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Supplementary materials36

Methods overview37

We used an integrated population model to estimate variation in mortality over time for snow crab in the38

eastern Bering Sea and generalized additive models (GAMs) to relate the estimated variation in mortality39

to potential stressors in the environment. The population dynamics model was fit to abundance and size40

composition data from the National Marine Fisheries Service (NMFS) summer bottom trawl survey on the41

eastern Bering Sea shelf to estimate total mortality by maturity state and year for male snow crab. We42

then developed indices for temperature occupied, disease prevalence, cannibalism, and crab density from the43

NMFS survey to test as covariates in GAMs. Cod predation indices were developed using stomach content44

data collected on NMFS surveys in addition to cod size composition and abundances. Indices for fishery45

related effects were collated from fisheries statistics from the Alaska Department of Fish and Game and also46

included in the GAMs.47

Ecological detective work in the marine environment is hampered by the difficulty of observation and this is48

particularly so on the eastern Bering Sea shelf. The waters in which snow crab reside range from 50-200 meters49

deep and are seasonally covered by ice, making data collection only feasible in the summer. Consequently,50

the survey based portions of our analyses are derived from a yearly snapshot of the population over an51

approximately 30 year period. Each of the hypotheses explored here clearly result in some mortality. We52

know that millions of crab are eaten by cod every year, the directed and bycatch fisheries kill crab, larger53

crab eat smaller crab, and crab die from bitter crab disease each year. The goal of our analysis is to place54

each of these processes in a historical context to try to understand the relative impact of each and what55

was different about the recent collapse. More than one way exists to analyse the available data on this56

issue. Below we describe our approach, including a description of each of the components of our analysis,57

a discussion of the rationale behind our modeling decisions, and sensitivities and simulation tests of our58

models, all of which provide what we think is sound reasoning for our analysis.59

Population dynamics model60

The population dynamics model presented here incorporated the best available information on relevant61

population processes to estimate total mortality for male snow crab on the eastern Bering Sea shelf and is62

similar in structure to the model used to assess eastern Bering Sea snow crab for management (Szuwalski,63

2021). The model tracked numbers of male crab at size at maturity state over time with size bins ranging64

from 30-95 mm carapace width with 5 mm bin widths. Only male crab were modeled because male and65

female crab appear to have somewhat different dynamics and the male crab in the modeled size range are66

better selected by the survey gear (Szuwalski, 2021). Snow crab are sexually dimorphic, with male snow crab67

growing to nearly twice the size of females, which accounts for the better selection in the survey. Only crab68

smaller than 95 mm were modeled for two reasons: 1) to attempt to isolate the effect of the directed fishery69

(crabs of >101 mm carapace width are targeted in the fishery; discussed further below) and 2) almost all of70

the crab that disappeared since 2018 are in this size range. The population dynamics model operates on a71

half year time step, starting in July at the time of the NMFS survey. Total mortality (Z) is estimated by72

year (y) and maturity state (m). Other estimated parameters include the initial numbers at size by maturity73

state, yearly log recruitments, a vector of scalars that determine the proportions of estimated recruitment74

split into the first two size bins, and a variance component for the penalty on total mortality. Parameters75

determining growth, maturity, and survey selectivity were estimated outside of the model and specified when76

estimating mortality and catchability. Mortality is the only population process that occurs in the first half77

of a given year:78
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Nt=y+0.5,s,m = Nt=y,s,me−Zt,s,m/2 (1)

Growth occurs at the beginning of the second half of the year for immature crab and is represented in the79

model by multiplying the vector of immature crab at size by a size-transition matrix Xs,s′ that defines the80

size to which crab grow given an initial size. Snow crab are observed to undergo a ‘terminal molt’ to maturity81

after which growth ceases (Tamone et al., 2005). Accordingly, all immature crab are assumed to molt and no82

mature crab molt in our model. The newly molted crab are assigned to a maturity state based on observed83

ogives of the proportion of mature new shell males by size calculated from chelae height measured in the84

NMFS survey data (Otto, 1998), which varies over time (ρy,s; Figure 5). The average probability of having85

undergone terminal molt is used in years during which data were not collected. This process results in two86

temporary vectors of numbers at size:87

nt=y+0.5,s,m=1 = ρy,sXs,s′Nt=y+0.5,s,m=1 (2)
88

nt=y+0.5,s,m=2 = (1 − ρy,s)Xs,s′Nt=y+0.5,s,m=2 (3)

The size transition matrix Xs,s′ was constructed using growth increment data collected over several years (see89

Szuwalski [2021] for a summary) to estimate a linear relationship between pre- and post-molt carapace width90

(Figure 6), (Ŵ pre
s,w and Ŵ post

s,w , respectively) and the variability around that relationship was characterized by91

a discretized and renormalized normal distribution with a size-varying standard deviation, Ys,w,w’ (Figure 6).92

Xs,w,w′ = Ys,w,w′∑
w′ Ys,w,w′

(4)

Ys,w,w′ = (∆w,w′)
ˆLs,w−(W̄w−2.5)

βs (5)

L̂post
s,w = αs + βs,1hatW pre

s,w (6)

∆w,w′ = L̄w′ + 2.5 − Ww (7)

It is important to note that crab can ‘outgrow’ this model, which is represented by the pre-molt-carapace93

widths (e.g. 87.5 and 92.5 mm carapace width in Figure 6) that have low probability of molting to any of94

the sizes that are included in the population dynamics model.95

Recruitment by year, τy, was estimated as a vector in log space and added to the first two size of classes of96

immature crab based on another estimated vector δy that determines the proportion allocated to each size97

bin.98

nt=y+0.5,s=1,m=1 = nt=y+0.5,s,m=1 + δyeτ
y (8)

99
nt=y+0.5,s=2,m=1 = nt=y+0.5,s,m=1 + (1 − δy)eτ

y (9)

Finally, the last half of the year of mortality is applied to the population after growth, molting, and recruit-100

ment occurs. Note that this allows a crab to experience two different mortalities within a given year as it101

undergoes terminal molt.102

Nt=y+1,s,m=1 = nt=y+0.5,s,m=1e−Zt,s,m/2 (10)
103

Nt=y+1,s,m=2 = (Nt=y+0.5,s,m=2 + nt=y+0.5,s,m=2)e−Zt,s,m/2 (11)
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Survey selectivity104

The observed numbers of crab at size by year in the NMFS survey reflect the ability of the trawl gear to105

capture the crab, also known as ‘selectivity’. The selectivity of trawl gear can change according to size, and106

consequently needs to be accounted for in the population dynamics model when fitting to the survey data.107

Values for survey selectivity at size were specified using data from experimental Nephrops trawls (a small108

trawl net designed to maintain bottom contact), operated by the Bering Sea Fisheries Research Foundation109

in collaboration with the NMFS summer survey. The experimental trawls were performed at the same time110

and location as the NMFS summer survey tows to evaluate the efficiency of the NMFS survey trawl gear111

at capturing snow crab (Somerton et al., 2013). The Nephrops gear used by the BSFRF was assumed to112

capture all crab in its path given strong bottom contact. The resulting area-swept estimates of numbers of113

crab at size from the BSFRF and NMFS surveys (N̂y,s,NMF S and N̂y,s,NMF S , respectively) can be used to114

infer the selectivity of the NMFS gear in year y as:115

Sy,NMF S = N̂y,s,NMF S

N̂y,s,BSF RF

(12)

The experimental trawls captured snow crab in the years 2010, 2011, 2016, 2017, and 2018, but the spatial116

foot print and sample sizes varied by year (Figure 7). The calculated selectivities by size and by year were117

fairly consistent for snow crab of carapace widths 40 - 95 mm, but the signal was less consistent for crab118

larger than ~100 mm carapace width (Figure 8). The selectivity of large crab determines the estimated scale119

of the population in a population dynamics model, but the information we have on selectivity of large crab is120

poor and different assumptions about selectivity lead to very different inference about the stock (Szuwalski,121

2021b). The lack of clear information on the scale of the population exploited by the fishery is one of the122

key reasons we used the range of sizes included in this model and excluded the directed fishery data from123

the analysis. A GAM was fit through the estimates of selectivity and the resulting estimates by size were124

directly specified in the population dynamics model.125

‘Catchability’ represents the fraction of the population available to the survey gear (either as a result of126

spatial mis-match or the inability of the gear to come in contact with the animals as a result of burrowing127

or hiding in untrawlable habitat). The capability for modeling time-varying catchability was built into the128

model in the form of a vector of parameters equal to the length of the time series of data. When time-129

varying catchability was estimated, the yearly catchability parameters were used to scale the selectivity130

curve described above up or down.131

Objective function132

The objective function for the population dynamics model consists of likelihood components (representing133

the fit of the model to the data) and penalty components (which incorporate constraints in the fitting based134

on prior information) that are summed and minimized in log space to estimate parameters within the model.135

Several data sources were fit to using the following likelihoods. Observed size composition data for immature136

and mature males were fit using multinomial likelihoods and were implemented in the form:137

Lx = λx

∑
y

Nx,y

∑
l

pobs
x,y,lln(p̂x,y,l/pobs

x,y,l) (13)

Lx was the likelihood associated with data component x, where λx represented an optional additional weight-138

ing factor for the likelihood, Nx,y was the sample sizes for the likelihood, pobs
x,y,l was the observed proportion139

in size bin l during year y for data component x, and p̂x,y,l was the predicted proportion in size bin l during140

year y for data component x. Sample sizes were input as 50.141

Observed indices of abundance for immature and mature males were fit with log normal likelihoods imple-142

mented in the form:143
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Lx = λx

∑
y

(ln(Îx,y) − ln(Ix,y))2

2(ln(CV 2
x,y + 1)) (14)

Lx was the contribution to the objective function of data component x, λx was any additional weighting144

applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,145

Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient146

of variation for data component x during year y.147

Penalties and priors148

Smoothing penalties were placed on estimated vectors of deviations for immature and mature natural mor-149

tality (and immature and mature catchability in the simulation analyses aimed at understanding the es-150

timability of mortality and catchability) using normal likelihoods on the second differences of the vectors.151

Normal priors were also placed on the mean value of natural mortality and catchability and the deviation152

of the estimated mortality from that mean. A prior value of 0.27 is used for the average natural mortality153

based on assumed maximum age of 20 and Hamel’s (2015) empirical analysis of life history correlates with154

natural mortality. The priors used for catchability were derived from the selectivity experiments described155

above. The normal priors were of the form:156

Px = λx

∑
y

((Îx,y) − (Ix,y))2

CV 2
x,y

(15)

Px was the contribution to the objective function of the penalty associated with model estimate x, λx was157

any additional weighting applied to the component, Îx,y was the predicted value of population process I158

relevant to penalty x during year y, Ix,y was the prior value of process I relevant to penalty x during year y159

and CVx,y was the input coefficient of variation for penalty x during year y.160

An example of the way in which these equations were implemented can be seen in lines 132-218 of161

‘snow_down.TPL’ in our github repo ‘snow_down/models/model_vary_m’.162

Population dynamics model sensitivities163

Modeling decisions are necessarily made in the process of writing population dynamics models and it is164

possible for these decisions to influence the outcome of an analysis. Within the context of our model, these165

decisions include what processes to allow to vary over time, the weights assigned to different data sources166

and penalties in the objective function, which parameters to place priors or penalties on, and what those167

priors or penalties should be. We ran several sensitivity analyses to understand the implications of these168

modeling decisions on the outcome of our analysis.169

Does allowing mortality or catchability to vary over time improve model fits?170

Catchability and mortality are somewhat confounded within population dynamics models (Thompson, 1994).171

Fewer crab observed in a given year can be attributed to either crab dying or by crab moving out of the172

surveyed area either by walking out of the boundaries or burying themselves into the substrate. At the same173

time, it is also clear that catchability and mortality likely vary over time in reality in spite of the fact that174

they are often assumed to be time-invariant in population dynamics models (Johnson et al., 2014). Somerton175

et al. (2013) showed that catchability varied somewhat by substrate and depth for snow crab in the EBS.176

The spatial distribution of snow crab varies over time and substrate and depth vary over space, so it follows177

that catchability should also vary over time.178
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We started exploring the impacts on model output of including time-variation in mortality and catchability179

by fitting a model with no time-variation in mortality or catchability. Then we compared the output of180

this model to models that allow time-variation in mortality, catchability, and both processes simultaneously181

(Figure 9 & Figure 10). The model with no time-variation in mortality or catchability was able to capture the182

general trend in immature and mature survey abundance solely through estimating variability in recruitment.183

Allowing time-variation in catchability improved the fits to immature survey abundances more than time-184

varying mortality, but time-variation in either process improved fits in a similar manner for mature survey185

abundances. Mature size composition data were fit similarly for all models, but immature size composition186

data were better fit by the models that allowed time-varying catchability (Figure 9). Part of the reason187

this difference in fits to immature size composition data occurs is the variability in the first several size bins188

resulting from the poor selectivity of the survey for small animals. Sometimes the peaks seen in larger size189

classes are reflected in the preceding years’ data for the smallest size classes, sometimes those peaks are not190

reflected (compare Figure 11 to Figure 12). As a consequence, positive residuals occur in the smallest size191

classes when a pseudocohort is consistently seen in large size classes, but not observed in the smallest size192

bins (e.g. 1991 vs. 1992; 1997 vs 1998).193

The model without time-variation in mortality or catchability explained 67% of the deviation in the abun-194

dance indices, time-varying mortality explained 77%, time-varying catchability explained 94%, and both195

processes varying explained 99% of the historical deviance. Model selection based on information criteria196

(e.g. AIC; Akaike, 1974) are often used to identify a model within a suite of models that most parsimoniously197

fits the data. Adding time-variation in natural mortality or catchability alone improved model fits parsimo-198

niously (AIC of 3434.15 for base model vs. 1593.836 and 1321.486 for time-varying mortality and catchability,199

respectively). However, adding time-variation in both processes resulted in a higher AIC (1449.275) than200

implementing time-variation in catchability, owing to the large number of parameters estimated. While201

catchability and mortality are somewhat confounded, catchability is also confounded with other sorts of202

error (e.g. observation) and allowing a relatively unconstrained estimation of catchability over time resulted203

in over-fitting the data, the consequences of which will be seen in simulations below. Even with this paring of204

potential models, there are several assumptions that could influence the output of our models. The following205

sensitivities are aimed at exploring the impacts of those assumptions on model output.206

How well can the model estimate mortality and selectivity with simulated data?207

One of the most essential exercises to perform with a population dynamics model before using its output is208

to perform a ‘self-test’ in which data are simulated from the population dynamics model with appropriate209

error and then fit to by the model. The goal of this test is to determine whether or not a model can return210

the parameter values underlying the simulated data with the available quantity and quality of data. For our211

analysis, the ability of the model to estimate mortality and catchability are of particular interest because212

they are candidates for use as input into GAMs to attempt to link the estimates to environmental stressors.213

Recruitment is also of interest because of its confounding with the other processes.214

Log-normal error was added to the true underlying abundance from the simulation model with three different215

coefficients of variation: 0.01, 0.10, and 0.30. Simulated data sets were generated 100 times under each216

observation error scenario and the population dynamics models were fit to them. Two population dynamics217

models were fit: one in which time-varying natural mortality was estimated and one in which time-varying218

natural mortality and time-varying catchability were estimated. Estimates of mortality were closer to the219

true underlying values than estimates of catchability (compare Figure 13 to Figure 14). Mature mortality was220

better estimated than immature mortality regardless of data quality or model configuration. The correlation221

between estimated and simulated mortality was 0.65 and 0.96 for immature and mature mortality for the222

0.01 observation error scenarios, respectively. The ability of the models to estimate mortality became more223

similar as data quality decreased. Overall, the model was best able to estimate mature mortality and this is224

likely a consequence of its separation from estimated recruitment in time. In general, estimates of catchability225

for both maturity states were unreliable.226

As a result of these simulation analyses, two modeling decisions arose. First, we used estimated variation in227

mortality from models that only estimate time-variation in mortality because the estimates of mortality from228

6



models that estimated time-variation in both mortality and catchabilty were less reliable. This precludes229

attempts to identify relationships between estimated catchability and environmental variables. Second, the230

inability of the model to capture the scale of the population (Figure 15) underscores the need to relate231

mortality to the environmental covariates outside of the model, rather than attempting to build them into232

the model (similar to Dorn and Barnes, 2022). The covariates described below are indices of a particular233

environmental stressor, not absolute quantities that could provide scale to the model.234

How do the assumptions about weighting and priors influence the estimated quantities?235

Some aspects of the model that may influence the outcome of the fitting are specified by the user with no236

clear ‘correct’ value. These include the weights assigned to the size composition data, some priors placed237

on population processes, and the weights assigned to the smoothness penalties. We performed sensitivity238

analyses for these parameters to check how different specifications changed the fits to the data and the239

estimates of mortality and catchability. We input a range of values for the size composition weights (25, 50,240

100), the prior on the mean natural mortality in log space (-1.6, -1.2, -0.8), the input standard deviation for241

the penalties on natural mortality (0.01, 0.1, 0.2) and the smoothness penalty on the estimated time series’242

of mortalities and catchabilities (0.001, 0.1, 0.5, 0.1).243

Differences among sensitivity scenarios resulted in very small changes in the fits to the data (Figure 16), but244

larger changes in estimated mortalities and catchabilities (Figure 17). The smoothness penalty placed on245

mortality over time appeared to be the largest driver of changes in estimates of M and q, so we looked at a246

wider range of smoothness penalties (i.e. 0.001, 0.1, 0.25, 0.5, 1, 5, 10, 1000). Trajectories of mortalities were247

roughly preserved across this range. The prior on mean natural mortality predictably scaled the estimated248

time series up or down. The best available information suggests natural mortality should be approximately249

0.27 given an assumed (but based on a range of studies; see Szuwalski, 2021 for a summary) maximum250

age of 20 years for wild snow crab. Based on these analyses, we elected to use small smoothing penalties251

because there is no evidence to suggest that mortality should be particularly smooth from year to year and252

relatively tight priors on the mean mortality given outside information to support an average mortality value253

based on longevity. These analyses also underscore the fact that the scale of the population is difficult to254

estimate with the data available and the need to relate mortality to the environmental covariates outside of255

the population dynamics model. This likely comes from the fact that recruitment and immature mortality256

are confounded (i.e. fewer immature crab in a given year can be because of increased immature mortality or257

because of lower recruitment).258

Covariate construction259

A wide range of factors could potentially influence mortality of snow crab on the eastern Bering Sea shelf,260

including temperature, predation, disease, cannibalism, and fisheries effects. The NMFS summer trawl261

survey provides a rich spatio-temporal data set to develop time series of temperature occupied, predation,262

disease, and cannibalism (Zacher et al., 2022). The fisheries-dependent observer data provide spatio-temporal263

information on bycatch (AKFIN, 2022). The main text notes that more than 10 billion crab have gone missing264

since 2018. This number is derived from the input total numbers observed in the survey to the assessment,265

which decreased from 11.7 billion animals in 2018 to 940 million animals in 2021. However, this figure does266

not account for the selectivity of the survey gear and includes both sexes. If survey selectivity is accounted267

for, the number of missing crab increases dramatically, with the most recent assessment estimating a decline268

from ~47 billion in 2017 to 2.58 billion in 2022. Regardless of the metric used, the number of crab missing269

from the Bering Sea survey was exceptionally large.270

Currently, estimating spatially-explicit, time-varying mortality is not computationally feasible, nor are data271

on movement available to inform such a model. Consequently, our analysis aggregates the spatial data272

for snow crab into time-series. The end goal is to use these time-series in predictive models to identify273

relationships between estimated mortality and stressors, so attention has to be paid to creating appropriate274

comparisons. For example, a predation index needs to consider not only the total consumption of crab by275
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cod, but also the total number of crab in the ocean of the size that can be consumed by cod to be comparable276

to changes in estimated mortality rates (discussed more below).277

Another important point for consideration in covariate construction is the estimation of mortality by maturity278

state. Snow crab in the EBS undergo an ontogenetic migration in which juvenile crab settle on the northeast279

portion of the shelf after their pelagic phase, then migrate southwest into deeper and (usually) warmer280

waters (Ernst et al., 2005; Parada et al., 2010). This means that the conditions and stressors experienced281

by immature crab can be different than those by mature crab. To address this issue, the spatial data sets282

for temperature, disease, and cannibalism were split based on the size above which half of the population283

was mature in a given year. The size at which more than half of the population is mature changes by year,284

depending on recruitment dynamics and other demographic processes (Figure 18). After the survey data285

were split at the 50% at maturity size, time series of maturity-specific environmental stressors (Figure 19)286

were created as described below.287

Temperature288

Temperature is one of the key physical variables that structures the benthic ecosystem of the EBS (Mueter289

and Litzow, 2008). The cold pool, a mass of water <2 degrees Celsius, can act as a barrier to species290

interaction based on temperature preferences of different species. Snow crab are a stenothermic species,291

preferring cold water and juvenile snow crab in particular are rarely found outside of the cold pool (Dionne,292

2003). The cold pool is directly related to the winter ice extent in the Bering Sea and has varied dramatically293

over time as the ecosystem moves between cool and warm stanzas (e.g. 2006-2010 vs. 2014-2019; Figure 1b294

of the main text and Figure 20). As the cold pool changes from year to year, so does the spatial distribution295

of snow crab (Figure 21). The ontogenetic migration of snow crab results in crab of different sizes and296

maturity states experiencing different temperatures in a given year (Figure 22). The ‘temperature occupied’297

for different sizes of crab by year Ts,y was calculated here as an average of the observed bottom temperatures298

at the stations at which crab of a given size were captured ti, weighted by the area-swept density of crab at299

a given station di:300

Ts,y =
∑

i diti∑
i di

(16)

The resulting time series of temperatures occupied by size were then split by maturity state by identifying a301

cutoff beyond which half of the population was mature and aggregating the temperatures above and below302

the cutoff to represent immature and mature temperature occupied (Figure 23).303

Predation304

Pacific cod (Gadus macrocephalus) are the most important predator of snow crab based on stomach content305

data collected in the NMFS bottom trawl survey (Long and Livingston, 1998), with 16.5% of cod stomachs306

containing snow crab (Burgos et al., 2010). Crab ranging from 8-57 mm carapace width constitute 95% of the307

crab consumed by cod in the Bering Sea, but crab up to 106 mm carapace have been observed in cod stomachs308

(Burgos et al., 2010). An index of summer daily consumption (tons/day) of snow crab between 30-95mm309

carapace width eaten by Pacific cod in the eastern Bering Sea was developed using cod stomach content310

data from the survey to estimate the proportion by weight of crab in cod diets and the size composition of311

crab by carapace width of prey found in cod stomachs, stratified by year, survey stratum, and cod length312

(collection and analysis methods described in Livingston et al. 2017). Cod total consumption rate (metabolic313

demand) was calculated using a cod bioenergetics model (Holsman and Aydin 2015) to estimate laboratory-314

measured maximum consumption rates adjusted for bottom water temperatures and cod abundance-at-length315

measured at each haul location (following methods described in Barbeaux et al. 2020), and summed to an316

eastern Bering Sea ecosystem-wide total.317

Changes in the cold pool can alter the interaction between snow crab and Pacific cod over time. Decreases in318

the size of the cold pool coincide with more northerly positions of the centroids of abundance of cod (e.g. 2003319
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and 2018-2019; Figure 24 & Figure 25). This increased interaction coincided with increased numbers of crab320

consumed by cod in the last several years (Figure 4). The estimated number of cod greater than 50 cm was321

also near all-time highs around the period during which crab collapsed (Figure 26). However, this period of322

time also coincided with the appearance of the largest pseudo-cohort of snow crab ever seen in the Bering323

Sea. Given the generalist nature of Pacific cod, one would expect to see an increase in the amount of crab324

consumed by cod during this period of time even if there weren’t differences in the interactions between325

the species as a result of changes in the cold pool or increases in abundance of large cod. To evaluate326

the possibility cod consumption has influenced the mortality of snow crab over time, the relative impact327

of consumption with respect to the population size must be considered. Predation indices were calculated328

for crab by year Pm,y by calculating the ratio of the extrapolated biomass of crab consumed by cod to the329

estimated biomass of crab, Ny,m,s ∗ ws:330

Pm,y = cody,m∑
s Ny,m,s ∗ ws

(17)

The exact amount of crab eaten cannot be calculated from the available diet data because they are a331

snapshot of consumption at one point during the year and consumption would be expected to change with332

spatial overlap and temperature-driven changes in metabolism occurring throughout the year. Consequently,333

removals due to predation cannot be directly incorporated into the model as fishery removals might be. The334

index of consumption described above incorporates the most available data on cod predation, but some335

strong assumptions are made (e.g. summer diet is representative of the entire year). As a sensitivity to these336

assumptions, we also tested the ratio of the number of cod greater than 50 cm to crab abundance in a given337

year as an alternative index of predation in the GAMs. Ultimately, changing the index of predation did not338

impact the results of the fitting of the GAMs; temperature and mature population size were still the only339

significant covariates and the estimated shapes of relationships and deviance explained were very similar340

between models with the different predation indices. Consequently, the models presented in the main text341

use the index of consumption as the predation index because it uses the most available information on cod342

predation (i.e. stomach contents and the abundance and size composition of cod).343

Disease344

Bitter crab syndrome is a fatal disease in snow crab caused by a parasitic dinoflagellate (Meyers et al. 1996).345

The presence of disease is recorded in the NMFS summer trawl survey data for the subset of crab that are346

individually measured based on a visual inspection. Diseased crab are visually detected by a pink-orange347

discoloration of the carapace and opaque hemolymph. The spatial distribution of bitter crab disease is348

predominantly on the northeastern shelf where smaller immature animals are found (Figure 27). For this349

analysis, disease prevalence was calculated simply as the number of infected individuals identified in the350

survey divided by the total number of individuals caught in the survey for the respective maturity states351

(Figure 19).352

Cannibalism353

Cannibalism has been proposed as a potential driver of the dynamics of snow crab in eastern Canada (Lovrich354

et al., 1997). In laboratory studies, crab smaller than 55 mm carapace width were at high risk of being355

cannibalized when housed with larger crab (Lovrich et al., 1997). Crab larger than 55 mm carapace width356

were much less likely to be cannibalized, but the frequency of injury could be high. Here we developed an357

index of cannibalism based on two aspects of the spatial distribution of snow crab: the overlap of crab smaller358

than 55 mm carapace width with crab larger than 95 mm carapace width (Figure 28) and the density of359

crab larger than 95 mm carapace width within the shared space. The proportion of 55 mm carapace width360

crab in the overlapping area represents the ‘exposure’ of the smaller population to cannibalism and the361

density of crab larger than 95 mm carapace width within that area represents the potential ‘intensity’ of362

cannibalism in the shared area. We calculated an index of cannibalism over time as the product of exposure363

and intensity. Consequently, a scenario in which there was large overlap, but low densities of large crab364
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would result in a low cannibalism index value. Similarly, a scenario in which there was low overlap, but high365

densities would result in a low cannibalism index value. This produces an index that is comparable with366

estimated mortality–a higher cannibalism index would be expected to be associated with higher mortality if367

cannibalism is a strong driver of mortality in the size ranges of crabs modeled here.368

The proportion of smaller than 55 mm carapace width crab overlapping with larger than 95 mm carapace369

width crab was calculated by finding the intersection of the station IDs at which at least one crab of both size370

classes was observed. The density of crab larger than 95 mm carapace width was calculated as the number371

of >95 mm carapace width crab observed at those stations multiplied by the area swept. This exercise was372

also done by 5 mm size bins to show the overlap of small crab of different sizes with large crab (Figure 29).373

The final index aggregated all crab smaller than 55 mm carapace width (Figure 30). Indices of cannibalism374

were only included in the immature models given laboratory observations indicate cannibalism is rare among375

crab of similar sizes, though molting crab can be vulnerable.376

Fisheries data377

Snow crab are caught both in a directed fishery (i.e. a fishery aimed at capturing snow crab) and non-directed378

fisheries (i.e. fisheries with targets other than snow crab). In the directed fishery, under-sized and/or dirty379

shelled male crab are often discarded and all females are discarded. Snow crab are discarded from non-380

directed fisheries using a variety of gear types (including trawl, pots, hook-and-line) and targeting a variety381

of species (e.g. Pacific cod, walleye pollock, and yellowfin sole) that operate over a wide fraction of the382

Bering Sea shelf (Figure 31). Figure 31 is plotted in log space, so it appears that the bycatch is spread383

widely over the shelf, but in normal space, the bycatch is more concentrated (e.g. Figure 32). The location384

of the centroids of the bycatch have moved over time and increases in latitude correspond with warm years385

in which reduced ice extent allowed for fishing farther north (Figure 33). Bycatch in trawl fisheries are by far386

the largest sources of bycatch mortality (Figure 34). Data on discards and bycatch of snow crab are collected387

by at-sea observers on fishing boats and the percent observer coverage ranges from 10% to 100%, depending388

on the fishery. Some fraction of the mortality imposed by non-directed fleets is likely unobserved due to389

crab being struck by the gear and not captured. Consequently, indices of the relative mortality imposed by390

fisheries discards and bycatch were calculated here as the ratio of the observed numbers of crab discarded391

or bycaught in a given year divided by the estimated population numbers in a given year. Only discard392

mortality is considered for the directed fishery in our models because the range of sizes modeled exclude the393

largest males, which are the targets of the commercial fishery for snow crab.394

Crab density395

The numbers of crab estimated from the population dynamics models were also used as covariates in the396

GAMs. Changing densities of crab could capture aspects of intraspecific competition not captured in other397

covariates. Each respective model of mortality incorporates the population size of the corresponding maturity398

state given their spatial co-occurence. Immature mortality also incorporates mature population size because399

crab are thought to move more extensively after maturing in the pursuit of mates, which suggests that their400

overlap with the immature portion of the population could be larger than the snapshot the survey provides.401

This increased overlap could result in impacts on mortality, hence the inclusion of mature population size in402

the immature mortality models.403

Generalized additive models404

Generalized additive models (GAMs) were used in the R programming language (package mgcv; Wood,405

2011) to relate changes in estimated mortality by maturity state and year, mm,y to environmental covariates406

by maturity state and year, ϕm,y, because of their flexibility in fitting potential non-linear relationships.407

Models were first fitted in which all potential relevant covariates were included in the model of the form:408
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mp,y = s(ϕm,y) + ϵi (18)

where ‘s()’ is a smoothing function based on thin-plate splines, ϕ is a matrix of environmental covariates409

scaled to mean 0 and standard deviation 1, and ϵ is normally distributed error. The number of knots allowed410

in the thin-plate splines were restricted to 3 given the relatively short time series and number of potential411

stressors. Significance of covariates for the full models can be seen in Table 1 and Table 2 and the resulting412

smooths in Figure 35 and Figure 36. Model diagnostics were acceptable given relatively short time series413

(Figure 37 & Figure 38). Leave-one out cross validation was performed for the models by systematically414

excluding a year of data, refitting the model, and recording the deviance explained and significance of the415

covariates. The consistent significance of specific covariates in this exercise lends some credence that those416

covariates’ influence in the model was not the result of outliers (Figure 2e). Some collinearity existed among417

covariates (Figure 39 & Figure 40), but none of the collinear variables were significant in the models.418

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6035 0.0439 13.7531 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 2.0477 2.4391 3.6011 0.0334
s(disease) 1.0000 1.0000 0.5203 0.4786
s(discard) 1.0000 1.0000 1.6726 0.2100
s(bycatch) 1.0000 1.0000 0.9665 0.3367
s(mat_pop) 1.8919 1.9799 6.7981 0.0086
s(predation) 1.0000 1.0000 2.9442 0.1009

Table 1: GAM output for full model predicting mature mortality. Deviance explained = 72.04 %

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1719 0.0105 16.4407 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(disease) 1.0000 1.0000 1.5639 0.2263
s(temperature) 1.8837 1.9841 10.7801 0.0006
s(mat_pop) 2.0000 2.0000 13.2472 0.0002
s(imm_pop) 1.6241 1.8564 1.6100 0.1681
s(predation) 1.0000 1.0000 0.1759 0.6796
s(bycatch) 1.0000 1.0000 0.0006 0.9808
s(cannibalism) 1.7298 1.9252 2.5843 0.1385

Table 2: GAM output for full model predicting immature mortality. Deviance explained = 77.6 %

Models that excluded insignificant variables from each full model were used in out-of-sample prediction and419

randomization tests (see Table 3 & Table 4 for covariate significance and deviance explained and Figure 41420

& Figure 42 for model diagnostics). One thousand iterations of a randomization test were performed in421

which the covariate time series were randomized, the models refit, and the deviance explained recorded.422

This test was aimed at understanding if the explanatory power of the model was a result of the number of423

covariates considered and the flexibility of the model or if the results were an indication of some underlying424

signal in the data. If the deviance explained by the model using the non-randomized data exceeded the 95th425

quantile of the randomization trials, the deviance explained from the fitted model is less likely to be a result426

of over-fitting resulting from too many covariates or too flexible smooths. The deviance explained from both427

of the trimmed models exceeded the 95th quantile of deviance explained from the randomization (Figure 43428

& Figure 44). Out-of-sample predictions were made by excluding the last 1,2, and 3 years of data, refitting429

the model, then attempting to predict the held out data based on the covariates observed in those years (see430

figure 2 of the main text for a discussion and Figure 45 for a larger version of figure 2).431

11



A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6035 0.0467 12.9274 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.9300 2.3189 4.6542 0.0183
s(mat_pop) 1.8887 1.9763 7.8385 0.0019

Table 3: GAM output for trimmed model predicting mature mortality. Deviance explained = 62.16 %

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1719 0.0121 14.1816 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.7797 1.9506 9.5779 0.0006
s(mat_pop) 1.9813 1.9988 7.4968 0.0031

Table 4: GAM output for trimmed model predicting immature mortality. Deviance explained = 59.5 %

Sensitivities to model assumptions in GAMs432

Modeling decisions are also necessarily made in the process of fitting GAMs and it is possible for these433

decisions to influence the outcome of an analysis. Within the context of our model, these decisions include434

the assumed error structure, the treatment of the uncertainty associated with the estimates of mortality, and435

the allowed shape of the smooths estimated in the GAMs. The following sensitivities address the implications436

of these modeling decisions on the outcome of our analysis.437

Error structure438

Impacts of assumptions about error structure were explored by assuming beta distributed data in the GAM439

and transforming the continuous total mortality rates to an exploitation rate ranging from 0 to 1. This440

transformation still resulted in mature population and temperature being the most important variables441

related to mortality, however the deviance explained decreased to 60% and 68% for mature and immature442

mortality, respectively, compared to 72% and 78% for the model presented in the main text. A potential443

shortcoming of the method presented in the main text is that predicted mortality could be less than zero.444

This was not the case in any of the model fittings, and would present a problem primarily if the model was445

extrapolated to data beyond the observed ranges. A potential fix to this issue is to log the response variable,446

but this resulted in unacceptable patterns in the residuals, so this model was not used.447

Does incorporating the uncertainty in the estimates of mortality change model outcomes?448

The models presented in the main text use the maximum likelihood estimates of mortality from the popu-449

lation dynamics models as response variables in the GAMs. However, each of those estimates of mortality450

have associated uncertainty estimated in the fitting process. One way of evaluating the impact of incorpo-451

rating the estimated uncertainty from the population dynamics model into the GAM fitting process can be452

accomplished in 4 steps:453

1. Invert the Hessian matrix produced from fitting the population dynamics model to calculate a covari-454

ance matrix describing the relationships between each of the estimates of mortality,455

2. Simulate time series of the estimated mortality from a multivariate normal distribution with a mean456

of the point estimates of mortality deviations and the product of step 1 as the covariance matrix,457

3. Refit the GAMs to these simulated mortality time series and record the deviance explained and p-values458

for each covariate,459

4. Repeat these steps many times.460
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A similar methodology can be seen in Johnson et al. (2022). Each of these steps were taken in the R461

programming language. Inverting the Hessian was accomplished by using the function ‘solve()’; simulating a462

time series of mortality deviations was accomplished using the function ‘mvrnorm()’. The resulting simulated463

time series of mortality were very similar to the maximum likelihood estimates of mature and immature464

mortality, reflecting relatively precise estimates of mortality (Figure 46). The deviance explained across465

simulated time series were also similar to that produced with the MLE time-series of mortality. Temperature466

and mature population remained the most important variables in predicting mortality across GAMs fitted467

to simulated time-series of mortality (Figure 47). Given this outcome, the model presented in the main text468

does not consider the uncertainty associated with treating the estimates of mortality as ‘data’ in the fitting469

of the GAMs.470

Shape of estimated relationships471

The model presented in the main text constrains the number of knots available to the GAM to fit the data for472

each covariate to 3, but the shapes of GAM-estimated smooths are not constrained. This modeling choice was473

made because it is not immediately clear a priori what the shape of the smooths should be. For example,474

the relationship between immature population size and immature mortality could conceivably be linear475

positive (e.g. higher populations result in higher mortality due to intraspecific competition), linear negative476

(e.g. larger population sizes dilute the impact of external stressors like predation and fishery effects), dome-477

shaped (somewhat harder to interpret, but perhaps different processes are important at different population478

sizes), or monotonic in either direction (e.g. population size modulates external stressors to a point, after479

which other processes are more important).480

The model in the main text is unconstrained with respect to the shape of the estimated relationships between481

mortality and covariates. However, the relationship between immature mortality and mature population size482

was markedly dome-shaped and a satisfying biological explanation for this shape is not immediately apparent.483

To explore the impacts of unconstrained estimation of this relationship, we refit the models using shape484

constrained additive models in the R package ‘scam’ (based on Pya and Wood, 2015). This allows the user485

to specify constraints on the shape of relationships between model variables (e.g. monotonically increasing or486

decreasing). We refit our model for immature mortality with the assumption that the relationship between487

immature mortality and mature population size can only be monotonically increasing. The rest of the488

covariates were specified as linear predictors, except temperature, which remained non-linear. Given the489

importance of temperature in the hypotheses we present, we were particularly interested to understand how490

the assumptions about the shape of other significant covariates influence the estimated relationship between491

temperature and mortality.492

Temperature and mature population size were still significant covariates within the shape constrained additive493

model and immature population size became significant (Table 5). The estimated relationship between494

mortality and temperature was still strongly positive, but became more linear with the shape constraints495

imposed on mature population size (Figure 48). The relationship between immature population size and496

immature mortality was negative (i.e. all other things considered, more immature crab were associated with497

lower mortality). While the immature population relationship is potentially interesting, the most important498

outcome of this exercise is that temperature still returned positive relationship with estimated mortality.499

Using temperature as the only covariate in an unconstrained GAM explained 37% and 38% of the deviance500

in immature and mature mortality (not shown). All of these points suggest temperature is a key covariate501

in the estimated mortality dynamics for snow crab in the eastern Bering Sea.502

How could temperature relate to mortality mechanistically?503

Increased temperature was consistently correlated with increased estimated mortality in our models, but the504

range of temperatures observed were not beyond the thermal tolerances of snow crab. Foyle et al. (1989)505

captured 20 snow crab of carapace size 85-95 mm in 1986 and raised them in the lab in a range of thermal506

regimes to understand the impacts of increased temperatures on mortality and caloric requirements for snow507

crab. In addition to identifying the thermal tolerances of snow crab (crab stop eating around 12 degrees508
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -0.0325 0.1850 -0.1757 0.8623
disease 0.0236 0.0162 1.4561 0.1607
imm_pop -0.0374 0.0174 -2.1454 0.0442
predation 0.0002 0.0169 0.0137 0.9892
bycatch -0.0003 0.0147 -0.0194 0.9847
cannibalism -0.0090 0.0153 -0.5887 0.5626
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.0005 1.0009 6.7766 0.0167
s(mat_pop) 1.7664 2.0738 3.5320 0.0466

Table 5: GAM output for trimmed model predicting immature mortality. Deviance explained = 59.53 %

C), Foyle et al. observed a doubling of caloric requirements for snow crab held in 3 degrees Celsius water509

as compared to those in 0 degree waters. Here we calculated an index of the caloric requirements for the510

modeled fraction of the population of snow crab in the eastern Bering Sea over time using the abundance511

at size of snow crab observed in the NMFS survey, the temperature occupied of crab at size calculated from512

observations of bottom temperature in the NFMS survey, and the observations of caloric requirements of513

snow crab by temperature produced by Foyle et al. (1989). The relationship between temperature and the514

caloric requirements of snow crab (kCalt) reported by Foyle et al. was:515

kCals=90mm,t = 2.2 ∗ e
−(t−5.2)2

30.7 (19)

Snow crab numbers at size (s) by year (y) (Ns,y) and the temperature occupied at size by year (Ts,y) were516

calculated as described above. The caloric requirements reported in Foyle et al. were based on observations517

of crab that were 85-95 mm carapace width, so these results need to be extrapolated to the range of sizes518

used in this analysis. Kleiber’s law (Kleiber, 1947) states there is a consistent relationship between the body519

mass and metabolic requirements of organisms (kCal). The relationship has been generalized as:520

kCalm = mass0.75 (20)

Calculating the metabolic requirements for snow crab at size by year, kCalsnow
s,y , can be calculated by521

evaluating the caloric requirements of 90mm carapace width crab at a given temperature were calculated,522

then scaling that up or down based on Kleiber’s law:523

kCalsnow
s,y = 2.2 ∗ e

−(t−5.2)2
30.7

3000.75 w0.75
s (21)

Caloric requirements increased sharply in 2018 and to explore potential impacts of this increase, we analyzed524

the weight at size data available (Figure 49). A GAM was used to predict observed weights at size wi,s,y525

using the bottom temperature in which the crab was collected, ti, measured carapace width cwi, and year526

as a factor:527

wi,s,y = s(cwi) + s(ti) + year + ϵ (22)

The GAM explained 97.4% of the deviance in the weights of snow crab and all covariates were significant528

(Table 6).529

In general, higher temperatures were associated with higher weight at size (Figure 50). The weight at size530

curves for 2015 and 2017 were scaled significantly higher than the base year of 2011, whereas the year 2018531

was marginally significantly lower (p=0.057). The marginal significance likely resulted from the relatively532

small sample size of weight at size available in 2018 (N=27), but the effect size was large (the coefficient533
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 218.5199 2.2252 98.2019 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2015 6.4525 3.1690 2.0361 0.0419
as.factor(AKFIN_SURVEY_YEAR)2017 12.6093 2.4840 5.0763 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2018 -11.9217 6.2536 -1.9064 0.0568
as.factor(AKFIN_SURVEY_YEAR)2019 4.0886 2.7473 1.4882 0.1369
B. smooth terms edf Ref.df F-value p-value
s(WIDTH) 6.4225 7.5862 6340.9617 < 0.0001
s(GEAR_TEMPERATURE) 1.9362 2.3359 17.0800 < 0.0001

Table 6: GAM output for model predicting male snow crab weight. Deviance explained = 97.4%

associated with 2017 was 12.60; the coefficient associated with 2018 was -11.92) which translated to large534

differences in estimated weight at size between the years reported in the main document. Previous studies535

looking at the impacts of starvation on the weight at size of snow crab (e.g. Hardy et al., 2000) reported small536

changes in weight at size (roughly 2.6% of weight lost over 5 months), but larger changes in the weight of the537

hepatopancreas. However, there are some key differences between these studies and the field observations538

we report. First, the maximum observed mortality was 20% in the starvation studies; the mortality levels539

estimated in the Bering Sea exceeded 90% in some years. Second, the starvation experiments were in540

laboratory environments where no foraging occurred. Seventy crab were confined in containers measuring541

122 x 183 x 40 cm in Hardy et al. (2000), which greatly restricted movement and would presumably impact542

caloric expenditure and the initiation of catabolism of muscle tissue.543

A word on methods544

Attribution of changes in population processes in ecology is a difficult problem, particularly for wild popula-545

tions that are difficult to directly observe and impossible to experiment on in situ. There are a large range of546

methodologies that claim to identify causality in observational data (structural equation modeling, empirical547

dynamic modeling, etc.). Some of the difficulties in determining causality in ecological time series are related548

to the generally short time series that are available, non-linear dynamics, and departures of populations or549

covariates into unexplored parameter space. These issues can present issues for any modeling framework and550

we have tried to address these the the best of our ability with the models used here. The use of p-values has551

been (rightfully) criticized in the literature and the explanatory power of our models are likely overstated.552

Ultimately, the numerous sensitivities and simulation tests performed here were undertaken to try to under-553

stand if a suite of covariates appear to be important under different modeling decisions and considerations of554

uncertainty, in spite of the potential short-comings of the data available and models selected. Temperature555

and population density proved to be these covariates.556

Frequently asked questions557

Are you sure the collapse wasn’t a result of cod predation?558

The predation index (i.e. the crab consumed by cod divided by the crab available; Figure 19) was near the559

time series average during the collapse in 2018 and 2019. If predation were a strong driver of the mortality560

during the collapse, it is difficult to explain why estimated mortality was not high when the predation indices561

were much higher in the late 1990s and mid-2010s. Furthermore, the distribution of the cod population562

during 2018 and 2019 extended much farther north, beyond the portion of the snow crab population that is563

included in this analysis. Movement north can happen in particularly warm years and would serve to reduce564

the relative predation pressure on the portion of the population of crab in this analysis because the cod that565

moved north would be consuming crab outside of our study area. Finally, a large fraction of the missing566

crab from the recent collapse were not of the sizes typically eaten by cod (Figure 51).567
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Although our predation indices incorporate the best available information about cod diet and abundance,568

these indices are snapshots taken during the summer survey. It is possible that the consumption of crab was569

different in other times of the year and, if this were true, knowing how predation changed throughout the570

year could alter our results.571

Are you sure the collapse wasn’t a result of trawling?572

The bycatch index steadily declined since the beginning of our study, with the relative impact of trawling573

in 2018 and 2019 below the historical average (Figure 19). It is difficult to reconcile the idea that trawling574

could have contributed to the collapse with the relatively low mortality rates estimated during the periods575

when the bycatch index was many times higher in the 1990s. Furthermore, if trawling is a large source576

of mortality for snow crab, it is difficult to understand how the largest pseudocohort ever observed could577

have established and survived for ~8 years on the Bering Sea shelf, during which the trawling pressure was578

relatively consistent.579

However, not all of the mortality associated with non-directed fleets is observed. The index used in this580

analysis is a reliable indicator of the trend in bycatch mortality provided the ratio of observed to non-581

observed mortality is consistent over time. If this is not the case, that could change the outcome of our582

analysis, but there is no clear methodology for determining that ratio.583

What do crab eat? If they starved, did there appear to be large declines in their prey base?584

Snow crab have a wide-ranging diet of bivalves, polychaetes, crustaceans, and gastropods in the northern585

Bering Sea (Kolts et al., 2013). They appear to be a generalist, consuming whatever they can capture and586

crush with their claws. Kolts et al. (2013) reported that most prey items were consumed in proportion to587

their estimated abundances, except polychaetes, which seemed to be preferentially selected. The prey items588

are relatively poorly sampled in the Bering Sea survey, so time series of prey quantity are unreliable.589

Even if there were abundant forage for snow crab in warm years, the metabolic trade-off between the590

energy required to obtain, handle, and digest their prey and the energy derived from prey would need to be591

considered when trying to understand if metabolic demands could be met. This would be a useful area of592

further research, particularly if reliable time series of benthic forage could be started and maintained.593

If it was a large mortality event, did you see large numbers of empty carapaces in the survey?594

Hundreds of millions of carapaces are discarded by molting crab each year even when there are no mortality595

events and these are rarely seen in the survey nets. So, even with a massive mortality event, one might not596

expect to see the carapaces remaining from the event. Why the carapaces are not seen in the survey nets is597

not completely clear, but potential hypotheses include relatively fast disintegration on the sea floor or poor598

selectivity by the survey gear. Discarded carapaces may sit flat on the bottom and be passed over by the599

net.600

Were that many crab really in the eastern Bering Sea to begin with? Was the ‘collapse’ an601

artifact of some survey error?602

The NMFS summer survey was designed to estimate crab abundances (REFERENCE). Snow crab are widely603

distributed on the shelf and consequently well sampled by the survey. There are 375 survey locations in the604

NMFS eastern Bering Sea trawl survey, of which 349 are on a 40 square nautical mile grid. The remaining605

stations are in high density sampling areas around islands in the Bering Sea implemented to better estimate606

crab abundances around those islands. On average, snow crab are observed at 233 of the 349 survey stations607

on the standard grid. In 2018 a large number of stations returned estimated high densities of crab (see Fig.608

1 of main text), which means that the large estimates of abundance in 2018 were not driven by one or two609
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large survey tows. Further, the recent survey methodology has been repeatedly verified as a useful tool for610

estimating crab abundance (see Somerton et al., 2013, for example).611
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Figure 1: Observed abundance by carapace width of Tanner crab in the NMFS summer survey.
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Figure 2: Map of eastern Bering Sea slope habitat (colors). Reproduced from HERE.
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Figure 3: Fishery cpue (top; black lines are median, grey box represents 25-75th quantiles, circles are outliers)
and number of crab caught in the directed snow crab fishery (bottom). Vertical dashed line represents the
introduction of individual transferrable quota management.
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Figure 4: Consumption of crab by Pacific cod at size over time. Dashed line represents the size at which
crab enter the population dynamics model presented in the text.

21



Figure 5: Observed proportion of mature new shell crab in the NMFS summer survey. Red line represents
the median over years and the blue lines are the observed data. Chela height data were not collected in years
without a blue line. These data are used to separate the numbers at size into mature and immature states
for the input data to the population dynamics model.

22



Figure 6: Empirical relationship between pre- and post-molt size (left) derived from crab captured in the
wild pre-molt and observed to molt in the lab. Calculated size-transition matrix used in the population
dynamics model (right).
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Figure 7: Locations of the BSFRF experimental trawls to evaluate the capture efficiency of the NMFS
summer trawl survey for snow crab in the eastern Bering Sea.
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Figure 8: Inferred selectivity from the BSFRF experimental trawls.
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Figure 9: Fits of models with increasing complexity in mortality and catchability. Index of abundances
are on the left with observations in black dots with 95% confidence intervals; colored lines are model fits.
Size composition data are at the right with observations in box plots (aggregated over year; black lines are
median, grey box represents 25-75th quantiles, circles are outliers) and colored lines are model fits.
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Figure 10: Estimated processes from model with increasingly complex time-variation in mortality and catch-
ability.
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Figure 11: Fits for individual years to immature size composition data from a model in which mortality
varied over time.
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Figure 12: Fits for individual years to mature size composition data from a model in which mortality varied
over time.
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Figure 13: Estimates of catchability by maturity state (black lines) compared to the underlying values (red
line) from simulations testing the estimation ability of the population dynamics models.
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Figure 14: Estimates of mortality by maturity state (black lines) compared to the underlying values (red
line) from simulations testing the estimation ability of the population dynamics models.
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Figure 15: Estimates of recruitment (black lines) compared to the underlying values (red line) from simula-
tions testing the estimation ability of the population dynamics models.
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Figure 16: Model fits from sensitivity tests. Indices of abundances are on the left with observations in
black dots with 95% confidence intervals; colored lines are model fits. Size composition data are at the right
with observations in box plots (aggregated over year; black lines are median, grey box represents 25-75th
quantiles, circles are outliers) and colored lines are model fits.
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Figure 17: Estimates of mortality and catchability by maturity state over sensitivity runs. Lines are colored
based on the smoothness penalty on mortality.
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Figure 18: Size at which half of the crab in the population are mature over time (note, this is not the
probability of undergoing terminal molt, rather the proportion of the number of mature vs. immature crab
at size in the population).
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Figure 19: Calculated covariates incorporated into GAMs to relate stressors to estimated mortality. Two
covariates (discard and predation) are only relevant for one maturity state based on the critical role size
plays in the process (i.e. discards are primarily relatively large crab and predation is primarily smaller crab).
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Figure 20: Observed bottom temperature at the time of the NMFS summer survey. Less than 2 degrees C
represents the cold pool, seen in green and blue here.
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Figure 21: Distribution and intensity of densities (in log numbers) of crab <55 mm carapace width in the
NMFS summer survey.
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Figure 22: Temperature occupied over time of crab by 5 mm size bin.
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Figure 23: Temperature occupied over time of crab by maturity state defined by the size at which 50% of
crab are mature according to chela height.
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Figure 24: Centroids of abundance for Pacific cod in the Bering Sea over time (left). Right panels show the
time series of the centroids broken down by latitudinal and longitudinal components.
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Figure 25: Location and number of crab observed in cod stomachs over time. These are the raw data used to
calculate crab consumption by cod and have not been adjusted for sampling effort, but provide background
for the spatial distribution of predation over time.
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Figure 26: A comparison of indices of cod predation on snow crab. Left column are the calculated consump-
tion of crab by cod (top) and the raw numbers of cod greater than 50 cm. The right column is the left
column divided by the estimated number of crab in the eastern Bering Sea.
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Figure 27: Location and intensity of bitter crab disease over time from visual prevalence observations in
the NMFS summer survey.
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Figure 28: Overlap of large males (>95 mm carapace width) and males smaller than 55 mm carapace width.
Opacity of the dot represents the density of crab. Blue represents overlapping distribution. Green and red
represent non-overlapping observations of small and large males, respectively.
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Figure 29: Relative risk at size for cannibalism over time.

46



Figure 30: Times series by size of the density of large males in overlapping space (top), the propotion of
small males in the overlapping area (middle), and the product of the two (bottom), which is used as an index
of cannibalism in the models relating estimated mortality to environmental stressors.
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Figure 31: Location and intensity of bycatch of snow crab over time in log space.
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Figure 32: Comparison of location and intensity of bycatch in 2018 for natural and log space.
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Figure 33: Centroids of bycatch over time calculated over the entire year (left). Centroids broken into time
series of latitudinal and longitudinal components calculated over the entire year and during the months
December through March which roughly overlap with mating.
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Figure 34: Bycatch in numbers by gear types reported from NMFS observer programs.
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Figure 35: Smooths resulting from the full model estimating the relationship between environmental co-
variates and immature mortality.
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Figure 36: Smooths resulting from the full model estimating the relationship between environmental covari-
ates and mature mortality.
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Figure 37: Diagnostic plots for the full model relating immature mortality and environmental stressors.
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Figure 38: Diagnostic plots for the full model relating mature mortality and environmental stressors
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Figure 39: Pairs plots displaying the correlation between covariates for immature crab. Diagonal represents
the distribution of a given variable.
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Figure 40: Pairs plots displaying the correlation between covariates for mature crab. Diagonal represents
the distribution of a given variable.
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Figure 41: Diagnostic plots for the trimmed model relating immature mortality and environmental stressors.
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Figure 42: Diagnostic plots for the trimmed model relating mature mortality and environmental stressors.
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Figure 43: Results of randomization trials for the trimmed model relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure 44: Results of randomization trials for the trimmed models relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure 45: Predictive skill of the GAMs for immature and mature mortality. Reproduced from figure 2 in
the main text to provide better detail.

62



Figure 46: Simulated time series of estimated immature and mature mortality that incorporate the uncer-
tainty associated with the fitting process of the population dynamics model. Each grey line represents one
iteration of multiplying the maximum likelihood estimates of the mortality deviations by the covariance
matrix. The black line represents the MLE.
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Figure 47: P-values associated with iterations of fitting the GAMs to simulated time series of estimated
immature and mature mortality using the covariance matrices estimated in the fitting of the population
dynamics model.
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Figure 48: Estimated smooths between immature mortality and temperature occupied and mature popula-
tion from shape constrained additive models.
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Figure 49: Observed weight at size over time colored by temperature (Celcius) at which the crab was
collected.
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Figure 50: GAM estimated relationships between temperature and carapace width on observed weights of
crab.
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Figure 51: Numbers at size over time of snow crab (left). Observed numbers of crab (red line) in 2019 and
2021 vs. projected numbers of crab from 2018 and 2019 given a mortality equal to 0.27 (the assumed value
in the assessment; top left). Numbers of missing crab at size (red line) with the size of crab beneath which
cod predate upon (dashed vertical black line).
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