to apply the following
formula, well known [15]:

01:—%111 (1—2) 4)

but it is approximated due to the way BFj is obtained.
A more accurate formula for the intersection BF3 was
shown in [16]:

_ taxm—t1 Xta _
In (m 77”%1%2“3) In(m)

1
k X hl(l — E)
V. NUMERICAL EVALUATION

®)

Co =

We first present in Sec. V-A the results validating our real-
istic probe request generator, then in Sec. V-B we investigate
the most accurate way to estimate crowd trajectories.

A. Generator of realistic probe request traces

The experiments done with the generator of realistic probe
request traces are based on a series of simulations, each one

TABLE II: Locked phase for Apple iPhone 11: (mean, coefficient of variation)

[Metric [Real | Simulation T | Simulation 2 | Simulation 3 | Simulation 4]
Packets [occurrences] G.11,252) | (342, 133) | (332, 136) | (329, 129) | (325, 1.34)
Inter packet time [ms] (20.38, 0.02) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
Burst length [ms] (163, 052) | (16.73, 0.44) | (16,5, 0.46) | (16.76, 0.44) | (16.85, 0.43)
Packets per burst [occurrences] (1.8, 0.23) (1.84, 0.2) (1.83, 0.21) (1.84, 0.2) (1.84, 0.2)
Tnter burst Gme [s] (1649, 1.62) | (16.07, 1.59) | (16.48, 1.57) | (16.74, 1.56) | (17.01, 1.55)

TABLE III: Awake phase Apple iPhone 11: (mean, coefficient of variation)

[Metric [Real [Simulation I | Simulation 2 | Simulation 3 | Simulation 4]
Packets [occurrences] (7.54, 1.46) (7.46, 1.15) (7.74, 1.18) (7.79, 1.13) (7.42, 1.11)
Inter packet time [ms] (20.33, 0.02) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
Burst length [ms] (17.94, 0.37) | (16.68, 0.45) | (16.55, 0.46) | (16.66, 0.45) (16.5, 0.46)
Packets per burst [occurrences] (1.88, 0.17) (1.83, 0.2) (1.83, 0.21) (1.83, 0.2) (1.83, 0.21)
Inter burst time [s] (7.2, 2.32) (7.35, 2.26) (7.06, 2.33) (7.04, 2.3) (7.36, 2.27)

TABLE IV: Active phase Apple iPhone 11: (mean, coefficient of variation)

[Metric [Real [Simulation I | Simulation 2 | Simulation 3 | Simulation 4]
Packets [occurrences] (11.16, 1.06) | (10.47, 0.89) | (10.85, 0.91) | (10.87, 0.89) | (10.71, 0.85)
Inter packet time [ms] (20.27, 0.02) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
Burst length [ms] (16.6, 0.47) (16.4, 0.47) (16.85, 0.43) | (16.62, 0.45) | (16.61, 0.45)
Packets per burst [occurrences] (1.82, 0.21) (1.82, 0.21) (1.84, 0.20) (1.83, 0.2) (1.83, 0.21)
Inter burst time [s] (4.81, 2.41) (5.2, 2.39) (5.08, 2.42) (5.03, 2.38) (5.11, 2.27)

producing an output trace with a fixed duration in terms of
simulated time. We report in Figure 3 the results relative
to a single device, the Apple iPhone 11. Each simulation is
performed in a closed environment, where only the device
considered “working” is active in our generator, any other
device is added during the entire simulation. The objective
of the generator is to emulate the real traces with a device’s
behavior that follows the real one, for this reason, in order
to validate the probe request traces generated, we compared
several metrics extracted from the real traces (derived from [2])
and the simulated ones.

Figure 3 shows the main statistics relative to only one
simulation instance. With three different color bands, we
represent the different phases in which the device is sending
probe request at a certain time, the yellow band refers to the
Locked phase, the green band to the Awake phase, and the
purple band to the Active phase. The entire simulation lasts
40 minutes and in each graph, we considered an observation
window of 30 seconds. Notably, it took less than 6 seconds
to generate the whole trace, showing the scalability of the
proposed approach.

From the top down, the first plot shows the number of
packets generated in the observation window. Compliant with
the real traces and the results shown in [2], within the Locked
phase, the device tends to send more packets at the beginning
than at the end, on the other hand within the Awake and
Active phases the number of packets generated increases. The
second plot shows the time between packets inside the same
burst, called henceforth InterPacketTime. It can be shown that
the results are perfectly matching the real ones. The third
plot reports the burst duration, i.e., the difference between the
arrival time of the last packet and the first packet inside the
same burst. This value is strictly correlated to the previous one
and it can be seen that simulate very well the real behavior (it
is worth mentioning that the zero values refer to the burst with
one packet only). The fourth plot shows the number of packets

per burst. Finally, the last plot represents the time between the
capture of the last packet of a burst and the capture of the
first packet in the next burst, called henceforth InterBurstTime.
Once again both the results obtained from the generated traces
of the last two plots are perfectly following the real traces.
To extend our validation, we decided to generate more traces
from our generator and extract, for each of the five metrics
described in Figure 3, the mean and the coefficient of variation
evaluated among all the simulations. Moreover, we compared
the simulated values with the real values extracted from the
real probe request traces of the considered device. We sum up
all the results in Tables II, III, and IV, reporting the comparison
between the real trace metrics and the simulated ones, for
three different phases. Four simulations have been done with
a simulated time equal to three hours, one hour per phase. With
these long simulations, we were able to show that the first two
moments of the simulated behavior of the device is matching

1024 e

101

Relative Error

1004

107!

10° 10t 102
Num Inserted MACs

Fig. 4: Relative error of the estimators c; and ¢y to evaluate
the number of people moving from one scanner to the other.

very well the real behavior of the device. This is thanks to
an internal procedure of the simulator which generates the
messages according to the empirical distributions measured in
the real traces.

B. Evaluation of crowd trajectories

We run some simulated experiments in which we took two
Bloom filters, BF; and BF5, with 10, 000 bit each, and k = 7
hash functions. We generated 500 distinct MAC address and
inserted each of the Bloom filters, to model the background
presence of devices which appear individually in each Bloom
filter, corresponding to people that passed just under one
WiFi scanner. To model people moving from one scanner to
another, we added one by one a common MAC address in
both BF} and BF5. Then, after each insertion, we computed
the intersection in BF3 and used (4) for ¢; and (5) for ¢5 to
estimate the number of common MAC addresses in the two
Bloom filters, which correspond to the people moving from
the area around one scanner to the area around the other one.

Figure 4 shows the relative error after the insertion of the
MAC address of the people moving from one scanner to
the other. The relative error of c; appears to be very large
for small number of stored MAC addresses, and becomes
acceptable (< 100%) only for more than 100 MAC addresses
are stored. Instead, the relative error of cy is very small also
for few stored MAC addresses. This is not surprising, since
coherent with [16], but highlights a different tradeoff between
accuracy, complexity and privacy to compute the number of
MAC addresses in the intersection of BF} and BF5. Indeed,
(4) requires only to know the number of ones in B F3, whereas
(5) (even if very accurate) requires to know the number of
ones in BF}, BF; and BFj3 in the same server. Thus, the
two solutions have different levels of adaptability to a given
architecture, being either centralized or distributed. We leave
for future work the exploration of the best tradeoff between
accuracy, implementation complexity and privacy-preserving
architectures.

VI. CONCLUSIONS

We designed a WiFi traffic generator emulating with high
accuracy the behavior of real devices in generating the probe
request messages. The generator is able to create realistic
traffic traces lasting tens of minutes in few seconds for a single
device. It is possible to generate any given set of devices at
the same time, allowing to emulate the behavior of a large
number of devices (also hundreds). This achievement has some
practical relevance since it allows to create a ground truth
scenario in which the number of devices is known a priori
and on which it is possible to test the accuracy of different
counting algorithms based on Probe Requests.

Furthermore, we exploited Bloom filter to preserve privacy
guaranteeing the 1-deniability property thanks to the intro-
duction of anonymization noise, for which we provided the
methodology to set it properly. We also evaluated the effect
of different formulas, taken from the literature, to estimate the
number of people moving from one WiFi scanner to another,
when the corresponding MAC addresses are stored in privacy
preserving Bloom filters.

Both contributions provide the ground to design new count-
ing algorithms able to cope with MAC randomization and with
privacy concerns.

ACKNOWLEDGMENTS AND DISCLAIMER

This Work is funded by the European Union’s Horizon-
JU-SNS-2022 Research and Innovation Programme through
the TrialsNet project (Grant Agreement No. 101095871). This
manuscript reflects only the authors’ views and opinions,
and do not necessarily reflect the view the European Union
neither the European Commission can be considered respon-
sible for them.

REFERENCES

[1] European Parliament and Council of the European Union, “Regulation
(EU) 2016/679 of the European Parliament and of the Council.”
[Online]. Available: https://data.europa.eu/eli/reg/2016/679/0j

[2] R. Rusca, E. Sansoldo, C. Casetti, and P. Giaccone, “What WiFi
probe requests can tell you,” in [EEE Consumer Communications &
Networking Conference (CCNC), 2023, pp. 1086-1091.

[3] G. Bianchi, L. Bracciale, and P. Loreti, “’Better than nothing” privacy

with bloom filters: To what extent?” in Privacy in Statistical Databases.

Springer Berlin Heidelberg, 2012.

L. Ding, S. Wang, R. Li, L. Chen, and J. Dong, “PC-PINet: Partial re-

identification network for people counting with overlapping cameras,”

in International Conference on Image, Vision and Computing (ICIVC),

2021, pp. 66-71.

[5] E.P. Myint and M. M. Sein, “People detecting and counting system,” in
IEEE Global Conference on Life Sciences and Technologies (LifeTech),
2021, pp. 289-290.

[6] A. Giinter, S. Boker, M. Konig, and M. Hoffmann, “Privacy-preserving
people detection enabled by solid state LiDAR,” in International Con-
ference on Intelligent Environments (IE), 2020, pp. 1-4.

[7]1 Z.Chen, W. Yuan, M. Yang, C. Wang, and B. Wang, “SVM based people
counting method in the corridor scene using a single-layer laser scanner,”
in IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2016, pp. 2632-2637.

[8] K. Gebru, M. Rapelli, R. Rusca, C. Casetti, C. F. Chiasserini, and
P. Giaccone, “Edge-based passive crowd monitoring through WiFi
beacons,” Computer Communications, vol. 192, pp. 163-170, 2022.

[9] A.E.Redondi and M. Cesana, “Building up knowledge through passive
WiFi probes,” Computer Communications, vol. 117, pp. 1-12, 2018.

[4

=

[10] Preliminary verification. collection, analysis and process-
ing of data, through the installation of equipment,
for marketing and market research purposes. [On-

line]. Available: https://www.garanteprivacy.it/home/docweb/-/docweb-
display/docweb/9022068

V.-D. Stanciu, M. v. Steen, C. Dobre, and A. Peter, “Privacy-preserving
crowd-monitoring using Bloom filters and homomorphic encryption,”
in International Workshop on Edge Systems, Analytics and Networking
(EdgeSys). ACM, 2021, p. 37-42.

V.-D. Stanciu, M. van Steen, C. Dobre, and A. Peter, “Anonymized
counting of nonstationary Wi-Fi devices when monitoring crowds,”
in International Conference on Modeling Analysis and Simulation of
Wireless and Mobile Systems (MSWiM). ACM, 2022, p. 213-222.
[13] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins,
E. Rye, and D. Brown, “A study of MAC address randomization in
mobile devices and when it fails,” Proceedings on Privacy Enhancing
Technologies, 2017.

“MS Windows NT kernel description,”
https://gs.statcounter.com/vendor-market-share/mobile/europe/yearly-
2020-2023-bar.

“Bloom filter.” [Online].
https://en.wikipedia.org/wiki/Bloom_filter

O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and
dynamic length adaptation for Bloom filters,” Distributed and Parallel
Databases, vol. 28, pp. 119-156, 2010.

(1]

[12]

[14]

[15] Available:

[16]

