
Sequence File Formats

Introduction

Over the years we have needed standardized file formats to house sequence data.
Of course, as new ideas have emerged, technology has developed, computational
power increased, and bioinformatics software improved, those formats have de-
veloped and improved.

fasta format

Originally a file format was needed to handle DNA sequences that was straight
forward and would allow bioinformaticians to store the DNA sequence and infor-
mation about where it came from. One of the simplest formats was designed by
David Lipman and William Pearson from the University of Virginia, and
soon became a de facto standard and is called fasta format. In this format,
the line that contains the identifier for the sequence and the description starts
with a greater than sign (yes, computer scientists like to use that sign!), and all
other lines are deemed to be sequences. A fasta file might look like the example
shown here.

Figure 1: crAssphage DNA sequence

The characters after the ‘>’ and up until the first white space are considered the
identifier for the sequence and should be unique within the file (i.e. you should
not have two different sequences with the same identifier). The information
after the first space is optional and can be a description of the sequence, some
semi-structured data, like in the third example where it shows the organism

1

and the function of the protein, or anything you would like. Remember that
we discussed non-redundant databases in the databases section? In most non-
redundant databases, the sequence starts with a unique ID, and then contains
a list of all of the IDs that contribute to that sequence.

As we discussed in the sequencing section, when you are sequencing, you need
to keep track of the quality scores that estimate the error rate. For Sanger
sequencing and with some of the early high-throughput approaches, a separate
file called a quality file was used. That has the quality scores separated by
spaces, one quality per base. There should be the same number of bases as
there are quality scores!

Figure 2: fasta quality file to keep the quality scores

2

../Sequencing/README.md#errors-in-dna-sequencing

fastq format

However, as sequencing became more popular, and the amount of sequences
increased, this became an increasingly unsustainable way of keeping the data.
First, for every sequence, you need two files, a quality scores file and a DNA
sequence file. That means you are likely to loose one of those files somewhere
along the way (i have lost many of them!). Second, it is not easy to ensure that
every sequence has a quality score associated with it, and every base in every
sequence has a quality score associated with it!

The solution that was settled upon was to combine the sequences and quality
scores into a single file, called a fastq file. The name comes from fasta + quality!
This file has every sequence and its associated quality score.

However, instead of storing the numbers as digits, like in the quality file above,
we choose to store the numbers as single characters! This means that every
quality score is exactly as long as the sequence that it refers to, as there is a
single character per quality score. To convert the numbers to characters, we
use the Unicode tables. These tables (a part of which is shown here), have
a decimal number to represent every character of the alphabet, including the
extended alphabet from different languages, and now emoji, too.

However, notice in the table above that the first 31 numbers include all the keys
on your keyboard like backspace, tab, and delete, and #32 is a space, which
is not so useful if we want to store them in a file one character per line (how
would you store a backspace?). Therefore, to convert a phred score to a fastq
score, we add 33 to the number and use the character from this table. Some
examples are shown in the table below.

Quality Score Unicode number Character in fastq file
0 33 !
10 43 +
32 65 A
64 97 a

The other changes that was made compared to fasta files were to ensure that
fastq files were easy to test for integrity and to be able to rapidly identify a
fastq file from a fasta file.

First, fastq files have four lines for each entry, and second, instead of using the
greater-than sign (“>”) to delimit the ID, fastq files use an @ sign and a + sign.
The order of the file is shown in the box below.

The first line for each sequence begins with an @ sign and has the sequence
ID, up to the first white space, and as with fasta files, after the space can have
additional optional information. The second line has just the DNA sequence,
with nothing else, and the sequence must be on one line (without new lines).

3

https://en.wikipedia.org/wiki/Unicode

Figure 3: Unicode Tables

Figure 4: fastq file format

4

The third line begins with a + sign, and optionally also includes the sequence
ID (but does not need to), and the fourth and final line has the representation
of the quality scores without any spaces.

Note: The standard fastq specification does not enforce this four line per entry
format. You are allowed to insert line breaks in sequences and/or qualities.
However, most software nowadays requires this four line format and breaks if
you don’t provide it.

Thought Experiment: What happens if the first base in your sequence has a
quality score of 31?1

Converting between fastq and fasta or fasta and fastq

One of the most common applications in bioinformatics is to convert from fastq
to fasta format. You can also go the other way if you have the quality scores!

When you are converting from fastq to fasta, some programs will generate two
files, and others will only make a single file. For example, we have a simple
website that will take a fastq file and generate a fasta file of just the DNA
sequence, ignoring the quality scores of the sequences.

The command line application prinseq-lite.pl can do It for you too. prinseq-
lite.pl was the initial version of prinseq written by Rob Schmieder. If you are
interested in using it we have a newer version written in C++ by Jeff Sadural
and Adrian Cantu. The -out_format option takes several parameters that you
can specify on the command line. With prinseq-lite.pl you can just specify
an input file and the appropriate -out-format option and generate the fasta
and quality files. This will ensure that the files have unique names.

We also have two command line versions included on the Amazon Web Ser-
vices image: fastq2fasta is faster (as it is written in C++) and is probably
the preferred option for converting fastq files to fasta files (Be sure to replace
Algae_12.fastq with your filename):

fastq2fasta Algae_12.fastq Algae_12.fasta

Note, however, if your file is compressed, for example with GZIP, you need to
uncompress it first. You can do this on the fly using a pipe like this:

gunzip -c Algae_12.fastq.gz | fastq2fasta - Algae_12.fasta

This command unzips the compressed file and prints the output to standard
out. Then it reads the output from standard output and converts it to fasta
and saves that in the new file Algae_12.fasta.

You can also use the awesome seqtk library from Heng Li. The command to
convert fastq to fasta is:

seqtk seq -A Algae_12.fastq.gz > Algae_12.fasta

5

http://edwards.sdsu.edu/redwards/cgi-bin/fastq2fasta.cgi
http://edwards.sdsu.edu/redwards/cgi-bin/fastq2fasta.cgi
http://prinseq.sourceforge.net/
https://www.ncbi.nlm.nih.gov/pubmed/?term=21278185
https://github.com/Adrian-Cantu/PRINSEQ-plus-plus
../Linux/README.md#pipes
https://github.com/lh3/seqtk

However, these commands do not convert the quality scores as well, and so if
you want those you might want to use prinseq-lite.pl

If you want to convert several files from fastq to fasta, and they are gzipped, we
can do that in a loop, like this:

for FQ in $(ls fastq/); do
FA=$(echo $FQ | sed -e 's/fastq.gz/fasta/');
echo $FQ $FA;
gunzip -c fastq/$FQ | fastq2fasta - $FA;

done

The first line in this loop reads the file name of every file in the fastq/ direc-
tory. The second line makes a new variable called FA that replaces fastq.gz
with fasta. The third line just prints the file names so you can see what we are
working on, the fourth line uncompresses the fastq file but prints the uncom-
pressed version out, and uses a pipe to pass that inforamtion to fastq2fasta
which reads from STDIN (that’s what the - sign means) and writes the output
to $FA.

Other options to convert from fastq to fasta include the brilliant seqtk toolkit
that is also included on the Amazon Web Image for the course.

BAM and SAM format

With the advent of large sequencing projects like the human genome sequencing
efforts, a lot of bioinformatics focus shifted from de novo assembly and anno-
tation of genome sequences to mapping and characterizing differences between
genomes.

Thought experiment: Why do we want to look at the differences between human
genomes rather than perform de novo annotations?2

SAM format

The Sequence Alignment/Mapping format (SAM) format was first described by
Li et al and has rapidly become one of the leading file formats.

The SAM format contains two sections. The header sections have lines that be-
gin with the *@* symbol, and contain information about the SAM specification
to which the file adheres, and the reference sequence involved in the alignment.
(Remember, SAM files are reporting the alignment of a lot of different sequences
to one (or maybe more) reference sequences).

The line that begins @HD can contain header information including the version
(VN:), the sorting order (SO:) of the alignments, and the grouping order (GO:)
of the alignments.

6

../Linux/README.md#pipes
https://github.com/lh3/seqtk
https://www.ncbi.nlm.nih.gov/pubmed/19505943

There can be one or more header lines that start @SQ, and these describe the
reference sequences in the file (to which all the other reads have been mapped).
Each @SQ line can have multiple entries, including SN: the reference sequence
name; LN: the reference sequence length; AN: alternate names for this sequence;
AS: how the reference was assembled; M5: the MD5 sum of the sequence; SP:
the species; and UR: the URL for the sequence.

After the header lines comes the alignment lines. Each line has 11 fields that
are required and the fields are separated by tab symbols. The fields are:

Column number Field Name Type Description
0 QNAME String The query sequence name
1 FLAG Int THe bitwise flag (see below)
2 RNAME String The reference sequence name
3 POS Int The left most mapping position. 1-indexed (i.e the first base is position 1)
4 MAPQ Int The mapping quality
5 CIGAR String The CIGAR string for the alignment (see below)
6 RNEXT String The reference name of the mate or next read
7 PNEXT Int The position of the mate or next read
8 TLEN Int The observed template length
9 SEQ String The sequence of the segment
10 QUAL String The ASCII representation of the quality score + 33

Bitwise flags

The FLAGs in the second column (column 1) are comprised of a bitwise combi-
nation of the following numbers:

Bit Description
1 Template has multiple segments that align
2 Each segment is properly aligned
4 The segment is unmapped
8 The next segment is unmapped
16 The sequence is reverse complemented
32 The sequence of the next segment is reverse
64 The first segment in the template
128 The last segment in the template
256 A secondary alignment
512 not passing filters (e.g. QC)
1024 PCR duplicate
2048 supplementary alignment

The number that ends up in the column is the sum of appropriate numbers.

7

https://en.wikipedia.org/wiki/Md5sum

Therefore, if we have 2+16+64 = 82 we know that the sequence is properly
aligned, is reverse complemented, and is the first segment in the alignment.

CIGAR string

The CIGAR string is a representation of the sequence alignment in abbreviated
form. The letters mean:

Code Description
M Alignment match (but could be a sequence match or mismatch!)
I Insertion relative to the reference
D Deletion from the reference (i.e. insertion relative to the query!)
N Reference skipped
S soft clipping
H Hard clipping
P Padding
= Sequence match
X Sequence mismatch

Thus the CIGAR string 2M1D3M means there are two matches, 1 deletion in
the reference (an insertion in the query), and three more matches.

Here are some more example CIGAR strings

BAM format

BAM format is merely a binary representation of SAM format. That means
that it is very quick for computers to read and parse BAM files, but that you
basically can’t view them without a bam viewer.

When we create sequence alignments, we often just skip the creation of the SAM
format file altogether, and just make a binary BAM file, using Linux pipes as
we have seen before.

For example, this is a common command that we will use:

bowtie2 -p 6 -q --no-unal -x crassphage.bt2 -1 reads.r1.fastq -2 reads.r2.fastq | samtools view -bS - | samtools sort - outputdir/crassphage.reads.bam

This command takes a bowtie2 indexed file (crassphage.bt2) and two read
files (reads.r1.fastq and reads.r2.fastq) and uses bowtie2 to compare the
reads to the crassphage reference. Then we convert the output to BAM format
using the -bS option to samtools view, and finally sort the reads in the bam file
(which makes indexing and accessing the data much quicker).

Notice that we don’t save the intermediate sam file - we create it on the fly and
pass it straight into the conversion to binary format.

8

https://jef.works/blog/2017/03/28/CIGAR-strings-for-dummies/
../Linux/README.md#pipes

Viewing BAM files

The best BAM file viewer that we routinely use is the unfortunately named
Tablet from the James Hutton Institute. (The naming is unfortunate as it is
not easy to find!). If you use this be sure to check out their references describing
Tablet Using Tablet for visual exploration of second-generation sequencing data
and Tablet: Visualizing Next-Generation Sequence Assemblies and Mappings.

More information about SAM and BAM files

You can find a lot more information about SAM and BAM files at htslib.org, the
site of samtools and associated software. samtools and all required dependencies
are already installed in our Amazon Web Image.

DDBJ/EMBL/Genbank Format

Each of the INSDC members has a file format that was designed to be a rich,
human readable, file format that could encapsulate all of the data about a
sequence. The standard genbank file definition includes using different numbers
of spaces as separators to mean different thing. This makes these files tricky to
parse - it is not difficult, you just need to be very careful about all the edge cases
where lines wrap, where additional things are included, and what is absolutely
required and what is optional. Because of this, I recommend using one of the
standard library parsers for parsing DDBJ/EMBL/Genbank format files. For
example, BioPerl, BioPython, BioJava, and Bioconductor for R all have built
in parses for these files. This is one of the undoubted advantages of open source
software - when the DDBJ/EMBL/Genbank definitions are updated, a team of
developers will improvee the parsers and test them to ensure they work.

A big advantage of using these files is that they have a fixed vocabulary. For
example, they have described the features that may be used in their files. Only
these features can be included and anything else is not a valid file format.

ABI or AB1 format

This is a proprietary file format that is specifically designed to handle trace
files from ABI sequencing machines. The traces are the measures of the se-
quence peaks as they flow through the sequencer and are used in base calling
the sequences. For example, this trace file was viewed with FinchTV.

9

https://ics.hutton.ac.uk/tablet/
https://www.ncbi.nlm.nih.gov/pubmed/22445902
https://www.ncbi.nlm.nih.gov/pubmed/26519411
http://www.htslib.org/doc/
https://bioperl.org/
https://biopython.org/
https://biojava.org/
https://www.bioconductor.org/
INSDC_Features.md
https://digitalworldbiology.com/FinchTV

It is somewhat of a legacy file format, and it is quite difficult to find software
to read this format anymore. Geneious and FinchTV maybe your last hopes!

PDB

The Protein Data Bank (PDB) format is most commonly used to store three
dimensional structural information about protein crystal structures. This file
format includes the positions of the atoms in the structure, as well as annotations
and information about the protein that was crystallized. Although PDB files
are plain text, they are not really suitable for viewing without a third part
application. Typically people view PDB files with either PyMol or RasMol
although there are other viewers out there.

1 Answer: For a quality of 31, the symbol would be 31+33 = 64. Checking the
ASCII chart, the symbol that would be inserted is an *@* symbol. Note that is
used to start the sequence ID, so you can not just grep for lines beginning with
the @ symbol to find sequence IDs.

2 Answer: For the most part we are interested in the differences that are causing
some effect. For example, consider cancer sequencing. We often sequence both
unaffected cells to get their genome, and part of the tumorous region to see what
has changed. It turns out that most humans are the same, and the differences
are the only interesting thing!

10

https://www.geneious.com/
https://digitalworldbiology.com/FinchTV
https://pymol.org/2/
http://www.openrasmol.org/

	Sequence File Formats
	Introduction
	fasta format
	fastq format
	Converting between fastq and fasta or fasta and fastq

	BAM and SAM format
	SAM format
	Bitwise flags
	CIGAR string
	BAM format
	Viewing BAM files
	More information about SAM and BAM files

	DDBJ/EMBL/Genbank Format
	ABI or AB1 format
	PDB

