
Medical Informatics

Lecture 6: Introduction to SQL

Dr Areti Manataki

Nanjing Medical University

In the previous lecture

• Systematically transform an ER model into a
relational one

• Transforming:
§ entity and relationship sets
§ key and participation constraints
§ weak entity sets and hierarchies

2

In the previous lecture
3

CREATE TABLE Employee (
 nin CHAR(9),
 name VARCHAR(20),
 email VARCHAR(35),
 PRIMARY KEY (nin))
CREATE TABLE Department (
 did INTEGER,
 dname VARCHAR(20),
 budget INTEGER,
 PRIMARY KEY (did))

CREATE TABLE Works_In (
 nin CHAR(9),
 did INTEGER,
 since INTEGER,
 PRIMARY KEY (nin, did),
 FOREIGN KEY (nin) REFERENCES
 Employee,
 FOREIGN KEY (did) REFERENCES
 Department)

In this lecture

• We’ll learn how to use the SQL Data
Manipulation Language to
§ insert, delete and update rows in a table
§ query the database

4

Inserting rows into a table

INSERT
 INTO Student (mn, name, email, age)
 VALUES (‘s1253477’, ‘Jenny’, ‘jenny@sms.ed.ac.uk’, 23)

• The above statement adds a tuple in the Student table.
• We could omit the list of column names and simply list

the values in the appropriate order, but it is good
practice to include column names.

5

CREATE TABLE Student (
 mn CHAR(8),
 name CHAR(20),
 email CHAR(25),
 age INTEGER,
 PRIMARY KEY (mn))

Deleting and updating rows

• We can delete tuples using the DELETE
command

DELETE
 FROM Student
 WHERE name = ‘Alan’

• We can update the column values in an
existing row using the UPDATE command

UPDATE Student
 SET name = ‘Alan’
 WHERE mn = ‘s1428571’

6

SQL queries

• SQL allows us to ask questions to the
database, such as:
§ Which students are older than 19?
§ What are the names of all students taking the

Medical Informatics course?
§ What is the average age of all students born in

Europe who are taking the Medical Informatics
course but not the Advanced Databases course?

7

A simple SQL query
• The following query returns all students older than

19.
SELECT *
FROM Student
WHERE age > 19

• The * means that the table returned has the same
schema as Students.

8

A simple SQL query
• The following query returns all students older than

19.
SELECT *
FROM Student
WHERE age > 19

• The * means that the table returned has the same
schema as Students.

9

A simple SQL query
• The following query returns all students older than

19.
SELECT *
FROM Student
WHERE age > 19

• The * means that the table returned has the same
schema as Students.

10

SQL query syntax
SELECT [DISTINCT] field-list
FROM table-list
[WHERE qualification]

• Anything in [square brackets] is optional.
• SELECT: the columns to be retained in the result
• FROM: the tables from which to take the data
• WHERE: conditions that should hold for the records

to be picked out

11

Variations of a simple SQL query

• Instead of using *, we can explicitly specify the
list of fields to be returned. These could be in
a different order than in the original table.

12

SELECT mn, name, email, age
FROM Student
WHERE age > 19

SELECT *
FROM Student
WHERE age > 19

Variations of a simple SQL query

• We can specify which tables the fields are
from.

• This is particularly useful when the FROM-
clause includes several tables.

13

SELECT Student.mn, Student.name,
 Student.email, Student.age

FROM Student
WHERE Student.age > 19

SELECT *
FROM Student
WHERE age > 19

Variations of a simple SQL query

• We can specify which tables the fields are
from, while locally abbreviating their names.

• This is particularly useful when the FROM-
clause includes several tables.

14

SELECT S.mn, S.name, S.email,
 S.age
FROM Student S
WHERE S.age > 19

SELECT *
FROM Student
WHERE age > 19

Additional SQL queries

• We may choose to select only a subset of the
fields of each selected tuple.

SELECT S.name
FROM Student S
WHERE S.age > 19

• In this case, the table returned has a different
schema to that in Student.

15

Additional SQL queries
• We may choose not to specify a condition through

the WHERE-part of the query.
SELECT age
FROM Student

• By using DISTINCT, we remove any duplicates from
the returned records.

SELECT DISTINCT age
FROM Student

16

Additional SQL queries

• We can include several tables in the FROM-
clause.

• The following query returns the email
addresses of all students taking Medical
Informatics.

SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn
 AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

17

Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.

18

Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.
2. Keep only the row combinations that satisfy the

qualification conditions.

19

Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.
2. Keep only the row combinations that satisfy the

qualification conditions.

20

Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.
2. Keep only the row combinations that satisfy the

qualification conditions.
3. Return the specified columns.

21

Query evaluation
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn AND T.cid = C.cid
 AND C.title = ‘Medical Informatics’

1. Take all rows from the tables.
2. Keep only the row combinations that satisfy the

qualification conditions.
3. Return the specified columns.

22

Conclusions

• We’ve been introduced to the SQL Data
Manipulation Language to:
§ insert, delete and update rows in a table
§ query the database

• General form of a basic SQL query:
SELECT [DISTINCT] field-list
FROM table-list
[WHERE qualification]

• In the next lecture we’ll learn how to
formulate more complex queries in SQL.

23

Acknowledgements
The content of these slides was originally created for the Medical

Informatics course from The University of Edinburgh, which is
licensed under a Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0) license.

These lecture slides are also licensed under a CC BY-SA 4.0
license.

24

