The Language TplSpec

BNF-converter

September 13, 2014

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

The lexical structure of TplSpec

Literals

Integer literals (Int) are nonempty sequences of digits.

String literals (String) have the form "z", where z is any sequence of any
characters except " unless preceded by \.

Numeral literals are recognized by the regular expression ‘0’ | [“123456789”][“0123456789” |

Rational literals are recognized by the regular expression (‘0’ | [“123456789”][“0123456789” |x)*.’[“0123456
Hexadecimal literals are recognized by the regular expression { “#h” }[“0123456789ABCDEF”]+

Binary literals are recognized by the regular expression { “#b” }[“01”]+

NormalSymbolT literals are recognized by the regular expression ([“+—/*=""] |

(letter))([“+—/*=""] | (letter) | (digit))=

QuotedSymbolT literals are recognized by the regular expression ‘|’
¢ | 9

[44 4A~//] %

AnnotAttribute literals are recognized by the regular expression “:’([“+—/*=""] |
(letter))([“+—/*=""] | (letter) | (digit))=

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in TplSpec are the following;:

as exists forall
let predicate templates
term

The symbols used in TplSpec are the following:

() predicate—2
inequality—term inequality—term—2 !

Comments

Single-line comments begin with ;.
There are no multiple-line comments in the grammar.

The syntactic structure of TplSpec

Non-terminals are enclosed between (and). The symbols ::= (production),
| (union) and e (empty rule) belong to the BNF notation. All other symbols
are terminals.

(SpecC) == (ListTemplatesC')
(TemplatesC') ::= (templates ((SymbolRef) (ListSymbol)) (ListTemplateC))
(ListTemplatesC') = ¢
| (TemplatesC') (ListTemplatesC)
(TemplateC) := ((TemplateType) (Term) (Integer))
(ListTemplateC) = ¢
| (TemplateC') (ListTemplateC')
(TemplateType) := predicate
predicate—2
term

|
|
| inequality—term
| inequality—term—2
(Sort) == (Identifier)

| ((Identifier) (ListSort))

(ListSort) == (Sort)
| (Sort) (ListSort)

(Term) == (SpecConstant)
| (SymbolRef)
| ((SymbolRef) (ListTerm))
] (let ((ListBindingC)) (Term))
| ((Quantifier) ((ListSortedVariableC')) (Term))
| (! (Term) (ListAnnotation))

(ListTerm) == (Term)
\ (Term) (ListTerm)

(BindingC) == ((Symbol) (Term))
(ListBindingC) == (BindingC)
\ (BindingC') (ListBindingC')
(Quantifier) := forall
| exists
(SymbolRef) ::= (Identifier)
| (as (Identifier) (Sort))
(SortedVariableC') ::= ((Symbol) (Sort))
(ListSortedVariableC') ::= (SortedVariableC')
] (SortedVariableC') (ListSorted VariableC')
(SpecConstant) == (Numeral)
| (Rational)
| (Hexadecimal)
| (Binary)
] (String)
(Identifier) := (Symbol)
\ (_ (Symbol) (ListIndexC'))
(IndexC) = (Numeral)
(ListIndexC) == (IndexC)
\ (IndexC') (ListIndexC)
(Symbol) = (NormalSymbolT)
| (QuotedSymbolT)
(ListSymbol) = €

| (Symbol) (ListSymbol)

(Annotation) := (AnnotAttribute) (AttrParam)

(ListAnnotation) := (Annotation)
| (Annotation) (ListAnnotation)
(AttrParam) == (SExpr)
] €

(SExpr) = (SpecConstant)

| (Symbol)

\ ((ListSExpr))
(ListSExpr) == €

] (SExpr) (ListSExpr)

