Cross-Assembly and Binning

Over the last few years, sequencing has become cheap enough that most metage-
nomics projects are not a single sequencing run with a lot of data analysis. Most
projects involve multiple samples separated either temporally or spatially, and
then the data is combined in the analysis. There are lots of advantages of do-
ing this: you can recover more information than just the sum of the number
of sequences that you have run. In particular, you can uncover information
about the unknown sequences — things that do not map to other sequences
using traditional functional based approaches.

In the course we are going to work through binning a set of metagenomes. The
samples that we have provided (algae, coral, cca, and control) come from four
different samples, and the different reads within each sample come from different
time points. Therefore, we can try and use binning to explore the data in our
metagenomes.

There are a couple of different approaches to binning contigs that have been
developed. The general theory is that assembly does not provide complete cov-
erage of a genome, especially when genomes are assembled from metagenomes.
Therefore, we need an approach to identify which contigs are related to each
other — which contigs come from the same organisms. Some approaches use
k-mer profiles to identify reads or contigs that appear to come from the same
organism, and group those. We routinely use the abundance of each contig in
each sample as a measure for the similarity between contigs. Therefore, the ap-
proach we are going to take involves creating a cross assembly of all the reads,
assembling those, and then mapping the reads back to the cross-assembled con-
tigs. This allows us to identify how many reads from each sample map to each
contig, providing a measure for each contig. We can use that information to
pull out related contigs, and test whether they are from the same or similar
organism.

Manual Binning
I. Renumbering the reads [optional]

Before we begin making contigs, we are going to renumber the reads. This
will allow us to quickly identify which reads come from which samples when we
remap things backwards. In addition, some programs are persnickety about the
names they allow for DNA sequences, and so this takes care of that.

There is a program called renumber.py that is in the AWS images.

The command takes an input fasta file, a file name to output the renumbered
sequences to, and an optional number to start at denoted by the -n flag. We
start at 1, and then renumber the sequences consecutively. Note that the number

https://raw.githubusercontent.com/linsalrob/EdwardsLab/master/bin/renumber_fasta.py

we apply to renumber.py is one more than the number printed out from the
previous run of the command!

Don’t forget to change the names of your files to match the samples you are
analyzing!

renumber_fasta.py -f Algae_11.fna -o Algae_11.renum.fna
The last ID written to the file Algae_11.renum.fna was 514323

renumber_fasta.py -f Algae_12.fna -o Algae_12.renum.fna -n 514324
The last ID written to the file Algae_12.renum.fna was 1514534

renumber_fasta.py -f Algae_13.fna -o Algae_13.renum.fna -n 1514535
The last ID written to the file Algae_13.renum.fna was 2800777

renumber_fasta.py -f Algae_14.fna -o Algae_14.renum.fna -n 2800778
The last ID written to the file Algae_14.renum.fna was 4262674

Note: Tt is never a good idea to provide the same name for input and output.
Usually you will end up overwriting your file and loosing all your data. This is
a bad habit to get into: it is much better to make a new file (like we have done
here), and once you are happy, delete the old file.

Creating smaller data sets

It is possible that the spades assembly step in the next section will not work.
However, we have given you a lot of data.

Thought experiment: How can you count the number of reads in all the fasta
files with one command?

Therefore, renumber . py takes an additional argument, -x, that limits the maxi-
mum number of sequences it will write to any file. If you want to limit the data
input to the spades assembly in the next step, try adding a -x, like these four
commands. Again, you don’t need the $ and you should change your file names
as appropriate. (The -n sets the number to start counting at).

renumber_fasta.py -f Algae_11.fna -o Algae_11.renum.fna -x 10000 -n 1

renumber_fasta.py -f Algae_12.fna -o Algae_12.renum.fna -x 10000 -n 10001
renumber_fasta.py -f Algae_13.fna -o Algae_13.renum.fna -x 10000 -n 20001
renumber_fasta.py -f Algae_14.fna -o Algae_14.renum.fna -x 10000 -n 30001

We end up with four new files with the sequences numbered consecutively, and
so we can concatenate those into a single file that we will assemble.

cat Algae_17.renum.fna > AlgaeAllReads.fasta

II. Assembling the metagenomes

There are many different algorithms for assembling sequence data, but there are
a couple of common approaches. One way is to compare every read to every other
read (or nearly every other read) and try and figure out what the best assembly
is. Another approach is to use short sequences, called k-mers (which we will see
elsewhere) and identify potentially overlapping fragments. We are going to use
the spades assembler (57) (http://bioinf.spbau.ru/spades) to assemble the files.
Spades is one of the best assemblers out there, and is frequently updated with
new versions. The version we have is version 3.9 and supports metagenome
assembly, however metagenome assemblies require a single paired-end library
and does not work with unpaired data like we have here.

If we have Ion Torrent data, we would use an assembly commad like this:

spades.py --iontorrent -s <Reads file .fasta> --only-assembler -o <output directory for the
and so we’ll use the command:

spades.py --iontorrent -s AlgaeAllReads.fasta --only-assembler -o AlgaeAssembly

This will create the AlgaeAssembly directory and in that directory there will
be a single fasta file called contigs.fasta with the contigs in it (Note: as an
alternative you can use the scaffolds.fasta file too). We will use that file in
the next steps, but before we continue we’d like to know a little bit about the
assembly.

III. Assembling multiple reads from metagenomes

Thought experiment: Before you begin, think about where you are going to work.
Should you make a new directory? Should you do this in your home directory?
Why/Why not?

If we have lots of lllumina samples, we would start by combining the reads into
three files: the left reads, the right reads, and the singleton reads — the singleton
reads are left reads that don’t have a right mate or right reads that don’t have
a left mate. We start by concatenating all the sequences:

If the sequences are not compressed you can use:

cat /data/gut/fastq/*_1.fastq > left.fastq
cat /data/gut/fastq/*_2.fastq > right.fastq

If your sequences are compressed you can use:

gunzip -c¢ /data/ground_water/fastq/*_1.fastq.gz > left.fastq
gunzip -c¢ /data/ground_water/fastq/*_2.fastq.gz > right.fastq

Next, we can use spades to try to assemble these:

spades.py --meta -1 left.fastq -2 right.fastq -o assembly

You should see an error like this:
Verification of expression 'irsl.eof() && irsr.eof()' failed in function 'void hammer: :Corre

If you read that error, the key message is: left.fastq and right.fastq contain
unequal amount of reads. What this means is that the command to spades.py
suggests these are paired end reads, and yet there are sequences in one file that
are not in the other file.

We need to correct the files to make sure that you have the same number of
sequences in the left and right reads, and that the sequences are in the same
order in each file. We have struggled over this but now have a fast solution that
works with big files:

We can use [fastq-pair|[https://github.com/linsalrob/fastq-pair) for that:
fastq_pair left.fastq right.fastq
This command prints out a summary of the left reads and the right reads:

Left paired: 45679 Right paired: 45679
Left single: 476 Right single: 361

Now we can rerun spades:
spades.py --meta -1 left.fastq.paired.fq -2 right.fastq.paired.fq -o assembly

Note that meta spades (spades with the --meta flag) currently requires just one
left and one right paired end file. Regular spades (not using the --meta flag)
allows you to provide one or more left and right pairs, and singleton reads to
assemble.

Your milage may vary depending which version of spades you try to run.

IV. Mapping reads to contigs with bowtie

We need to know which samples contributed reads to each contigs so that we can
count the coverage of each contig and identify which contigs are likely related
to each other. To do so, we will use bowtie-2, which is a really fast way to map
reads to sequences.

First, we need to build an index of our contigs file (as usual, make sure you
change the filename!):

bowtie2-build AlgaeAssembly/contigs.fasta AlgaeBowtie

Next we map all the reads to the contigs. We use our AlgaeAllReads.fasta
file that we created before, and which has the renumbered reads:

bowtie2 -f -x AlgaeBowtie -U AlgaeAllReads.fasta > AlgaeAllReads.cross-assembly.bowtie2.sar

The options we include are: -f : the input file is in fasta format only -x : the
index file we made in the previous step -U : we are using unpaired reads

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

There are several options that you can include, and if you are running on a
machine with more than one core you should add -p to increase the number of
threads that bowtie-2 will use. Use bowtie -h to see more information.

When bowtie-2 is complete it will show you some output about the data, for
example:

200000 reads; of these:
200000 (100.00%) were unpaired; of these:
120140 (60.07%) aligned O times
79390 (39.70%) aligned exactly 1 time
470 (0.23%) aligned >1 times
39.93% overall alignment rate

This shows that about 40% of my raw reads ended up in contigs.

bowtie-2 makes a file called a SAM file (for Sequence alignment and mapping
format) which contains detailed information about the reads and how they map
to the reference database (in this case, the contigs we made in contigs.fasta).

IV. Using crAss to identify cross-assembled contigs.

The program crAss allows us to read the sam file created by bowtie-2 and make
some diagrams that explain the data. crAss needs a single directory as input
and expects to find the fasta files and the sam file there. It will automatically
figure out which is which.

First, we make a new directory, called crAss, and move the data there. Here,
we are just copying the renumbered fasta files (not the originals) and the sam
file that was the last argument in the bowtie command above. Don’t forget to
change the name of your data sets!

mkdir crAss
cp Algae_17.renum.fasta AlgaeAllReads.cross—assembly.bowtie2.sam crAss

now that we are set, we can run crAss:
crAss.pl crAss/

There are several output files in the crAss directory, and they are largely named
on the method used to determine the relationship between contigs (there are
several ways of calculating the distance between contigs). However, we are going
to use the file output.contigs2reads.txt which has a table of the reads and
the contigs that they map to.

First, open that file in a spreadsheet program. I use open office, and it is
installed on the virtual images, or you can copy it to your computer and use
sheets, excel, or anything else.

https://edwards.sdsu.edu/crass/

Sort the data by the first column, second column, third column, etc, and then
look at the data and see if there are “groups” of data. For example with the
algae data I think there is a group of data centered with about 25x coverage of
the contigs.

I plotted a line plot of those contigs, and you can see that some of the contigs
have the same coverage trend. This suggests that these contigs are really part
of the same bin!

We could manually identify each of the contigs that group together, or we can
use Pearson correlations to identify the related contigs. There are two ways
that you can do this. In Excel or Open Office you can calculate the correlation
between a single abundant contig and all of the other contigs using the correl
function.

The alternative is to use a small program that I wrote, crAss_contig_correlations.py
will parse the output.contigs2reads.txt file and calculate pairwise Pearson
correlations for all pairs of contigs in that data.

crAss_contig_correlations.py -d crAss/output.contigs2reads.txt > pearson.txt

One of the problems we may run into is that if there are a few reads that map,
we get a strong correlation, but it is not meaningful. Therefore, we can restrict
the correlation to both the number of non-zero values (if everything was 0, the
correlation score would be 1!) and also to a minimum number of reads in total
(the row total for the table). In this example, I restrict my analysis to just those
contigs that are present with 30 or more reads in all the samples using the -r
option:

crAss_contig_correlations.py -r 30 -d crAss/output.contigs2reads.txt > pearson.txt

Thought experiment: What does it mean if the read abundance of two contigs
is perfectly anticorrelated with each other (i.e. pairwise score is -1).

Thought experiment: The simplest explanation for different contigs having
similar read coverage in different samples is that they came from the same
metagenome. Can you come up with any other explanations for why this could
also be true?

Another problem that we will run into is that we are only interested in the
contigs that are highly correlated with each other (i.e. the pairwise correlation
coefficient is large). This would allow us to find some interesting high correla-
tions.

We can limit the output with the -m option, to just print out the pairs of contigs
whose read correlation is above 0.95:

crAss_contig_correlations.py -r 30 -m 0.95 -d crAss/output.contigs2reads.txt > pearson.txt

Running crAss on guts and groundwater

Before we start we need to make a bowtie index:

bowtie2-build assembly/contigs.fasta GutBowtie

First, we are going to map the reads to contigs:

bowtie2 -x GutBowtie -1 left.fastq -2 right.fastq > gut.bowtie2.sam

This will give you an error. Why? Recall that you can fix it using fastq-pair
as described above.

bowtie2 -x GutBowtie -1 left.fastq.paired.fq -2 right.fastq.paired.fq > gut.bowtie2.sam
Now we are going to make a directory to run crAss in:

mkdir crAss
cp gut.bowtie2.sam crAss/
cd crAss

crAss needs fasta files but we only have fastq files, so lets convert fastq to
fasta:

First, lets get some file names.
for FILE in $(1s /data/gut/fastq/*fastq); do OUTPUT=$(echo $FILE | sed -e 's/~.*\///; s/fasi

Then we can use those file names to extract the fasta files. Make sure you are
in the crAss directory before you do this.

for FILE in $(1s /data/gut/fastq/*fastq); do OUTPUT=$(echo $FILE | sed -e 's/~.*\///; s/fasi
Finally, we move back and run crAss:

cd ..
crAss.pl crAss/

And then we can look for correlations:

crAss_contig_correlations.py -d crAss/output.contigs2reads.txt -s 1

V. Using linux commands to find related contigs

We can explore those a little more using some of the linux commands we have
learned above.

I’d first like to know, out of the pairs of contigs that have >0.95 correlation,
which contigs appear frequently. The code to list the Pearson correlations only
prints out the correlation coefficient in one direction (e.g. when calculating the
coefficient between x and y, it only prints out x vs y, not y vs x). The score
in the other direction will be the same. Therefore, we need to look at both the
first two columns and see how frequently each contig name appears.

See if you can figure out how this command works:

cut -f 1,2 --output-delimiter=$'\n' pearson.txt | sort | uniq -c | sort -n

The -f 1,2 option to cut means print out the first two fields that match. We
haven’t talked about this weird output-delimiter notation, but basically it means
print a new line between each entry.

When I run this, I find a contig (called NODE_323_length_2368_cov_1.94207)
that is highly correlated to 18 other contigs.

To find out what those contigs are, we can use a combination of grep and
cut (don’t forget to change the NODE_323_length_2368_cov_1.94207 and the
pearson.txt parts of this command!)

grep NODE_323_length_2368_cov_1.94207 pearson.txt | cut -f 1,2 --output-delimiter=$'\n'
This will print all 19 contigs (the contig I am looking for and the other 18

contigs).

We can use this list to find their abundance profiles in the different samples

from the output.contigs2reads.txt file created by crAss:

grep NODE_323_length_2368_cov_1.94207 pearson.txt | cut -f 1,2 --output-delimiter=$'\n'

Here we use the xargs command, and tell it that we want one argument per
command (-n 1), and that we want to insert (-I) the argument at the position
marked by the %. Thus xargs runs the grep for each argument on the file
output.contigs2reads.tsv.

I can redirect the output of this file to a new file:
grep NODE_323_length_2368_cov_1.94207 pearson.txt | cut -f 1,2 --output-delimiter=$'\n'

Now that I have the interesting contigs, I can plot a graph of their abundance
across the different samples.

We could explore this data set further by asking whether it is appropriate that
all of these contigs be binned together. For example, if we blast them against
a non-redundant database (e.g. at NCBI), do all the contigs match a similar
organism?

We could extract just the reads that contributed to these contigs and reassemble
them to see whether we get better assemblies without all the other reads in the
mix causing us problems.

We could extend this analysis by decreasing our threshold for the Pearson cor-
relation.

As we will do later, we could test whether these contigs make up a whole organ-
ism.

	Cross-Assembly and Binning
	Manual Binning
	I. Renumbering the reads [optional]
	II. Assembling the metagenomes
	III. Assembling multiple reads from metagenomes
	IV. Mapping reads to contigs with bowtie
	IV. Using crAss to identify cross-assembled contigs.
	V. Using linux commands to find related contigs

