
Linux

Introduction to Linux

Most computational biologists use either Apple Macs or Linux machines. There
are a couple of reasons for this: * Much of the software is free * Many of the
tools require a command line to use * Many of the tools require large compute
resources, either a cluster or lots of memory

It is probably the last reason that dominates many of the discussions: many of
the software tools you will want to use require more resources than your laptop
or desktop machine can provide. You can definitely run the BLAST suite of
programs on your laptop, but for large data sets like a whole metagenome, you
probably want to run that on a server so that you can go and do other things
while the program is running.

Most servers that you will access run the operating system linux, or a similar
variant of the Unix operating system. Linux was started in 1991 as a PhD
project by Linus Torvalds, and the initial release was not very powerful, however
Linus released his software using an open source license that allows anyone to
use and modify the source code, either commercially or not. This meant that
other developers could pick up on his work, and several groups and companies
developed operating systems based on the linux kernel (the piece that does
all the work). RedHat has had the most success in the so-called enterprise
sphere (selling servers to companies), and because RedHat’s Fedora software
is built on open-source software, it also releases all of its changes and updates.
There is a free version of RedHat’s operating system, called CentOS, that many
servers use (especially those in academic settings!). CentOS is designed with
performance in mind, and is designed to be run on servers that are very rarely
rebooted. Therefore, only essential system changes are made between releases
of the operating system. Another flavor of Linux is called Debian (after founder
Ian Murdock and his then-girlfriend Debra) developed some elegant mechanisms
to keep the software up-to-date. Again, Debian was built on free software,
and a company (Canonical) built a smooth graphical user interface, and easy,
graphical installation system, and released the software as Ubuntu. There are
many connections between Ubuntu, Debian, CentOS, and Fedora, and most
users can’t really tell which operating system they are using – they are all
canonically called Linux!

The reason that we are using Linux for the course is because it is open and free,
there is lots of software available for it, and it will help you become familiar
with the servers you will doubtless use for high-performance computing. In
addition, we can provide you with a server that you can start and it already has
everything installed for you!

1

http://www.apple.com/
http://www.linux.org/

Public and Private SSH keys

You are probably used to using passwords to access websites, servers, and com-
puters. Passwords are common because they are simple, but they are not very
good. Even complex passwords can be guessed or cracked. We can, for example,
look up passwords on websites like SecLists, we can use rainbow tables we can
write software that attempts to crack passwords like John the Ripper, THC
Hydra, Cain and Abel.

A much more secure way of accessing computers is using keys. The concept
is quite simple, there are two keys: a private key which is super-secret, and a
public key, which you can do anything with. One of my public keys is shown a
little further on in this document, but that’s OK, because a public key on its
own is useless.

The way that the keys work is that when you open a new connection to the
server, your connection has an ID and asks the server to use the specific public
key you’ve defined (typically, there is a default key that is used). The server
generates a random string and encrypts it with the public key you are using. It
sends that encrypted string back. The string can only be properly decrypted
with the private key - it cannot be decrypted with just the public key. If you
have the right private key, your computer can decrypt the string. Rather than
sending the string back, your computer generates an MD5 hash of that random
string and the session ID and returns the hash. Since both your computer
and the server now have both the random string and the session ID, they can
compare their notes and make sure you are allowed in. However, you don’t need
to worry about that part of it!

Once I have made the keys, I end up with two files: 1. The private key: This is
private and secret and you should never share it with anyone or put it anywhere
that anyone else can see it. You put this on your laptop and leave it there. 2.
The public key: You put this one on the server that you want to access.

Now when I try and access the server, my computer opens up the secret private
key, reads the contents, and calculates the public key based on the private key.
It sends that public key and says this is what I have, do you accept it. The
server compares the public key with what it has in its file of public keys, and
either lets you in, or not!

Once you have successfully set up public/private key security, you never need
to enter a password again!

Here’s how to set up public and private keys.

MacOS/Linux

Open a terminal and type:

2

https://github.com/danielmiessler/SecLists/tree/master/Passwords
http://project-rainbowcrack.com/table.htm
http://www.openwall.com/john/
https://github.com/vanhauser-thc/thc-hydra
https://github.com/vanhauser-thc/thc-hydra
http://www.oxid.it/ca_um/

ssh-keygen

Accept the default values, and you have public keys in ~/.ssh/id_rsa.pub and
private keys in ~/.ssh/id_rsa

You don’t need to do anything to use them, they will be used by ssh by default.

Windows

Download PuTTY. Note: For PuTTY, there are some hacked versions of
PuTTY floating around the internet and you don’t want to inadvertently
download one of those as it may give the bad guys access to your machine.
There are also versions with advertisements, and other crap added on. I always
start at https://www.putty.org/ and go from there. Do not Google for it, just
go direct to the website and click the download link.

You want either the 32-bit or 64-bit MSI Windows Installer, depending on
whether your computer has 32- or 64-bits.

Figure 1: 32 or 64 bits

Note sure how many bits? This is from the PuTTY FAQ:

Figure 2: how many bits

Once you have downloaded PuTTY, you want to open the application called
PuTTYgen. This will open a screen like the one shown below:

3

https://www.putty.org/
https://www.putty.org/

Figure 3: putty gen

4

Figure 4: randomness generator

5

Click the Generate button and create some randomness:

This will create the key for you.

Figure 5: the key

MAKE SURE YOU SAVE THE KEYS!

Save the public key as, for example, key.pub, and the private key as, for example,
key.ppk. We will use them later!

To use the keys, right click on the private key, and choose Load into Pageant
Pageant is the PuTTY key agent, and several programs can access the keys
from there.

6

Accessing Your Linux Server – Windows

Accessing Your Server via PuTTY

Figure 6: accessing the server

To access your server using PuTTY, load the private key into Pageant as shown
above and then start PuTTY. Enter the IP address of your computer and click
Open. On the next screen, where it says Login as: enter your username. You
will be logged into your server and you can continue with the course.

Usernames:

If you are using the standard AWS image, the username is most likely ec2-user.
If you are using an Ubuntu AWS image the username is most likely ubuntu. If
you are not sure, you should contact whoever made your image.

7

Password

There should be no password because we are using ssh keys!

Once you log in you should see a screen like this:

Figure 7: logged in

Putting and Retrieving Files using Filezilla

To get files onto and off of the server, you should probably use FileZilla on
Windows. Start by heading to the filezilla website and click on the download
link for the client:

Figure 8: download filezilla

On the next screen, just choose the regular (free) FileZilla. Install filezilla
using the default options, and then open it. In the boxes at the top, enter
your IP address, username, and password. In this example my IP address was
54.206.35.210. Enter port 22 as we will use secure copying, and then click
Quickconnect.

You will be asked a couple of questions that you can agree to. You probably
want to save the passwords. I don’t worry about a master password, but if you
are accessing sensitive information you should.

and we want to remember the server so we don’t get asked each time:

8

https://filezilla-project.org/

Figure 9: filezilla quickconnect

Figure 10: remember passwords?

Figure 11: remember server?

9

And then you can drag and drop files from the left side which is your local
computer and the right side which is the server:

Figure 12: split screen filezilla view

Accessing Your Server via VcXsrv

[Note: You only need to do this if you want to run things under x-windows]

We will also want to access your server using an X11 emulator (don’t worry
what that means, basically it means we can use Google Chrome on the server!)
Before we start, make sure to right click on your private key and choose Load
into Pageant. Next, we are going to install VcXsrv for windows. Go to this link,
and download the latest version. Click and run the installer that downloads:

Now start a program on the client:

We start by entering the main information, your username (mine is robe)
and the IP address of your computer (in the example here, my IP address is
129.114.17.72).

Leave extra settings as the default

10

https://sourceforge.net/projects/vcxsrv/files/latest/download

Figure 13: installer

11

Figure 14: start a program on the client

12

Figure 15: start a program2

13

Figure 16: default extra settings

14

Click Finish, and OK on the next screens, and after a few seconds you will be
logged in. The screen will look something like this:

Figure 17: VCXsrv running

Using Linux

Linux has many of the same tools that you already use in MacOS or Windows.
For example, there is an office suite of applications including LibreOffice Writer
(a replacement for MS Word), LibreOffice Calc (a replacement for MS Excel),
and LibreOffice Impress (a replacement for MS PowerPoint). There are calcu-
lators and games.

However, the real strength in using Linux comes from using the command line,
as we will do during the course. Using the command line means you can work
from anywhere, and you are not wasting computing effort checking email and
watching movies. You can access super computers and work on remote machines
around the world. You can even do it from your cellphone (e.g. connectbot for
Android or Terminus for iPhone. It is faster and more efficient way of working.
Here we’ll take a tour around the command line to get you started – or to act
as a refresher.

To move around in the command line, you type commands and press return.

15

https://play.google.com/store/apps/details?id=org.connectbot&hl=en
https://play.google.com/store/apps/details?id=org.connectbot&hl=en
https://itunes.apple.com/us/app/termius/id549039908?mt=8

There is a cheat-sheet of common commands below.

Linux exercises for practice working with the command line

Here are some exercises that you can try: * List the files in the directory. *
Copy one file to another file * Look at the content of one file from the top *
Look at the content of one file from the bottom * Check if two files are identical.
* Delete a file * Make a test directory * Move some files to your new directory
* Remove test directory (and the files) * Make five new directories one inside
the other like level1/level2/level3/level4/level5 in one command. * Move a file
to the innermost directory. * Copy a file to your home directory * Search for a
word in a file

Linux cheat sheet

CommandMeaning
cd
directory
[..
-
~]

Change directory [to the
parent directory, the last
directory you were in, or
your home directory]

mkdir
directory

Make directory

mv
filepath1
filepath2

Move file from filepath1
to location at filepath2

cp
filepath1
filepath2

Copy file from filepath1
to location at filepath2

pwd Show current directory
rm remove a file (once

removed, it is gone!)
ls
directory

List contents of directory
(leave directory blank for
current)

ls
-l
directory

List contents of directory
in long-listing format
(leave directory blank for
current)

cat
file

Print the entire contents
of a file

head
file

Print out first 10 lines of
file

16

CommandMeaning
tail
file

Print out last 10 lines of
file

less
file

View file in Terminal.
Use arrows to browse.
Press q to quit.

df
-h

Show disk space usage
information

wc
-l
file

Display the number of
lines in the file.

diff
file1
file2

Display the differences
between file1 and file2

grep
word
file

Search for word in file

sort Sort the input
uniq
file

Look for duplicate words
in the file

cut
-f
1
file

Split the contents of a
file, e.g. if it is in
columns

xargs
-n
1
command

Use each entry as a
parameter to pass to
command

Pipes

One of the strengths of unix is the ability to pipe commands together. You can
take the output of one command, and use it as the input to another command.
This means that you can join arbitrary things together to generate new results.
This is one of the reasons that unix is so popular among data analysts. The
method for doing this is called piping, and we use the vertical line symbol to
pipe the input “|”.

For example, to sort the lines in a file we can combine two commands, cat and
sort. The first command prints the entire contents of a file and the second
sorts the lines on the input. For example, if we have a file called poem.txt, we
can sort the lines using this command:

cat poem.txt | sort

17

You can sort things either alphabetically or numerically by adding a -n to the
command line.

There is another command, uniq, that looks for duplicated lines, and has an
option -c to count the duplicates, and a command cut that allows you to print
one column of a file. We can tie all these commands together to sort the contents
of a file, count recurrent lines, and sort them numerically to generate a list of
lines in the file. For example, if we have a text file containing subsystems
in metagenomes, we can split the list into a specific column using a tab as
a separator (the shortcut for a tab is ‘�’), sort those lines, identify and count
duplicates, and then sort the output numerically.

cut -f 2 -d$’\t’ subsystems.txt | sort | uniq -c | sort -nr | less

stdout and stderr

Linux machines have two “output streams”, places where they print things. One
is designed for normal output and is called “stdout” (standard output), and the
other is designed to print error messages and is called “stderr”.

Normally, both of these print to the screen, however we can redirect one or both
of them to print to a file.

To redirect stdout, we use a greater than sign (“>”). For example, we
can take the output from the command above and write it to the file
subsystem_counts.txt:

cut -f 2 -d$’\t’ subsystems.txt | sort | uniq -c | sort -nr > subsystem_counts.txt

Warning: This will overwrite any existing file called subsystem_counts.txt and
you will loose all the content.

Counting fasta sequences

One of the challenges that we often face with bioinformatics is to count the
number of sequences in a fasta file. You might be tempted to use a command
like this:

grep -c > dna.fna

but remember the stdout section above! This will overwrite the file called
dna.fna with an empty file and you will loose your DNA sequences!

If you want to do that, you can “escape” the greater than sign. That means it
is not really recognized at a redirection of stdout.

grep -c \> dna.fna

When we look at Python, later in the course, we’ll write some (safer) programs
for counting fasta sequences.

18

Getting Help

There are lots of places that you can get help, but you should consider these
sources first:

1. The applications help menu. If you are running a command line application,
usually (but not always) adding -h after the name will print a help menu. For
example, one of the commands that we are going to use later is called bowtie2.
You can access the help menu by typing:

bowtie2 -h

Notice, however, that prints a lot of information and the top part goes off the
top of the screen. We can control that by piping it to one of the commands that
we have already seen, less:

bowtie2 -h | less

This will paginate the output, press space to see the next page or q to quit.
Sometimes developers write the help pages to standard error. This is generally
bad practice, but they do it any way. As we saw above, there are two outputs
on linux (and all machines), one for error codes and one for normal output. You
can join those two outputs so that they appear in the same place with this weird
construct: 2>&1. Therefore you can redirect the output from the standard error
(stderr) to standard output (stdout).

For example, compare the output of asking help from metabat using these two
approaches:

metabat -h | less

and

metabat -h 2>&1 | less

2. Man pages.

Most applications come with a detailed manual that is already installed on your
computer. For example, to see the manual for less, the application we use above,
type: man less

you can try man for any application, most have manual pages, but not all.

3. Google searches

Google for any application with “tutorial” or “how-to” after the name and you
will usually find a helpful description of what is wrong. The Stack Overflow
website is particularly useful for linux help.

19

https://www.stackoverflow.com/
https://www.stackoverflow.com/

	Linux
	Introduction to Linux
	Public and Private SSH keys
	MacOS/Linux
	Windows
	Accessing Your Linux Server – Windows
	Usernames:
	Password

	Putting and Retrieving Files using Filezilla
	Accessing Your Server via VcXsrv

	Using Linux
	Linux exercises for practice working with the command line
	Linux cheat sheet
	Pipes
	stdout and stderr

	Counting fasta sequences
	Getting Help

