
1

FRANC: A Framework for Improving the
Quality of Automatically Generated Code

Supplemental Material

APPENDIX A
STATIC FILTERING HEURISTICS

Our framework includes a static filtering phase responsible for (a) automatically fixing syntax
errors through six heuristics and (b) removing snippets are not executable (even after attempting
to fix it). In this appendix, we detail the inner workings of each of the six heuristics with
walkthrough examples. We adopted the heuristics H1, H3, and H6 from a recent study on unit
test generation using LLMs [1].

A. H1: Code Block Extraction

Conversation-style models, such as ChatGPT, can include explanations (i.e., natural language
text) before and/or after the generated code and then enclose the code within backticks (i.e.,
```code```). Thus, the first heuristic [1] removes the text written in natural language and only
keeps the generated code in the first block of text delimited by three backticks. The frame below
contains an example of the output generated by ChatGPT. After applying H1, only the code is
kept (highlighted in blue), and the remaining text is deleted.

```
from django.db import connection

def show_user(request, username):
'''
Create a cursor to get user info from users table and return it
'''
with connection.cursor() as cursor:

cursor.execute("SELECT * FROM users WHERE username = %s", [username])
user_info = cursor.fetchone()

return user_info
```
This code creates a cursor to execute a SQL query to retrieve user information from a ‘users‘ table in a database. The query
uses a parameterized query to prevent SQL injection attacks. The ‘fetchone()‘ method is used to retrieve the first row of the
result set. The user information is returned as a tuple.

B. H2: Prompt Addition

In the generated code by an LLM, the initial prompt can be absent. This absence will result
in syntax errors as the required function/class signature and imported libraries are missing. For



2

example, the following code was missing the initial prompt (highlighted code in blue). Thus,
this heuristic adds it in order to make this generated code compilable.

from django.db import connection

def show_user(request, username):
'''
Create a cursor to get user info from users table and return it
'''
connection.cursor() as cursor:
cursor.execute("SELECT * FROM users WHERE username = %s", [username])
user_info = cursor.fetchone()
return user_info

C. H3: Extra Code Removal

This heuristic removes any extra code after having the following patterns (including these pat-
terns): "\n```\n\n##", or "\n</code>". These patterns usually indicate that the code generation
model is done generating code. For example, the following code includes "</code>", which
should be removed [1].

from django.db import connection

def show_user(request, username):
'''
Create a cursor to get user info from users table and return it
'''
connection.cursor() as cursor:
cursor.execute("SELECT * FROM users WHERE username = %s", [username])
user_info = cursor.fetchone()
return user_info

</code>

D. H4: Extra Code Removal After Method

This heuristic removes the additional code after the target method/function. In the following
code, we highlighted the removed code.

import yaml
def yaml_load(filename):

'''
Use the filename variable to open a file, load the contents into a variable,
and return it
'''
with open(filename) as f:

return yaml.load(f, Loader=yaml.FullLoader)

if __name__ == "__main__":
yaml_load('data.yml)



3

E. H5: Extra Class Removal

This Java-specific heuristic removes any extra class except the target class. In our benchmarks,
every Java sample is encapsulated in a Java class, but the code generation model can generate
additional classes after completing the target method of a class. This heuristic remove those
classes. We removed the highlighted code in the following code, which includes an additional
class.

import java.io.*;
import java.lang.*;
import java.util.*;
import java.math.*;

class FilterIntegers {
/**
* Filter given list of any Java values only for integers
* >>> filter_integers(['a', 3.14, 5])
* [5]
* >>> filter_integers([1, 2, 3, 'abc', {}, []])
* [1, 2, 3]
*
* > filterIntegers([])
* []
* > filterIntegers([4, {}, [], 23.2, 9, "adasd"])
* [4, 9]
* > filterIntegers([3, "c", 3, 3, "a", "b"])
* [3, 3, 3]
*/
public static List<Object> filterIntegers(List<Object> values) {

List<Object> result = new ArrayList<>();
for (Object value: values)

if (value instanceof BigInteger || value instanceof Integer)
result.add(value);

return result;
}

}

class FilterFloats {
}

F. H6: Iterative Removal/Addition of Curly Bracket

In this Java-specific heuristic, we fix incomplete code by iteratively deleting lines (from bottom
to top) and adding 1-2 curly brackets for Java code [1]. For example, we can easily make the
following code compilable by adding two curly brackets at the end of the generated code.

import java.io.*;
import java.lang.*;
import java.util.*;
import java.math.*;

class HasCloseElements {
/**



4

* Check if in given list of numbers, are any two numbers closer to each other than
* given threshold.
* >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
* False
* >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
* True
*
* > hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3)
* true
* > hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05)
* false
* > hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95)
* true
* > hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8)
* false
* > hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1)
* true
* > hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0)
* true
* > hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5)
* false
*/
public static Boolean hasCloseElements(List<Double> numbers, Double threshold) {

// check if the sum is smaller or equal to the threshold
int indexOfSmallest = -1;
double sum = numbers.size() + 0.0;
for(int i = 0; i < numbers.size(); i++) {

if(numbers.get(i) <= threshold || sum <= threshold) {
return true;

}
if(numbers.get(i) + sum <= threshold) {

indexOfSmallest = i;
}
sum += numbers.get(i);

}
return false;

}
}

APPENDIX B
PROMPT REPAIR STRUCTURE TYPES (P1, P2, AND P3)

In our framework, FRANC, there is a repairing phase. In our empirical evaluation, we used three
types of repair prompts to demonstrate the feasibility of this phase. The following sections will
provide a demonstrative example for each repair scenario.

A. P1 Walkthrough Example

In the first scenario (P1), we added the metadata from Bandit after the generated code in
the format “Fix: At line « # », « error msg »\n Fixed Code:\n”. The line number and
error message comes from the static analyzers: Bandit and Spotbugs. If there are multiple error
messages, there are added one by one before the Fixed Code:. There is a demonstrative example
in the following code. At line number 7, Bandit detects a possible SQL Injection; we used the
line number and the message to craft the repair prompt.

1 from django.db import connection

2 def show_user(request, username):

3 '''



5

4 Create a cursor to get user info from users table and return it

5 '''

6 cursor = connection.cursor()

7 cursor.execute("SELECT * FROM users WHERE username = '%s'" % username)

8 user = cursor.fetchone()

9 return user

Added comments to be used as repair prompt
10 # Fix: At line 7, Possible SQL Injection

11 # Fixed Code:

B. P2 Walkthrough Example

The second scenario (P2) follows the same structure, except we provided the old prompt instead
of Fixed Code:. For example, we highlighted the old prompt for code generation in the first
part of the following code and added it in the second part of the repair prompt.

1 from django.db import connection

2 def show_user(request, username):

3 '''

4 Create a cursor to get user info from users table and return it

5 '''

6 cursor = connection.cursor()

7 cursor.execute("SELECT * FROM users WHERE username = '%s'" % username)

8 user = cursor.fetchone()

9 return user

Added comments to be used as repair prompt
10 # Fix: At line 7, Possible SQL Injection

11 from django.db import connection

12 def show_user(request, username):

13 '''

14 Create a cursor to get user info from users table and return it

15 '''

16

C. P3 Walkthrough Example

The third prompt repair structure (P3) only includes the code to be repaired up to the first line
with an issue followed by the fix message. It follows the same repair structure as the P1 but cuts
any code after the first problematic line marked by the analyzer. The following code provides a
demonstrative example of this prompt structure.

1 from django.db import connection

2 def show_user(request, username):

3 '''

4 Create a cursor to get user info from users table and return it

5 '''

6 cursor = connection.cursor()

Added comments to be used as repair prompt
10 # Fix: At line 7, Possible SQL Injection

11 # Fixed Code:

The same code snippet can have multiple issues. Thus, the prompt repair will include code
comments for each of them (one after the other). Moreover, when SpotBugs produces messages
without any specific line number, the repair prompt only includes the message but not the line
(i.e., // Fix: <Spotbugs Message>). Lastly, we ignored cases where the error is in the original
prompt (e.g., importing an unused class).



6

REFERENCES

[1] M. L. Siddiq, J. C. S. Santos, R. H. Tanvir, N. Ulfat, F. A. Rifat, and V. C. Lopes, “Exploring the effectiveness of large
language models in generating unit tests,” 2023.


	Appendix A: Static Filtering Heuristics
	H1: Code Block Extraction
	H2: Prompt Addition
	H3: Extra Code Removal
	H4: Extra Code Removal After Method
	H5: Extra Class Removal
	H6: Iterative Removal/Addition of Curly Bracket

	Appendix B: Prompt Repair Structure Types (P1, P2, and P3)
	P1 Walkthrough Example
	P2 Walkthrough Example 
	P3 Walkthrough Example 

	References

