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In the previous lecture

• Systematically transform an ER model into a 
relational one

• Transforming: 
§ entity and relationship sets
§ key and participation constraints 
§ weak entity sets and hierarchies
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In the previous lecture
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CREATE TABLE Employee (
    nin CHAR(9),
    name VARCHAR(20),
    email VARCHAR(35),
    PRIMARY KEY (nin) )
CREATE TABLE Department (
    did INTEGER,
    dname VARCHAR(20),
    budget INTEGER,
    PRIMARY KEY (did) )

CREATE TABLE Works_In (
    nin CHAR(9),
    did INTEGER,
    since INTEGER,
    PRIMARY KEY (nin, did),
    FOREIGN KEY (nin) REFERENCES
              Employee,
    FOREIGN KEY (did) REFERENCES
              Department )



In this lecture

• We’ll learn how to use the SQL Data 
Manipulation Language to 
§ insert, delete and update rows in a table
§ query the database
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Inserting rows into a table

INSERT 
  INTO Student (mn, name, email, age)
  VALUES (‘s1253477’, ‘Jenny’, ‘jenny@sms.ed.ac.uk’, 23)

• The above statement adds a tuple in the Student table.
• We could omit the list of column names and simply list 

the values in the appropriate order, but it is good 
practice to include column names.
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CREATE TABLE Student (
    mn CHAR(8),
    name CHAR(20),
    email CHAR(25),
    age INTEGER,
    PRIMARY KEY (mn) )



Deleting and updating rows

• We can delete tuples using the DELETE 
command

DELETE
    FROM Student
    WHERE name = ‘Alan’

• We can update the column values in an 
existing row using the UPDATE command

UPDATE Student 
    SET name = ‘Alan’
    WHERE mn = ‘s1428571’
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SQL queries

• SQL allows us to ask questions to the 
database, such as:
§ Which students are older than 19?
§ What are the names of all students taking the 

Medical Informatics course?
§ What is the average age of all students born in 

Europe who are taking the Medical Informatics 
course but not the Advanced Databases course?
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A simple SQL query
• The following query returns all students older than 

19.
SELECT *
FROM Student
WHERE age > 19

• The * means that the table returned has the same 
schema as Students. 
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SQL query syntax
SELECT [DISTINCT] field-list
FROM table-list 
[ WHERE qualification ]

• Anything in [square brackets] is optional.
• SELECT: the columns to be retained in the result
• FROM: the tables from which to take the data
• WHERE: conditions that should hold for the records 

to be picked out
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Variations of a simple SQL query

• Instead of using *, we can explicitly specify the 
list of fields to be returned. These could be in 
a different order than in the original table. 
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SELECT mn, name, email, age
FROM Student
WHERE age > 19

SELECT *
FROM Student
WHERE age > 19



Variations of a simple SQL query

• We can specify which tables the fields are 
from. 

• This is particularly useful when the FROM-
clause includes several tables. 
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SELECT Student.mn, Student.name, 
  Student.email, Student.age

FROM Student
WHERE Student.age > 19

SELECT *
FROM Student
WHERE age > 19



Variations of a simple SQL query

• We can specify which tables the fields are 
from, while locally abbreviating their names. 

• This is particularly useful when the FROM-
clause includes several tables. 
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SELECT S.mn, S.name, S.email, 
    S.age
FROM Student S
WHERE S.age > 19

SELECT *
FROM Student
WHERE age > 19



Additional SQL queries

• We may choose to select only a subset of the 
fields of each selected tuple.

SELECT S.name
FROM Student S
WHERE S.age > 19

• In this case, the table returned has a different 
schema to that in Student.
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Additional SQL queries
• We may choose not to specify a condition through 

the WHERE-part of the query.
SELECT age
FROM Student

• By using DISTINCT, we remove any duplicates  from 
the returned records.

SELECT DISTINCT age
FROM Student
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Additional SQL queries

• We can include several tables in the FROM-
clause.

• The following query returns the email 
addresses of all students taking Medical 
Informatics.

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’

17



Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.
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Conclusions

• We’ve been introduced to the SQL Data 
Manipulation Language to:
§ insert, delete and update rows in a table
§ query the database

• General form of a basic SQL query:
SELECT [DISTINCT] field-list
FROM table-list 
[ WHERE qualification ]

• In the next lecture we’ll learn how to 
formulate more complex queries in SQL. 
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