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Abstract—Digital Twins (DTs) create fully-synchronized virtual
representations of real-world systems, which can serve as inter-
active counterparts for artificial intelligence (AI) and machine
learning (ML) algorithms, and hold significant importance for
the upcoming 6G mobile networks. In this paper, we argue that
DTs can improve all phases of the intelligent networks’ workflow,
due to their adaptability and scalability properties that would
allow them to transparently integrate new AI/ML algorithms
faster, more scalably, and more precisely. Our contribution is
two-fold: first, we propose three specific application scenarios of
DT-enhanced network architectures in the context of 6G. Second,
using open-source tools, we implement and evaluate in detail
one of them. Our results demonstrate that our DT reflects the
characteristics of the physical object, successfully and scalably
twinning it, and adapting to changing contextual conditions.

I. INTRODUCTION

Next-generation mobile network systems are rapidly devel-
oping to address the increasing need for emerging applications,
such as robotics or autonomous vehicles. However, their
complexity will increase significantly as they incorporate au-
tomation and intelligence, while their management costs have
already become a huge impediment for network operators.

In this context, Digital Twins are expected to increase
operational efficiency due to their ability to create virtual
representations of real physical objects and processes, known
as Cyber-Physical Systems (CPSs). CPSs consist [1], [2] of
(i) a physical space that captures the physical object or entity,
also called physical twin (PT), (ii) a virtual space that captures
a cyber representation of the physical twin, also called Digital
Twin (DT), and (iii) a link that is used for communication
between the physical and the virtual spaces. This link allows
for updates of the virtual model when a change in the real
object occurs. In fact, this link between the real and the
virtual space constitutes the main difference between CPSs
and traditional models for predicting entities’ behavior in the
physical world.

DTs will enable the monitoring or even the optimization of
real large-scale physical systems in real-time. By using DTs,
the operators can avoid physically performing expensive trials
on their real systems that are traditionally performed through
human intervention.

The use of DTs is a key technology for the 6th generation of
mobile networks, as they will revolutionize the way network
automation is performed. Fig. 1 depicts the integration of
DTs in a communications provider setting, where DTs coexist
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Fig. 1: Interaction of Physical and Digital Twins in a service
provider context.

with physical objects and reflect their behavior by continuous
adaptation to new data. DTs can directly apply network
reconfigurations or suggest new ones to the network operator.
Similarly, this approach can be applied to the interface between
network operators and service providers, allowing the latter to
test a service without even having to field-trial it.

Related Work. There exists several works studying the
impact of DT on future generation 6G mobile networks.
In [3], the authors propose a DT-empowered architecture for
optimizing traffic in 6G. DTs create digital replicas of physical
systems (e.g., Intelligent Reflecting Surfaces, Unmanned Air-
borne Vehicles etc.), and Reinforcement Learning (RL)-aided
orchestration agents continuously monitor their performance
metrics in order to learn networking policies that meet dy-
namic application characteristics. In a recent classification of
DT-enabled frameworks for 6G related services [4], the authors
identify different contexts of DT applications, including IoT,
connected vehicles, and 6G network management. In [5], the
authors discuss key requirements for designing a DT-enabled
6G system. They describe the components for their DT and
present the benefits of adopting a twins-based architecture
across the edge and cloud, as well as the implementation
challenges that this paradigm brings. In [6], the authors employ
DTs as emulators of networking components, such as the radio
channel and connected vehicle. The authors in [7] mention
multiple application areas of DTs in Radio Access Networks
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(RAN). A radio-aware DT can capture fine details of the lower
layers of the networking stack, predict the channel conditions,
and take proactive radio resource scheduling actions. The
authors in [8] augment the training data for their RL agent by
designing a Deep Learning (DL)-based DT that simulates the
behavior of the real traces they collected from their virtualized
RAN’s execution environment. In [9], the authors present a set
of open-source tools and technologies in order to create a DT
of a 5G network, measuring the round-trip time of TCP data
transmissions.

Contributions. This paper discusses the integration of DTs
as a fundamental element of 6G Networks. Our contribution is
two-fold: first, we propose three specific application scenarios
of DT-enhanced network architectures in the context of 6G.
Second, we implement using open-source tools and evaluate
in detail one of these scenarios, namely a DT of a network
appliance such as a virtualized RAN component. Our results
demonstrate that our DT accurately reflects the characteristics
of the physical object, successfully and scalably twinning it,
and adapting to changing contextual conditions.

II. DIGITAL TWINS IN MOBILE NETWORKS

We now discuss the DT paradigm and its role in next-
generation networks, and present three specific use cases
where we envision that DTs will significantly improve next-
generation communication networks.

A. Preliminaries

Machine Learning (ML) techniques for DTs. DTs can
use a variety of methods, from traditional statistical and
analytical models to data-driven techniques such as ML or RL
algorithms. Compared to traditional network simulators, DTs
have the advantage of being linked and real-time synchronized
with the physical twins they represent. ML and RL techniques
can leverage this link to accurately model the physical object’s
behavior by observing its historical and current data, enabling
real-time DTs to boost operations and management in next-
generation mobile network systems. The use of such methods
to build DTs will result in the development of native-AI 6G
networks, which can iterate faster and automatically adapt
to changes in the underlying physical system by substituting
digital with physical components.

Interaction between twins. When the real system faces
states that it had not encountered before, a distribution shift
occurs because the data given as input to the digital twin will
be drawn from a different distribution than the one over which
it was trained. In these cases, DTs leverage both historical
and real-time data provided by the physical twins and adjust
their internal model accordingly. This procedure relies on the
link between the physical and the digital twin, which we
call data adaptation. Along with real-time data collection,
data adaptation captures the actual mobile network status and
accurately models the physical twin’s behavior. When the
DT’s internal model captures the physical twin with enough
accuracy, the DT may request a resource reconfiguration at
the physical twin to make it operate more efficiently.

Challenges. However, the instantiation, maintenance, and
lifecycle management of DTs in real networks arise multiple
open challenges that need to be addressed. DTs should provide
an accurate model of the real network and generalize over
unseen scenarios to emulate the network behavior with high
accuracy. Keeping DTs updated and synchronized with the
real network requires identifying heterogeneous data sources
and processing and collecting new data in real-time (or every
time the real network behavior changes). The data collection
process may become costly and lead to the overload of the real
network given the large amount of data involved. Furthermore,
DTs should be interpretable to assess the decisions taken.
Thus, new techniques to evaluate and explain predictions and
decisions performed by DTs (especially if built leveraging
neural networks) are crucial for allowing their deployment in
real environments.

B. DTs in next-generation mobile networks.
DTs can be powerful enablers of new features in next-

generation mobile networks, where automation of the operat-
ing procedures and self-reconfiguration or system parameters
will be required. DTs provide scalable models of physical ob-
jects, and thus can be integrated as separate modules across the
network architecture, offering faster operation of autonomous
and self-learning networking algorithms.

Fig. 2 shows our proposed taxonomy for the application
of DTs in the 6G network domain, which encompasses all
the hardware and software components that provide network
services to application providers. This includes, for instance,
an enhanced Mobile Broadband network service used by a
Content Delivery Network provider to deliver multimedia files
on an Ultra-Reliable Low Latency Communication service that
provides industrial services.

The network domain also comprises the infrastructure, the
surrounding environment, and sensing services that are, by
nature, tightly attached to the environment where they are
executed. Network operators and service providers interact
through an exposure layer that allows efficient interplay be-
tween them.

In this context, we envision three main scenarios for DTs:
DTs of Network Appliances, DTs of Network Services, and
DTs of the network environment.

1) Digital Twinning of Network Appliances: Recent trends
in network softwarization have led to the creation of Virtual
Network Functions (VNF) over shared computing network and
storage virtual resources. This has increased the complexity of
management and orchestration algorithms, which now have to
handle a plethora of configuration variables to find optimal
operation points. The variables that may be configured range
from resource orchestration ones, such as available computing
capacity, to the internals of each VNF such as the radio
parameters of a RAN VNF.

In this context, the surge of AI/ML algorithms allows for
a seamless transition toward this view, leveraging the great
availability of data coming from the network. Here, DTs
can play a fundamental role in improving the quality of
training, monitoring, and governance of the deployed models.
In particular, the DTs may be of crucial importance for:
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Fig. 2: The applicability of DT in different domains of a network.

• Model training, especially for RL-based models, that
require a tight exploration of state and policies to find
the best solution. Specifically, RL models could take
advantage of the DT models they are interacting with, in
order to avoid impacting normal mobile network system
operations in a production environment.

• Monitoring can use DTs to perform sandboxed decisions
(i.e., those taken in an isolated environment under high
supervision and safety). These decisions can then be com-
pared to those of the real operational system, identifying
possible drifts between the two models, thus allowing for
a fast reaction close to the element that made a decision.

• Model governance, to track the interactions between the
AI/ML models and their results. Also, new models can
be trained in parallel with data coming from either the
DT or the physical system, to allow a hot swap when the
contextual conditions are changing.

The different VNFs that compose network services (e.g.,
an enhanced Mobile Broadband network slice for video-on-
demand) can, in turn, also be considered DTs for other
domains of the framework or the service provider, as discussed
next.

2) Digital Twinning of Network Services: The emergence
of novel network applications with complex requirements
(e.g., AR/VR, Metaverse, Vehicular Networks) makes the
traditional human-based network management solutions im-
practical. Here, DTs can enable the efficient control and
management of the mobile network by providing a data-driven
virtual model for it. The real-time digital representation of the
physical twin can be leveraged by:

• the Management and Orchestration (MANO) framework
to perform troubleshooting, network planning, and op-

timization. An updated and high-fidelity DT, based on
real-time data collected from the network, makes the mo-
bile network’s behavior predictable and enables proactive
testing of novel optimization algorithms (e.g., to opti-
mize radio resource management or energy efficiency),
measurement of network infrastructure and software up-
dates/upgrades impacts or anomalies detection without af-
fecting current physical system operations. Furthermore,
integrating DTs in the 6G mobile network can be a key
enabler for network automation.

• The service providers can benefit by interacting with
DT services and capabilities to optimize the provided
network service. For instance, the interaction between the
service provider and DT may result in service require-
ments negotiation to accommodate the network service
that would otherwise not be served given the predicted
future physical twin status. On the other side, the service
provider may leverage the interaction with the DT to drive
and tune network services as network analytics services
to ensure the optimization of its private metric.

The digital twinning of network services may be provided as
a unique virtual entity that models the behavior of the entire
mobile network or as multiple DTs that capture single physical
twins and interact with each other to mimic the behavior
of the whole physical system. Nevertheless, depending on
the use case and scenario, the DT maybe not be limited to
mimicking only mobile network-related aspects, but it could
be extended to cover, as discussed next, also environment
properties, offering a more complete view of the physical twin.

3) Digital Twinning of the environment: Next-generation
networks will provide more than data transfer between ter-
minals and service providers, additionally offering (remote)
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sensing capabilities of the underlying environment. High-level,
this scenario provides an interoperation of wireless communi-
cation and sensing capabilities that can empower (especially
IoT) service providers with more contextual information about
the surrounding environments or even enrich the services with
more use cases, such as event detection at home or in a
vehicular environment. Other environmental metrics could be
used, such as coarse user location and trajectories.

Hence, this functionality could also be offered as a DT
to service providers to improve their business intelligence
processes with network sensing data, but also to avoid possible
leakages of private or confidential data from the network. That
is, the interaction with a DT of the sensing environment may
happen with privacy-preserving guarantees for the end-users
and the infrastructure provider.

III. A CASE STUDY FOR DT IN VRAN ENVIRONMENTS

Motivated by the scenarios discussed in Sec. II, we now
present a case study of DT application to Network Appliances,
specifically focusing on virtualized Radio Access Networks
(vRAN) environments. Interaction with AI/ML algorithms
may be time-consuming and resource-expensive in such sys-
tems, especially due to the difficulty of common software
models in exposing data at a very high pace. In particular,
we focus on the lower layers of the protocol stack.

A. Problem Formulation: Virtualized RANs
processing is the most computing-expensive operation in a

mobile network stack [10]. Thus, in such systems, the amount
of computing resources plays a significant role in the overall
performance since, under shortages, the users can experience
detrimental effects in their perceived throughput.

This aspect becomes crucial when synchronization con-
straints come into play, such as in the case of Hybrid Auto-
matic Repeat reQuest (HARQ) processing [11], which imposes
stringent deadlines on the decoding of uplink (UL) wireless
frames [8]. This task is not only computationally expensive
but also far from having a deterministic execution time, as
it is affected by several factors such as (i) the allocation
of the Physical Resource Blocks (PRB), (ii) the selection
of a Modulation and Coding Scheme (MCS), and (iii) the
perceived user’s signal-to-noise ratio (SNR). Moreover, it also
depends on the available computing capacity at the base
station.

As resources in vRAN systems are pooled among different
processes [8], RAN procedures such as MAC scheduling
should be computationally-aware [12], to avoid disruptions
caused by computing capacity shortages. Allowing users to
send more data also yields higher computation times, which
may result in decoding deadline violations. More data can be
sent by using more complex modulation or transmitting over
wider bands. While the above deadline is configurable in 5G
systems, the default for 5G user traffic equals 3ms.

Thus, to ensure the reliability of the decoding times, the
overall throughput may decrease. However, due to the lack of
deterministic behavior, the impact of the computing capacity
on scheduling decisions is hard to predict. This calls for data-
driven approaches such as AI/ML ones, as we discuss next.

B. Challenges on the application of Machine Learning

The design of an AI/ML scheduling algorithm entails the
electing, training, and deploying DL models in a production
environment (within the pipeline, workflow, etc.), which can be
challenging given the complexity of real systems. In our case
study, grant assignment decisions are made in the MAC layer,
the input about the CPU resources comes from the MANO,
and the decoder performance is recorded at the Physical layer.

A second challenge is the high complexity of carrying
out the training. In order to learn a good model, an AI/ML
algorithm needs to visit all the possible input combinations
several times. This may turn into a very long operation in a
real system, as (i) real scheduling decisions are limited to once
per every scheduling interval (1ms by default), and (ii) it may
be difficult to reach certain combinations of the inputs, due
to channel conditions. This cannot be performed on the fly in
a production system, as for example, Open RAN forces the
deployment of offline pre-trained models [13].

These aspects make it impractical to learn from a real
system, as a number of aspects such as model architectures
and hyperparameter configurations, analysis, and model inter-
pretability have to be taken into account.

To overcome these issues, we now present a DT of a
vRAN network appliance that can improve the operation of
computationally-aware MAC schedulers.

C. Digital Twin design

In the above scenario, the physical system that has to be
controlled is the Forward Error Correction decoder, since it
provides feedback on both the decoding time and the Cyclic
Redundancy Check (CRC) result. Therefore, the DT of such
a system must replicate the physical system’s distribution
of decoding times and decoding success and failures. For
this purpose, we create a dataset with real-trace performance
measurements, and we then train a supervised model to capture
them in the DT.

Deciding what to twin and how. We query a real decoder
under different combinations of the input space, namely the
CPU Capacity (in % of maximum CPU resources), the user’s
SNR (in dB), the MCS index, and the number of PRBs.
We observe the decoder’s response, and capture the decoding
result with a binary variable, i.e., CRC = 1 if the frame
is successfully decoded, or CRC = 0 otherwise, and the
decoding time, which we model as a continuous normally
distributed variable, truncated to positive values. Our DT
outputs i) the probability with which a frame is successfully
decoded, and ii) the mean and standard deviation of the
normal distribution that models the decoding time.

D. Dataset Collection

Software. As 6G is still being specified by standardization
bodies and no open-source reference architecture is available,
we used srsRAN [14], an open-source software that imple-
ments the 4G/5G functionality of the whole mobile networking
stack of the eNB/gNB. We used its 22.04 version, which
implements the Rel.15 of the 3GPP standard.
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Fig. 3: The building blocks of the proposed DT for vRAN systems.

Data. We measured the decoding time of the UL frame by
recording the wall time of the decoding process. To eliminate
the noise from other processes, we pinned the decoder threads
to a specific CPU set and prevented the default Linux scheduler
from preempting those threads in favor of other jobs. The CRC
result was directly retrieved by the decoder.

Method. To sweep the entire input space we went through
the following process: We set up the srsRAN’s UE and gNB
processes on different host machines. We used 10 MHz of
bandwidth (up to 45 PRB for data transmission in the UL)
with Transmission Time Interval (TTI) of 1 ms and 1 user/TTI.
To span the PRB and MCS sets, we replaced the default
srsRAN’s scheduler with a custom one that randomly picks
the number of PRBs and the MCS index and directs the user
to transmit a new frame. The UL frame is transmitted over
an Additive White Gaussian Channel [15] and decoded by the
gNB’s decoder threads, which output the decoding time and
CRC. In order to span across different SNR levels, the wireless
channel is controlled using an automated process that selects
the target SNR. This process also controls the CPU capacity of
the decoding threads, by adjusting the allocated CPU cycles.
We depict this procedure (data collection phase) in the left
block of Fig. 3. We collected ≈ 14 million samples, with
extensive combinations of the input parameters.

E. Building the DT model

We model the decoder through a two-headed Neural Net-
work (NN) with common hidden feed-forward fully-connected
layers. The last common hidden layer is divided into two
branches, one for the decoding time prediction task and
another for the decoding success prediction task. The last layer
comprises three independent neurons; the decoding time’s
mean and standard deviation, and the probability of successful
decoding. Their activation functions are linear, soft-plus (to
ensure positivity), and sigmoid (to produce values between 0
and 1), respectively.

Similarly, we use two loss functions for the different tasks.
To predict the decoding success, which is a binary classifica-

tion task, we used the Binary Cross Entropy (BCE) loss, which
is the negative of the log of corrected predicted probabilities.
To predict the mean and standard deviation parameters of
the normal distribution, we used the Negative Log-Likelihood
(NLL) loss function.

We trained the NN using backpropagation and the Adam
optimizer with a learning rate of 10−4. The training of the
DT with new samples is controlled by a Retrain Trigger
Algorithm, which is fed by the newly collected samples and
decides whether to trigger new retraining or not. As we
explain in Sec. IV, we used a simple heuristic that computes a
distribution similarity of the new samples against the old ones
and triggers retraining if this metric drops below a certain
threshold. While more complex re-training procedures may
be used, for the sake of conciseness, we limit this analysis
to this method only. Alternative algorithms could depend on
the amount of newly collected samples or occur on a fixed
frequency. For NN-backed DTs, identifying peaks on the loss
of the model can be used. In the right block of Fig. 3, we
depict the training procedure (data adaptation phase).

IV. EVALUATION

We now evaluate the capability of the DT to replicate the
physical system by (i) generating similar data distributions and
(ii) being able to react to distribution shifts.

A. Digital Twin Performance

We divide the evaluation of the DT’s performance into the
performance of the decoding time distribution prediction task
and the decoding success probability task.

1) Decoding time prediction task: Using the Kernel Density
Estimation method, we approximate the normalized Probabil-
ity Density Function (PDF) of the real distribution, which
we plot in Fig. 4, together with the predicted one for 15
dB of SNR, 40 PRBs, 100% CPU Capacity, and MCS index
∈ {2, 12, 20}.

Looking at the real PDF, lower MCS indices, imply lower
decoding complexity, yielding smaller mean decoding times.
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Instead, higher MCS yield higher variability of the decoding
times. We explain this due to the more complex task the
decoder software implementation has to solve. This may
incur glitches such as cache misses that reduce the overall
performance unevenly, producing higher uncertainty.

We corroborate our modeling assumption to capture the
decoding time with a normal distribution (truncated to pos-
itive values) by performing the Kolmogorov-Smirnov test for
various scenarios. For all the tested combinations of selected
MCS, the null hypothesis was accepted with a 99% confidence
interval.

2) Decoding success probability task: Then, we evaluate
the predictions of the decoding success probability task. We
observe that the decoding probability is high in low MCS index
and number of PRBs, since the data rate is low. When either
the MCS or the number of PRBs increases, the carried data
increases, the Shannon capacity of the channel for this SNR
level is reached, and the probability gradually drops to 0. In
Fig. 5, we plot the BCE loss for 10 dB of SNR, a variety
of MCS indices, and number of PRBs. We observe that our
DT manages to learn the trend when the probability is either
very high or low, while it gives a small prediction error in the
transition region.

B. Distribution Shift

In this experiment, we study the interaction between the
PT and the DT, and the capability of the latter to adapt to
previously unseen inputs. This may happen when the available

0 20 40 60 80 100 120
Epochs

.75

.8

.85

.9

.95

1

N
or

m
al

iz
ed

 v
al

id
at

io
n 

lo
ss

Distribution change



 

Fig. 6: The DT validation loss (sum of BCE and NLL losses)
when distribution changes happen.

historical data does not cover regions of the input space,
e.g., due to sudden failures in the CPU capacity or a new
implementation or computing infrastructure that was not used
to create the DT.

To simulate the former scenario, we draw the available
CPU capacity of the PT in the interval 90-100% of the
maximum achievable, i.e., considering only very high CPU
capacity (distribution A). We divide the collected dataset into
the training set, used for training the DT, and the validation set,
used for evaluating its performance across the training epochs.
In Fig. 6, we plot the normalized validation loss where we
trained the DT for 30 epochs.

Then, we draw the available CPU capacity in the interval
10-90% (distribution B), i.e., considering a wide range for
the CPU capacity, in any case, lower than the previously
used one. The retraining procedure can be triggered either at
a certain frequency or when the similarity between the DT
predictions and recent observations drops between a certain
threshold. In our case, a distribution change A → B took
place, which caused a drop in similarity and issued a retraining
of the DT. We observe a spike in the validation loss as
previously unseen observations give high prediction error,
which later decreases as the model readjusts. Finally, we
introduce a further distribution change by modifying again the
CPU capacity to the full range of 10-100% (distribution C).
Even though the new distribution has changed (B → C), it
comprises inputs that have been already seen in the past and
are already incorporated in the model, which explains the drop
in the loss instead of a sudden increase.

C. Complexity and time of inference gain

We quantify the gain of using NN for predicting the
decoding probability against a pure simulation approach by
evaluating the complexity and inference time of getting a new
data sample. Using a 5G testbed, a new data sample can
be generated at least every 1 ms, considering a TTI of 1
ms. Besides, this adds extra engineering complexity to build
a reliable end-to-end system to take measurements. On the
contrary, having this NN-backed DT, the time of generation
of a single sample is the inference time of the forward pass
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of the NN. We queried the DT on our computing platform
with 1 million combinations of the input features, and the
average inference time was measured at 2.8 µs per sample,
yielding a 350× speed increase when compared with a non
DT-based training. Finally, the complexity of setting up this
DT comes entirely from starting up a new process and loading
the weights of the NN, which has a negligible cost compared
to the training of the algorithm.

V. CONCLUSIONS

In this paper, we discussed the advantages and benefits of
the usage of a Digital Twin in the context of next-generation
mobile networks. We proposed three possible application sce-
narios and then provided the design and implementation details
for one of them, namely a DT for a virtualized RAN system.
Our results demonstrate that our DT reflects the characteristics
of the physical object, successfully and scalably twinning it,
and adapting to changing contextual conditions.
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