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In the previous lecture

• We learnt how to use the SQL Data 
Manipulation Language to 
§ insert, delete and update rows in a table

INSERT 
    INTO Student (mn, name, email, age)
    VALUES (‘s1253477’, ‘Jenny’,
            ‘jenny@sms.ed.ac.uk’, 23)
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In the previous lecture

• We learnt how to use the SQL Data 
Manipulation Language to 
§ insert, delete and update rows in a table
§ query the database

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
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In this lecture

• We’ll learn how to formulate more expressive 
SQL queries with the use of:
§ SQL set operators
§ nested queries
§ aggregate operators
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Set operations in SQL

• SQL provides three set-operation constructs 
that extend the basic form of a query:
§ UNION: A or B
§ INTERSECT: A and B
§ EXCEPT: A but not B
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UNION in SQL

• Find the email addresses of all students taking 
Medical Informatics or Advanced Databases.

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
UNION
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Advanced Databases’
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UNION in SQL

• Find the email addresses of all students taking 
Medical Informatics or Advanced Databases.

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND (C.title = ‘Medical Informatics’ OR 
C.title = ‘Advanced Databases’)
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INTERSECT in SQL

• Find the email addresses of all students taking 
Medical Informatics and Advanced Databases.

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
INTERSECT
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Advanced Databases’
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INTERSECT in SQL

• Find the email addresses of all students taking 
Medical Informatics and Advanced Databases.

SELECT S.email
FROM Student S, Takes T1, Course C1, Takes T2, 
Course C2
WHERE S.mn = T1.mn  AND  T1.cid = C1.cid 
   AND S.mn = T2.mn  AND  T2.cid = C2.cid 
   AND C1.title = ‘Medical Informatics’ 
   AND C2.title = ‘Advanced Databases’
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EXCEPT in SQL
• Find the email addresses of all students taking 

Medical Informatics but not Advanced Databases.
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
EXCEPT
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Advanced Databases’
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Nested queries
• Queries that have other queries embedded within 

them.
• The idea is to use the result of one query to build 

another one. 
• The following query returns the names of all 

students that have a mark higher than 70 in any 
course.

SELECT DISTINCT S.name
FROM Student S
WHERE S.mn IN ( SELECT T.mn 
      FROM Takes T
      WHERE T.mark > 70 )
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Nested queries
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Nested queries
• Queries that have other queries embedded within 

them.
• The idea is to use the result of one query to build 

another one. 
• The following query returns the names of all 

students that have a mark higher than 70 in any 
course.

SELECT DISTINCT S.name
FROM Student S
WHERE S.mn IN ( SELECT T.mn 
      FROM Takes T
      WHERE T.mark > 70 )

13



Nested queries

• We can prefix IN with NOT. 
• Find the email addresses of all students that 

did not take any courses in 2012.

SELECT S.email
FROM Student S
WHERE S.mn NOT IN ( SELECT T.mn 
        FROM Takes T
        WHERE T.year = 2012 )
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Aggregate operators in SQL
• SQL also allows us to compute aggregate values 

rather than simply retrieve data. 
• Five aggregate operations are available:

§ COUNT([DISTINCT] field-name): The number of (unique) 
values in a particular field

§ SUM([DISTINCT] field-name): The total of all (unique) 
values in a particular field

§ AVG([DISTINCT] field-name): The mean of all (unique) 
values in a particular field

§ MAX(field-name): The maximum value in a particular field
§ MIN(field-name): The minimum value in a particular field
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Aggregate operators in SQL

• Find the average age of all students taking 
Medical Informatics.

SELECT AVG(S.age)
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn 
   AND T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
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Aggregate operators in SQL

• Find the number of students taking Medical 
Informatics in 2016, their average mark and 
their highest mark. 

SELECT COUNT(DISTINCT T.mn), AVG(T.mark),
       MAX(T.mark)
FROM Takes T, Course C
WHERE T.cid = C.cid 
   AND C.title = ‘Medical Informatics’
   AND T.year = 2016
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Conclusions

• We got to formulate more expressive SQL 
queries with the use of:
§ SQL set operators (e.g. UNION)
§ nested queries
§ aggregate operators, (e.g. AVG)

• This concludes the first part of the course on 
Relational Databases.
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