
1.  Introduction
The upper water column south of Africa is a complex intersection of the Agulhas System and the Subtrop-
ical Front (STF), and it comprises a triple boundary between the Atlantic, Indian, and Southern Oceans 
(Figure 1). As a consequence, it has been suggested that this region plays a critical role in regulating global 
climate (Gordon, 2003). Within the Agulhas System in the Southwest Indian Ocean, the Agulhas Current 
(AC) is fed by surface and thermocline waters from the Red and Arabian Seas, the Indonesian Throughflow, 
the Mozambique Channel, and the East Madagascar Current (Beal et al., 2006). The AC transports these 
surface waters southward along the southeast coast of Africa and once it reaches the southern tip of South 
Africa, it is retroflected into the Indian Ocean by the westerly winds (Lutjeharms, 2006) and continues to 
flow eastward as the Agulhas Return Current (ARC) (Lutjeharms & Ansorge, 2001). A portion of the salty, 
warm waters transported by the AC leaks into the Atlantic Ocean. It has been suggested that temperature 
and salinity variability of the AC has an impact not only on southern Africa, but also around the Atlantic 
Ocean (Beal et al., 2011). The STF forms the northernmost border of the Southern Ocean Frontal system 
and delimits the southern extent of the Agulhas System (Figure 1). This hydrographic boundary is currently 
located at ∼39–41°S and separates the colder, nutrient-rich Subantarctic Zone waters from the warm, salty, 
and nutrient-poor subtropical waters (Orsi et al., 1995; Stramma & Peterson, 1990). It generally exhibits a 
mean temperature range of 10.6–17.9C (Lutjeharms & Valentine, 1984). South of Africa, the STF sits to the 
south of the Agulhas Plateau, while retroflected Agulhas waters become the ARC in the northern side of the 
Agulhas Plateau due to bathymetrical steering (Lutjeharms, 2006). South of the STF, the Subantarctic Zone 
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suggest previously modeled shifting westerly winds may be responsible for the patterns observed. A 
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winds may also help explain changes in CO2 ventilation seen during the MPIS.
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(SAZ) is located between the STF and the Subantarctic Front (SAF). The SAF is the northernmost edge of 
the Antarctic Circumpolar Current (ACC) and separates the SAZ from the Polar Frontal Zone. South of the 
SAF, the Antarctic Polar Front (APF) acts as the hydrographic boundary dividing the Polar Frontal Zone 
and the Antarctic Zone waters transported by the ACC (Belkin & Gordon, 1996; Orsi et al., 1995; Pollard 
et al., 2002; Whitworth & Nowlin, 1987).

The Agulhas System is considered a key player in global meridional overturning circulation due to its im-
portant role in the inter-ocean exchange of warm, saline waters between the Indian and Atlantic Oceans 
via Agulhas Leakage (Beal et  al.,  2011; Gordon,  2003; Lutjeharms,  2006; Weijer,  2002). Changes in the 
latitudinal position of the STF have been postulated to influence the amount of Agulhas Leakage (Bard & 
Rickaby, 2009; Beal et al., 2011; Becquey & Gersonde, 2002; Caley et al., 2012; Schefuß et al., 2004; Simon 
et  al.,  2013), with climate repercussions over a range of timescales (Beal et  al.,  2011; Martínez-Méndez 
et al., 2010). Northern migrations of the STF and nutrient-rich SAZ waters during the glacial periods of 
the last 150 kyr are inferred from increases in surface water productivity and cooler temperatures within 
the ARC (Naik et al., 2013). Northward displacements of the STF during glacial periods are also evident 
in changes in diatom assemblages, bulk biogenic silica content, and alkenone-based sea surface temper-
atures (SST) over the last 350 kyr at the Agulhas Plateau (Romero et al., 2015). In the southeast Atlantic, 
changes in foraminiferal assemblages have been associated with warm Agulhas waters leaking through the 
Indian-Atlantic Ocean Gateway (Caley et al., 2012; Peeters et al., 2004). Thus, changes in the abundances 
of Agulhas Leakage fauna in the southeast Atlantic have been interpreted as a proxy of Agulhas Leakage, 
which have also been related to latitudinal migrations of the STF during the Quaternary (Caley et al., 2012; 
Peeters et al., 2004).

The MPT marks the Quaternary climate transition between 41 kyr to more intense 100 kyr glacial-intergla-
cial cycles (Berger & Jansen, 1994; Clark et al., 2006; Hodell et al., 2008; Raymo et al., 1997). The MPT also 
witnessed dramatic changes in intermediate and deep water temperatures, and associated extinctions of 
benthic foraminifers (Hayward et al., 2007; O'Neill et al., 2007). The onset of the MPT is often credited as 
a response to the long-term cooling trend, possibly induced by decreasing atmospheric CO2 crossing an in-
ternal system threshold (Berger & Jansen, 1994; Raymo et al., 1997). However, other proposed explanations 
point to changes in ice-sheet dynamics (Clark & Pollard, 1998; Clark et al., 2006; Raymo et al., 2006; Pollard 
& DeConto, 2009). Changes in overturning and sea ice extent have been implicated in carbon cycle changes 
at the MPT, with potential linkages to the extent of the Southern Ocean or Aghulas Leakage (Becquey & 
Gersonde, 2002; Kemp et al., 2010; Lear et al., 2016; Martínez-Garcia et al., 2011).
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Figure 1.  Map of the location of International Ocean Discovery Program (IODP) Site U1475 and nearby sites used for comparison. (a) sea surface temperatures 
map displaying schematic pathways of the Agulhas Current, Agulhas Leakage, Agulhas Retroflection, Agulhas Retroflection Current, Subtropical Front, and 
Subantarctic front. Location of IODP Site U1475 (blue circle) and nearby sites (black circles) are also shown, and dashed lines represent approximate locations 
of oceanic frontal zones. (b) Seasonal mixed layer depth along 25.5°E based on Monterey and Levitus (1997). Dashed vertical line shows the location of Site 
U1475.
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Multiple approaches have been taken to define the MPT (Clark et al., 2006; Elderfield et al., 2012; McCly-
mont et al., 2013; Raymo et al., 1997). Here, we discuss the MPT in terms of the: (a). “900-kyr event,” (b). 
“mid-Pleistocene Interim State” (MPIS), and (c). “Mid-Brunhes Event” (MBE), which broadly mark two 
major steps and the termination of the MPT, respectively (Clark et al., 2006; Elderfield et al., 2012; McCly-
mont et al., 2013). The “900-kyr event” (MIS 24–22) marks the end or reduction of the long-term cooling 
trend (McClymont et al., 2013) that began during the Pliocene (Ravelo et al., 2004). This event includes cool 
interglacial MIS 23, the only known interglacial period where the Atlantic meridional overturning circula-
tion (AMOC) did not strengthen (Dausmann et al., 2017; Peña & Goldstein, 2014), and has been suggested 
to mark the crossing of a climate threshold (McClymont et  al.,  2013). Following the 900-kyr event, the 
interval known as the MPIS, spanning from MIS 22 to the onset of MIS 13, is a period of generally reduced 
overturning circulation (Kemp et al., 2010; Schmieder et al., 2000). Evidence of reduced carbonate burial, 
likely due to dissolution, comes from records of elevated magnetic susceptibility and reduced sedimentation 
rates in the South Atlantic (Schmieder et al., 2000). Records from ODP Site 1090 in the South Atlantic SAZ 
(42°54.8′S, 8°53.9′E, 3,700 m, Figure 1) show temperatures and changes in the foraminiferal community 
that suggest a northward migration of the SAF to a location near Site 1090 during the MPIS (Becquey & 
Gersonde, 2002; Martínez-Garcia et al., 2009). The last significant climatic event during the MPT is the 
MBE, which is characterized by an increase in ice volume variability (Lisiecki & Raymo, 2005), interglacial 
intervals with warmer temperatures (Elderfield et al., 2012; Jouzel et al., 2007; Lawrence et al., 2009) and 
a higher concentrations of atmospheric CO2 (Hönisch et al., 2009; Lüthi et al., 2008). This event occurred 
during glacial termination V (T5) at around 424 ka (Jansen et al., 1986) and coincided with an increase in 
the mean flow speed of the Deep Western Boundary Current and likely intensification of Antarctic Bottom 
Water formation and export (Hall et al., 2001).

Significant latitudinal migrations of Southern Ocean fronts have been suggested for the MPT for sites in the 
South Atlantic (Becquey & Gersonde, 2002; Kemp et al., 2010). Kemp et al. (2010) proposed that the MPT 
is marked by the beginning of stepwise northward migration of the APF. The first northward movement of 
the APF is defined by the disappearance of the laminated diatom mats at the Site 1093 (49°58.6′S, 5°51.9′E, 
3,626 m water depth) and appearance at Site 1091 (47°5.7′S, 5°55.2′E, 4,363 m water depth) during the 
900-kyr event (Figure 1a). A second, and even greater equatorward migration of the APF is inferred from 
the disappearance of the laminated diatom mats at Site 1091 (Kemp et al., 2010) and associated cooling in 
the Subantarctic Zone of the South Atlantic (Becquey & Gersonde, 2002) during the MPIS. The laminated 
diatom mats return to their southernmost position during the MBE, indicating that the APF was proximally 
located to Site 1094 (53°10.8′S, 5°7.8′E, 2,806 m water depth). While the evidence for movement of the ACC 
fronts in the Atlantic seems strong, there is no clear evidence that the STF migrated north and expanded the 
Southern Ocean, during the MPIS (Kemp et al., 2010).

Northward expansions of the Southern Ocean fronts, including the STF, have been proposed to limit the 
amount of warm and salty water escaping from the Indian Ocean into the South Atlantic through Agulhas 
Leakage. This study aims to examine oceanographic changes within the upper (∼50–200 m) water column 
at the Agulhas Plateau through the MPT. To investigate latitudinal changes of the STF in the Southwest-
ern Indian Ocean, we produced a multiproxy reconstruction from 1.4 to 0.3 Ma of primary productivity 
and upper water column temperature using sediments from Site U1475 at the Agulhas Plateau from IODP 
Expedition 361. Past water temperature is estimated using the K'

37U  and TEX86 paleotemperature indices 
(Brassell et al., 1986; Schouten et al., 2002). The K'

37U  index is based on the analysis of the di- and tri-unsatu-
rated alkenones synthesized by unicellular haptophyte marine algae (Eglinton & Eglinton, 2008; Volkman 
et al., 1980). The TEX86 index is based on the analysis of glycerol dialkyl glycerol tetraethers (GDGTs) with 
86 carbon atoms, membrane lipids produced by Thaumarchaeota (Brochier-Armanet et al., 2008). GDGT 
producers are thought to be chemoautotrophic nitrifiers that could live within the upper water column 
(∼50–200 m) (Karner et al., 2001; Könneke et al., 2005), and therefore might reflect water masses tempera-
tures below the surface (Huguet et al., 2007). Upper water column productivity variations are reconstructed 
using chlorins and total C37:3–2 alkenone abundances (Harris et al., 1996; Volkman et al., 1980). Chlorins 
are diagenetic products of chlorophyll, and thus changes in their abundances represent changes in primary 
productivity of the total phytoplankton community (Harris et al., 1996). Variations in the total abundance 
of C37:3–2 alkenones represent changes in coccolithophore productivity, one of the most important marine 
primary producers (Volkman et al., 1980).
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2.  Materials and Methods
2.1.  Site U1475

Sediment samples from Site U1475 were collected during the International Ocean Discovery Program 
(IODP) Expedition 361 in 2016. IODP Site U1475 (41°25.61′S; 25°15.64′E, 2,669 mbsl) is located south of 
Africa on the southwestern flank of the Agulhas Plateau (Figure 1) (Hall, Hemming, LeVay, Barker, Berke, 
Brentegani et al., 2017). Site U1475 offers a strategic location to study latitudinal migrations of the STF; it 
currently lies between the far northern edge of the modern STF and the ARC path (Hall, Hemming, LeVay, 
Barker, Berke, Brentegani et al., 2017; Hall, Hemming, LeVay, Barker, Berke, Caley et al., 2017). Sediments 
recovered using an advanced piston coring system from Holes U1475B, U1475C, U1475E, and U1475F were 
spliced together to generate a continuous sequence (∼292 m CCSF) based on RGB blue, b* color reflectance, 
and natural gamma radiation (NGR) data (Hall, Hemming, LeVay, Barker, Berke, Brentegani et al., 2017; 
Hall, Hemming, LeVay, Barker, Berke, Caley et al., 2017). In total 352 samples were selected from the inter-
val of the splice spanning from 1.4–0.3 Ma to generate organic geochemistry records at the Agulhas Plateau 
with an average resolution of approximately 3 kyr. The Site U1475 age model (Starr et al., 2021) is based 
on the correlation of the benthic foraminifera Cibicidoides wuellerstorfi stable oxygen isotope (δ18O) record 
from sediments recovered from Site U1475 to the global δ18O stack (Ahn et al., 2017; Lorraine E. Lisiecki & 
Raymo, 2005).

2.2.  Biomarker Analyses

Sediment samples collected every 6–8 cm were freeze-dried and homogenized. To obtain the total lipid ex-
tract (TLE), lipids were extracted using an Accelerated Solvent Extractor (Dionex ASE 350) using a mixture 
of 9:1 (v:v) dichloromethane (DCM): methanol (MeOH). An aliquot of the TLE was dried with a gentle 
stream of ultrapure N2 gas for chlorin concentrations. The chlorin aliquot was then re-dissolved using ac-
etone and transferred to a quartz cuvette where it was analyzed using a UV/Vis spectrophotometer (Ther-
mo Scientific Genesys 10 UV). Readings were taken in triplicate at both 410 and 665 nm wavelength, the 
absorption maximum of chlorophyll-derived chlorin pigments (Rosell-Melé et al., 1997), to calculate mean 
chlorin concentration per sample.

To obtain the apolar, neutral, and polar fractions from the TLE, each sample was passed through an alumi-
na oxide (Al2O3) column chromatography, using hexane/DCM 9:1, hexane/DCM 1:1, and DCM/MeOH 1:1 
as eluents, respectively. The neutral fractions, containing C37:3–2 alkenones, were identified and quantified 
using a Thermo Scientific Trace 1310 GC-FID coupled to an ISQ MS system using 5α-Androstane as an in-
ternal standard. The Trace 1310 GC was equipped with an Rtx-5 column (60 m × 0.25 mm × 0.25 µm) with 
a temperature program started at 70°C, then increased by 20°C/min to 130°C, and finally, increasing by 
4°C/min up to 320°C, where it was held for 20 min. Reproducibility based on replicated analysis of selected 
samples was ±0.02 K'

37U  units, which is equivalent to approximately 0.5°C.

Chlorin and alkenone abundances were converted to mass accumulation rates (MARs) using linear sedi-
mentation rates and dry bulk density estimates (Starr et al., 2021).

Two proxies were used to estimate temperature values through time near the water-air surface. One is based 
on the ratio between the di- and tri-unsaturated alkenones, known as the K'

37U  ratio (Brassell et al., 1986; 
Prahl & Wakeham,  1987). The K'

37U  index was calculated using Equation  1, as described by Prahl and 
Wakeham (1987):




K' 37:2
37

37:2 37:3

CU
C C� (1)

Using this index, SSTs were calculated using Equation 2 which is based on the core top calibration of Müller 
et al. (1998), and covers a temperature range of 0°C–27°C with a calibration error of ±1.5°C.

  K'
37U 0.033 SST 0.044� (2)
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The second proxy used to track changes in upper water column temperatures is TEX86 index (Schouten 
et al., 2002). Polar fractions were filtered (0.45 µm PTFE filter), dried under N2, and then dissolved in 99:1 
hexane: isopropanol for analysis. GDGTs were analyzed using an Agilent 1260 series high-performance liq-
uid chromatography (HPLC) coupled to an Agilent 6120 single quadrupole mass detector. The instrument 
was set up according to Hopmans et al. (2015), using two UHPLC silica columns in series at 30°C, to ensure 
separation of the GDGT compounds. The flow rate was set at 0.2 mL/min. Using hexane as solvent A and 
hexane: isopropanol (9 : 1, v: v) as solvent B, GDGTs were eluted for 25 min with 82%A and 18%B, then to 
62% A and 35% B for 25 min, and finally, 0%A and 100%B for 30 min. GDGTs were quantified using single 
ion monitoring (SIM) mode of the M + H+ ions.

The TEX86 index was calculated using Equation 3 as described by Schouten et al. (2002):

TEX

GDGT GDGT Cren

GDGT GDGT
86

2 3

1 2


      



 

   



       GDGT Cren3 
� (3)

86TEX  values were converted to SSTs using the BAYSPAR Bayesian spatially varying regression (Tierney 
& Tingley, 2014, 2015). A comparison to 86TEX -derived temperatures obtained using other global core-top 
calibrations (Kim et al., 2008, 2010) can be found in Figure S1.

To assess the relative amount of soil organic matter input possibly affecting the 86TEX -derived temperature 
estimates, the Branched and Isoprenoid Tetraether (BIT) index was calculated using Equation 4 as defined 
by (Hopmans et al., 2004):

 
 

           
                

GDGT I GDGT II GDGT III
BIT

GDGT I GDGT II GDGT III Cren
� (4)

Variability in the amount of allochthonous terrigenous material reaching the study site was reconstructed 
based on the abundances of long-chain n-alkanes (C29–C33), which are thought to be synthesized by higher 
land plants (G. Eglinton & Hamilton, 1967; Ficken et al., 2000). Long-chain n-alkanes can reach remote 
oceanic locations by wind (Bendle et al., 2007; Kawamura, 1995; Simoneit, 1977). The apolar fractions con-
taining long-chain n-alkanes were analyzed using a Thermo Scientific Trace 1310 GC-FID coupled to an 
ISQ MS system. The Trace 1310 GC was equipped with an Rtx-5 column (60 m × 0.25 mm × 0.25 µm) with 
a temperature program started at 80°C, where it was held for one minute, and then, oven temperature was 
increased by 13°C/min to 320°C, where it was held for 20 min n-Alkanes were identified using the ISQ MS 
system and by comparison with an external C7–C40 n-alkane standard mixture, and finally, quantified using 
1,1′-binaphthyl as an internal standard.

2.3.  Wavelet Analysis

Periodic variability within the records from Site U1475 was analyzed using a continuous wavelet transform 
method (Grinsted et al., 2004). Alkenone-derived SST and primary productivity records were linearly in-
terpolated to a uniform spacing of 3 kyr. The chlorin-derived primary productivity and the TEX86-derived 
temperature records were linearly interpolated to a uniform spacing of 4 and 5 kyr resolution, respectively.

3.  Results
3.1.  Temperature Reconstructions

The two proxy temperature records (Figure 2a) are significantly correlated (R = 0.6) and yield similar mean 
values across the entire record (18.9°C for K'

37U  and 18.8°C for TEX86). The K'
37U  record (n = 339) exhibits a 

long-term cooling (∼2°C) and temperatures range between 15.7°C and 22.8°C. However, the TEX86-based 
record (n = 216) shows almost no cooling trend across the entire record, with temperatures ranging between 
13.2°C and 25.6°C. The BIT index always exhibits values lower than 0.1 (Figure 2c).
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Prior to the onset of the MPT, ca. 1.2 Ma, TEX86-derived temperature estimates are generally similar to or 
lower than K'

37U  temperatures (Figure 2b). The K'
37U  record shows a cooling trend prior to the MPT, while the 

TEX86-derived record is somewhat stable. After 0.9 Ma, some interglacial periods show warmer TEX86-de-
rived estimates than those from K'

37U , such as during MIS 25, 21, 19, 15, 11, and 9. During 0.8–0.47 Ma, the 
MPIS, temperatures are relatively stable, however, the K'

37U -derived temperature estimates exhibit lower am-
plitude glacial-interglacial variability compared to the periods before and after the MPIS. Additionally, a 
∼4°C offset between the two temperature records occurs during MIS 16, where TEX86 temperatures are low-
er than K'

37U  temperatures. Lastly, during the post-MBE period, from 0.47 to 0.3 Ma, there is an increase in the 
amplitude of TEX86-derived temperature record with an overall warming trend apparent in both records.
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Figure 2.  Upper water column temperature and productivity records at Site U1475 across the mid-Pleistocene 
Tetraether. (a) Alkenone- (black) and TEX86-derived (red) temperature estimates; (b) temperature offset between the 
alkenone- and TEX86-derived temperature estimates; (c) branched and isoprenoid Tetraether index; (d) productivity 
records from alkenones (black line) and chlorins (green line) mass accumulation rates (MARs); (e) long-chain n-alkane 
(C29–33) MARs. Glacial periods are highlighted, and T indicates glacial terminations. Numbers at the top of the figure 
refer to marine isotopic stages.
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Paleoceanography and Paleoclimatology

3.2.  Sea Surface Productivity Records

The alkenone-based (n = 352) and chlorin-based (n = 276) productivity 
records show a positive, strong correlation (R = 0.6) and higher overall 
productivity during glacial periods relative to interglacials (Figure  2d). 
MIS 36, 24, and 10 are the glacial intervals with the highest primary pro-
duction throughout both records. The productivity records show dispar-
ities at MIS 14 and the second half of MIS 16. The second half of MIS 16 
exhibits the opposite behavior of MIS 14, in this case where the chlorin 
concentration remains high while the total concentration of C37:3–2 is sig-
nificantly lower.

3.3.  n-Alkanes

Long-chain n-alkanes indicative of allochthonous terrigenous material 
potentially derived from higher plants were detected in the 133 samples 
that were selected for this analysis. The total C29–C33 MARs varied be-
tween 4.5 and 1,279.7 µg/cm2 kyr (Figure 2e). n-Alkanes exhibit carbon 
preference indices (CPI25–35) between 2.3 and 9.4. Abundances of C29-C33 
n-alkanes generally show higher MARs during glacial periods than inter-
glacials (Figure 2e).

3.4.  Wavelet Analysis

Wavelet analyses of the K'
37U , TEX86 derived upper water temperatures, 

and total C37:3–2 alkenones MAR (Figures 3a–3c) reveal strong obliquity 
cycles only prior to 1.1 Ma. After ∼1.0 Ma, wavelet analyses show estab-
lished strong 100 kyr eccentricity cycles. Although the shift from 41- to 
100-kyr periodicities based on the chlorin-derived primary productivity 
record (Figure 3d) is not as abrupt as in the other three records, the onset 
of dominant 100 kyr cycles is seen beginning ∼1.1 Ma, becoming clear 
∼0.8 Ma.

4.  Discussion
4.1.  Comparison of TEX86 and UK

37

 Temperature Records

Our temperature records exhibit an in-phase, glacial-interglacial variabil-
ity (Figure 2a), but often display an offset from each other, most obvious 

during glacial terminations, strong interglacial periods (MIS 31, 25, 21, 13, 11, and 9), and MIS 16. These 
offsets, as large as ∼4°C, are unlikely to be due to calibration uncertainties (Müller et al., 1998; Tierney & 
Tingley, 2014), and instead, they appear to respond consistently to glacial-interglacial variability and chang-
es in the oceanographic regime (Figure 2a). Diagenetic alteration or soil contamination of the signal do 
not offer satisfying explanations either. Sedimentary diagenesis does not have a significant effect on TEX86 
(Huguet et al., 2006; Kim et al., 2009; Schouten et al., 2004). Alkenones can be affected by oxic degradation 
(Herbert, 2003), but an oxic experiment showed that the K'

37U  index exhibits only a small increase with deg-
radation (0.03 units, equivalent to <1°C) (Teece et al., 1998). BIT values are lower than 0.1 throughout the 
record, indicating low contributions of soil-derived brGDGTs at Site U1475 (Figure 2c).

Another possible explanation of temperature and productivity trends seen at Site U1475 includes lateral 
transport of the fine fraction of sediments, including biomarkers (Ohkouchi et  al.,  2002). Although we 
cannot completely rule out a non-local source of biomarkers due to lateral transport, we do not think there 
is substantial offset in our records. TEX86 has been previously shown to be more representative of a local 
signal, due to more rapid sink of GDGTs from aggregation and opal packaging (Schouten et al., 2013; Wuch-
ter et al., 2005) than alkenones (Mollenhauer et al., 2005, 2007; Shah et al., 2008). The strong coherence in 
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Figure 3.  Wavelet power spectra for the (a) 
37
KU -derived SST; (b) TEX86-

derived temperatures; and (c) alkenone- and (d) chlorin-derived primary 
productivity records over the mid-Pleistocene transition. Variability at the 
precession (P), obliquity (O), and eccentricity (E) periods are highlighted. 
The 5% significance level against red noise is shown as a thick black 
contour. Spectral density scale on the right side.
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Paleoceanography and Paleoclimatology

variability throughout the temperature records at U1475 does not support post-deposition degradation or 
lateral transport, which would likely have a more independent effect on these proxies. The correspondence 
between temperature records arguing for minimal transport explanation is similar to observations of bio-
marker temperature records offshore Australia for the last 135 ka (Lopes dos Santos et al., 2013) and k'

37U
- derived SST and foraminiferal assemblage temperature estimates offshore New Zealand for the last 60 ka 
(Sikes et al., 2002).

Alternatively, the offsets between 86TEX - and K'
37U -derived estimated temperatures could be related to 

non-thermal factors affecting the 86TEX - derived temperature estimates. GDGT indices to examine the 
influence of non-thermal factors on the 86TEX - derived temperature estimates suggest little influence by 
methanogenic archaea or water column migration of archaeal populations (Figure S2).

We also considered whether differences between the two temperature estimates could result from seasonal 
timing of haptophyte algae and Thaumarchaeota production (Auderset et al., 2019; Castañeda et al., 2010; 
Huguet et al., 2007). Present-day SSTs at Site U1475 show seasonal variability, and range between 17°C 
during the summer and 14°C during the winter (Schlitzer, 2014). In several glacial terminations preceding 
strong interglacials (Terminations 15, 12, 10, 7, 5, and 4) and MIS 11 (Figure 2a), known as a “super-in-
terglacial” (Melles et al., 2012), TEX86 temperatures are considerably higher than K'

37U  estimates. This sug-
gests that abrupt and intense warming events may promote seasonal differences between the timing of 
haptophyte and Thaumarchaeota blooms at the Agulhas Plateau, as has been proposed in other locations 
(Auderset et al., 2019; Castañeda et al., 2010; Huguet et al., 2007). Furthermore, it has been shown that the 
seasonal timing of haptophyte algae and Thaumarchaeota blooms may differ (Murray et al., 1999; Wuchter 
et al., 2005). Thus, at the Agulhas Plateau it could be possible that during glacial terminations that precede 
strong interglacials, Thaumarchaeota blooms occur during the summer while haptophyte blooms occur 
during a colder season. However, modern satellite observations indicate that primary productivity in the 
south of Africa consists of intermittent blooms that mainly take place during the austral spring-summer 
(Llido et al., 2005), and there is currently no additional data on bloom timing of Thaumarchaeota or hapto-
phyte algae in the area. In summary, while we cannot entirely rule out seasonal timing of blooms contrib-
uting to temperature offsets, we do not view this as the most likely explanation for temperature differences 
observed across these records.

The most probable explanation for the offset between the two temperature records is that K'
37U -derived 

temperatures reflect surface temperatures while TEX86-derived estimates reflect values of shallow subsur-
face temperatures. GDGTs are thought to be produced by chemoautotrophic nitrifiers (Brochier-Armanet 
et  al.,  2008) that can live within subsurface water masses (∼50–200  m) (Karner et  al.,  2001; Könneke 
et al., 2005), in some cases, close to the thermocline (Huguet et al., 2007). Alkenones are synthesized by 
haptophyte algae and must live within the photic zone (Brassell et al., 1986; Müller et al., 1998) while Thau-
marchaeota tend to grow in the upper oxic to anoxic chemocline (Becker et al., 2018; Lam et al., 2007; Stahl 
& de la Torre, 2012; Stewart et al., 2012; Wakeham et al., 2007). Indeed, over the last 3.5 Ma, significant off-
sets between TEX86-and K'

37U -derived temperature records have been shown in the southeast Atlantic Ocean 
(Site 1087) within the Benguela Upwelling System (Petrick et  al.,  2018). Intervals where 86TEX -derived 
temperatures show a significant offset to K'

37U -derived estimates could be explained by shallower mixed lay-
er depths and well stratified waters, which would be indicative of Subtropical AC waters over Site U1475. 
Stratified waters may cause warm rather than cold bias in the reconstructed 86TEX -derived temperatures 
because strong stratification may drive oxygen minimum zones toward the photic zone. It has been shown 
that increases in oxygen limitation led to higher 86TEX  values (Qin et al., 2015). Thus, well stratified waters 
could also explain warmer 86TEX - than K'

37U -derived temperatures. Intervals where K'
37U - and 86TEX -derived 

temperatures are similar could be explained by a deeper mixed layer depth and well-mixed upper water 
column, as seen in Subantarctic waters.

4.2.  Latitudinal Migrations of the Subtropical Front

The STF is the hydrographic boundary that marks the northern extent of Subantarctic waters (Orsi 
et al., 1995). Currently, the highest chlorophyll-a concentration in the Southern Ocean is found between the 
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Paleoceanography and Paleoclimatology

STF and SAF (Read et al., 2000). Thus, changes in both primary productivity and upper ocean temperatures 
at sites such as Site U1475 located north of the present-day STF position can be used to indicate potential 
meridional expansions of the Southern Ocean and associated frontal shifts through time.

Although biomarker preservation may affect estimates of productivity, we consider and compare both chlor-
ins and alkenones, independently analyzed and measured, and produced by different groups. In the absence 
of any geochemical evidence to suggest degradation or preservation differences, we note similar trends 
shown by alkenones and chlorins, suggesting both are similarly associated with changes in primary produc-
tivity at the Agulhas Plateau. Additionally, glacial-interglacial productivity differences presented here have 
also been documented from sites in the Southwest Indian Ocean (Bard & Rickaby, 2009; Martínez-Garcia 
et al., 2009; Romero et al., 2015) and Southeast Atlantic (Petrick et al., 2018; Rosell-Melé et al., 2014), sug-
gesting these trends in productivity are not unexpected.

Changes in upper water column stratification may also reflect expansions of the Southern Ocean. Shallow-
er mixed layer depths distinguish Subtropical from Subantarctic waters in all seasons at ∼25°E (Holte & 
Talley, 2009) (Figure 1b). Throughout the last 1.4 Ma, chlorin and alkenone productivity increases during 
glacial intervals, consistent with the late Quaternary data (Romero et al., 2015), suggesting an expansion of 
the nutrient-rich waters of the Southern Ocean northwards. Convergence in surface and subsurface temper-
atures indicate a less stratified upper column during many glacials (Figure 2b) while warm intervals often 
show more stratified upper column waters (Figure 2b) (Flores et al., 1999) and shallow mixed layer depths 
(Holte & Talley, 2009) indicative of AC waters over the site. Below we discuss the expansion and contraction 
of the Southern Ocean.

4.2.1.  1.4 to 1.1 Ma (MIS 45-34)

From 1.4 to 1.1 Ma, when K'
37U -derived SSTs are consistently higher than TEX86-derived water temperatures 

(∼2°C on average) at the Agulhas Plateau (Figure 2a), the uppermost water column is inferred to have been 
somewhat stratified, likely influenced by the ARC, while the STF was in a more southerly position. Due to 
stratified nature of the upper water column and lack of nearby nutrient-rich Southern Ocean waters at Site 
U1475 (Lutjeharms, 2006; Orsi et al., 1995; Read et al., 2000), we attribute productivity increases during MIS 
44, 42, and 36 to the relatively significant amounts of wind-blown terrestrial material, evidenced by increas-
es in long-chain n-alkanes (C29–C33) (Figure 2e). Increases of wind-blown terrestrial organic material in re-
mote areas have been previously used to identify dust deposition at Site 1090 (Martínez-Garcia et al., 2011), 
with dust supplying essential limiting micronutrients such as iron (Simoneit, 1977) in times with little to 
no mixing. Glacial increases of dust deposition in the Southern Ocean have been proposed to stimulate pri-
mary productivity at nearby Site 1090 (Martínez-Garcia et al., 2011). MIS 36 (∼1.2 Ma) coincides with the 
development of the first Northern Hemisphere continental-scale ice sheets (Mudelsee & Stattegger, 1997) 
and strengthening of glacial-interglacial circulation contrasts in the Atlantic Ocean circulation after 1.2 Ma 
(Diekmann & Kuhn, 2002). Thus, the increases in productivity exhibited during MIS 44, 42, and 36 (Fig-
ure 2d) could be in response to the pulses of wind-blown material deposited in the area (Figure 2e).

4.2.2.  1.1 to 0.9 Ma (MIS 33-24)

Between 1.1 and 0.9 Ma TEX86 and K'
37U  temperatures are somewhat lower than found in MIS 45–34, but 

similar to one another. An exception to the similarity is found at the glacial terminations that preceded 
strong interglacials (MIS 31 and MIS 25). Productivity was elevated and highly variable between MIS 31–24 
(Figures 2d and S3), suggesting increased nutrient supply from the Southern Ocean. This is consistent with 
a northward migration of the STF, placing the front near the Agulhas Plateau during this interval.

The glacial termination preceding MIS 31 (T15) and MIS 25 (T12) have TEX86-derived temperatures that 
are significantly higher than K'

37U -derived SSTs (Figure 2a). These warming events correlate with decreased 
productivity (Figure 2d) and may have been the result of abrupt southward retreats of the STF. MIS 31 has 
been widely investigated as an extremely warm period in both hemispheres (Froelich et al., 1991; Lisiecki 
& Raymo, 2005; Marino et al., 2009; Melles et al., 2012; Pollard & DeConto, 2009; Teitler et al., 2015), and 
may represent a precursor of the high-amplitude 100-kyr climate cycles of the Late Pleistocene (Scher-
er et al., 2008). The extreme warming observed during MIS 31 has been linked to a possible collapse of 
the West Antarctic Ice Sheet in response to a 2–5°C increase in SSTs of the Antarctic oceans (Pollard & 
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Paleoceanography and Paleoclimatology

DeConto, 2009), and a southward shift of the STF (Maiorano et al., 2009) and APF (Flores & Sierro, 2007; 
Froelich et al., 1991) in the South Atlantic sector. Analyses of calcareous nannofossil abundances and min-
eralogical proxies at ODP Site 1090 suggest that the major climate modification experienced during MIS 31 
led not only to a poleward shift of the STF, but also to an expansion of the influence of the warmer AC in the 
eastern subantarctic sector of the South Atlantic Ocean (Maiorano et al., 2009). Thus, temperatures during 
T15 and T12 (Figure 2) might indicate a higher sensitivity of GDGT producers to a shallower mixed layer 
depth caused by a drastic retreat of the STF and a strong presence of AC waters over the Agulhas Plateau.

4.2.3.  0.9 to 0.47 Ma (MIS 23-13)

The onset of the dominant 100-kyr cycles (Figure  3) in the MPIS coincides with increases in the offset 
between the two temperature records and progressively lower productivity in successive glacial records 
(Figures 2a and 2d). These signals are consistent with subtropical-like conditions over the southern Agul-
has Plateau and a more southerly position of the STF and the subantarctic, nutrient-rich waters, relative 
to Site U1475. Taken together, our records indicate that during the MPIS, upper water temperatures and 
productivity suggest a strong influence of the ARC at Site U1475 consistent with a southward retreat of the 
STF south of Africa and long-term contraction of the Southern Ocean. Moreover, our records also show 
modest glacial-interglacial variability, which suggests that latitudinal migrations of the STF still took place 
over glacial-interglacial periods. However, those migrations were minor in comparison to higher amplitude 
variability observed before and after the MPIS.

4.2.4.  0.47 to 0.3 Ma (MIS 12-9)

The MBE (∼0.42 Ma) marks the end of the interval where the STF generally remained in a more southerly 
position. We see abrupt glacial-interglacial temperature and primary productivity variability after the MBE. 
Between MIS 12–9, we observe low primary productivity and TEX86-derived temperatures lower than K'

37U
-derived SST during interglacial periods, while there are similar TEX86-and K'

37U -derived temperature esti-
mates and increasing primary productivity during glacial periods (Figure 2). After the MBE, very different 
glacial-interglacial oceanographic conditions are seen at the Agulhas Plateau. Warmer subsurface waters 
(TEX86-derived) than SSTs ( K'

37U  estimates) and the lowest productivity of the entire record occur during 
MIS 11 (Melles et al., 2012), the warmest and longest interglacial of the last 5 million years (Lisiecki & 
Raymo, 2005). These results suggest that during MIS 11, the uppermost waters overlying the Agulhas Pla-
teau were mostly subtropical and the STF abruptly migrated to a more southward position relative to the 
Agulhas Plateau. MIS 10 displays similar TEX86-and K'

37U -derived temperatures and an increase in primary 
productivity at Site U1475, suggesting a northward migration of STF closer to the Agulhas Plateau. During 
MIS nine upper water temperatures and productivity at Site U1475 are similar to the ones during MIS 11, 
which suggests poleward migration of the STF. Together, these records suggest that following the MBE, 
more exaggerated glacial-interglacial latitudinal migrations of the STF occurred at the Agulhas Plateau.

4.3.  Implications for Ocean Circulation and Global Climate

Latitudinal migrations of the STF have been suggested to play a role in modulating Agulhas Leakage, thus 
impacting the AMOC and global climate. Shifts of the meridional position of the STF over glacial-intergla-
cial and longer timescales from 1.4 to 0.3 Ma are suggested with our multiproxy reconstructions of upper 
water temperatures and productivity. However, other factors such as modulation of Agulhas Leakage, ocean 
circulation changes, and CO2 variability may also be at play.

To examine these other likely linkages, we compare our results to records of accumulation rates of Globoro-
talia menardii at Site 1087 (Figure 4c), interpreted as an indicator of Agulhas Leakage (Caley et al., 2012). 
Although Sexton and Norris (2011) suggest that G. menardii variability track poorly ventilated thermocline 
waters, Caley et al. (2012) demonstrated that the presence and absence of G. menardii at Site 1087 com-
pares well with the Agulhas Leakage fauna record (Peeters et al., 2004), reconstructed based on planktic 
foraminifera abundance over the last 560 kyr. Studies have shown that Agulhas Leakage fauna generally 
increases (decreases) during interglacial (glacial) periods due to an enhanced (reduced) Agulhas Leakage 
(Caley et al., 2012; Peeters et al., 2004). The comparison between our interpreted changes in the position 
of the STF and the G. menardii-derived Agulhas Leakage variability show that only the most significant 
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Figure 4.  Upper water column variability at and near the Agulhas Plateau. (a) Alkenone-derived (black) and 
TEX86-derived (red) temperature estimates at Site U1475; (b) productivity records using alkenones (black line) and 
chlorins (green line) abundances at Site U1475; (c) Agulhas Leakage based on accumulation rates of G. menardii at 
Site 1,087 (Caley et al., 2012); (d) variability of neodymium isotope ratios (εNd) at Site 1088 representing changes in 
Atlantic meridional overturning circulation strength (Dausmann et al., 2017; Peña & Goldstein, 2014); (e) schematic 
of latitudinal migrations of the Antarctic Polar Front based on the laminated diatom mats occurrence at Sites 1091, 
1093, and 1094 (Kemp et al., 2010); (f) atmospheric CO2 concentration from the EPICA ice core (black line) (Lüthi 
et al., 2008; Pépin et al., 2001; Petit et al., 1999; Raynaud et al., 2005), from δ13C models (gray line) (Lisiecki, 2010), and 
from planktic foraminiferal boron isotopes (red circles) (Hönisch et al., 2009) and (green curve) (Chalk et al., 2017). 
Glacial periods are highlighted, and T indicates glacial terminations. Numbers at the top of the figure refer to marine 
isotopic stages.
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Paleoceanography and Paleoclimatology

northward migrations of the STF (MIS 34–24 and MIS 10) coincide with an interruption of Agulhas Leakage 
(Figure 4). During periods where the STF is located in its most southerly position or glacial periods with 
less northward migration of the STF, the G. menardii-derived Agulhas Leakage does not seem to respond to 
changes in the STF position. Thus, it appears that the latitudinal position of the STF only regulates Agulhas 
Leakage when the STF reaches a significantly northward location. Some other dynamical mechanism must 
control Agulhas Leakage during periods where the STF has not significantly moved northward but leakage 
fauna decreased.

We also compare with lower-resolution records of neodymium isotope ratios (εNd) at Site 1088 (Figure 4d) 
(Dausmann et al.,  2017; Peña & Goldstein, 2014) to examine whether latitudinal migrations of the STF 
relate to deep ocean circulation fluctuations. Comparison between εNd values of intermediate waters from 
the nearby Agulhas Ridge and our hypothesized Agulhas Plateau STF migrations also suggest that changes 
in the AMOC variability are not always directly related to the overall position of the STF. For example, the 
expansion of the Southern Ocean at MIS 34–24 and MIS 10 show an interruption in leakage, but high εNd 
values do not suggest an AMOC slow down during those periods (Figure 4), at the resolution available. 
Additionally, a significant reduction in North Atlantic-sourced water masses is seen prior to the 900-kyr 
event (Figure 4d; Dausmann et al., 2017; Peña & Goldstein, 2014), which coincides with the beginning of 
the southward retreat of the STF. As the STF continues toward a more southerly position during the MPIS, 
the εNd records begin to show glacial-interglacial AMOC variability that does not resemble the modest gla-
cial-interglacial migrations of the STF during that interval.

Comparing our temperature and productivity results from the Agulhas Plateau with AMOC and Agulhas 
Leakage variability suggests that there is a disconnect between STF migrations and leakage volume during 
intervals within the MPIS. This possible decoupling has been previously linked to variability in the intensity 
of the Southern Hemisphere westerlies helping modulate throughflow between the western Indian and 
south Atlantic Oceans (De Boer et al., 2013; Durgadoo et al., 2013; Graham & Boer, 2013). Using mode-
ling experiments, Durgadoo et al. (2013) showed Agulhas Leakage responded to westerly wind strength, 
with shifts north (south) in the westerlies enhancing (diminishing) leakage. Displacement of the wind belt 
momentum, potentially due to the physical presence of the plateau, is thought to be responsible for the 
change in leakage volume, with the resulting redistribution of this energy (Durgadoo et al., 2013) counter 
to the STF explanation of leakage control of Bard and Rickaby (2009). Thus, changes in leakage volume or 
AMOC variability that do not appear to be correlated to STF migrations as determined by our temperature 
and productivity reconstructions, such as the major stagnation of the AMOC following the 900-kyr event 
(Figure 4d, Dausmann et al., 2017; Peña & Goldstein, 2014), may be connected instead to shifts in westerly 
winds, as previously modeled.

We see lower amplitude changes in temperature and productivity and lower Southern Ocean influence at 
Site U1475 when global atmospheric CO2 variations are relatively muted during the MPIS. Intervals with 
northward shifts in the westerlies, previously described as linked to enhanced Agulhas Leakage (Durga-
doo et al., 2013), are also thought to allow the accumulation of CO2 within the deep ocean (Toggweiler 
et al., 2006). Movement of the westerlies away from the Southern Ocean are thought to reduce CO2 venti-
lation from deep waters (Toggweiler et al., 2006), thus connecting hypothesized northward westerly wind 
shifts with evidence of relatively low atmospheric CO2 values during the MPIS (Hönisch et al., 2009; Lüthi 
et al., 2008) (Figure 4f).

Although an expansion of the Southern Ocean during the MPIS has been previously suggested (Kemp 
et  al.,  2010), we do not see temperature or productivity evidence of such an expansion between 0.9 to 
0.47 Ma. A northward migration of the APF has been proposed to take place during the MPIS based on 
the disappearance of laminated diatom mats at Sites 1091, 1093, and 1094 (Kemp et al., 2010) implying 
an expansion of the Southern Ocean. Moreover, a new record of ice-rafted debris (IRD) from Site (Starr 
et al., 2021) suggests that the long-term cooling trend during the MPIS may have provided increasingly 
iceberg-favorable conditions at Site U1475, which had a significant impact on freshwater redistribution in 
the Southern Ocean across the MPT. Expansions of the Southern Ocean have been proposed to play a role 
in regulating atmospheric CO2 (Kemp et al., 2010; Lüthi et al., 2008). While our temperature and produc-
tivity records from Site U1475 may not indicate an expansion of the Southern Ocean during the MPIS, our 
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data may support low atmospheric CO2 at this time related to reduced deep water ventilation from shifting 
westerlies (Toggweiler et al., 2006) or diminished drawdown of CO2 from reduced primary productivity.

5.  Conclusions
We examine changes in the latitudinal position of the STF over the last 1.4–0.3 Ma based on new records 
of upper water column temperatures and productivity from IODP Site U1475 on the Agulhas Plateau. Our 
records show that the latitudinal position of the STF not only exhibits glacial-interglacial variability, but 
also likely latitudinal migrations over longer timescales. Our results support northward migrations of the 
STF during glacial and southward migrations during interglacial periods. On longer timescales, our multi-
proxy data suggest that the STF reached its northernmost position during MIS 34–24 and MIS 10. Compar-
isons with G. menardii at nearby Site 1087 (Caley et al., 2012) and with records of εNd at nearby Site 1088 
(Dausmann et al., 2017; Peña & Goldstein, 2014) suggest that only these significant northward migrations 
interrupted Agulhas Leakage and potentially altered the AMOC. During the MPIS, the STF migrated to its 
most southerly position relative to Site U1475. Based on our data, there is a significant southward migration 
of the STF during the MPIS that coincides with relatively low atmospheric CO2 values (Hönisch et al., 2009; 
Lüthi et al., 2008), enhanced Agulhas Leakage (Caley et al., 2012), and significant glacial increases of IRD 
reaching the Agulhas Plateau (Starr et al., 2021). Some other dynamical control beyond STF migrations 
must contribute to Agulhas Leakage and AMOC variability during the MPIS. We suggest that shifts in the 
Southern Hemisphere westerly winds may account for the circulation changes seen when the STF was in its 
southernmost position, supporting prior modeling studies that have shown the importance of the westerlies 
in Agulhas Leakage (Durgadoo et al., 2013). A northward shift in the westerlies might also help explain 
muted CO2 levels observed during the MPIS, with reduced deep sea ventilation as winds shift to the north 
(Toggweiler et al., 2006).

Data Availability Statement
All data from this study can be found in the World Data Service for Paleoclimatology, run by NOAA (https://
doi.org/10.25921/tjae-sx80).
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