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Abstract—Network slicing is a key capability for next gen-
eration mobile networks. It enables infrastructure providers to
cost effectively customize logical networks over a shared infras-
tructure. A critical component of network slicing is resource
allocation, which needs to ensure that slices receive the resources
needed to support their services while optimizing network
efficiency. In this paper, we propose a novel approach to slice-
based resource allocation named Guaranteed seRvice Efficient
nETwork slicing (GREET). The underlying concept is to set up a
constrained resource allocation game, where (i) slices unilaterally
optimize their allocations to best meet their (dynamic) customer
loads, while (ii) constraints are imposed to guarantee that, if
they wish so, slices receive a pre-agreed share of the network
resources. The resulting game is a variation of the well-known
Fisher market, where slices are provided a budget to contend for
network resources (as in a traditional Fisher market), but (unlike
a Fisher market) prices are constrained for some resources to
ensure that the pre-agreed guarantees are met for each slice.
In this way, GREET combines the advantages of a share-based
approach (high efficiency by flexible sharing) and reservation-
based ones (which provide guarantees by assigning a fixed
amount of resources). We characterize the Nash equilibrium, best
response dynamics, and propose a practical slice strategy with
provable convergence properties. Extensive simulations exhibit
substantial improvements over network slicing state-of-the-art
benchmarks.

I. INTRODUCTION

There is consensus among the relevant industry and stan-
dardization communities that a key element in future mobile
networks is network slicing. This technology allows the
network infrastructure to be “sliced” into logical networks,
which are operated by different entities and may be tailored
to support specific mobile services. This provides a basis for
efficient infrastructure sharing among diverse entities, such as
mobile network operators relying on a common infrastructure
managed by an infrastructure provider, or new players that
use a network slice to run their business (e.g., an automobile
manufacturer providing advanced vehicular services, or a city
hall providing smart city services). In the literature, the term
tenant is often used to refer to the owner of a network slice.

A network slice is a collection of resources and functions
that are orchestrated to support a specific service. This in-
cludes software modules running at different locations as well
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as the nodes’ computational resources, and communication
resources in the backhaul and radio network. By tailoring
the orchestration of resources and functions of each slice
according to the slice’s needs, network slicing enables tenants
to share the same physical infrastructure while customizing
the network operation according to their market segment’s
characteristics and requirements.

One of the key components underlying network slicing is
the framework for resource allocation: we need to decide how
to assign the underlying infrastructure resources to each slice
at each point in time. When taking such decisions, two major
objectives are pursued: (i) meeting the tenants’ needs specified
by slice-based Service Level Agreements (SLAs), and (ii)
realizing efficient infrastructure sharing by maximizing the
overall level of satisfaction across all slices. Recently, several
efforts have been devoted to this problem. Two different types
of approaches have emerged in the literature:
Reservation-based schemes [1]–[8] where a tenant issues a
reservation request with a certain periodicity or on demand.
Each request involves a given allocation for each resource in
the network (where a resource can be a base station, a cloud
server or a transmission link).1

Share-based schemes [10]–[14] where a tenant does not is-
sue reservation requests for individual resources, but rather
purchases a share of the whole network. This share is then
mapped dynamically to different allocations of individual
resources depending on the tenants’ needs at each point in
time.

These approaches have advantages and disadvantages.
Reservation-based schemes are in principle able to guarantee
that a slice’s requirements are met, but to be efficient, require
constant updating of the resource allocations to track changing
user loads, capacities and/or demands. The overheads of
doing so at a fine granularity can be substantial, including
challenges with maintaining state consistency to enable admis-
sion control, modifying reservations and addressing handoffs.
Indeed, these overheads are already deemed high for basic
horizontal and/or vertical handoffs. As a result, resource
allocations typically need to be done at a coarser granularity
and slower time-scales, resulting in reduced overall efficiency
and performance.

In contrast to the above, in share-based approaches a slice

1Reservation-based schemes follow a similar QoS architectures as wired
networks such as IntServ and DiffServ, see e.g., [9]. A key difference is that
in a mobile slice setting one needs to account for user dynamics, including
changes in their associations, across a pool of resources (e.g., set of wireless
base stations).
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is given a coarse-grained share of the network resources
which combined with a fine-grained dynamic policy can track
rapid changes in a slices’ load distributions. Indeed, as these
schemes do not involve explicit per resource reservation re-
quests, they can more rapidly adapt allocations to the demand
variations of network slices (see, e.g., [15]). Their main
drawback, however, is that tenants do not have a guaranteed
allocation at individual resources, and as a consequence they
cannot ensure that slices’ requirements will always be met.

Key contributions: In this paper, we propose a novel ap-
proach to resource allocation among network slices named
Guaranteed seRvice Efficient nETwork slicing (GREET).
GREET combines the advantages of the above two approaches
while avoiding their drawbacks. The key idea is that a slice
is guaranteed a given allocation at each individual resource,
as long as the slice needs such an allocation, while the
remaining resources are flexibly and efficiently shared. In this
way, GREET is able to provide guarantees and thus meet
the SLA requirement of each slice, and at the same time it
provides a flexible sharing of resources across slices that leads
to an overall optimal allocation. Our key contributions are as
follows:

• We propose the GREET slice-based resource alloca-
tion framework, which relies on a constrained resource
allocation game where slices can unilaterally optimize
their allocations under some constraints which guarantee
that slices are entitled to a pre-agreed amount of each
individual network resource, specified in their SLAs
(Section II).

• We analyze the resulting network slicing game when
slices contend for resources to optimize their perfor-
mance. We show that the game has a Nash Equilibrium
(NE) but unfortunately the Best Response Dynamics
(BRD) may not converge to this equilibrium (Section III).

• We propose a GREET slice strategy for individual slices
that complements our resource allocation framework.
The proposed strategy is simple and provides a good
approximation to the slice’s best response. We show
conditions for convergence with the proposed strategy
(Section IV).

• We perform a simulation-based evaluation confirming
that GREET combines the best features of reservation-
based and share-based approaches, providing service
guarantees while maximizing the overall performance
(Section V).

II. RESOURCE ALLOCATION APPROACH

In this section we introduce both the system model and the
resource allocation framework proposed in this paper.

A. System model

We consider a set of resources B shared by a set of slices V ,
with cardinalities B and V , respectively. B may denote a set
of base stations as well as any other sharable resource type,
e.g., servers providing compute resources. While our analysis
can be applied to different resource types, in what follows we
focus on radio resources and refer to b ∈ B as a base station.

We assume that each network slice supports a collection
of mobile users, possibly with heterogeneous requirements,

each of which is associated with a single base station. The
overall set of users on the network is denoted by U , those
supported by slice v are denoted by Uv , those associated with
base station b are denoted by Ub, and we define Uv

b := Ub∩Uv .
The set of active slices at base station b, corresponding to
those that have at least one user at b, is denoted by Vb (i.e.,
|Uv

b | > 0 holds for v ∈ Vb).
The goal in this paper is to develop a mechanism to

allocate resources amongst slices. To that end, we let fv
b

denote the fraction of resources at base station b allocated to
slice v. We adopt a generic formulation in which we assume
infinitely divisible resources that can be applied to a variety
of technologies. The specific resource notion will depend on
the underlying technology; for instance, in OFDM resources
refer to physical resource blocks, in FDM to bandwidth and
in TDM to the fraction of time. Note that typical wireless
technologies have a granularity on which fine grain resources
are made, e.g., resource blocks, yet these are typically small
relative to the overall frame, or are shared over time, whence
the impact of rounding errors will be small.

The resources of a base station allocated to a slice are
subdivided among the slice’s users at the base stations, such
that a user u ∈ Uv

b receives a fraction fu of the resource,
where

∑
u∈Uv

b
fu = fv

b . With such an allocation, user u
achieves a service rate ru = fu · cu, where cu is defined
as the average rate of the user per resource unit under current
radio conditions. Note that cu depends on the modulation
and coding scheme selected for the user given the current
radio conditions, which accounts for noise as well as the
interference from the neighboring base stations. Following
similar analyses in the literature (see, e.g., [16]–[18]), we shall
assume that cu is fixed for each user at a given time.2

The focus of this paper is on slice-based resource al-
location: our problem is to decide which fraction of the
overall resources we allocate to each slice (e.g., the number
of resource blocks of each base station). In order to translate
slice-based allocations to specific user-level allocations, the
system will further need to decide (i) which specific resources
(beyond the fraction of resources) will be assigned to each
slice, and in turn, (ii) the assignment of slice resources
to active users. This corresponds to a user-level scheduling
problem which is not in the scope of this paper, but may
impact the users’ achievable rates cu (this problem has been
addressed, for instance, in [20]–[22]).

In line with standard network slicing frameworks [23], the
approach studied in this paper can be flexibly combined with
different algorithms for user-level allocations. The specific
mechanism to assign resources to slices is the responsibility of
the infrastructure provider, which may take into account, e.g.,
the latency requirements of the different slices. The sharing
of the resources of a slice amongst its users is up to the slice,
and different slices may run different scheduling algorithms

2Note that assuming constant cu represents an abstraction of the underlying
physical resources, which accounts for the various techniques employed at
the physical layer, possibly including multi-user MIMO. After determining
the desired allocation across slices and users, physical layer techniques such
as multi-user MIMO are employed to optimize the resource usage while
following the multi-slice sharing policy. For instance, [19] relies on average
(coarse) estimates for the rates and orthogonality to make scheduling deci-
sions and then uses multi-user MIMO physical layer to optimize transmissions
for scheduled users.
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depending on the requirements of their users. For instance,
slices with throughput-driven services may opt for oppor-
tunistic schedulers [24]–[26] while other slices with latency
requirements may opt for delay-sensitive schedulers [27].
Protocols and algorithms for QoS enforcement such as IntServ
and Diffserv might also be adapted to realize slice-level
allocations.

Depending on its type of traffic, a slice may require differ-
ent allocations. For instance, an Ultra-Reliable Low-Latency
Communication (URLLC) slice with high reliability and/or
low latency requirements may require a resource allocation
much larger than its average load, to make make sure sufficient
resources are available and/or delays are low. By contrast, a
slice with enhanced Mobile Broadband (eMBB) traffic may
not require guarantees at each individual base station, but may
only need a certain average fraction of resources over time for
its users.

B. GREET: Slice-based Resource Allocation

Below, we propose a slice-based resource allocation scheme
that, on the one hand, ensures that each slice is guaranteed,
as needed, a pre-agreed fraction of the resources at each
individual base station, and, on the other hand, enables slices
to contend for spare resources. Such a division into guaranteed
resources and extra ones is in line with current sharing
models for cloud computing [28]–[30]. In order to regulate the
resources to which a network slice is entitled, as well as the
competition for the ‘excess’ resources, we rely on the different
types of shares defined below. Such shares are specified in the
slices’ SLAs.

Definition 1. For each slice v, we define the following pre-
agreed static shares of the network resources.

1) We let the guaranteed share svb denote the fraction of
b’s resources guaranteed to slice v, which must satisfy∑

v∈V svb ≤ 1 in order to avoid over-commitment.
2) We let ev denote the excess share which slice v can use

to contend for the spare network resources.
3) We let sv denote the slice v’s overall share, given by

sv =
∑

b∈B svb + ev .

After being provisioned a fraction of a network resource,
each slice v has the option to sub-divide its share amongst
its users. This can be done by designating a weight wu

for user u ∈ Uv . We let wv = (wu, u ∈ Uv) denote
the weight allocation of slice v such that ∥wv∥1 ≤ sv .
The set of feasible weight allocations is given by Wv :=

{wv : wv ∈ R|Uv|
+ and

∑
u∈Uv wu ≤ sv}. Then, we will

have lvb =
∑

u∈Uv
b
wu as the slice v’s aggregate weight

to base station b, which is determined by its user weight
distribution and must satisfy that

∑
b∈B lvb ≤ sv . We further

let lb :=
∑

v∈Vb
lvb denote the overall weight on base station b

and l−v
b :=

∑
v′ ̸=v l

v′

b the overall weight excluding slice v. We
define ∆v

b := (lvb − svb )+ as the excess weight at base station b
of slice v. The proposed resource allocation mechanism works
as follows.

Definition 2. (GREET slice-based resource allocation) We
determine the fraction of each resource b allocated to slice v,

(fv
b , v ∈ V, b ∈ B), as follows. If lb ≤ 1, then

fv
b =

lvb
lb
, (1)

and otherwise

fv
b =


lvb , lvb < svb ,

svb +
∆v

b∑
v′∈Vb

∆v′
b

(
1−

∑
v′∈Vb

min
(
sv

′

b , lv
′

b

))
, lvb ≥ svb .

(2)

The rationale underlying the above mechanism is as fol-
lows. If lb ≤ 1, then (1) ensures that each slice gets a
fraction of resources fv

b exceeding its aggregate weight lvb
at resource b. If lb > 1, then (2) ensures that a slice whose
aggregate weight at b is less than its guaranteed share, i.e.,
lvb ≤ svb , receives exactly its aggregate weight, and a slice
with an aggregate weight exceeding its guaranteed share, i.e.,
lvb > svb , receives its guaranteed share svb plus a fraction of
the extra resources proportional to the excess weight ∆v

b . The
extra resources here correspond to those not allocated based
on guaranteed shares. A slice can always choose a weight
allocation such that the aggregate weight at resource b, lvb ,
exceeds its guaranteed share, svb , and thus this ensures that, if
it so wishes, a slice can always attain its guaranteed shares.

The above specifies the slice allocation per resource. Based
on the wu’s, the slices then allocate base stations’ resources to
users in proportion to their weights, i.e., fu = wu∑

u′∈Uv
b
wu′

fv
b ,

where fu is the fraction of resources of base station b allocated
to user u ∈ Uv

b .
One can think of the above allocation in terms of market

pricing schemes as follows. The share sv can be understood
the budget of player v and the aggregate weight lvb as the bid
that this player places on resource b. Then, the case where
lb ≤ 1 corresponds to the well-known Fisher market [31],
where the price of the resource is set equal to the aggregate
bids from slices, making allocations proportional to the slices’
bids. GREET deviates from this when lb ≥ 1 by modifying
the ‘pricing’ as follows: for the first svb bid of slice v on
resource b, GREET sets the price to 1, to ensure that the slice
budget suffices to buy the guaranteed resource shares. Beyond
this, the remaining resources are priced higher, as driven by
the corresponding slices’ excess bids.

In summary, the proposed slice-based resource allocation
scheme is geared at ensuring a slice will, if it wishes, be able
to get its guaranteed resource shares, svb , but it also gives a
slice the flexibility to contend for excess resources, by shifting
portions of its overall share sv (both from the guaranteed
and excess shares) across the base stations, to better meet
the current requirements of the slice’s users, by aligning the
slice bids with the users’ traffic. Such a slice-based resource
sharing model provides the benefit of protection guarantees
as well as the flexibility to adapt to user demands.

III. NETWORK SLICING GAME ANALYSIS

Under the GREET resource allocation scheme, each slice
must choose how to subdivide its overall share amongst its
users. Then, the network decides how to allocate base station
resources to slices. This can be viewed as a network slicing
game where, depending on the choices of the other slices,
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each slice chooses an allocation of aggregate weights to base
stations that maximizes its utility. In this section, we study
the behavior of this game.

A. Slice and Network Utilities

Note that the users’ rate allocations, (ru : u ∈ U), can
be expressed as a function of the slice’s weight assignments
across the network, w = (wu : u ∈ U). Indeed, the weights
determine the slice’s resources at each base station, as well as
the division of such resources across the slice’s users within
each base station. Accordingly, in the sequel we focus the
game analysis on the weights and express the resulting user
rates as ru(w).

We assume that each slice has a private utility function,
denoted by Uv , that reflects the slice’s preferences based on
the needs of its users. We suppose the slice utility is simply
a sum of its users individual utilities, Uu, i.e., Uv(w) =∑

u∈Uv Uu(ru(w)).

Following standard utility functions [32], [33], we assume
that for some applications, a user u ∈ Uv may require a
guaranteed rate γu, hereafter referred to as the user’s minimum
rate requirement. We model the utility functions for rates
above the minimum requirement as follows:

Uu(ru(w)) =

{
ϕuFu(ru(w)− γu), ru(w) > γu,

−∞ otherwise,
(3)

where Fu(·) is the utility function associated with the user,
and ϕu reflects the relative priority that slice v wishes to give
user u, with ϕu ≥ 0 and

∑
u∈Uv ϕu = 1.

For Fu(·), we consider the following widely accepted
family of functions, referred to as α-fair utility functions [34]:

Fu(xu) =

{
(xu)

1−αv

(1−αv) , αv ̸= 1

log(xu), αv = 1,

where the αv parameter sets the level of concavity of the
user utility functions, which in turn determines the underlying
resource allocation criterion of the slice. Particularly relevant
cases are αv = 0 (maximum sum), αv = 1 (proportional
fairness), αv = 2 (minimum potential delay fairness) and
αv →∞ (max-min fairness).

Note that the above utility is flexible in that it allows slice
utilities to capture users with different types of traffic:

• Elastic traffic (γu = 0 and ϕu > 0): users with no
minimum rate requirements and a utility that increases
with the allocated rate, possibly with different levels of
concavity given by αv .

• Inelastic traffic (γu > 0 and ϕu = 0): users that have
a minimum rate requirement but do not see any utility
improvement beyond this rate.

• Rate-adaptive traffic (γu > 0 and ϕu > 0): users
with a minimum rate requirement which see a utility
improvement if they receive an additional rate allocation
above the minimum.

Following [10]–[13], we define the overall network utility
as the sum of the individual slice utilities weighted by the

respective overall shares,3

U(w) =
∑
v∈V

svUv(w), (4)

and the social optimal weight allocation wso as the allocation
maximizing the overall utility U(w), i.e.,

wso = argmax
w≥0

{ U(w) :
∑
u∈Uv

wu ≤ sv, ∀v ∈ V} (5)

The combination of the utility functions defined above
with the resource allocation scheme defined in the previous
section results in a game that we formalize in the next
section. This game falls in a broader context of a substantial
amount of work both in economics and networking. Broadly
speaking the proposed mechanism can be informally described
as one in which slices have ‘shares’, which can be viewed
as budgets, that can be used to ‘bid’ for resources. As
such, we are motivated by frameworks typically referred to
as Fisher markets, where buyers can be modelled as either
price-taking (see, e.g. [31]) or strategic (e.g. [35] and [12]).
Other related work, particularly in the networking field has
addressed settings where players do not have fixed budgets:
[36] proposes a mechanism where resources are allocated in
proportion to players bids and players are price-taking, [37]
analyzes the efficiency losses of this mechanism and [38]
devises a scalar-parameterized modification which is shown
to be socially optimal for price-anticipating players. A more
comprehensive discussion of past work can be found in [12].
The present work represents a departure from previous works
in that it has been designed to ensure tenants allocations meet
guarantees on individual resources while also allowing them
to flexibly allocate pre-negotiated shares across resources.

B. Network Slicing Resource Allocation Game

Next we analyze the network slicing game resulting from
the GREET resource allocation scheme and the above slice
utility. We formally define the network slicing game as
follows, where wv denotes slice v users’ weights.

Definition 3. (Network slicing game) Suppose each slice v
has access to the guaranteed shares and the aggregate weights
of the other slices, i.e., sv

′

b , lv
′

b , v′ ∈ V \ {v}, b ∈ B. In the
network slicing game, slice v chooses its own user weight
allocation wv in its strategy space Wv so as to maximize
its utility, given that the network uses a GREET slice-based
resource allocation. This choice is known as slice v’s Best
Response (BR).

In the sequel we consider scenarios where the guaranteed
shares suffice to meet the minimal rate requirements of
all users. The underlying assumption is that a slice would
provision a sufficient share and/or perform admission control
so as to limit the number of users. We state this formally as
follows:

Assumption 1. (Well dimensioned shares) The slices’ guar-
anteed shares are said to be well dimensioned if they meet or
exceed the minimum rate requirements of their users at each

3The slice utility is weighted by the overall shares to reflect the fact that
tenants with with higher overall shares should be be favored – see [10]–[13]
for a more detailed discussion.
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base station. In particular, they are such that
∑

u∈Uv
b
f
u
≤ svb

for all v ∈ V and b ∈ B, where f
u
= γu

cu
is the minimum

fraction of resource required by user u to meet its minimum
rate requirement γu. When this assumption holds, we say that
the shares of all slices are well dimensioned.

A more restrictive assumption is that each slice provision
exactly the guaranteed share needed to meet its users’ mini-
mum rate requirements.

Assumption 2. (Perfectly dimensioned shares) The slices’
guaranteed shares are said to be perfectly dimensioned if they
are equal to minimum rate requirements of their users at each
base station, i.e.,

∑
u∈Uv

b
f
u
= svb for all v ∈ V and b ∈ B.

When this assumption holds, we say that the shares of all
slices are perfectly dimensioned.

The above assumptions are typical in mobile networks,
where in order to meet users’ performance guarantees one
will need to make admission control decisions that ensure that
with high probability such conditions are met (see e.g. [13]).
Still, due to channel variability and user mobility there will
typically be a small probability that this conditions are not
met. In this case our proposed mechanism will still work,
i.e., the network does not “break”, although some slices’ users
may not be able to meet their requirements and (as it will be
seen later) some desirable properties may not hold.

The following lemma ensures that under Assumption 1 a
slice’s best response is given by the solution to a convex
problem and meets the minimum rate requirements of all its
users. Thus, as long as a slice’s guaranteed shares are well
dimensioned, the proposed scheme will meet the slice’s users
requirements.

Lemma 1. When Assumption 1 holds, a slice’s Best Response
under GREET-based resource allocation is the solution to a
convex optimization problem, and the minimum rate require-
ments of all the slice’s users will be satisfied.

To characterize the system, it is desirable to show that
under a GREET-based resource allocation there exists a Nash
Equilibrium (NE). It can be shown that, when the slices’
shares are well dimensioned and weights are strictly positive
(i.e., greater than a δ which can be arbitrarily small), then the
necessary conditions of [39] for the existence of a NE hold.
Note that the assumption on weights being strictly positive
is a benign assumption which will typically hold for almost
all utility functions. However, as shown in the lemma below,
if the uniform constraint on weights being positive is not
satisifed, then a NE may not exist.

Lemma 2. Suppose that Assumption 1 holds but we do
constrain user weights to be uniformily strictly positive (i.e.,
for all u ∈ U wu ≥ δ for some δ > 0). Then, a NE may not
exist under GREET-based resource allocation.

When a NE exists, it is natural to ask whether the dynamics
of slices’ unilateral best responses to each others weight
allocations would lead to an equilibrium. Below, we consider
Best Response Dynamics (BRD), where slices update their
Best Response sequentially, one at a time, in a Round Robin
manner. Ideally, we would like this process to converge after
a sufficiently large number of rounds. However, the following

result shows that this need not be the case.

Theorem 1. Suppose that Assumption 1 holds and that we
constrain user weights to be positive, i.e., for all u ∈ U wu ≥
δ for some δ > 0. Then, even though a NE exists, the Best
Response Dynamics may not converge.4

Note that cooperative settings where for example slices
might update their weights based on the gradient-based al-
gorithm introduced in [39] to or use perhaps other updating
policies based on for example reinforcement learning, may
indeed converge. However in the slicing setting we envisage
competitive scenarios where slices are selfish in optimizing
their allocations.

The following two theorems further characterize the NE
allocations of the network slicing game relative to the socially
optimal resource allocation and in terms of envy, respectively.

Theorem 2. Consider a setting where all slices’ users are
elastic and have logarithmic utilities, i.e., α = 1. Suppose also
that a NE exists. Then, the overall utility associated with the
socially optimal weight allocations wso versus that resulting
from the NE of the network slicing game under GREET-based
resource allocation, wne, satisfy

U(wso)− U(wne) ≤ log(e)
∑
v∈V

sv

Furthermore, there exists a game instance for which this
bound is tight.

Theorem 3. Consider a setting where slices satisfy Assump-
tion 2 and a NE exists. Further, suppose that two slices v and
ṽ have the same guaranteed and excess shares and that slice
v has users with logarithmic utilities, i.e., αv = 1. Let rne,v

denote the rate allocations to slice v’s users under the NE.
Suppose slice v and ṽ exchange the overall allocations they
get at the NE and let r̃v denote the rate allocations to users
of slice v maximizing slice v’s utility after such an exchange.
Let us define the envy that slice v has for ṽ’s allocation at
the NE as

Ene(v, ṽ)
.
= Uv(r̃v)− Uv(rne,v)

Then, the following is satisfied: Ene(v, ṽ) ≤ 0.060. Further-
more, there is a game instance where Ene(v, ṽ) ≥ 0.041.

IV. GREET SLICE STRATEGY

In addition to the equilibrium and convergence issues high-
lighted in Theorems 2 and 1, a drawback of the Best Response
algorithm analyzed in Section III is its complexity. Indeed, to
determine its best response, a slice needs to solve a convex
optimization problem. This strays from the simple algorithms,
both in terms of implementation and understanding, that get
adopted in practice and tenants tend to prefer. In this section,
we propose an alternative slice strategy to the best response,
which we refer to as the GREET weight allocation policy. This
policy complements the resource allocation mechanism pro-
posed in Section II, leading to the overall GREET framework

4Note that an implication of Theorem 1 is that the network slicing game
is not ordinal potential game. This can be proved by contradiction: if this
was an ordinal potential game, it would necessarily converge; as the theorem
shows that the best response dynamics for the game do not converge, then
this not an ordinal game and a potential function does not exist.
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Algorithm 1 GREET weight allocation round for slice v

1: for user u ∈ Uv do set f
u
← γu

cu
2: for each base station b ∈ B do set fv

b
←
∑

u∈Uv
b
f
u

3: for user u ∈ Uv do
4: if l−v

b + fv

b
≤ 1 then set wu ←

f
u

1−fv
b

l−v
b

5: else
6: if svb ≥ fv

b
then set wu ← f

u
7: else set wu ← expression given by (6)
8: if

∑
u∈Uv wu ≤ sv then

9: for user u ∈ Uv do
10: set wu ← wu + ϕu

(
sv −

∑
u′∈Uv wu′

)
11: else
12: while

∑
u∈Ub wu ≤ sv do

13: select users in order of increasing wu

14: set wu ← wu

consisting of two pieces: the resource allocation mechanism
and the weight allocation policy.

A. Algorithm definition and properties

The GREET resource allocation given in Section II depends
on the aggregate weight that slices allocate at each base
station. In the following, we propose the GREET weight
allocation policy to determine how each slice allocates its
weights across its users and base stations. We first determine
the weights of all the users of the slice, and then compute the
aggregate weights by summing the weights of all the users at
each base station, i.e., lvb =

∑
u∈Uv

b
wu.

Under the proposed GREET weight allocation, slices decide
the weight allocations of their users based on two parameters:
one that determines the minimum allocation of a user (γu)
and another one that determines how extra resources should
be prioritized (ϕu). A slice first assigns each user u the
weight needed to meet its minimum rate requirement γu.
Then, the slice allocates its remaining share amongst its users
in proportion to their priority ϕu. Note that this algorithm
does not require revealing each slices’ aggregate weights to
the others but only the base stations’ overall loads, which
discloses very limited information about slices’ individual
weights and leads to low signaling overheads. The algorithm
is formally defined as follows.

Definition 4. (GREET Weight Allocation) Suppose that
each slice v has access to the following three aggregate
values for each base station: l−v

b ,
∑

v′∈Vb\{v} ∆
v
b and∑

v′∈Vb\{v} min(sv
′

b , lv
′

b ). Then, the GREET weight allocation
is given by the weight computation determined by Algorithm 1.

Algorithm 1 realizes the basic insight presented earlier. The
slice, say v, first computes the minimum resource allocation
required to satisfy the minimum rate requirement of each user,
denoted by f

u
. These are then summed to obtain the minimum

aggregate requirement at each base station, denoted by fv

b
(see

Lines 1-2 of the algorithm).
Next, it computes the minimum weight for each user to

meet the above requirements, denoted by wu. If l−v
b +fv

b
≤ 1,

the GREET resource allocation is given by (1), and slice v’s
minimum aggregate weight at base station b, lvb , should satisfy

lvb
lvb+l−v

b

= fv

b
. Hence, the minimum weight for user u at base

station b is given by wu =
f
u

fv
b

lvb =
f
u

1−fv
b

l−v
b (Line 4).

If l−v
b + fv

b
> 1, the GREET resource allocation is given

by (2) and two cases need to be considered. In the first case,
where the minimum resource allocation satisfies fv

b
≤ svb , it

suffices to set lvb = fv

b
and wu = f

u
and GREET resource

allocation will make sure the requirement is met (Line 6). In
the second case, where fv

b
> svb , in order to meet the minimal

rate requirements under the GREET allocation given by (2),
the minimum aggregate weight lvb must satisfy

svb +

(lvb − svb )

(
1− svb −

∑
v′∈Vb\{v}

min
(
sv

′

b , lv
′

b

))
lvb − svb +

∑
v′∈Vb\{v}

∆v′
b

= fv

b
.

Solving the above for lvb and allocating user weights in pro-
portion to f

u
gives the following minimum weights (Line 7):

wu =
f
u

fv

b

(
svb +

(fv

b
− svb )

∑
v′∈Vb\{v} ∆

v′

b

1− fv

b
−
∑

v′∈Vb\{v} min(sv
′

b , lv
′

b )

)
. (6)

Once we have computed the minimum weight requirement
for all users, we proceed as follows. If the slice’s overall share
sv suffices to meet the requirements of all users, we divide
the remaining share among the slice’s users proportionally to
their ϕu (Line 10). Otherwise, we assign weights such that
we maximize the number of users that see their minimum
rate requirement met, selecting users in order of increasing
wu and providing them with the minimum weight wu (Lines
13-14).

Theorem 4 lends support to the GREET weight allocation
algorithm. It shows that, under some relevant scenarios, this
algorithm captures the character of social optimal slice alloca-
tions. Furthermore, in a network with many slices where the
overall share of an individual slice is very small in relative
terms, Theorem 5 shows that GREET is a good approximation
to a slice’s best response, suggesting that a slice cannot gain
(substantially) by deviating from GREET. These results thus
confirm that, in addition to being simple, GREET provides
close to optimal performance both at a global level (across
the whole network) as well as locally (for each individual
slice).

Theorem 4. Suppose that all users are elastic and user
utilities are logarithmic, i.e., α = 1. Suppose GREET weight
allocations converge to an equilibrium, which we denote by
GREET equilibrium (GE). Then, GREET provides all users
with the same rate allocation as that resulting from the
socially optimal weights, i.e., ru(wge) = ru(w

so),∀u, where
wso is the (not necessarily unique) socially optimal weight
allocation and wge is the weight allocation under GREET
equilibrium.

Theorem 5. Suppose that all the users of a slice are elastic,
user utilities are logarithmic (i.e., α = 1) and sv/l−v

b < δ ∀b.
Then, the following holds for all users u on slice v:

wbr
u (w−v)

1 + δ
< wg

u(w
−v) < (1 + δ)wbr

u (w−v),
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where wbr,v(w−v) = (wbr
u (w−v) : u ∈ Uv) is the best

response of slice v to the other slices’ weights w−v and
similarly wg,v(w−v) is slice v’s response under GREET.

Further, suppose that GREET converges to an equilibrium.
Then the resulting allocation is an ε-equilibrium with ε =
log(1 + δ).

The following results shows that, in contrast to the NE
allocations analyzed in Section III, the GREET allocations are
envy-free (see [12] for a formal definition of envy-freeness in
the slicing context).

Theorem 6. Consider a setting where slices satisfy Assump-
tion 2 and slices’ GREET weight allocations converge to a
GREET Equilibrium (GE). Suppose two slices v and ṽ have
the same guaranteed and excess shares, and that slice v has
users with logarithmic utilities, i.e., α = 1. Let rge,v denote
the rate allocations to slice v’s users under at the GE and
r̃v their rate allocations after slices v and ṽ exchange their
overall allocations at the equilibrium. Then the envy that slice
v has for ṽ’s allocation at the GE satisifes

Ege(v, ṽ)
.
= Uv(r̃v)− Uv(rge,v) ≤ 0.

One of the main goals of the GREET resource allocation
model proposed in Section II, in combination with the GREET
weight allocation policy proposed in this section, is to provide
guarantees to different slices, so that they can in turn ensure
that the minimum rate requirements of their users are met.
The lemma below confirms that, as long as slices are well
dimensioned, GREET will achieve this goal.

Lemma 3. When Assumption 1 holds, the resource allocation
resulting from combining the GREET resource allocation
model with the GREET weight allocation policy meets all
users’ minimum rate requirements.

B. Convergence of the algorithm

A key desirable property for a slice-based weight allocation
policy is convergence to an equilibrium. Applying a similar ar-
gument to that of Theorem 1, it can be shown that the GREET
weight allocation algorithm need not converge. However,
below we will show sufficient conditions for convergence.

Let w(n) be the overall weight allocation for update round
n. Our goal is to show that the weight sequence w(n)
converges when n → ∞. The following theorem provides
a sufficient condition for geometric convergence to a unique
equilibrium. According to the theorem, convergence is guar-
anteed as long as (i) slice shares are well dimensioned, and
(ii) the guaranteed fraction of resources for a given slice at
any base station is limited. The second condition essentially
says that there should be quite a bit of flexibility when man-
aging guaranteed resources, leaving sufficient resources not
committed to any slice. In practice, this may be appropriate
in networks supporting slices with elastic traffic (which need
non-committed resources), inelastic traffic (which may require
some safety margins), or combinations thereof.

Theorem 7. Suppose that Assumption 1 holds and the maxi-
mum aggregate resource requirement per slice, fmax, satisfies

fmax := max
v∈V

max
b∈B

fv

b
<

1

2|V| − 1
. (7)

Then, if slices perform GREET-based updates of their weight
allocations according to Algorithm 1, either in Round Robin
manner or simultaneously, the sequence of weight vectors
(w(n) : n ∈ N) converges to a unique fixed point, denoted
by w∗, irrespective of the initial weight allocation w(0).
Furthermore, the convergence is geometric, i.e.,

max
v∈V

∑
b∈B

|lvb (n)− lv,∗b | ≤ ξn max
v∈V

∑
b∈B

|lvb (0)− lv,∗b | (8)

where ξ := 2(|V|−1)fmax

1−fmax
and lv,∗ corresponds to slice v’s

aggregate weights at the fixed point w∗. Note that (7) imposes
ξ < 1.

This convergence result can be further generalized under the
asynchronous update model in continuous time [40]. Specif-
ically, without loss of generality, let n index the sequence
of times (tn, n ∈ N) at which one or more slices update
their weight allocations and let N v denote the subset of those
indices where slice v performs an update. For n ∈ N v , slice
v updates its weights allocations based on possibly outdated
weights for other slices, denoted by (wv′

(τvv′(n)) : v′ ̸= v),
where 0 ≤ τvv′(n) ≤ n indexes the update associated with
the most recent slice v′ weight updates available to slice v
prior to the nth update. As long as the updates are performed
according to the assumption below, one can show that GREET
converges under such asynchronous updates.

Assumption 3. (Asynchronous updates) We assume that
asynchronous updates are performed such that, for each slice
v ∈ V , the update sequence satisfies (i) |N v| = ∞, and (ii)
for any subsequence {nk} ⊂ N v that tends to infinity, then
limk→∞ τvv′(nk) =∞, ∀v′ ∈ V .

Theorem 8. Under Assumption 1, if slices perform GREET-
based updates of their weight allocations asynchronously but
satisfying Assumption 3, and if (7) holds, then the sequence
of weight updates (w(n) : n ∈ N) converges to a unique fixed
point irrespective of the initial condition.

While the above results provide some sufficient conditions
for convergence, in the simulations performed we observed
that, beyond these sufficient conditions, the algorithm always
converges quite quickly under normal circumstances (within
a few rounds). To show this, we run GREET over two
artificial network settings with different user distributions and
minimal rate requirements leading to different ξ. The results
are illustrated in Fig. 1, where the ‘theoretical upperbound’ is
the distance computed as the R.H.S. of (8). We observe that
the actual convergence of GREET is geometric, but with a rate
significantly greater than the theoretical bound. Furthermore,
even with a ξ > 1, GREET still converges in a geometric
manner, even though the theoretical results do not guarantee
convergence in this case. Based on this, we adopt an approach
for the GREET weight allocation algorithm where we let the
weights be updated by each slice for a number of rounds, and
stop the algorithm if it has not converged upon reaching this
number (which is set to 7 in our simulations).

C. Practical Implementation Considerations

The GREET approach proposed in this paper can be
implemented in real networks using a similar technology as
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Fig. 1: Actual L1 norm of the distance to the fixed point under
GREET vs. the theoretical upper bound provided by Theorem 7.

that used for SONET (Self-Organizing Networks) [15]. In
particular, SONET collects information in real time about the
entire network, including user association and base station
load, and uses such information to periodically optimize
the network configuration, including resource allocation to
end-users in each base station. Our approach has similar
requirements, conveying base station load information to a
centralized location where the GREET algorithm can run and
compute the desired resource allocation, which can then be
realized in the various base stations. The frequency of updates
in SONET may be in the order of minutes, which is also a
good choice for our setting.

Changes in the loads across base stations will typically
occur due to two mechanisms. On one hand we may have user
arrivals, departures and handoffs leading to fairly dramatic
changes in load particularly when each base stations supports
a relatively small set of users. On the other hand changes
in the users’ channels, e.g., fading/shadowing, will impact
the effective load they impose on the system. In general
the time scales of the former would be much slower than
those on which the system will adapts to channel variations.
We envisage our framework implements its updates to track
variations in the number of users and changes in averages
of users’ channel quality, i.e., relatively slowly. However in
Section V-E we evaluate via simulation the impact that varying
the update rate has on the network’s resulting performance.

It is worth pointing out that many iterations of the algorithm
can be done very quickly since they need not be implemented
until the algorithm converges. For example, we can bring
all the information of the network to a centralized server
where we run the iterative interactive process in which the
infrastructure provider interacts with tenants along several
rounds to determine the resource allocation across the entire
network. Once this process ends, the resulting allocation can
be pushed to base stations to implement it. This is not unlike
a typical software defined network or self-organized-network
setting.

Another relevant point from a practical perspective is the
information that is shared with slices. The proposed mecha-
nism requires relatively limited information per base station
for each tenant, which corresponds to the overall load of
other slices and the overall excess weight (i.e., load above
the guaranteed shares across base stations) and the aggregate

min of the slice shares and current loads. Importantly, this
information does not have any per-slice information. Overall
this is a relatively limited amount of information scaling with
the number of base stations rather than the number of users on
the network, allowing tenants to preserve private information.

Even though we are not forcing tenants to use the GREET
resource allocation, and they are free to apply any strategy
they choose, we envisage that tenants are likely to employ
GREET resource allocation due to its desirable properties.
First of all, GREET resource allocation is simple, which is
typically an important requirement for tenants. Furthermore,
it provides tenants with substantial flexibility and is very
close to the best response (for some settings). When all
slices employ GREET resource allocation, desirable properties
are achieved in terms of overall network performance, such
as social optimal performance and convergence (for some
settings).

Finally, we would like to point out that the intent of GREET
is not to determine how to make detailed scheduling decisions
to users, but instead to determine the overall fraction of each
base stations’s resources to be allocated to each slice. Once
the overall fractions are determined, they can be used in
different ways. For example these overall weights per slice
can be the slice weights of a traditional GPS scheduler.
Alternatively, one could consider giving tenants the ability
to customize the way traffic in their slices is scheduled at
base stations accounting e.g. for delay requirements. This
type of customization is an essential part of network slicing
which may need to support very diverse types of traffic and
requirements, yet is a complementary part of our paper which
addresses allocation of resources across slices.

V. PERFORMANCE EVALUATION

In this section we present a detailed performance evaluation
of GREET.

A. Mobile Network Simulation Setup

Simulation model: We simulate a dense ‘small cell’ wireless
deployment following the IMT-Advanced evaluation guide-
lines [41]. The network consists of 19 base stations in a
hexagonal cell layout with an inter-site distance of 20 meters
and 3 sector antennas; thus, B corresponds to 57 sectors. Users
associate to the sector offering the strongest SINR, where
the downlink SINR between base station b and user u is
modeled as in [42]: SINRbu = PbGbu∑

k∈B\{b} PkGku+σ2 , where,

following [41], the noise σ2 is set to −104dB, the transmit
power Pb is equal to 41dB and the channel gain between
sector b and user u, denoted by Gbu, accounts for path loss,
shadowing, fast fading and antenna gain. The path loss is
given by 36.7 log10(dbu)+ 22.7+ 26 log10(fc)dB, where dbu
denotes the current distance in meters from the user u to
sector b, and the carrier frequency fc is equal to 2.5GHz.
The antenna gain is set to 17 dBi, shadowing is updated
every second and modeled by a log-normal distribution with
standard deviation of 8dB [42]; and fast fading follows a
Rayleigh distribution depending on the mobile’s speed and
the angle of incidence. The achievable rate cu for user u at a
given point in time is based on a discrete set of modulation and
coding schemes (MCS), with the associated SINR thresholds
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Fig. 2: Comparison of GREET against the benchmark approaches in
terms of the overall Utility U and the outage probability P (outage).

given in [43]. This MCS value is selected based on the
average SINRbu, where channel fast fading is averaged over a
second. For user scheduling, we assume that resource blocks
are assigned to users in a round-robin manner proportion-
ally to the allocation determined by the resource allocation
policy under consideration.5 For user mobility, we consider
two different mobility patterns: Random Waypoint model
(RWP) [44], yielding roughly uniform load distributions, and
SLAW model [45], typically yielding clustered users and thus
non-uniform load distributions.

Performance metrics: Recall that our primary goal is to
give slices flexibility in meeting their users’ minimum rate
requirements while optimizing the overall network efficiency.
To assess the effectiveness of GREET in achieving this goal,
we focus on the following two metrics:

• Outage probability P (outage): this is the probability that
a user does not meet its minimum rate requirement.
In order for a slice to provide a reliable service, this
probability should be kept below a certain threshold.

• Overall utility U : this is given by (4) and reflects the
overall performance across all slices.

State-of-the-art approaches: In order to show the advan-
tages of GREET, we will compare it to the following bench-
marks:

• Reservation-based approach: with this approach, each
slice v reserves a local share at each base station b,
denoted by ŝvb . The resources at each base station are
then shared among the active slices (having at least one
user) in proportion to the local shares ŝvb . This is akin to
setting weights for a Generalized Processor Sharing in a
resource [46] and is in line with the spirit of reservation-
based schemes in the literature [1]–[8].

• Share-based approach: with this approach, each slice
gets a share s̃v of the overall resources, as in [10]–[14].
Specifically, resources at each base station are shared
according to the scheme proposed in [10], where each
slice v ∈ V distributes its share s̃v equally amongst all
its active users u ∈ Uv , such that each user u gets a
weight w̃u = s̃v/|Uv|, and then, at each base station

5Our performance evaluation focuses on a setting where active users
are infinitely backlogged. However, if a user becomes inactive or is not
backlogged, the scheduling algorithm can easily track this and redistribute
the rate of such a user across other users in the same slice.

b ∈ B the resources are allocated in proportion to users’
weights.

• Social optimal: this scheme corresponds to the social
optimal weight allocation wso given by (5) under GREET
resource allocation.

• Best-response dynamics: in this approach, each slice
updates its Best Response sequentially while the network
performs GREET resource allocation. Note that even if
Lemma 1 shows that such updates are not guaranteed
to converge, we checked that in all our simulations we
converge to a Nash Equilibrium. Note that, since the
conditions of [39] are satisfied under certain conditions,
in such cases the algorithm of [39] could be employed
as an alternative to the Best-response dynamics to reach
a Nash Equilibrium.

In order to meet the desired performance targets, the
shares employed in the above approaches are dimensioned
as follows. We consider two types of slices: (i) those which
provide their users with minimum rate requirements, which
we refer to as guaranteed service slices, and (ii) those which
do not provide minimum rate requirements, which we refer
to as elastic service slices. In GREET, for guaranteed service
slices, we define a maximum acceptable outage probability
Pmax and determine the necessary share at each base station,
svb , such that P (outage) ≤ Pmax, assuming that the number
of users follow a Poisson distribution whose mean is obtained
from the simulated user traces; for these slices, we set ev = 0.
For elastic service slices, we set svb = 0 ∀b and ev to a value
that determines the mean rate provided to elastic users. For
the reservation-based approach, we set ŝvb = svb for guaranteed
service slices, to provide the same guarantees as GREET; for
elastic service slices, we set ŝvb such that (i) their sum is
equal to ev , to provide the same total share as GREET, (ii)
the sum of the ŝvb ’s at each base station does not exceed 1,
to preserve the desired service guarantees, and (iii) they are
as much balanced as possible across all base stations, within
these two constraints. Finally, for the share-based approach
we set s̃v = sv for all slice types, i.e., the same shares as
GREET.

B. Comparison with state-of-the-art benchmarks

Fig. 2 exhibits the performance of GREET versus the
above benchmarks in terms of P (outage) and overall utility
U for the following scenario: (i) we have two guaranteed
service and two elastic service slices; (ii) the share of elastic
service slices is increased within the range sv ∈ [2, 19]; (iii)
the minimum rate requirement for users on the guaranteed
service slices is set to γu = 0.2Mbps ∀u; (iv) the shares
of guaranteed service slices are dimensioned to satisfy an
outage probability threshold Pmax of 0.01; (v) for all slices,
the priorities ϕu of all users are equal; and, (vi) the users
of the elastic service slices follow the RWP model, leading
to roughly uniform spatial loads, while the users of the
guaranteed service slices have non-uniform loads as given by
the SLAW model. Since user utilities are not defined below
the minimum rate requirements, the computation of the overall
utility only takes into account the users whose minimum rate
requirements are satisfied under all schemes.

The results show that GREET outperforms both the share-
and reservation-based approaches. While the share-based ap-
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proach can flexibly shift resources across base stations, lead-
ing to a good overall utility, it is not able to sufficiently isolate
slices from one another, resulting in large outage probabilities,
P (outage), as the share of elastic service slices increase.
By contrast, the reservation-based approach is effective in
keeping P (outage) under control (albeit a bit above the
threshold due to the approximation in the computation of svb ).
However, since it relies on local decisions, it cannot globally
optimize allocations and is penalized in terms of the overall
utility. GREET achieves the best of both worlds: it meets
the service requirements, keeping P (outage) well below the
Pmax threshold, while achieving a utility that matches that of
the share-based approach. Moreover, it performs very close
to the social optimal, albeit with somewhat larger P (outage)
due to the fact that the social optimal imposes the minimum
rate requirements as constraints, forcing each slice to help
the others meeting their minimum rate requirements, while in
GREET each slice behaves ‘selfishly’.

As can be seen in the subplot of Fig. 2 the GREET
allocation outperforms that of the Best-Response dynamics
in overall utility achieved and is very close in the outage
probability. Specifically, GREET achieves relative gain in
social utility from 16% to 36%, at the cost of a P (outage) less
than 0.005. This observation is robust to a range of different
network loads.

C. Outage probability gains

One of the main observations of the experiment conducted
above is that GREET provides substantial gains in terms of
outage probability over the shared-based scheme. In order to
obtain additional insights on these gains, we analyze them for
a variety of scenarios comprising the following settings:

• Uniform: we have two guaranteed service slices and two
elastic service slices; the users’ mobility on all slices
follow the RWP model and have the same priority ϕu.

• Heterogeneous Aligned: the users of all slices are dis-
tributed non-uniformly according to SLAW but they all
follow the same distribution (i.e., slices have the same
hotspots).

• Heterogeneous Orthogonal: all slices are distributed ac-
cording to SLAW model but each slice follows a different
distribution (i.e., slices have different hotspots).

• Mixed: we have the same scenario as in Fig. 2, with the
only difference that for one of the guaranteed service
slices we have that all users are inelastic, i.e., the priority
ϕu of all of them is set to 0.

For the above network configurations, we vary the share
sv of elastic service slices while keeping the shares for the
guaranteed service slices fixed.

We evaluated the absolute performance in terms of the
outage probability. The evaluation results show that GREET
achieves less than 1% outage probability in all four scenarios
we simulated and has a P (outage) of approximately 0.2% for
most cases.

Fig. 3 shows the ratio of the P (outage) of the share-based
approach over that of GREET as a function of the overall
share of elastic slices, i.e.,

∑
v∈Ve

sv , where Ve is the set of
elastic service slices. Results are given with 95% confidence
intervals but they are so small that can barely be seen. We
observe that GREET outperforms the share-based approach in
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Fig. 3: Gain in P (outage) over the share-based approach, measured
as the ratio of P (outage) under the share-based approach over that
under GREET.
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Fig. 4: Gain in P (outage) over the reservation-based approach,
measured as the ratio of P (outage) under the reservation-based
approach over that under GREET.

all cases, providing P (outage) values up to one order of mag-
nitude smaller. As expected, the gain in P (outage) grows as
the the share of elastic service slices increases; indeed, as the
share-based approach does not provide resource guarantees,
it cannot control the outage probability of guaranteed service
slices. Also, the least gain in outage probability was obtained
under Uniform scenario, and is significantly better under other
scenarios, which is consistent with the observation of absolute
P (outage) achieved by GREET. This is mainly because under
Uniform scenario the user distribution might not be severely
imbalanced across the network, and the service guarantee is
mostly obtained via share dimensioning.

Fig. 4 further compares the performance of GREET against
the reservation-based approach in terms of P (outage), by
showing the ratio of the P (outage) of the reservation-based
approach over that of GREET. As expected, GREET offers
a comparable performance to that of the reservation-based
approach, since both approaches have been dimensioned to
achieve a very small P (outage). In particular, when overall
elastic slice share is between 5 to 15, the reservation-based
approach beats GREET by a factor approximately 2, which
translates to a margin in P (outage) of the order of 0.0001 in
our simulation. Meanwhile, when the elastic slice share ramps
up to over 20, GREET starts to offer lower P (outage) than the
reservation-based approach in all 4 network configurations.
This is because the mismatch between RWP/SLAW model
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and Poisson distribution assumed in dimensioning the share
allocation of the reservation-based approach becomes more
significant. Note that while the differences in relative terms
are not necessarily negligible, since in all cases the P (outage)
values are very low, the differences in absolute terms are
indeed very small.

D. Utility gains

In order to gain additional insight on the utility gains
over the reservation-based and the share-based schemes, we
evaluated the absolute performance in terms of overall utility.
GREET resource allocation achieves best overall utility of
around 0.6 under the Heterogeneous Orthogonal scenario,
where GREET can best exploit the underutilized resources
opportunistically. Under Uniform scenario, the overall utility
achieved was between −0.1 and −0.2 with overall share of
elastic slices ranging from 5 to 30.

In Fig. 5a we analyze the utility gains over the reservation-
based approach for the scenarios introduced above. The gain
in utility was measured as the utility under GREET minus that
under the benchmark approach. Results show that GREET
consistently outperforms the reservation-based scheme across
all approaches and share configurations, achieving similar
gains in terms of overall utility in all cases. This confirms
that, by providing the ability to dynamically adjust the overall
resource allocation to the current user distribution across
base stations, GREET can achieve significant utility gains
over the reservation-based approach. The utility gains can be
interpreted as savings of capacity required to achieve the same
utility, under different resource allocation scheme.

Definition 5. In a network slicing setup, the capacity saving
factor of one resource sharing scheme (denoted by the user
fraction vector) f1 over another f2 is the minimal amount
of scaling we need to apply to c to make the social utility
under the first scheme U(f2; c) equal to that under the second
scheme U(f1; c). Formally,

ϵ1,2 = min{ϵ > 0 | U(f1; c) ≤ U(f2; ϵc)} (9)

is defined as the capacity saving factor of f1 over f2 under c.

In Fig. 5a, the capacity saving factor ranges from 1.08 to
1.62, meaning that GREET uses 8% ∼ 62% less capacity to
achieve the same utility than reservation-based approaches.

We also evaluated the empirical user rate distribution of a
typical user for our simulation setup, see Fig. 5c. As shown
in the figure, users under GREET and the shared based
approach (overlapping curves) can better leverage surplus
resources in under-utilized base stations, leading to a moderate
improvement in the fraction of users who perceive higher rates
versus what is achieved by the reservation based approach.
Thus the gains in reduced outage, do not come at a penalty
in the user perceived rates.

Fig. 5b further compares the utility under GREET and
that under the share-based approach. We observe that the
difference in utilities are very small, which means that the
share-based approach offers a very similar performance to
GREET in terms of utility. A closer look reveals that, although
the share-based approach can adapt to dynamic user distri-
bution very well, GREET still consistently achieves better

utility under all network configurations except for the Mixed
scenario.

E. Impact of resource allocation update rate

One of the practical considerations when implementing
GREET weight allocation is whether resource allocation up-
dates carried out in the system control plane can keep up
with user mobility, e.g., changes in users associations to base
stations, and associated changes in wireless channel, e.g.,
changes in the path loss. While the update frequency for
slice-level resource allocation that is achievable will depend
on the physical layer, network and details of the actual
implementation of the system, and thus is out of the scope
of this paper, we can still evaluate the efficiency of GREET
for different update rates via its impact on the utility and
outage probability.

In our evaluation, we used the Uniform network scenario,
and let the system update user weights only once in every
x seconds, where x ranges from one second (which means
there’s no delay at all), to 120 seconds. We call x the update
period. Each user carries its weight after being allocated, and
at each base station, the resource is shared according to the
algorithm in Def. 2. In order to understand the impact of the
update period on utility, we set all 4 slices to be elastic slices.

The results are exhibited in Fig. 6. As can be seen the
performance of GREET was indeed negatively impacted if
the resource allocation scheme update rate is limited. There
is a drop in utility when increasing the update period but this
drop is not very large and more importantly, it stabilizes for
update periods greater 30 seconds. When the update period
is above 2 minutes, the overall utility is no longer monotonic
with the update period. This is because there are other aspects,
aside from the update period length, that impact the overall
utility.

VI. CONCLUSIONS

GREET provides a flexible framework for managing hetero-
geneous performance requirements for network slices support-
ing dynamic user populations on a shared infrastructure. It is a
practical approach that provides slices with sufficient resource
guarantees to meet their requirements, and at the same time it
allows them to unilaterally and dynamically customize their
allocations to their current users’ needs, thus achieving a good
tradeoff between isolation and overall network efficiency. We
view the GREET approach proposed here as a component of
the overall solution to network slicing. Such a solution should
include interfaces linking the resource allocation policies
proposed here to lower level resource schedulers, which may
possibly be opportunistic and delay-sensitive. Of particular
interest will be the interfaces geared at supporting ultra-high
reliability and with ultra-low latency services.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Lemma 1

We first show that there exists a weight setting that meets
the minimum rate requirements of all users. As long as a
fraction of base station b equal to svb is sufficient to meet the
user minimum rate requirements, by applying an aggregate
weight equal to svb in the resource, the tenant is guaranteed
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Fig. 6: Overall utility under GREET resource allocations when the
update period (in seconds) for user weights is limited.

to get this fraction of resources. As this can be applied to all
resources, the minimum rate guarantees can be met for all the
users of the tenant.

The optimization problem is given by the maximization of
the sum of user utilities. This is a concave function on the
weights as long as the individual user utilities are concave. As
long as the minimum rate requirements are satisfied, individ-
ual user utilities are concave, as they are increasing concave
function of a concave function (see [47]). The set of feasible
weights need to satisfy

∑
u∈Uv wu ≤ sv and wu ≥ 0,∀u ∈ U ,

and need to be such that the minimum rate requirements
are satisfied. The latter imposes wu/

∑
u∈Ub

wu ≥ γu which
yields wu − γu

∑
u∈Ub

wu ≥ 0, ∀u. As a result, the set of
feasible weights is convex.

Proof of Lemma 2

We next prove that wu ≥ δ does not hold, we may not have
a NE. Consider a scenario with two slices, 1 and 2, and two
base stations, a and b. Each slice has a user in each base station
such that γ1a = γ2a = 1/4 and γ1b = γ2b = 0. Furthermore,
we have ϕ1a = ϕ2a = 0, ϕ1b = ϕ2b = 1, s1a = s2a = 1,
s1b = s2b = 0 and e1 = e2 = 0. In the best response, it holds
w1a = w1b/3 and w1b = w1a/3, which implies that there
exists no NE.

Proof of Theorem 1

Let us consider a scenario with three slices, denoted by
Slices 1, 2 and 3, and three base stations, denoted by Base

Station (BS) a, b, and c, respectively. Slice 1 has two users,
one at BS a, another at BS b, denoted by 1a and 1b,
respectively. Slice 2 has two users, one at BS b, another at
BS c, denoted by 2b and 2c. Also, Slice 3 has two users
at BS a and c, respectively, denoted by 3a and 3c. The
share allocation is s1 = s2 = s3 = 3/4 + ϵ for some
δ < ϵ < 1/4, s1a = s2b = s3c = 3/4, γ1a = γ2b = γ3c = 3/4,
γ1b = γ2c = γ3a = 0, ϕ1a = ϕ2b = ϕ3c = 0 and
ϕ1b = ϕ2c = ϕ3a = 1.

It can be seen that a NE in the above scenario is given by
w1a = w2b = w3c = 9/16 + 3ϵ/4 and w1b = w2c = w3a =
3/16 + ϵ/4.

Let us start with w3a > 1/4 and and apply the best response
starting with slice 1 followed by 2 and 3. Slice 1 takes w1a =
3/4 and w1b = ϵ. In turn, slice 2 selects w2b = 3ϵ and w2c =
3/4 − 2ϵ > 1/4. This yields w3c = 3/4 and w3a = ϵ. We
thus enter an endless cycle where w1a, w2b and w3c alternate
the values of 3/4 with 3ϵ.

Proof of Theorem 2

This theorem follows from Theorem 4 in [12]. In particular
when the network has only elastic users with logarithmic
utilities, the GREET slice-based resource allocation proposed
in this paper coincides with the resource allocation mechanism
proposed in [12]. Thus by Theorem 4 of [12] we have that

U(wso)− U(wne) ≤ log(e)
∑
v∈V

sv. (10)

Note that in [12] the weights are normalized so
∑

v∈V sv = 1
but such a normalization is not required under GREET
and hence we have the above result instead of U(wso) −
U(wne) ≤ log(e) as in [12].

Proof of Theorem 3

This theorem is similar to Theorem 5 in [12], except that
we need to address a setting with elastic, inelastic and rate
adaptive users with guaranteed shares and a GREET-based
resource allocation. Under Assumption 2 and considering the
excess rate allocation to each user, i.e., those beyond the
required guarantees, we will show that our problem reduces
to that in Theorem 5.

Let wne denote weight allocation at the NE and lneb and
lne,vb the overall load and the aggregate weight of slice v at
base station b. Consider a user u of slice v in base station

12



b. The rate rneu of user u at the NE under a GREET-based
resource allocation satisfies one of the two following cases.

First, if the load at base station b satisfies lneb ≤ 1 the rate
of a user u at this base station is given by

rneu =
wne

u

lneb
cu.

Note from (3) that slice utility depends on rneu −γu. We define
the excess rate and the excess weight allocation to user u as
qneu

.
= rneu − γu and mne

u
.
= wne

u − lneb γu/cu, respectively,
where lneb γu/cu is the weight that user u needs in order to
meet its minimal rate requirement γu when the load at b is
lneb . With this notation, we have that

qneu =
mne

u

lneb
cu.

Second, if the load at base station b satisfies lneb > 1,
then the guaranteed share svb is exactly what is needed to
meet its users rate requirements at b (given that v is perfectly
dimensioned). Thus, the excess rate of user u corresponds to
the second term in (2), i.e.,

qneu =
mne

u∑
v′∈Vb

∆ne,v′

b

(
1−

∑
v′∈Vb

min[sv
′

b , lne,v
′

b ]

)
cu

where the excess weight of user u is now given by mne
u =

wu−γu/cu. If we define ĉu
.
= cu(1−

∑
v′∈Vb

min[sv
′

b , lne,v
′

b ])

and l̂neb
.
=
∑

v′∈Vb
∆ne,v′

b , the above can be rewritten as

qneu =
mne

u

l̂neb
ĉu

Putting together the above two cases, the excess weights
for users u on slice v are given by mne

u = wu −
min[lneb γu/cu, γu/cu] and satisfy:∑

u∈Uv

mne
u = sv −

∑
u∈Uv

min

[
lneb γu
cu

,
γu
cu

]
.

Now recall that in this theorem we consider two slices v and
ṽ which have the same guaranteed and overall network shares
and which exchange the resource allocations they achieved
under the NE. We shall denote the rate and weight that a user
u on slice v would receive under such an exchange by r̃u
and w̃u, respectively. We shall only consider the cases where
w̃u ≥ min[lneb γu/cu, γu/cu], as otherwise slice v would not
meet its users’ rate requirements after the exchange with ṽ.

Note that the weight allocations after the exchange, w̃, see
base stations loads lne, so we can express the rates that the
users of slice v after the exchange with ṽ as follows. First, if
lneb ≤ 1, we have

q̃u =
m̃u

lneb
cu

where q̃u and m̃u are the excess rate and weight of user u
after v and ṽ exchange resource allocations. Second, when
lneb > 1, we have that

q̃u =
m̃u

l̂neb
ĉu,

where the m̃u for users on slice v must satisfy∑
u∈Uv

m̃u = sv −
∑
u∈Uv

min

[
lneb γu
cu

,
γu
cu

]
. (11)

Note that expressions for the excess rates and constraints
on the excess weights mne and m̃ are the same as if all
the users of slice v where elastic. Indeed, at a base station
where when lneb ≤ 1, the resource allocation criterion akin
to one where all users were elastic users. Similarly, when
lneb > 1, we obtain the same expressions by taking ĉu and l̂neb
instead of cu and lneb . The constraints on

∑
u∈Uv mne

u and∑
u∈Uv m̃u are also equivalent to the case with elastic users,

substituting the overall share sv by the following expression:
sv −

∑
u∈Uv min[lbγu/cu, γu/cu].

Thus, by considering excess rates and weights, this makes
the problem equivalent to the one where all users are elastic.
Further, since slice v users are assumed to have logarithmic
utilities, the envy associated with slice v and ṽ resource
exchange at the NE can be established via the result in
Theorem 5 of [12], which proves this theorem.

Proof of Theorem 4
The utility of the network depends on the users’ rates

ru. Since there is a direct mapping between the fraction of
resources assigned to each user and its rate, we can express
utility as a function of the fractions fu ∀u, i.e., U(f). When
there is only elastic traffic in the network, the total utility is
given by

U(f) =
∑
u∈U

sv(u)ϕu log(fucu) subject to
∑
u∈Ub

fu = 1 ∀b,

where v(u) is the slice user u belongs to.
The problem of maximizing the total utility subject to the

above constraint is solved by Lemma 5.1 of [48], leading to

fu =
sv(u)ϕu∑

u′∈Ub(u)
sv(u′)ϕu′

(12)

where b(u) is the base station user u is associated with.
The above optimization did not impose the constraint on the

weights of a slice,
∑

u∈Uv wu ≤ sv , and hence in principle
represents an upper bound on the total utility of the socially
optimal allocation. However, the weights resulting from the
optimization satisfy this constraint, which means that the
allocation of (12) is the socially optimal allocation.

Note that the allocation of (12) coincides with the allocation
resulting from GREET. Indeed, when all users are elastic
GREET simply sets the share fractions proportionally to the
ϕu values, while forcing that all share fractions add up to the
slice’s share sv .

Proof of Theorem 5
Let us consider the best response and the GREET response

of slice v when other slices and associated users choose a
weight allocation w−v leading to per-base station overall load
vector l−v . The best response to l−v is the weight allocation
that maximizes slice V ’s utility, and the GREET response is
the result of applying the GREET weight allocation algorithm.

When there is only elastic traffic in the network, the weight
allocation to a user u on slice v under the best response to
l−v is given by [12],

wbr
u (l−v) = sv

ϕu
l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv ϕu′
l−v

b(u′)

lbr,v
b(u′)(l

−v)+l−v

b(u′)
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where b(u) denotes the base station serving user u.
Under elastic traffic, the GREET weight allocation algo-

rithm simply sets the weights proportionally to the ϕu values,
leading to the following GREET response:

wg
u(l

−v) = sv
ϕu∑

u′∈Uv ϕu′

Noting that lbr,vb (l−v)/l−v
b ≤ sv/l−v

b < δ, we have that

wbr
u (l−v) = sv

ϕu
l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv ϕu′
l−v

b(u′)

lbr,v
b(u′)(l

−v)+l−v

b(u′)

> sv
ϕu

l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv ϕu′
> sv

ϕu∑
u′∈Uv ϕu′

(
1

1 + δ

)
= wg

u(l
−v)

(
1

1 + δ

)
and similarly we have that

wbr
u (l−v) = sv

ϕu
l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv ϕu′
l−v

b(u′)

lbr,v
b(u′)(l

−v)+l−v

b(u′)

< sv
ϕu∑

u′∈Uv ϕu′
l−v

b(u′)

lbr,v
b(u′)(l

−v)+l−v

b(u′)

≤ sv
ϕu∑

u′∈Uv ϕu′
(1 + δ) = wg

u(l
−v) (1 + δ)

To show that the GREET equilibrium corresponds to an
ε-equilibrium we proceed as follows. Let f br,v

b (l−v) be the
fraction of resources obtained by slice v at base station b in
the best response to l−v , and let fg,v

b (l−v) be the fraction of
resources for the GREET response.

It follows that

f br,v
b (l−v) =

lbr,vb (l−v)

l−v
b + lbr,vb (l−v)

.

Given that the above is a monotonic increasing function in
lbr,vb (l−v) and we have that lbr,vb (l−v) ≤ lg,vb (l−v)(1 + δ), it
follows that

f br,v
b (l−v) ≤

lg,vb (l−v)(1 + δ)

l−v
b + lg,vb (l−v)(1 + δ)

<
lg,vb (l−v)(1 + δ)

l−v
b + lg,vb (l−v)

= (1 + δ)fg,v
b (l−v).

Both in the best response and the GREET response, the fv
b

resources at base station b are shared among the users of slice
v at that base station proportionally to their ϕu’s. Note that
the above holds for any setting of the other slices l−v .

In the argument below we will abuse notation to denote the
utility of slice v as a function of the weights of v and those
of the users of other slices as Uv(wv, l−v). Suppose that we
have reached a GREET equilibrium (GE), with weights wge,
and that slice v deviates to take the best response to the base
station loads uner GE, lge,−v . Then, we have the following:

Uv(wbr,v, lge,−v) =
∑
u∈Uv

ϕu log(f
br,v
u (lge,−v)cu)

<
∑
u∈Uv

ϕu log((1 + δ)fge,v
u (lge,−v)cu)

= Uv(wge,v, lge,−v) + ε

where ε
.
=
∑

u∈Uv ϕu log(1 + δ) = log(1 + δ).

Proof of Theorem 6

Let rge,v be the allocation to users of slice v under the
GREET equilibrium and r̃v be the utility maximizing rate
allocation when slice v and ṽ exchange the allocations at the
GREET equilibrium. To show envy-freeness we need to show
that Uv(rge,v) ≥ Uv(r̃v),

Following the development of Theorem 3, Uv(rge) can be
expressed as follows:

Uv(rge) =
∑

u∈Uv,1

ϕu log

(
mge

u

lgeb
cu

)
+
∑

u∈Uv,2

ϕu log

(
mge

u

l̂geb
ĉu

)
where mge

u = wge
u − min[lgeb γu/cu, γu/cu] is the excess

weight allocation to user u under GREET equilibrium, Uv,1

is the set of users of slice v at base stations where lgeb ≤ 1 and
Uv,2 is the set of users of slice v at base stations for where
lgeb > 1. The quantities l̂geb , and ĉu are defined as in the proof
of Theorem 3.

In order to characterize the user rate allocations that slice v
would obtain with slice ṽ’s resources, we shall find the split
of the aggregate weight of ṽ at each base station b to users
u ∈ Uv

b of slice v that maximizes the utility of slice v. We
let w̃v denote this weight allocation, m̃v the excess weights
and r̃v the resulting rates.

Following the development of Theorem 3 and using the
assumption that slice v has logarithmic utilities, Uv(r̃) can
be expressed as follows:

Uv(r̃) =
∑

u∈Uv,1

ϕu log

(
m̃u

lgeb
cu

)
+
∑

u∈Uv,2

ϕu log

(
m̃u

l̂geb
ĉu

)
Let us consider the m̃u values for u ∈ Uv that maximize

Uv(r̃v) − Uv(rge,v) subject to the constraint given by (11).
One can simplify Uv(r̃v)− Uv(rge,v) as follows

Uv(r̃v)− Uv(rge,v) =

=
∑

u∈Uv,1

ϕu log
(m̃u

lgeb
cu
)
+
∑

u∈Uv,2

ϕu log
(m̃u

l̂geb
ĉu
)

−
∑

u∈Uv,1

ϕu log
(mge

u

lgeb
cu
)
+
∑

u∈Uv,2

ϕu log
(mge

u

l̂geb
ĉu
)

=
∑

u∈Uv,1

ϕu log
(
m̃ucu

)
+
∑

u∈Uv,2

ϕu log
(
m̃uĉu

)
−
∑

u∈Uv,1

ϕu log
(
mge

u cu
)
+
∑

u∈Uv,2

ϕu log
(
mge

u ĉu
)

Since the mge
u values are fixed, the above optimization is

equivalent to finding the m̃u values that maximize∑
u∈Uv,1

ϕu log
(
m̃ucu

)
+
∑

u∈Uv,2

ϕu log
(
m̃uĉu

)
subject to ∑

u∈Uv

m̃u = sv −
∑
u∈Uv

min

[
lgeb γu
cu

,
γu
cu

]
.
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By solving the associated convex optimization problem, one
can show that the optimum m̃u values satisfy

m̃u =
ϕu∑

u′∈Uv ϕu′

(
sv −

∑
u∈Uv

min

(
lgeb γu
cu

,
γu
cu

))
.

This in turn coincides to with the GREET allocation at the
equilibrium, i.e., mge

u . Indeed, GREET first provides the share
fraction needed by all users to satisfy the rate requirements
and then distributes the remaining share proportional to ϕu,
which is exactly what the above expression does. This implies
that for the above m̃u values it holds Uv(r̃v)−Uv(rge,v) = 0
and hence slice v has no envy for the resources allocated to
slice ṽ at a GREET equilibrium.

Proof of Lemma 2

By construction, the GREET weight allocation algorithms
allocates to each user the necessary weight to meet its
minimum rate requirement.

Proof of Theorem 7

We show convergence by showing that Algorithm 1 is
a contraction mapping. Specifically, consider two sequences
slice-based weight allocations denoted (l(n) : n ∈ N) and
(̃l(n) : n ∈ N), where l(n) := (lvb (n) : v ∈ V, b ∈ B)
and l̃(n) := (l̃vb (n) : v ∈ V, b ∈ B), corresponding to two
initial weight allocations denoted denoted l(0), l̃(0) where at
each step each slice performs its GREET weight allocation in
response to that of the others in the previous step. We will
establish that regardless the initial conditions, the following
holds:

max
v∈V

∑
b∈B

|lvb (n)− l̃vb (n)| ≤ ξmax
v∈V

∑
b∈B

|lvb (n− 1)− l̃vb (n− 1)|

which suffices to establish convergence as long as ξ < 1.
We let l(n) := (lvb (n) : v ∈ V, b ∈ B) denote the minimal

slice weight allocations required by slice v at base station
b based on the weight allocations in the previous round, i.e.,
l(n−1). Under Assumption 1, only Lines 4 and 5 in Algorithm
1 will be in effect, so

lvb (n) =


fv

b

1−fv
b

l−v
b (n− 1), l−v

b (n− 1) + fv

b
≤ 1,

fv

b
, l−v

b (n− 1) + fv

b
> 1.

(13)

Again under Assumption 1, the weight allocations for each
slice and base station in response to the others l(n) is
given by Line 21 in Algorithm 1, i.e., lvb (n) = lvb (n) +
ϕv
b

(
sv −

∑
b′∈B lvb′(n)

)
where ϕv

b =
∑

u∈Uv
b
ϕu. Note that

two particular cases are as follows: (i) if a slice v has solely
inelastic users, we have ϕv

b = 0 and thus lvb (n) = lvb (n); and
(ii) if a slice has solely elastic users, then lvb′(n) = 0 for all
b′ ∈ B and lvb (n) = ϕv

bs
v . We define l̃(n) in the same way as

l(n), based on l̃(n).

Next consider the difference between the two weight allo-
cation sequences. Using the Triangle inequality, we obtain

|lvb (n)− l̃vb (n)| ≤ |l
v
b (n)− l̃

v

b (n)|+ ϕb
v

∑
b′∈B

|lvb′(n)− l̃
v

b′(n)|.

Noting that (13) is a concave function with slope no greater
than

fv

b

1−fv
b

and again using the Triangle inequality, we have
that

|lvb (n)− l̃
v

b (n)| ≤
fv

b

1− fv

b

|l−v
b (n− 1)− l̃−v

b (n− 1)|

≤
fv

b

1− fv

b

∑
v′ ̸=v

|lv
′

b (n− 1)− l̃v
′

b (n− 1)|.

Thus, after one round of share updates, we have the
following bound:

|lvb (n)− l̃vb (n)| ≤
fv

b

1− fv

b

∑
v′ ̸=v

∣∣∣lv′

b (n− 1)− l̃v
′

b (n− 1)
∣∣∣

+ϕv
b

∑
b′∈B

fv

b′

1− fv

b′

∑
v′ ̸=v

∣∣∣lv′

b′ (n− 1)− l̃v
′

b′ (n− 1)
∣∣∣ .(14)

This in turn leads to the following bound on l(n)− l̃(n):

max
v∈V

∑
b∈B

|lvb (n)− l̃vb (n)|

≤ max
v∈V

∑
b∈B

 fv

b

1− fv

b

∑
v′ ̸=v

|lv
′

b (n− 1)− l̃v
′

b (n− 1)|

+ ϕv
b

∑
b′∈B

fv

b′

1− fv

b′

∑
v′ ̸=v

|lv
′

b′ (n− 1)− l̃v
′

b′ (n− 1)|


≤ 2(|V| − 1)fmax

1− fmax
max
v∈V

∑
b∈B

|lvb (n− 1)− l̃vb (n− 1)|,

where we have used the bound fmax and that
∑

b∈B ϕv
b = 1

unless slice v is inelastic in which case it equals 0. If (7)
holds, we have that the weight allocation updates get closer.
It follows by Proposition 1.1 in Chapter 3 of [40] that under
simultaneous updates one has geometric convergence to the
fixed point. Similarly, under round-robin updates, geometric
convergence follows as a result of Proposition 1.4 in Chapter
3 of [40].

Proof of Theorem 8

This follows directly from the proof of Theorem 7 and
Proposition 2.1 in Chapter 6 of [40].
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