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Abstract—The study presents a self-learning controller for
managing the energy in an Internet-of-Things (IoT) device pow-
ered by energy harvested from a thermoelectric generator (TEG).
The device’s controller is based on a double Q-learning (DQL)
method; the hardware incorporates a TEG energy harvesting
subsystem with a DC/DC converter, a load module with a
microcontroller, and a LoRaWAN communications interface. The
model is controlled according to adaptive measurements and
transmission periods. The controller’s reward policy evaluates the
level of charge available to the device. The controller applies and
evaluates various learning parameters and reduces the learning
rate over time. Using four years of historical soil temperature
data in an experimental simulation of several controller config-
urations, the DQL controller demonstrated correct operation,
a low learning rate and high cumulative rewards. The best
energy management controller operated with a completed cycle
and missed cycle ratio of 98.5 %. The novelty of the presented
approach is discussed in relation to state-of-the-art methods in
adaptive ability, learning processes and practical applications of
the device.

Index Terms—energy harvesting; energy management; IoT;
reinforcement learning; thermoelectric generator

I. INTRODUCTION

The application of machine learning (ML) methods in
combination with embedded Internet-of-Things (IoT) devices
remains a challenging task due to the limited computational re-
sources, low-power demands and self-operating requirements
of these devices. This study is an extended version of a
pilot study [1] presented in the 2022 IEEE Symposium Series
on Computational Intelligence and delivers a more detailed
and complex analysis of Q-learning (QL) performance, an
improved reward policy, and a double Q-learning (DQL)
policy tested over four years.

The study investigated methods of powering IoT platforms
with thermometric generators (TEGs) [2] according to the
scheme depicted in Fig. 1. The amount of energy harvested by
a TEG is a dynamic parameter which depends on temperature
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in the surrounding environment [3]. An energy management
system which specifies how an IoT device should behave at
certain times should therefore be applied according to the
energy which is available to the device [4]. The controller
described in the study applied a DQL-based strategy to manage
the duty cycle in a TEG-powered IoT device. The device itself
was designed to monitor environmental parameters and trans-
mit collected data via a wireless communications interface for
storage in a cloud and subsequent advanced data processing.
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Fig. 1. Energy management principle applied by the ML controller in the
energy harvesting TEG-powered IoT device.

The algorithm used by the controller applied real time
self-learning principles. The energy harvesting IoT sensor
therefore did not require any energy system or hardware
customization or modification (capacitor size, energy harvester
type, replacement of aging hardware etc.) to suit the device’s
application or deployment location. Self-learning also solved
the many disadvantages of state-of-the-art methods, for ex-
ample the need for historical data to train a neural network,
time-consuming and computationally extensive processes to
optimize a fuzzy based controller, or the need to predict
ambient energy in a prediction-based controller. The proposed
DQL implementation in a low-cost embedded IoT platform
is very effective and has low computational and memory
requirements in combination with the reinforcement learning
algorithm. This feature is designed for very demanding, low-
cost and low-power designs.

The study’s contribution is summarized below:

« A novel, self-learning DQL-based approach designed for
low-power, low-cost TEG-powered IoT nodes managed
with a wake-up scenario.

o Comparison of the proposed solution’s performance with
a static energy management configuration and a state-
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of-the-art fuzzy-based controller tested with a simulation
and soil environmental data.

« Discussion of the features of the proposed approach in
relation to the results obtained from the device’s self-
learning ability, model-free design, and computational
cost requirements.

The article is organized as follows: Section I presents the
aim, novelty and benefits of the study; Section II summarizes
related studies and the state-of-the-art; Section 111 describes the
device’s DQL principles, learning policy and adapted DQL en-
ergy management algorithm; Section IV describes the study’s
experiment and input data and provides an evaluation of the
device’s performance; Section V discusses the experimental
results in relation to the device’s learning parameters, a time
domain analysis, and comparison with a reference solution;
Section VI discusses the results and the article’s contribution;
Section VII concludes the paper and outlines potential future
work.

II. RELATED WORKS

Energy management policies in energy harvesting IoT sen-
sors are designed to provide a continuous and uninterrupted
supply of energy [5]. Due to the unpredictable and dynamic
nature of the harvesting environments, successful operation
of adaptive energy management algorithms in IoT sensors
remains a challenge [6]. For adaptive energy management,
ML methods can be applied. Table I summarizes the current
research and state-of-the-art ML methods. These methods are
categorized into offline and online learning approaches. Offline
methods exploit a neural network or fuzzy logic to predict
energy management system parameters. Online methods are
based on self-learning algorithms such as deep reinforcement
learning or QL.

Neural networks are mainly used for predictive analysis.
In neural network applications, the quantity of available en-
ergy can be predicted from energy harvesting nodes [7] or
multiple energy harvesting sources [8]. Output power can
be predicted from hybrid energy harvesting sources [9]. The
high computational demands of neural networks means it
is not always feasible to deploy this approach with energy-
constrained devices [23].

Fuzzy logic is suitable method for building adaptive algo-
rithms that are used to achieve a continuous energy source
for sensor nodes and thus prolong sensor node lifetime [10].
Genetic algorithms are applied to optimize fuzzy rule-based
controllers [11], forecast next-day solar energy availability
using evolutionary fuzzy rules [12], or predict the quantity
of available energy in IoT devices [13]. Algorithms based on
fuzzy logic can also be applied to manage the operation of
wireless sensor nodes equipped with energy harvesting devices
[15]. Systems based on fuzzy logic can provide optimal
operational strategies that assess the node’s current resource
requirements, current battery status, or expected energy charge
[14]. However, because neural networks and fuzzy rule-based
systems do not possess self-learning abilities, they are not suit-
able for adaptive energy management algorithms in dynamic
environments.

TABLE I
OVERVIEW OF ML METHODS SUITABLE FOR ADAPTIVE ENERGY
HARVESTING MANAGEMENT IN IOT DEVICES.

Methods Related studies
Neural e Prediction of available energy in energy harvesting
networks nodes [7]
o Prediction of energy from multiple energy harvesting
sources [8]
e Prediction of output power from hybrid energy har-
vesting sources [9]
Fuzzy e Adaptive sampling algorithm for a continuous source
logic of energy for the sensor node [10]

o Optimization of fuzzy rule-based controller prediction
[11]

o Forecasting of next-day solar energy availability using
evolutionary fuzzy rules [12]

e Prediction of the amount of battery energy in IoT
devices [13]

o Optimization of IoT node operation by managing
energy consumption [14]

e Fuzzy rule-based controllers for embedded sensors
[15]

Deep rein- o
forcement
learning .

Energy management in battery-less event detection

sensors [16]

Resource management in hybrid energy LoRa wire-

less networks [17]

o Optimization of data offloading and resource alloca-
tion in renewable-energy-aware IoT devices [18]

Q-learning e Coordination of energy consumption in a wireless

sensor network [19]

o Reinforcement learning-based resource allocation for
energy harvesting device communications in IoT net-
works [20]

o Management of energy in solar-powered environmen-
tal wireless sensor network nodes [21]

e Energy and transmission management in network

nodes [22]

Self-learning algorithms suitable for IoT embedded plat-
forms are commonly based on semi-supervised reinforcement
learning approaches. One of these approaches is deep rein-
forcement learning, which combines neural network and re-
inforcement learning principles. Deep reinforcement learning
algorithms can be used to manage energy in battery-less event
detection sensors [16], manage resources in hybrid energy
wireless networks [17], or jointly optimize data offloading
and resource allocation in renewable-energy-aware IoT devices
[18]. Although, this approach is self-learning and suitable
for multidimensional environments, the algorithm is not fully
optimized due to the computational complexity involved in
real-time neural network training. Another online and self-
learning approach is QL, which is suitable for coordinating
the energy consumption in wireless sensor networks [19],
allocating resources for energy harvesting device communi-
cations in IoT networks [20], and managing energy in solar-
powered environmental wireless sensor network nodes [21].
This approach is suitable for managing energy in dynamic
environments because it applies a self-learning algorithm that
is not computationally intensive due to its semi-supervisory
nature and a Q-table updated with single values according to
the current reward. This can be demonstrated in the energy
and transmission management of a node which has been
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programmed using QL and exhibits appropriate data and
energy flushing in queues to achieve better throughput and
fewer lost packets [22].

Hybrid ML approaches, such as the combination of fuzzy
logic and reinforcement learning techniques, can also be ap-
plied. These fuzzy-based reinforcement learning mechanisms
first prioritize tasks using fuzzy logic. A reinforcement learn-
ing mechanism is then used to solve the problem of tasks with
high dimensionality in a dynamic environment [24]. Besides
conventional computational models, task schedulers can also
be used. This type of approach is able to intelligently schedule
application tasks to avoid power failures and maintain forward
progress in IoT devices [25].

III. PROPOSED MODEL

This section describes the DQL method, its learning policy
and implementation for wake-up scheduling in an IoT device.
The section includes a reference solution based on a fuzzy
logic controller.

A. Double Q-learning

The DQL method belongs to the reinforcement learning
algorithm family. Hasselt [26] proposed this method as a
modification to avoid overestimation of the action values
produced by the QL algorithm. This approach differs by using
two Q-tables instead of one. The Q-tables are denoted QA and
Qp and applied to each state/action pair. The DQL finds the
action a*, which is the maximal valued action in the next state
s', according to the value function Qa:

a* =argmaxQa(s’,a). ()
A similar process is applied to b*, according to Qp:
b* = argmaxQp(s’,a). )

Each Q function is updated with a value from the other Q
function for the next state. () g is used to update () 4, according
to the equation:

Qa (Sva) —Qa (Sa a)
+a [R + ’YQB (5/3 a*) - QA (37 CL)] .

This is performed conversely for ()p, according to the
equation:

3)

QB (87 a) <~ QB (Sv a)
+a[R+7Qa (s,0") = Qp (s,a)].

The expected value (F) of Qp for action a* is mathemat-
ically proven to be less than or equal to the maximum value

of Qa(s’,a) [26]:

“4)

E{Qp(s',a*)} gmaaXE{QA(s’,a)}. 5)

If a large number of iterations are executed, the expected
value of Qp(s’,a*) will be less than the maximum value
of Qa(s’,a). It means that Q4(s’,a) is never updated with
a maximum value and thus never overestimated. This also

if UpdateA then
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Fig. 2. DQL algorithm learning process: updating the Q-tables for () 4 and
QB over two iterations.

applies conversely to Qp(s’,a). To select the action for the
next run, the appropriate Q-table (Q 4 or @) is used.

Fig. 2 shows the learning phase of the DQL algorithm.
Generally, DQL algorithms use two estimators instead of one
to eliminate any overestimation of rewards [26]. The advantage
of two estimators is that the first is used to select an action and
the second is used for evaluation. The estimators are switched
after each iteration. When the Q-table for @ 4 updates, the
future reward value is taken from the Q-table for (Jp, and
vice versa. Fig. 2 shows an example of two learning phases
over two consecutive iterations. The Q-table for () 4 is updated
during the first iteration, the Q-table for () 5 during the second.

B. Learning policy

An integral part of DQL is the learning policy. Generally,
the learning policy defines the actions, states and the reward
policy. The DQL controller’s aim is to optimize the use of
energy. Actions are defined for the next sleep time, i.e., the
next period duration. The action set is defined as follows:

A = {720, 480, 240, 120, 60, 10} (min).  (6)

States are defined according to the energy stored in the
supercapacitor. The maximum energy which can be stored is
calculated from the equation:

1
Emax = 5 . Cstorevnzlaxa (7)
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where Fy,.x is the maximum stored energy in joules, Cyore 18
the electrical capacitance in farads, and Vi, ax is the maximum
supercapacitor voltage generated by the DC/DC converter. For
the experiment in the current study, an LTC3109 DC/DC
converter supplied electrical output until the supercapacitor
voltage dropped below a desired output voltage. The superca-
pacitor was consequently charged using a minimum of energy,
calculated according to the equation:

1 2

5 : Cstorevz)uta (8)
where Fy.;i, is the required stored energy in joules in the su-
percapacitor corresponding to the desired output voltage V.-
The state of energy storage (SoES) is computed according to:

Emin =

E. t < Fpn: O
SoES :{ el;eor.e m Estore=Fmin - ©)
: EmaxfEmin

SoES is normalized to the interval < 0, 1 > and divided into

six states: 1
Si<26 7é>;i1t06.

If SOES is less than 1/6, then the state is S7.

The reward policy is based on the current SoES value
and the SoES value from the previous cycle; the reward is
calculated from the equation:

(10)

R = SoEScycle — S0ES ycle—1, (11)

where SoESycle is the supercapacitor’s range normalized
remaining energy, SoES.ycle—1 is the supercapacitor’s range-
normalized remaining energy from the previous cycle, and R is
the reward. The policy is defined according to two conditions:
(1) when SoES rises, the controller obtains a positive reward;
(ii) the action with a longer period increases the probability
that the SoES is higher after the performed action.

The relationship between reward and incoming energy is
straightforward. If a sudden temperature difference occurs on
the TEG, caused by, for example, blowing wind, the reward
will also be high. A high reward may cause overestimation,
but using DQL instead of QL will decrease the probability of
overestimation.

C. DQL Energy management algorithm

This section presents a DQL algorithm dedicated to con-
trolling the behavior of an IoT node. The principle behind
adapting DQL to this purpose is that the algorithm uses the
current and previous step states instead of the current and
future states.

Algorithm 1 defines the DQL process for controlling an IoT
node’s behavior. After initializing variables and the Q-tables,
the ToT node is woken up. The reward R and current state s’
are checked. The next step is a learning phase which updates
one of the Q-tables (Q4 or (Qp). In the first iteration, the
previous state s is unknown, therefore the learning phase is
omitted.

Action a is then selected from the appropriate Q-table (Q 4
or ()p). Finally, the selected action is performed, the current
state is stored (as the previous state for next learning phase),

Initialize Q(s,a), Qa(s,a) and Qp(s,a), for each
seS,acA

while true do
Wake up

Observe R, s
if UpdateA then
Define a* = arg max Qa(s,a)
Qa(s,a) < Qa(s,a)+

+a [R + ’YQB (5/7 a*) - QA (Sa a)]
Set UpdateB
else if UpdateB then
Define b* = arg max Qp(s,a)
QB (Sva) A QB (Sva) +

+a [R + 'VQA (Slv b*) - QB (Sv a’)]
Set UpdateA

end

Choose a, based on Q4 or Qpg, and s’
(e-greedy policy)

Start action a

s+ 8

Sleep time according to executed action

end
Algorithm 1: DQL algorithm adapted to the controller of
an IoT node.

and the IoT node enters sleep mode. After a certain period has
elapsed, the IoT node is again woken up, and the algorithm
repeats.

D. Fuzzy logic controller reference solution

This section describes a state-of-the-art energy management
solution based on a fuzzy controller, adapted from previously
published research articles [11], [10], [14]. The reference
solution uses a fuzzy logic controller instead of a DQL
controller to schedule the next wake-up time.

The reference fuzzy logic controller has two inputs and a
single output. The inputs have been designed to respond to the
information available from the IoT node according to the DQL
reward policy, where the first input contains the fuzzy sets of
SoES,ycle and the second contains SOES ycie.1. The output is the

next period duration discretized into {10, 20, 30,..., 720}
minutes.
Inputs Output
Low Middle Fast Middle
1 1
0 0
0 0.5 1 0 0.5 1
0% 100 % 10 min 720 min

SOES ¢ycle SOES cygle-1 Next period duration

Fig. 3. Shape of the input and output fuzzy sets representing the current and
previous SoES, with next period duration output.
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The shape of the input and output fuzzy sets depicted in
Fig. 3 is triangular, and both inputs contain low, middle, and
high sets. The output contains three fuzzy sets, representing
slow, middle and fast operation.

TABLE 11
RULES FOR THE FUZZY CONTROLLER REFERENCE SOLUTION.
SoEScycie  SOEScycle-1 Next period duration
low slow
middle low fast
middle middle middle
middle high slow
high fast

Table II lists the rules for the fuzzy logic controller. The
knowledge base contains five rules according to the condition
that if the SOEScye is X and the SOES 1 is Y, then the
next period duration is Z. To achieve the maximum comparable
behavior to the proposed DQL approach, these rules follow the
same DQL policy. When the current SoES is low, the fuzzy
controller selects slow operation, when it is high, it selects
fast operation. When the current SoES is in the middle, then
the fuzzy logic controller’s behavior depends on the previous
SoES, where an increase in the SoES resulted in fast operation
and a decrease in slow operation. When the SoES is balanced
and both input sets are in the middle, then operation is also
in the middle.

IV. EXPERIMENTAL PROCEDURE

This section describes the experimental hardware parame-
ters applied in the simulation, the input data, and the perfor-
mance evaluation parameters for the input data.

A. Experimental setup and data

The experiment used a hardware model (Fig. 4) composed
of three main modules: a TEG, a DC/DC converter, and a load.
The parameters of this device were applied in a simulation for
analysis. The TEG hardware is a TEC1-12706 [27] module
which generates electrical energy when it is exposed to tem-
perature differences. The study in [28] described the properties
of this TEG module through an experimental analysis of
its current and voltage characteristics by exposing it to a
range of temperature differences. A standalone TEG module
is able to produce an open circuit voltage in the range of
tens to hundreds of millivolts. This voltage range, however,
is not sufficient to directly supply electrical devices such as
microcontrollers (MCUs) or transmission modules.

DC/DC converters boost voltages. The hardware model’s
DC/DC module is based on an LTC3109 converter which
converts electrical energy from extremely low input voltage
sources such as TEGs [29]. The DC/DC converter module in
the experiment was a mathematical model designed according
to a physical LTC3109 module and respected its basic func-
tionality.

Harvested energy is consumed by the load module. The
load module is composed of an MCU, an environmental
sensor, non-volatile memory, and a wireless communications
interface. An NXP KI1.25Z MCU [30] was selected for its low

Environmental

data
|
| TEG model | c . bcoc c . LoAD
H teg ;:EJ_-IStO'e out ; —
, P P ny 5
Model of 1oT Device

Actions

States

Evaluation
parameters

Fig. 4. Hardware model for an IoT device composed of a TEG, DC/DC
converter, and load.

power consumption and wide range of integrated peripherals.
The NXP KL25Z also fulfilled the requirements of the archi-
tecture and provides a number of low power modes,a feature
which allows fine tuning of the energy profile.

Serving as a data collector, a Bosch BME688 4-in-1 [31]
environmental sensor, which measures ambient temperature,
air humidity and atmospheric pressure, is connected to the
MCU via the I2C bus. The experiment did not impose the ne-
cessity of any specific sensor model; the only requirement was
an advanced sensor design. This device also integrates a gas
sensor which detects volatile organic and sulfur compounds
and various other gases.

The model performs two operations: data measurement and
data transmission. A memory buffer synchronizes these two
operations through a 24CW1280 EEPROM [32], although
FRAM technology was also considered. Currently, no FRAM
device is capable of operation at low voltages (e.g., at 1.8 V).
A LoRaWAN, currently one of the most popular types of
communication tools for IoT devices and offering three com-
munication classes (class A, B, and C) to cover various use
cases, provided communications. The communications link is
established with a Semtech SX1261 [33] LoRa transceiver
connected via a serial peripheral interface (SPI).

The experimental data contained air temperature and near-
surface soil temperature measurements (measured at several
depths 0.05m, 0.5m, 0.1 m, 0.2m) collected over a period
of four years (2016-2019). These data were obtained from
the Czech Hydrometeorological Institute [34] of the Ministry
of the Environment of the Czech Republic and used as input
for the experimental model. The data were measured at ten-
minute intervals at the Churanov Monitoring station, located
in the Czech Republic at the coordinates 49.0683° latitude,
13.615° longitude, and 1,117.8 m elevation.

B. Performance evaluation

To evaluate the hardware’s performance in the simulation,
several criteria and performance characteristics were analyzed.
Performance was assessed according to successful/completed
cycles and unsuccessful/missed cycles. A missed cycle is a
period during which transmission is required but the available
energy is insufficient. The ratio of both indicators (completed
and missed cycles) is calculated according to the equation:
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Completed

- 100 %.
Completed + Missed %

Ratio =

(12)

The hardware model’s energy consumption characteristics,
especially unused energy, was evaluated. The quantity of
unused energy Ey is the sum of the energy when the super-
capacitor is fully charged and the load does not use all of the
produced energy. This sum of unused energy is then measured
as a ratio to the sum of produced energy.

The average SoES level (SoES), average period between
two successful transmissions (P), percentage of power good
pin is active (Pgoop) and average supercapacitor voltage
(VsTorg) were also monitored to allow an analysis of energy
consumption, the average data availability in the cloud and
status variables of the IoT node.

V. RESULTS

This section evaluates the performance and variations in
the learning parameters over time and discusses the best-
performing controller. The learning parameters, represented
by « and 7, determine the learning rate and cumulative
reward preferences of the DQL algorithm. The ablation study
demonstrates the performance of the solution without the ma-
chine learning control algorithm, considering different static
settings of the wake-up period. The variations in the learning
parameters over time are reflected in the ar policy, which
adjusts the algorithm’s learning capability. The time domain
analysis provides detailed insights into the behavior within a
200-day interval and the selected types of actions.

A. Learning parameters performance

Learning parameters performance was investigated by ap-
plying different values (o« and <) in the experimental model.
To evaluate learning speed, o was set to a value in the range
0-1, with a step of 0.1. To test sensitivity to the cumulative
reward, v was set in the range 0.1-0.9, also with a step of
0.1. The e-greedy policy was set to 0.98 to help reduce the
number of random actions since the experimental model was
a control system contained within a measurement device and
not having deterministic functionality was undesirable. Each
variant of the experiment was repeated 100 times to reduce
any stochasticity caused by DQL behavior.

Fig. 5 depicts the results for learning parameters perfor-
mance. Fig. 5(a) indicates a high number of completed cycles
but also a high number of missed cycles. This is especially
evident at a high « (high learning rate) and low ~ (low cumu-
lative reward). Fig. 5(b) indicates that a lower « (slow learning
process) produced fewer successful cycles and also far fewer
missed cycles. Fig. 5(c) shows the ratio of completed/missed
cycles calculated from Equation 12).

Table III lists the ten best performing controllers according
to the ratio of completed/missed cycles defined in Section
IV-B. Each candidate differs in its configured learning param-
eters (o, ). These candidates were evaluated according to
the number and ratio of completed and missed cycles, unused
energy (Ly), average SoES, and average period. It is clear
that the majority of the best controllers had « parameters

distributed in the interval 0.2-0.6, representing slower learning
rates. In terms of ~, all the best controllers preferred a
cumulative reward in the range 0.7-0.9.

In terms of average SoES, a relationship between the
total number of cycles and average SoES is evident. The
higher the number of cycles, the lower the average SoES,
indicating better energy use. Vsrorg parameter reflects the
same principle and corresponds with the average SoES. A
relationship is also evident between the number of cycles
and the average transmission period. A higher number of
cycles produces a shorter average transmission period and
thus higher data availability in the cloud. However, the more
aggressive strategy with a maximum number of cycles also
produced a higher number of missed cycles. Pcoop indicates
the percentage of the time, when IoT node works properly.
The best performing controllers have Pgoop in range from
77.7% to 79.6 %.

B. Ablation study and reference algorithm

The purpose of the ablation study is to compare the DQL
approach with control methods that do not rely on machine
learning. The previous study [1] defined several reference
controllers which applied static duty cycle periods. In the
current study, the authors compared these solutions plus a
reference solution based on a fuzzy logic controller to a
solution containing a DQL controller. Table IV compares the
performance results of reference static controllers and a refer-
ence solution based on fuzzy logic. The lowest average SOES
and Vgrorg corresponded to the expected static controller
behavior. Short duty cycle controllers decreased the SoES,
resulting in short average periods; the long-duty-cycle con-
trollers did not use incoming energy, resulting in long average
periods. The average SoES of the fuzzy reference solution was
similar to the DQL controllers, however the average period
was approximately four times higher. In terms of Pgoop,
configurations with longer wake-up periods represent higher
Pcoop, which leads to more reliable operation. The fuzzy
solution achieves Pqoop of 77.5 %, which corresponds to the
range of 180 to 240 minutes in the static configurations.

Fig. 6 graphs the results for the reference solution in relation
to the DQL controller’s results. The reference solution is
marked in blue and indicates static operating periods (720,
480, 240, 120, 60 or 10 min); the fuzzy controller is marked
as yellow diamonds; the DQL controller and its dynamic
operating periods are marked in brown. The DQL solution
is not clearly visible in the upper graph in Fig. 6(a), therefore
Fig.6(b) provides a scaled detail of this graph and indicates
the best DQL cases with the points A-J. For complete cycles
and missed cycles, the blue curve splits the graph area into
two parts. Controllers (below the blue curve) achieved higher
performance than the static controllers. The reference fuzzy
controller’s results are also below the blue curve and indicate
that this method achieved higher performance than the static
controllers. The results for the best-case DQLs fall below the
blue curve to the right and indicate that the DQL algorithm’s
performance was greater than both the static controllers and
fuzzy controller.
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a ()
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Fig. 5. Results for learning parameters performance by varying the learning parameters (c, «y); (a) represents the number of completed cycles; (b) represents
the number of incomplete cycles (failures); (c) represents the the ratio of completed/missed cycles.

TABLE III
CONTROLLER CANDIDATES WITH THE BEST PERFORMANCE BASED ON THE RATIO OF COMPLETED/MISSED CYCLES.

® o v Compl. Miss. Ratio Ey SoES P  Pcoop VSTORE

(O O) ) Q) (%) (%) (%)  (min) (%) (\2)
A 03 038 45,179 682 98.5 273 58.1 46.4 79.3 3.596
B 04 09 42,875 666 98.5 29.6 59.8 48.0 78.9 3.604
Cc 05 09 42,640 677 984 299 59.8 48.8 79.2 3.603
D 06 09 42,924 700 984 29.6 59.0 48.4 79.0 3.558
E 02 038 45,718 773 98.3  26.7 57.9 45.2 79.6 3.581
F 04 08 45,472 787 983 27.1 57.0 45.6 78.4 3.537
G 02 07 47,044 829 98.3 255 56.1 43.8 78.7 3.546
H 03 09 43,509 779 98.3  29.0 59.3 46.2 79.6 3.632
1 03 0.7 47,243 861 982 254 55.4 44.6 78.2 3.530
J 0.1 04 48,463 889 98.2 240 55.5 43.5 71.7 3.485

# — Case, Compl. — Completed cycles (4 years), Miss. — Missed cycles (4 years), SOES — Average SoES, P — Average successful period, Pqoop —
Average power good, VgTORE — Average supercapacitor voltage

C. Changes in the learning policy

In this subsection, the algorithm’s ability to learn in time
by reducing the learning factor in each learning cycle (ar
principle) is discussed. This experiment used the controller
(v = 0.3,y = 0.8) which provided the best performance in
the previous experiments. Reduction of the learning rate was
based on the hypothesis that in a repetitive and conservative
environment, preserving obtained knowledge and reducing the
ability to learn is advantageous. By contrast, when a controller
operates in a dynamic environment, it is better to maintain the
learning rate at the initial level.

The ag principle is defined according to the equation:

ar(n) = a; - (\/5)",

where «; is the initial value of the learning factor, r is the
reduction coefficient, G is the gradient coefficient, and n is
the number of simulation steps.

Table V lists the numerical results for the ar configurations
which were applied to determine the algorithm’s ability to
learn over time. The policy was modified by the reduction
coefficient, which reduced the time required for the learning
rate. Parameter G was set to 0.5, resulting in a gradual
decrease of the learning factor and eventual reduction to half
in 7 cycles. In this experiment, the r coefficient was set
to 500, 1,000, 2,000, 4,000, 8,000, 16,000 and 32,000. The

(13)

best controller attained approximately 45 thousand learning
cycles over four years of operation; a factor of around 11,300
therefore indicates that the learning rate was reduced by half
in approximately one year.

Fig. 7 shows a graph of the seven agr configurations for
determining the algorithm’s ability to learn over time. The
results indicate that a high reduction in the learning rate
by the reduction coefficient produced poorer performance in
terms of missed cycles and the ratio of completed/missed
cycles. The best ratios were achieved with low reduction
coefficients (8,000-32,000). This behavior demonstrates that
a quick reduction (500-4,000) in the learning rate is not
suitable for energy management controllers based on a TEG.
It is possible that the controller may benefit from a long-
term reduction policy; for example, the best configuration,
with 16,000 reduction cycles, required 1.42 years to reduce
the learning rate to half. However, it should be noted that
the ratio of completed/missed cycles was very close to the
best result without a reduction policy, although the result
clearly demonstrates that a continual learning rate is a suitable
solution.

D. Time domain analysis

This subsection discusses the behavior of the best perform-
ing controller, which used the settings o = 0.3, v = 0.8.
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TABLE IV
ABLATION STUDY AND REFERENCE SOLUTION BASED ON FUZZY LOGIC COMPARISON.

* Compl. Miss. Ratio Ey SoES P Pcoobp VSTORE

) ) (%) (%) (%)  (min) (%) W)
10 71,392 138,852 340 144 15.7 29.4 34.0 1.183
20 51,316 53,804 488 335 26.1 41.0 40.7 1.701
30 37,336 32,744 533 433 32.1 56.3 48.6 2.107
40 30,132 22,428 573  49.1 36.5 69.8 54.5 2.390
50 25,548 16,500 60.8 53.0 40.0 82.3 58.8 2.595
60 22,352 12,688 63.8 558 42.7 94.1 62.4 2.751
120 12,904 4,616 737  64.1 53.5 162.9 73.2 3.307
180 8,988 2,692 77.0 67.6 58.0 2339 76.6 3.518
240 6,892 1,868 787  69.5 60.2  305.0 78.5 3.625
360 4,724 1,116 809 715 62.6 4450 80.6 3.737
480 3,600 780 822 725 63.8  584.0 81.6 3.793
600 2,896 608 82.6 732 64.6  726.0 82.3 3.829
720 2,432 488 833 73.6 65.0 864.5 82.7 3.853
Fuzzy 10,589 793 93.0 65.8 57.5 198.5 71.5 3.522

* — Case, Compl. — Completed cycles (4 years), Miss. — Missed cycles (4 years), SOES — Average SoES, P — Average period, Pqoop — Average power
good, VsToRE — Average supercapacitor voltage
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Fig. 6. (a) Performance comparison of the reference solutions [1] and DQL
solution, indicating completed and missed cycles; (b) Detail of the upper graph
indicating the best DQL controllers.

Table VI lists the number of individual periods selected
during controller operation. The controller operated according
to defined output actions in periods of 10, 60, 120, 240, 480 or
720 minutes. The second column indicates the number of times
this period was selected by the controller. The third column
specifies the percentage of times this period was selected
by the controller and indicates that the controller selected
the fastest action in 91.60 % of cases. When energy was
unavailable, the controller selected slower actions to obtain a
better reward. In 3.26 % of cases, the controller slowed down
the operating period to 720 minutes to prevent an outage in
the IoT device.

Fig. 8 graphs the results of the simulation for the best DQL
candidate over 1,200-1,400 days. The blue and red curves

TABLE V
SEVEN augp CONFIGURATIONS FOR DETERMINING THE ALGORITHM’ S
ABILITY TO LEARN IN TIME.

Reduction coefficient »  Missed cycles (-)  Ratio (%)
500 1,334 97.14
1,000 1,066 97.65
2,000 1,056 97.89
4,000 880 98.18
8,000 814 98.28
16,000 749 98.38
32,000 811 98.27
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Fig. 7. Seven ap configurations for determining the algorithm’s ability to
learn.

represent the voltage wave-forms of Viiore and Pgood, respec-
tively. Vitore 18 the supercapacitor voltage which corresponds
to the SoES, and Py0q is the output signal which indicates
whether the output voltage is at a sufficient level. The yellow
curve indicates whether a cycle was active (completed) or
missed. The purple circles indicate executed actions (period).
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TABLE VI
NUMBER OF INDIVIDUAL PERIODS SELECTED DURING CONTROLLER
OPERATION.
Action type  Number Percentage
10 min 42,909 91.60 %
60 min 714 1.52 %
120 min 318 0.68 %
240 min 705 1.50 %
480 min 671 1.43 %
720 min 1,529 3.26 %
6 -
4+
S
>
2 -
0
Active
Missed
’E 10 > A0 @@ O O @D CWDA CIEp@ O@O 00 ;I GEED @ O
g 60+ an o
o
Re] 5 5 -
5 120 c > > o
o
1 240 - o o o O (™ @D O @O
0]
5 480 TWO® @WOO O @D WO T WO O
©
< 720 EEEIED OO0 (SIS0 QOO CEED
1200 1250 1300 1350 1400
time (days)
—Vstore ——Pgood Cycles © Action

Fig. 8. Selected time window for IoT device operation with the best DQL
candidate (o = 0.3, v = 0.8). The upper part of the chart shows the time
parameters Vstore, Pgood and active and missed cycles. The lower part of
the chart indicates the actions performed (period) over 1,200-1,400 days.

At a high level of Vi, a high density of action was
executed every 10 minutes; at a low level of Viiore, @ high
density of action was executed every 720 minutes. These
results correspond with the expected behavior.

VI. DISCUSSION

This section compares the presented DQL approach with
state-of-the-art methods and discusses the performance, fea-
tures, and applications of DQL in TEG-powered IoT nodes.

A. Comparison with state-of-the-art approaches

The research from related studies and experiments open
several discussion points. From a review of the literature on
advanced methods, the current study is novel in three aspects.
Table VII provides a comparison of the related studies listed
in Section II with the proposed DQL approach. The individual
ML methods are compared according the design needs of

the models (model-free design), computational complexity, the
ability to learn continuously (dynamic learning), the ability
to learn without cloud assistance (on site updates), and com-
patibility with TEG-powered systems (TEG harvesting com-
patibility). Besides QL based strategies, none of the methods
are model-free and therefore require models for development.
Approaches based on neural networks are characterized by
high computational complexity and are therefore not suitable
for implementation with low cost, low power IoT devices.

In general, approaches based on reinforcement learning are
suitable for embedded applications. For IoT devices powered
using energy harvesting methods, the embedded energy man-
agement algorithm must be able to adapt to the dynamic nature
of the environment where the device is located by being able
to learn at every step and adapt to the surrounding conditions.
Algorithms based on reinforcement learning (deep reinforce-
ment learning, QL and DQL) satisfy this condition. Another
significant parameter in a low power IoT device is its ability to
function with cloud technology. ML approaches which learn
by themselves without the assistance of cloud technology
belong to the reinforcement learning family. Methods based
on neural networks and fuzzy logic lack this capability.

Energy harvesting based on TEG technology is character-
ized by sudden incoming peaks of energy caused by changes in
weather conditions. Energy management strategies must there-
fore be robust and eliminate overestimation of such events.
Neural network and fuzzy logic strategies are developed offline
and therefore resistant to this type of adaptation in principle.
The knowledge base created through reinforcement learning
methods may also be compromised by the overestimation of
external events. The proposed DQL approach using two Q-
tables offers an effective solution to suppress overestimation
during sudden changes in incoming energy.

Table VIII presents a summary of the key parameters for
static, fuzzy, and DQL approaches. To compare machine learn-
ing approaches, two static controllers (20 and 180 minutes) are
selected based on the comparable average period P parameter.
The fuzzy controller has a comparable P with the 180-minute
static configuration, but the overall reliability, as indicated by
the ratio parameter related to missed cycles, is significantly
higher. In terms of Pgoop and FEy, the fuzzy controller
and the 180-minute static configuration show negligible differ-
ences. These facts clearly demonstrate that a dynamic-oriented
approach is more suitable for controlling TEG-powered IoT
nodes. Similar observations can be made when comparing the
DQL approach to the corresponding static 20-minute approach.
There is a significant difference between the ratio and missed
cycles, despite the comparable average period. This finding
further confirms that DQL is an appropriate solution for IoT
energy management. The comparison of the DQL and fuzzy
approaches reveals that DQL outperforms the fuzzy approach
in terms of all key parameters.

B. DQL performance and features

The study’s results demonstrate that the real-time self-
learning algorithm designed for IoT devices deployed in envi-
ronments with variable sources of energy is a suitable solution.
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TABLE VII
COMPARISON OF FEATURES IN STATE-OF-THE-ART METHODS AND THE PROPOSED APPROACH.

Energy management method Model-free design Low computa- Dynamic learning  On-site update TEG harvesting
tional complexity compatibility
Neural networks X X X X v
(71, 18], [9]
Fuzzy logic X v X X v
[15], [11], [12], [13], [10], [14]
Deep reinforcement learning X X v X X
[16], [17], [18]
Q-learning v v v v X
[19], [20], [21], [22]
Presented DQL approach v v v v v
TABLE VIII VII. CONCLUSIONS AND FUTURE WORK

SUMMARY OF APPROACHES KEY PARAMETERS.

P Ratio Pgoop Miss. FEy

(min) (%) (%) =) (%)

Static 20 min. 41.0 48.8 40.7 53,804 335
Static 180 min.  233.9 77.0 76.6 2,692  67.6
Fuzzy 198.5 93.0 71.5 793 65.8

DQL 46.4 98.5 79.3 682  58.1

P — Average period, Pcoop — Average power good, Miss. — Missed cycles
(4 years),

This conclusion is based on the study’s ar experiment, which
produced superior results without any reduced learning ability
in the algorithm. This feature permits application to a wide
range of IoT sensors and deployment scenarios. The con-
troller’s adaptability is an advantage with IoT sensors where
the hardware configuration differs in energy harvester type, ca-
pacitor size, hardware age, and other factors as a consequence
of DQL principles and a semi-supervised approach driven only
by relative state variables from the reward policy.

Self-learning algorithms provide solutions for various ML
methods which may require additional datasets (e.g., training
datasets for neural networks). The proposed solution uses
online self-learning principles and therefore performs semi-
supervised learning within the deployed device itself. This
feature not only eliminates the need for a training dataset,
it produces different learning results in each IoT device. This
approach also eliminates the time-consuming and computa-
tionally demanding process of optimizing the design (e.g.,
fuzzy rule-based controllers) or providing ambient energy
predictions (e.g., prediction-based controllers).

In terms of required computational resources, the DQL
controller is suitable for IoT devices with hardware limitations.
Memory implementation includes two data arrays representing
Q-tables with floating point variables. In the each learning
step, the Bellman equation updates only one variable selected
from the data arrays. Finally, actions are selected by averaging
and sorting the data arrays. This simple procedure is more
effective than state-of-the-art approaches such as fuzzy rule-
based controllers or neural network evaluation. Overall, DQL
provides the means to implement computationally limited,
low-cost hardware with low-power specifications.

The study presented a reinforcement learning principle
designed to optimize energy management in IoT devices and
experimentally tested a hardware model for such a device.
The model consisted of a TEG energy harvesting subsystem
with a DC/DC converter, a load module with an MCU, and
a LoRaWAN communications interface. The device followed
a reward strategy which compared its current charge status to
the charge status in the previous learning step.

The study also presented a DQL-based approach with con-
figurable learning parameters. The results showed that the best
performing DQL controller operated with a 98.5 % success rate
derived from the ratio of completed/missed operation cycles.
The novelty of the solution was discussed in relation to state-
of-the-art methods and their properties.

Future work includes two possible directions. In the first,
and because the proposed approach demonstrated its ability to
adapt to the surrounding environment and specific application,
DQL-based methods applied in other domains could be evalu-
ated with simulations that use other hardware or large datasets
from a range of deployment locations. The second research
opportunity involves long-term deployment and evaluation of
an IoT device to study the differences between simulated data
and real-life data which contains several observed parameters
(e.g., disturbances, malfunctions, temperature changes etc.).
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