
Sequence Assembly

The essential problem that sequence assembly is trying to overcome is that the
average microbial genome is 2,000,000 bp, while the typical sequence read length
is 150-300 bp for Illumina sequences and upto 50,000 bp for PacBio or Nanopore
sequences.

With such (relatively) short sequences, how can we assemble a whole, or nearly
whole, genome?

The answer is by repetitively sequencing the same thing over and over again!
If we start each sequence at a random location, and we have enough sequences,
eventually we can join those sequences together to form what we call contigs.

There are four types of sequence assembly algorithms:

1. Naive assemblers which just try and find all matching pairs of reads
2. Greedy assemblers which start with one read and keep adding reads until

you can not find any more matches, and then start with the next read.
3. Overlap-layout-consensus assemblers which layout the reads looking for

overlaps between them. The overlaps are usually refined by a Smith-
Watermann search, and then a consensus constructed.

4. de Bruijn graph assemblers

This table describes some of the common sequence assemblers that you will run
across.

NameType
Sequencing
TechCitationDocumentationHomepage

SPAdesgenomes,
single-
cell,
metagenomes,
ESTs

Illumina,
Solexa,
Sanger,
454,
Ion
Tor-
rent,
PacBio,
Ox-
ford
Nanopore

Nurk
et
al.
2013

version
3.12
man-
ual

SPAdes

VelvetgenomesSanger,
454,
Solexa,
SOLiD

Zerbino
and
Bir-
ney,
2008

version
1.12
man-
ual

EBI

1

https://link.springer.com/chapter/10.1007%2F978-3-642-37195-0_13
https://link.springer.com/chapter/10.1007%2F978-3-642-37195-0_13
https://link.springer.com/chapter/10.1007%2F978-3-642-37195-0_13
https://link.springer.com/chapter/10.1007%2F978-3-642-37195-0_13
http://cab.spbu.ru/files/release3.12.0/manual.html
http://cab.spbu.ru/files/release3.12.0/manual.html
http://cab.spbu.ru/files/release3.12.0/manual.html
http://cab.spbu.ru/files/release3.12.0/manual.html
http://bioinf.spbau.ru/en/spades
https://genome.cshlp.org/content/18/5/821.long
https://genome.cshlp.org/content/18/5/821.long
https://genome.cshlp.org/content/18/5/821.long
https://genome.cshlp.org/content/18/5/821.long
https://genome.cshlp.org/content/18/5/821.long
https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf
https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf
https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf
https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf
http://www.ebi.ac.uk/~zerbino/velvet/


NameType
Sequencing
TechCitationDocumentationHomepage

CanugenomesPacBio/Oxford
Nanopore
reads

Koren
et
al.
2017

manual
for
all
ver-
sions

Git
repo

MaSuRCAAny
size,
hap-
loid/diploid
genomes

Illumina
and
PacBio/Oxford
Nanopore
data,
legacy
454
and
Sanger
data

Zimin
A,
et
al.
2017

Git
Repo

Git
Repo

HingeSmall
mi-
cro-
bial
genomes

PacBio/Oxford
Nanopore
reads

Kamath
et
al.
2017

jupyter
note-
book

Git
repo

We use the St. Petersburg genome assembler, SPAdes and the version installed
on the AWS instances is 3.12.0 for which the manual is here

For Nanopore reads we typically use the CANU assembler.

Running SPAdes

SPAdes is easy to run! The basic command is

spades.py

The program takes a couple of inputs - your fastq files, for example that you
download from ../Databases/SRA.

If you have paired end reads, you need to add -1 for the left pairs (the file called
xxx_1.fastq) and -2 for the right pairs (the file called xxx_2.fastq). Note that
spades handles gzip compressed files, and you do not need to decompress them!

If you unpaired reads, you can specify that with the -s flag.

You also need to provide an output directory name where the results will be
written using the -o flag.

Your final command might look something like:

2

https://genome.cshlp.org/content/27/5/722
https://genome.cshlp.org/content/27/5/722
https://genome.cshlp.org/content/27/5/722
https://genome.cshlp.org/content/27/5/722
https://canu.readthedocs.io/en/latest/quick-start.html
https://canu.readthedocs.io/en/latest/quick-start.html
https://canu.readthedocs.io/en/latest/quick-start.html
https://canu.readthedocs.io/en/latest/quick-start.html
https://canu.readthedocs.io/en/latest/quick-start.html
https://github.com/marbl/canu
https://github.com/marbl/canu
https://www.ncbi.nlm.nih.gov/pubmed/28130360
https://www.ncbi.nlm.nih.gov/pubmed/28130360
https://www.ncbi.nlm.nih.gov/pubmed/28130360
https://www.ncbi.nlm.nih.gov/pubmed/28130360
https://www.ncbi.nlm.nih.gov/pubmed/28130360
https://github.com/alekseyzimin/masurca
https://github.com/alekseyzimin/masurca
https://github.com/alekseyzimin/masurca
https://github.com/alekseyzimin/masurca
https://genome.cshlp.org/content/27/5/747.full
https://genome.cshlp.org/content/27/5/747.full
https://genome.cshlp.org/content/27/5/747.full
https://genome.cshlp.org/content/27/5/747.full
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE-analyses
https://github.com/HingeAssembler/HINGE
https://github.com/HingeAssembler/HINGE
http://cab.spbu.ru/software/spades/
http://cab.spbu.ru/files/release3.12.0/manual.html
../Databases/SRA


spades.py -1 fastq/ERS011900_pass_1.fastq.gz -2 fastq/ERS011900_pass_2.fastq.gz -o assembly

SPAdes output files

SPAdes makes a lot of files and directories in the output, and this summarizes
what those files are. Of course, more details can be found in the SPAdes manual

• scaffolds.fasta contains the scaffolds generated by SPAdes and is the
output file you want to use.

• the directory /corrected/ contains reads corrected by BayesHammer in
compressed fastq format

• contigs.fasta contains the contigs before they are scaffolded into scaf-
folds. Often this is similar to the scaffolds.fasta depending on how much
scaffolding information there is

• assembly_graph.gfa contains the assembly graph and scaffolds paths in
GFA 1.0 format

• assembly_graph.fastg contains the assembly graph in FASTG format
• contigs.paths contains paths in the assembly graph corresponding to

contigs.fasta. This is how the graph is resolved into contigs.
• scaffolds.paths contains paths in the assembly graph corresponding to

scaffolds.fasta.
• K21, K33, K55, etc are directories containing the de Bruijn graph assemblies

for different lengths of k
• before_rr.fasta are the assembled contigs before repeat resolution has

been applied.
• dataset.info and input_dataset.yaml contain information about the

sequence read files that were supplied.
• params.txt is a summary of all the spades parameters
• spades.log is the log that was printed to the screen while SPAdes was

running. This contains lots of information about the assembly process.

3

http://cab.spbu.ru/files/release3.12.0/manual.html

	Sequence Assembly
	Running SPAdes
	SPAdes output files


