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ABSTRACT 17 
This study aims to investigate the dynamics of obsidian trade networks during the Jomon 18 
period (approximately 15,000 to 2,400 years ago), the hunting and gathering era in Japan. To 19 
improve regional representation and reduce the distortions caused by small sample sizes, we 20 
performed clustering based on a large-scale dataset and conducted social network analysis. 21 
The research results revealed that the trade networks during the Jomon period were not 22 
constant; they expanded throughout the southern Kanto region during the Middle Jomon 23 
period (5,500–4,500 years cal BP) and ceased to function during the Late Jomon period 24 
(4,500–3,200 years cal BP). Furthermore, to enhance the readability and interpretability of 25 
the dataset, we implemented clustering using the density-based spatial clustering of 26 
applications with noise (DBSCAN) method. The results showed that in every time division of 27 
the Jomon period, the average intra-cluster cosine similarity of each cluster was higher than 28 
the similarity between sites outside the clusters, confirming the reasonableness of an analysis 29 
considering regional representation. In addition, to verify the robustness of the network in 30 
the social network analysis after clustering, we also performed a bootstrap simulation analysis. 31 
The results showed high network’ robustness and demonstrated that the sampling after 32 
clustering had a minimal impact on this study’s findings. 33 
 34 
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Introduction 40 

This study aims to reveal the changes in obsidian trade networks during the Jomon period (15,000 to 41 
2,400 years ago), the hunting and gathering era in Japan. We conducted clustering using a large-scale 42 
dataset to improve regional representation and reduce the distortion caused by small sample sizes, and 43 
then performed social network analysis. Obsidian is a type of volcanic glass that was used for making sharp 44 
stone tools and processing food and wood materials (Ono, 2011). In archaeology, the similarities and 45 
differences in artifacts are used as indicators of contact and relationships between groups (Freund, 2013). 46 
As obsidian provenances are limited, identifying them is essential for understanding trade networks and 47 
resource procurement (Freund, 2013). Shells and jade ornaments from the Jomon period have been found 48 
in regions of Japan far from their production sites, suggesting the existence of extensive trade (Hashiguchi, 49 
1999). However, the Jomon period spans approximately 13,000 years, during which cultural transitions can 50 
be observed; therefore, it is hypothesized that the trade range was not constant and instead expanded and 51 
contracted over time. To investigate the expansion and contraction of the Jomon period trade networks, 52 
we conducted a social network analysis of obsidian artifacts. This approach allowed us to clarify how trade 53 
networks changed over time. 54 

The Kanto region is located in the eastern part of the Japanese mainland, and its obsidian provenance 55 
analysis is considered to be of the highest quality and quantity in the world (Tsumura & Tateishi, 2013). In 56 
this study, we focus on obsidian from the Jomon period in the Kanto region. According to a survey 57 
conducted in 2011, approximately 21,000 obsidian artifacts had been found at over 270 sites (Nihon-58 
kokogaku-kyokai 2011 nendo tochigi-taikai-jikkoiinkai, 2011). However, when dealing with large-scale data, 59 
social network analysis graphs can become overly complex, making it difficult to derive useful 60 
interpretations. 61 

In archaeology, it is important to consider that archaeological sites, artifacts, and features represent 62 
only a portion of what originally existed. In particular, with chemical analysis methods such as obsidian 63 
provenance analysis, it is difficult to target all excavated items due to constraints associated with 64 
excavation periods and budgets. The dataset used in this study also includes sites where only a few artifacts 65 
or, in extreme cases, just one artifact per site have been analyzed (Tsumura & Tateishi, 2013). When the 66 
sample size of obsidian at each site is small, the regional composition ratio may be distorted, potentially 67 
affecting the results (Golitko & Feinman, 2015). To address this issue, this study conducts clustering by 68 
region to improve the readability and interpretability of the dataset and then applies social network 69 
analysis. This approach can help reduce the distortion caused by small sample sizes. 70 

Related Work 71 

Obsidian Analysis of Japan's Kanto Region 72 
Regarding the analysis of obsidian provenances in the Kanto region, Suzuki (1973, 1974) investigated 73 

trends in provenances and timing, and Warashina and Higashimura (1988) collected and organized 74 
information on obsidian and sanukaito provenances. Since the late 1980s, the proliferation of X-ray 75 
fluorescence analysis equipment has led to an increase in obsidian provenance analyses, and various 76 
studies focusing on archaeological issues across the Kanto region have been conducted (Kanayama, 1994; 77 
Kojo, 1996; Daikuhara, 2008; Ikeya, 2009). Furthermore, Sugihara and Kobayashi (2008) and Tsutsumi 78 
(2018) investigated resource development and supply from specific provenances from the Paleolithic to 79 
the middle Yayoi period (–2,000 years cBP). 80 

Subsequently, the Japanese Archaeological Association compiled a collection of obsidian provenance 81 
analyses in the Kanto region in 2011 (Nihon-kokogaku-kyokai 2011 nendo tochigi-taikai-jikkoiinkai, 2011). 82 
Tsumura and Tateishi (2013) used these materials and statistical analysis methods to verify the patterns of 83 
provenances and consumption sites in the Kanto region during the Jomon period. As a result, the authors 84 
suggested that the obsidian trade network changed with time. They also quantitatively analyzed the 85 
relationship between provenances and consumption sites; however, the dynamics of the trade network 86 
among consumption sites have not been sufficiently investigated, and there remain many unexplained 87 
details. It is difficult to visualize and interpret large amounts of data using conventional methods, and social 88 
network analysis has only recently been established as a tool in archaeology. 89 



Social Network Analysis of Obsidian Artifacts 90 
Regarding research using social network analysis to study obsidian trade networks, there have been 91 

several such studies of areas like Mesoamerica and New Zealand. For example, Golitko et al. (2012) 92 
assumed that the inland land trading network in Mesoamerica collapsed and the coastal maritime trading 93 
network developed at the end of the Classical period. In addition, Golitko and Feinman (2015) suggested 94 
that the hierarchy and scale of the network decreased over time, indicating that the economy of 95 
Mesoamerica was not centralized. Furthermore, through a social network analysis of obsidian provenances, 96 
Ladefoged et al. (2019) observed that the selection of provenances in Maori society in 15th-century New 97 
Zealand was influenced by the community to which they belonged. 98 

These studies used the social network analysis of obsidian provenances to represent archaeological 99 
sites and provenances of obsidian as “nodes.” Nodes are supplemented with attribute information such as 100 
geographic location, estimated age, and the amount or percentage of obsidian at the provenance. Links 101 
established based on the similarity between nodes (i.e., similarity in the proportion of obsidian) reflect the 102 
relationship between them. Social network analysis focuses on these nodes and their relationships, 103 
adopting an approach that considers the system a combination of the two (Ladefoged et al., 2019). 104 

Impact of Sampling 105 
In the social network analysis of the obsidian trade, the data size typically ranges from several hundred 106 

to several thousand obsidian artifacts. For example, Ladefoged et al. (2019) analyzed 2,404 obsidian 107 
artifacts from 15 sites, Meissner (2017) analyzed 2,630 obsidian artifacts from 796 sites, and Mills et al. 108 
(2013) analyzed 4,805 obsidian artifacts. Golitko et al. (2012) and Golitko and Feinman (2015) used data 109 
from 121 and 242 sites, respectively, although they did not stipulate the exact number of obsidian artifacts 110 
used in their social network analyses. In contrast, the present study used a large dataset of approximately 111 
21,000 obsidian artifacts from over 270 sites (Nihon-kokogaku-kyokai 2011 nendo tochigi-taikai-jikkoiinkai, 112 
2011). However, a drawback of such a large dataset is that the resulting social network graph may be too 113 
complex to yield useful interpretations. 114 

Archaeological data such as sites, artifacts, and structures are often only a partial representation of 115 
what actually existed. In particular, the chemical analysis techniques used in obsidian provenance studies 116 
do not typically analyze all excavated artifacts due to constraints related to excavation durations and 117 
budgets. The dataset used in the present study includes sites where only a few or even only one artifact 118 
was analyzed for obsidian (Tsumura & Tateishi, 2013). In such cases, there is a risk of bias in regional 119 
composition and therefore of biased results (Golitko & Feinman, 2015). Consequently, Golitko and Freiman 120 
(2015) excluded obsidian samples of less than 10 per site from their study. They also mentioned combining 121 
sets of sites from specific time periods to create a pooled set of frequencies for the entire region but did 122 
not provide suggestions for specific methods. 123 

In social network analysis, studies that consider sampling effects have shown that node-level indicators 124 
such as degree centrality are susceptible to sampling effects, while network indicators such as distance, 125 
centrality, and diameter are robust to node removal (Wey et al., 2008). Mills et al. (2013) used bootstrap 126 
simulation analysis to verify a dataset from the American Southwest and found that while individual node 127 
scores may vary due to sampling, summary statistics at the network level, such as centrality, are relatively 128 
stable. 129 

Problem Formulation 130 

This study conducted a social network analysis of obsidian artifacts to investigate the expansion and 131 
contraction of the trade network in the Jomon period. To improve the readability and interpretability of 132 
the large dataset we used and reduce the distortion caused by small sample sizes, we clustered the obsidian 133 
samples at each site by region and performed a social network analysis. We then performed a bootstrap 134 
simulation analysis to test the robustness of the network in the clustered social network analysis. 135 



Materials and Methods 136 

Dataset of Obsidian Assemblages 137 
This study focused on obsidian artifacts excavated from Jomon period sites in the Kanto region. The 138 

Kanto region is located in the eastern part of Honshu and is surrounded by Tokyo Bay, Sagami Bay, the 139 
Pacific Ocean, and mountainous areas to the north and northwest (Figure 1). The obsidian artifacts brought 140 
to southern Kanto have been found to have originated from islands further south in Tokyo Bay and the 141 
surrounding mountainous areas. These obsidian artifacts were transported by sea from the island areas 142 
and brought to the consuming areas via a route that diverted to the north from the mountainous area to 143 
the northwest (Sugihara & Kobayashi, 2008; Tateishi, 2010). 144 

The dataset for this study was based on the results of previous obsidian provenance analyses conducted 145 
on Jomon period sites in the Kanto region and compiled by the Japan Archaeological Association at the 146 
Tochigi meeting in 2011 (Nihon-kokogaku-kyokai 2011 nendo tochigi-taikai-jikkoiinkai, 2011). Although this 147 
dataset was compiled in 2011, it is still valuable because of the vast amount of data it comprises and 148 
because it includes obsidian provenances that have been reported in the years since. The present study’s 149 
analysis focused on eight main production areas: 1) Takahara-yama, 2) Wada-toge, 3) Omegura, 4) Suwa, 150 
5) Tateshina, 6) Kozu-shima, 7) Hakone, and 8) Amagi. For convenience, Wada-toge, Omegura, Suwa, and 151 
Tateshina are collectively referred to as the “Shinshu group” and are considered to belong to the 152 
mountainous area known as the “Central Highlands.” Several other production areas were excluded from 153 
the analysis due to the small number of obsidian artifacts that have been found there. 154 

 155 
Figure 1 - Location of major obsidian provenance areas. 156 

Clustering 157 
As mentioned earlier, to improve the readability and interpretability of the data and reduce the 158 

distortion caused by a small sample size, we performed clustering by region and summarized the results as 159 
aggregate values for each region. Assuming that adjacent sites have interactions and share information, 160 
we applied the density-based spatial clustering of applications with noise (DBSCAN) algorithm (a density-161 
based algorithm for discovering clusters in large spatial databases with noise) (Ester et al. 1996) to group 162 
the geographical locations of the sites. Many other clustering methods do not consider noise and assign all 163 
sites to clusters, which can result in sites being clustered even if they cannot access each other. However, 164 
the DBSCAN algorithm defines regions as clusters based on the number of points (density) within a radius 165 
(ε value) (minPts). If the density within the region exceeds a certain threshold, the cluster expands, but if 166 



there are no nearby points within the radius, it is considered noise (Figure 2). The ε value is determined 167 
based on the factor at issue (such as physical distance), and the minPts is the optimal size of the minimum 168 
cluster. In this study, we set the ε value to 10km, which is commonly accepted as the activity range of the 169 
ancient Jomon people (Akazawa, 1982; Koizumi, 2016). The minPts was set to a minimum of three. The 170 
DBSCAN algorithm was used for each of the five divisions of the Jomon period. 171 

 172 
Figure 2 - Image of clustering using the DBSCAN method. 173 

 174 
We treated these clusters as a single region, summed up the obsidian provenances in each region, and 175 

calculated the proportion of obsidian provenances in each cluster. 176 
The composition ratio (R) was defined by the following equation:  177 
 178 

Ri,j = Ni,j / Ti,  179 
 180 

where Ri,j indicates the composition ratio of provenance j in cluster (or single site) i, Ti indicates the total 181 
number of analyzed obsidian artifacts in i, and Ni,j indicates the number of obsidian artifacts of provenance 182 
j in cluster i. 183 

As mentionedabove, a small number of obsidian samples may distort the regional composition ratio 184 
and potentially affect the results (Golitko & Feinman, 2015). Therefore, we excluded clusters with fewer 185 
than 30 obsidian artifacts from the analysis. On the other hand, sites without geographical relationships 186 
forming clusters but with more than 30 obsidian artifacts were used as single sites for the analysis by 187 
calculating the obsidian provenance composition ratio in the same way as for the clusters. 188 

Similarity 189 
We calculated similarity and performed social network analysis for each period division. Following 190 

Ladefoged et al. (2019), we measured the similarity of the obsidian provenance compositions between 191 
clusters, between each cluster and individual sites, and within each cluster by calculating cosine similarity. 192 
We calculated the provenance composition ratio for each cluster and individual site from the total number 193 
of obsidian artifacts and treated them as vectors. Specifically, since this study included eight provenances, 194 
they were represented as eight-dimensional vectors. 195 

The cosine similarity (Sim) was expressed by the following formula: 196 
 197 

SimA, B = (a→・b→) / (|a→|・|b→|) 198 
 199 

where SimA,B represents the similarity between A and B (where A and B are clusters or individual sites, and 200 
a→ and b→ are vectors corresponding to A and B, and | | indicates the magnitude of the vector). If the 201 
provenance compositions of A and B are similar, the direction of vectors a→ and b→ becomes close, and 202 
the value of cosθ approaches 1. Conversely, if they are dissimilar, the value approaches 0. 203 



Network Analysis 204 
We created an undirected network based on the cosine similarity of obsidian provenance composition 205 

ratio between clusters and single sites. This network revealed the relationships between consumption sites 206 
for each period. Each cluster or single site was represented as a node, and a link was generated between 207 
nodes when the cosine similarity between them exceeded 0.9. We also calculated the network density for 208 
these networks for each period. 209 

The network density (D) was defined as the ratio of the number of actual links in the network to the 210 
total number of possible links in the network. Density was expressed by the following equation: 211 

 212 
D = m / (n * (n − 1) / 2) 213 
 214 

where n represents the number of nodes in the network and m represents the number of links. The density 215 
value varies within the range of 0 to 1, such that the closer the value is to 1, the higher the network density, 216 
indicating a close relationship. Conversely, values close to 0 indicate that there are few relationships in the 217 
network. 218 

When the threshold is not set, the network density is equivalent to the average cosine similarity 219 
between each node pair. In this case, the network density does not need to satisfy the condition that the 220 
cosine similarity is greater than 0.9. 221 

Bootstrap Simulation 222 
We conducted a simulation using the bootstrap method on the data clustered with the DBSCAN method 223 

and calculated the virtual cosine similarity and network density of the social network analysis. This 224 
simulation was executed 100 times. The mean and standard deviation of the cosine similarity and network 225 
density were calculated and compared with the actual data. 226 

Results and Discussion 227 

Clustering 228 
Based on the results of clustering using DBSCAN, some clusters were excluded from the analysis, as 229 

they contained less than 30 obsidian artifacts. For details of the number of clusters and single sites for each 230 
period, as well as the total number and composition ratios of obsidian artifacts by provenance, please refer 231 
to Sakahira and Tsumura (2023). 232 

Table 1 shows the cosine similarity between clusters and between single sites and clusters for each 233 
period, which verified whether the clustering by DBSCAN ensured regional representativeness. The results 234 
showed that for each division of the Jomon period, the average cosine similarity within each cluster was 235 
higher than the similarity between sites not belonging to the cluster. For example, in period 1, the average 236 
cosine similarity of sites not belonging to a cluster (no cluster) was 0.280, which was lower than the values 237 
for B1, B2, B4, and B5. 238 

From these results, it can be inferred that nearby archaeological sites hold information on obsidian and 239 
the flow of obsidian between each site. It was thus reasonable to aggregate values between adjacent sites 240 
by region and analyze them from the perspective of regional representativeness. 241 

  242 



Table 1 - Network density and cosine similarity within each cluster and between sites not belonging 243 
to a cluster in each period category. 244 

Period 1  
Beginning and Earlier 
Jomon 

Period 2 
Early Jomon 

Period 3 
Middle Jomon 

Period 4 
Late Jomon 

Period 5 
Last Jomon 

Network density 0.444 0.200 0.405 0.143 0.256 
Average of actual 
cosine similarity 
between clusters 

0.623 0.411 0.716 0.535 0.508 

Average of cosine 
similarity 
between sites not 
belonging to a 
cluster (no 
Cluster) 

0.280 0.402 0.538 0.447 0.644 

Average of cosine 
similarity within a 
cluster 

0.500 0.692 0.760 0.641 0.987 

B1 0.760 E1 0.670 M1 0.421 L1 0.872 T1 0.983 
B2 0.717 E2 0.752 M2 0.737 L2 0.800 T2 0.987 
B4 0.552 E3 0.672 M3 0.892 L3 0.503 T3 0.984 
B5 0.472 E5 0.576 M4 0.835 L4 0.495   
  E6 0.714 M5 0.644 L5 0.682   
  E7 0.767 M6 0.904 L6 0.483   
    M7 0.884 L7 0.650   

 245 

Social Network Analysis 246 
The graph of the social network analysis showed that each cluster until the Early Jomon period had a 247 

high proportion of obsidian from nearby provenances. However, in the Middle Jomon period, obsidian 248 
from the island provenances crossed the sea and spread widely in the southern Kanto region. From the 249 
Late Jomon period onward, the distribution of obsidian from island provenances became limited, and 250 
obsidian from inland provenances began to appear instead (Figures 3, 4, and 5). 251 

Additionally, we found that the network density between clusters and the cosine similarity between 252 
sites within clusters during the Middle Jomon period (Table 1) were higher than those before the Early 253 
Jomon period and after the Late Jomon period. These results suggest that the obsidian trading network 254 
developed throughout the southern Kanto region during the Middle Jomon period and ceased to function 255 
during the later period. For more details of these analyses, please refer to Sakahira and Tsumura (2023). 256 



 257 
Figure 3 - Network among the consumption areas in Period 2, the early Jomon period (7,000–5,500 258 
years cal BP). Clusters are represented by uppercase characters and single sites by lowercase 259 
characters. Pairs with a cosine similarity greater than 0.9 in the composition ratio of each provenance 260 
area are linked. White circles indicate clustered areas. Pie charts show the composition ratio of each 261 
cluster by provenance. 262 
 263 
 264 

 265 
Figure 4 - Network among the consumption areas in Period 3, the middle Jomon period (5,500–4,500 266 
years cal BP). Clusters are represented by uppercase characters and single sites by lowercase 267 
characters. Pairs with a cosine similarity greater than 0.9 in the composition ratio of each provenance 268 
area are linked. White circles indicate clustered areas. Pie charts show the composition ratio of each 269 
cluster by provenance. 270 
 271 



 272 
Figure 5 - Network among the consumption areas in Period 4, the late Jomon period (4,500–3,200 273 
years cal BP). Clusters are represented by uppercase characters and single sites by lowercase 274 
characters. Pairs with a cosine similarity greater than 0.9 in the composition ratio of each provenance 275 
area are linked. White circles indicate clustered areas. Pie charts show the composition ratio of each 276 
cluster by provenance. 277 

Bootstrap Simulation 278 
Using the bootstrap method, 100 simulations were conducted to calculate the mean and standard 279 

deviation of the cosine similarity and network density obtained from the clustering results using the 280 
DBSCAN algorithm. The results showed that the values of cosine similarity and network density obtained 281 
from the actual data were within two standard deviations (2SD) of the simulation results (Tables 2 and 3). 282 
Moreover, even considering 2SD, the order of magnitude of each index for each period did not change. 283 

These results showed that the social network analysis of the network after clustering using the DBSCAN 284 
algorithm had high robustness. The results also confirmed that this study’s sampling had little effect on its 285 
results. Therefore, it is suggested that the DBSCAN clustering method used in this study is applicable to 286 
other archaeological themes where missing data and sampling effects are issues. 287 

Table 2 - Comparison of actual and bootstrap simulation values for cosine similarity between clusters. 288 

Period 1  
Beginning and Earlier 
Jomon 

Period 2 
Early Jomon 

Period 3 
Middle Jomon 

Period 4 
Late Jomon 

Period 5 
Last Jomon 

Average of actual 
cosine similarity 
between clusters 

0.623 0.411 0.716 0.535 0.508 

Average of 
simulated cosine 
similarity 
between clusters 

0.619 0.411 0.711 0.533 0.505 

Simulated 
standard 
deviation 

0.017 0.012 0.016 0.014 0.015 

 289 
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Table 3 - Comparison of actual and bootstrap simulation values for network density. 291 

Period 1  
Beginning and Earlier 
Jomon 

Period 2 
Early Jomon 

Period 3 
Middle Jomon 

Period 4 
Late Jomon 

Period 5 
Last Jomon 

Actual network 
density 0.444 0.200 0.405 0.143 0.256 

Average of 
simulated 
network density 

0.409 0.196 0.412 0.147 0.243 

Simulated 
standard 
deviation 

0.056 0.020 0.039 0.016 0.013 

 292 

Conclusion and Future Work 293 

This study’s social network analysis of obsidian artifacts revealed that the trade networks during the 294 
Jomon period were not constant, but rather developed throughout the southern Kanto region during the 295 
middle Jomon period and ceased to function in the late Jomon period. The use of DBSCAN clustering 296 
improved the readability and interpretability of the large dataset and reduced the bias caused by the small 297 
sample sizes of each site, thus confirming the validity of analyzing regional representation. Finally, a 298 
bootstrap simulation analysis demonstrated the high robustness of the network in the social network 299 
analysis after clustering. The impact of sampling on the results of this study was found to be minimal. 300 

In the future, ancient digital elevation data in GIS should be used to consider the ε value of DBSCAN 301 
and the geographical distance between production and consumption areas more accurately, as well as to 302 
extract regional clusters and calculate the shortest transportation costs between production and 303 
consumption areas. This will enable us to determine the shortest distance or route, taking into 304 
consideration geographical features such as elevation differences, slopes, and seas (Ladefoged et al., 2019; 305 
Tobler, 1993). We plan to address these points as future research tasks. 306 
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