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A Fitness tracker which acquires photoplethysmography (PPG) and accelerometry (Accel.) signals

A Smartwatch which acquires electrocardiography (ECG) and accelerometry (Accel.) signals

Pulse waves used to:
- estimate heart rate
- identify an irregular pulse

Steps used to:
- estimate step count

Heart beats. Signal used to:
- estimate heart rate
- (potentially) diagnose

arrhythmias

Peter H Charlton, https://doi.org/10.5281/zenodo.798234 (CC BY 4.0) Source: NARA & DVIDS Public Domain Archive
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The Photoplethysmogram

Photoplethysmogram (PPG) Sensor

Wrist cross-
section
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The Photoplethysmogram
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The Photoplethysmogram
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Additional 
diagnoses

If atrial fibrillation 
was adequately 
treated in England:

Stroke Association, “State of the Nation,” 2017.
Public Health England, “Atrial fibrillation prevalence estimates in England …”, 2015.
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Detecting Atrial Fibrillation
Current approach

Screening

Consumer Wearables

An ECG is diagnostic of AF if it exhibits:
• irregular RR intervals, and
• no discernible repeating P waves

Source: G. Hindricks et al., ‘2020 ESC Guidelines for the 
diagnosis and management of atrial fibrillation …’

12-lead ECG:

Peter H Charlton, https://doi.org/10.5281/zenodo.798234 (CC BY 4.0)

Photoplethysmography Electrocardiography

Electrocardiography

https://commons.wikimedia.org/wiki/File:12_lead_ECG.jpg
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/eurheartj/ehaa612
https://doi.org/10.1093/eurheartj/ehaa612
https://doi.org/10.5281/zenodo.798234
https://creativecommons.org/licenses/by/4.0/legalcode


Detecting Atrial Fibrillation

Peter H Charlton, https://doi.org/10.5281/zenodo.798234 (CC BY 4.0)
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Detecting Atrial Fibrillation
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Potential Clinical Use Cases
Population-based Screening Programme Opportunistic Detection

Photoplethysmography (+ Electrocardiography)Electrocardiography

Photo by Luke Chesser on Unsplash

Requirements:
• High sensitivity to AF • High positive predictive value

For example:
• Sensitivity of 98% to AF
• Low positive predictive value: 35 ECGs reviewed per diagnosis 
• Detect even infrequent AF (present on at least 1 ECG)

Source: Svennberg et al. 2017, https://doi.org/10.1093/europace/euw286

• High positive predictive value of 84%
• (Sensitivity not investigated)
• Only detect fairly persistent AF (present in 5 out of 6)

Source: Perez et al. 2019, https://doi.org/10.1056/NEJMoa1901183

• Sensitivity of 98% to AF
• Low positive predictive value: 35 ECGs reviewed per diagnosis 
• Detect even infrequent AF (present on at least 1 ECG)

Source: Svennberg et al. 2017, https://doi.org/10.1093/europace/euw286

• High positive predictive value of 84%
• (Sensitivity not investigated)
• Only detect fairly persistent AF (present in 5 out of 6)

Source: Perez et al. 2019, https://doi.org/10.1056/NEJMoa1901183
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Research Directions

Optimising AF detection algorithms

• Beat detection

• Signal quality assessment

• Detecting AF from inter-beat intervals

• Incorporating P-wave analyses

Reducing clinical workload

• Assessing ECG reviewing workload in real-world screening

• Prioritising ECGs for manual review

• (incorporating optimized AF detection algorithms)



Benchmarking photoplethysmogram beat detectors

Several approaches have been proposed to detect beats:

• Detect maxima or minima in the PPG
• Compare weakly and strongly filtered PPGs
• Identify line segments indicating systolic upslopes
• Detect maximum upslopes using the first derivative
• Identify systolic upslopes using the first derivative
• Identify systolic upslopes using a slope sum function
• Identify pulse onsets using a wavelet transform
• Analyze the local maxima scalogram

It’s not clear which performs best.

Charlton PH et al., Wearable photoplethysmography for cardiovascular monitoring, Proc. IEEE, 2022. https://doi.org/10.1109/JPROC.2022.3149785 (CC BY 4.0)

Aims:
1. Develop a framework with which to design and test PPG beat detectors
2. Assess the performance of PPG beat detectors in different use cases
3. Investigate how their performance is affected by patient demographics and physiology

https://doi.org/10.1109/JPROC.2022.3149785
https://creativecommons.org/licenses/by/4.0/


Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)

Dataset Number of Subjects Description

Hospital datasets

CapnoBase 42 High-quality recordings from patients undergoing elective surgery and routine anaesthesia.

BIDMC 53 High-quality recordings from critically-ill adults during routine clinical care.

MIMIC PERform Training Dataset 200 Recordings from patients during routine clinical care, who are categorised as either adults or neonates.

MIMIC PERform Testing Dataset 200 Recordings from patients during routine clinical care, who are categorised as either adults or neonates.

MIMIC PERform AF Dataset 35 Recordings from critically-ill adults during routine clinical care, categorised as either AF (atrial fibrillation) or non-AF.

MIMIC PERform Ethnicity Dataset 200 Recordings from critically-ill adults during routine clinical care, who are categorised as either Black or White ethnicity.

Wearable datasets

WESAD 15 Recordings from volunteers during a laboratory-based protocol designed to induce different emotions.

PPG-DaLiA 15 Recordings from volunteers during a protocol of activities of daily living.

Methods:
• Assemble publicly available datasets containing PPG signals and simultaneous ECG signals (for reference beats)

https://doi.org/10.1088/1361-6579/ac826d
https://creativecommons.org/licenses/by/4.0/
https://ppg-beats.readthedocs.io/en/latest/datasets/capnobase
https://ppg-beats.readthedocs.io/en/latest/datasets/bidmc
https://ppg-beats.readthedocs.io/en/latest/datasets/mimic_perform_training
https://ppg-beats.readthedocs.io/en/latest/datasets/mimic_perform_testing
https://ppg-beats.readthedocs.io/en/latest/datasets/mimic_perform_af
https://ppg-beats.readthedocs.io/en/latest/datasets/mimic_perform_ethnicity
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Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)

Methods:
• Assemble publicly available datasets containing PPG signals and simultaneous ECG signals (for reference beats)
• Detect beats using fifteen open-source PPG beat detection algorithms (either existing or implemented for this study):

• Filter signals between 0.67 and 8.0 Hz
• Segment into 20 second windows
• Exclude windows of (clearly) low signal quality, e.g. flat line, clipped signal

• Detect reference beats from ECG using two separate beat detectors
• Deem reference beats to be correct if the two beat detectors agreed (within +/- 150 ms)
• Exclude windows containing disagreements

• Align PPG and ECG derived beats to account for clock synchronization and physiological time differences
• Deem PPG beats to be correct if within +/- 150 ms of ECG beats
• Quantify performance using:

• F1-score, which is the harmonic mean of:
• Sensitivity
• Positive predictive value

https://doi.org/10.1088/1361-6579/ac826d
https://creativecommons.org/licenses/by/4.0/


Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)
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Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)

Eight beat detectors performed well at rest in the absence of movement
• F1 scores of >=90% on hospital data and wearable data

https://doi.org/10.1088/1361-6579/ac826d
https://creativecommons.org/licenses/by/4.0/


Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)

Eight beat detectors performed well at rest in the absence of movement
• F1 scores of >=90% on hospital data and wearable data
Their performance was poorer during exercise:
• F1 scores of 55%–91%

https://doi.org/10.1088/1361-6579/ac826d
https://creativecommons.org/licenses/by/4.0/


Benchmarking photoplethysmogram beat detectors

Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)

Eight beat detectors performed well at rest in the absence of movement
• F1 scores of >=90% on hospital data and wearable data
Their performance was poorer during exercise:
• F1 scores of 55%–91%
Performance was:
• Poorer in AF
• Poorer in neonates than adults
• Not associated with ethnicity (Black compared with White)

Concluded that ‘MSPTD’ and 
‘qppg’ performed best, although 
this is somewhat subjective.

https://doi.org/10.1088/1361-6579/ac826d
https://creativecommons.org/licenses/by/4.0/


Charlton PH et al., Detecting beats in the photoplethysmogram: benchmarking open-source algorithms, Phys Meas., 2022. https://doi.org/10.1088/1361-6579/ac826d (CC BY 4.0)
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Highlights importance of:
• Using high quality signals
• Signal quality assessment

Ongoing work
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PPG-beats: Algorithms to detect heartbeats in photoplethysmogram (PPG) signals. https://ppg-beats.readthedocs.io/
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Research Directions

Optimising AF detection algorithms

• Beat detection

• Signal quality assessment

• Detecting AF from inter-beat intervals

• Incorporating P-wave analyses

Reducing clinical workload

• Assessing ECG reviewing workload in real-world screening

• Prioritising ECGs for manual review

• (incorporating optimized AF detection algorithms)



SAFER Programme

Aim: to determine whether screening for AF is effective and cost-effective in 
reducing stroke and other key outcomes compared to current practice.

Feasibility Study 1
10 GP Practices, delivered face-to-face: 2,141 participants screened

Screening for Atrial Fibrillation with ECG to Reduce stroke
https://www.safer.phpc.cam.ac.uk/

https://www.safer.phpc.cam.ac.uk/


SAFER Programme

Aim: to determine whether screening for AF is effective and cost-effective in 
reducing stroke and other key outcomes compared to current practice.

Feasibility Study 1
10 GP Practices, delivered face-to-face: 2,141 participants screened

Feasibility Study 2
3 GP Practices, delivered remotely

Internal Pilot Trial
36 GP Practices, delivered remotely

Trial (in progress)
100s GP Practices, delivered remotely



Peter Charlton

ECGs recorded at home

30-second ECGs:
- 4 ECGs per day
- 1-4 weeks
- 61 (53-111) ECGs per participant

Only a small minority exhibit AF
(0.4% were found to exhibit AF in this study)



Automated analysis

Peter Charlton

ECG exhibits:
☒ Irregular sequence
☐ Fast regular heart rate
☐ Fast episode
☐ Slow regular heart rate
☐ Slow episode
☐ Bigemini
☐ Trigemini
☐ Wide QRS
☐ Vent. extra systoles
☐ Supra vent. extra systoles
☐ Pause
☐ Poor Quality

ECGs recorded at home

Egore911, Doctor (white coat), Open Clipart (CC0)

https://openclipart.org/detail/216846/doctor-white-coat
http://creativecommons.org/publicdomain/zero/1.0/


Automated analysis

Peter Charlton

ECG exhibits:
☒ Irregular sequence
☐ Fast regular heart rate
☐ Fast episode
☐ Slow regular heart rate
☐ Slow episode
☐ Bigemini
☐ Trigemini
☐ Wide QRS
☐ Vent. extra systoles
☐ Supra vent. extra systoles
☐ Pause
☐ Poor Quality

Clinical ReviewECGs recorded at home

Egore911, Doctor (white coat), Open Clipart (CC0)
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Automated analysis

11,975 ECGs identified
for review

(1,538 participants)

Peter Charlton

Clinical Review

687 ECGs found 
to contain AF

(48 participants)

ECGs recorded at home

162,515 ECGs recorded

(2,141 participants)

Egore911, Doctor (white coat), Open Clipart (CC0)

Can we reduce the 
number identified 

for review?

Can we reduce the 
number reviewed?

(reviewing stops 
after an AF ECG is 

found)

https://openclipart.org/detail/216846/doctor-white-coat
http://creativecommons.org/publicdomain/zero/1.0/


Prioritising ECGs

• Currently ECGs are reviewed chronologically
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Prioritising ECGs

• ECGs are currently reviewed chronologically

Alternatively:
• Use a model to order an individual’s ECGs 

according to likelihood of AF
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No AF (p = 0.1)
No AF (p = 0.0)

No AF (p = 0.6)
No AF (p = 0.4)

No AF (p = 0.3)
No AF (p = 0.1)

AF (p = 0.7)

Reduces number of ECGs reviewed, whilst ensuring any participants exhibiting AF are correctly identified.
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AF (p = 0.1)
No AF (p = 0.0)

No AF (p = 0.6)
No AF (p = 0.4)

No AF (p = 0.3)
No AF (p = 0.1)

No AF (p = 0.7)

Reduces number of ECGs reviewed, whilst ensuring any participants exhibiting AF are correctly identified.



Prioritising ECGs

• ECGs are currently reviewed chronologically

Alternatively:
• Use a model to order an individual’s ECGs 

according to likelihood of AF
• Possibly only review those ECGs with a 

likelihood above a threshold
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No AF (p = 0.1)
No AF (p = 0.0)

No AF (p = 0.1)

No AF (p = 0.6)
No AF (p = 0.4)

No AF (p = 0.3)

No AF (p = 0.6)

Greatly reduces number of ECGs sent for review, but could result in participants exhibiting AF being missed.
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No AF (p = 0.1)
No AF (p = 0.0)

Greatly reduces number of ECGs sent for review, but could result in participants exhibiting AF being missed.

No AF (p = 0.6)
No AF (p = 0.4)

No AF (p = 0.3)

No AF (p = 0.6)

AF (p = 0.1)



Model Development
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ECG Characteristic Value, median (lower-upper quartiles)

AF non-AF

HR (bpm) 83.0 (71.0 - 94.0) 69.0 (59.0 - 78.0)*

RRmean (ms) 722.9 (638.3 - 845.1) 869.6 (769.2 – 1016.9)*

RRstd (ms) 120.7 (87.5 - 169.5) 131.2 (90.2 - 187.6)

RRvar (%) 16.5 (12.8 - 22.3) 14.3 (10.0 – 20.4)*

RRvar = (RRstd / RRmean) x 100 % * - significant difference 
between AF and non-AF

Inspecting input variables:



Model Development

Peter Charlton 48

Training and validation:
• Multiple logistic regression
• Stepwise
• used 1,428 ECGs (687 manually labelled as AF, 741 non-AF)
• 5-fold cross-validation

– RRvar and RRmean included in 4 out of 5 models
– HR in 3 models
– RRstd in 1 model

• Median AUROC: 71.5%



Model Evaluation
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Model configuration Number of AF diagnoses (%) Number of reviews (per AF diagnosis)

No model 48 (100) 10,293 (214)

Reviewing ECGs chronologically



Model Evaluation
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Model configuration Number of AF diagnoses (%) Number of reviews (per AF diagnosis)

No model 48 (100) 10,293 (214)

Model + no threshold 48 (100) 9,950 (207)

Number of ECGs reviewed in AF participants reduced by 74% from 463 to 120, without reducing AF 

diagnoses. Overall number of reviews reduced by 3.3%.
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Model configuration Number of AF diagnoses (%) Number of reviews (per AF diagnosis)

No model 48 (100) 10,293 (214)

Model + no threshold 48 (100) 9,950 (207)

Model + 25% threshold 48 (100) 7,455 (155)

Number of ECGs reviewed reduced by 28%, without reducing number of AF diagnoses.
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Model configuration Number of AF diagnoses (%) Number of reviews (per AF diagnosis)

No model 48 (100) 10,293 (214)

Model + no threshold 48 (100) 9,950 (207)

Model + 25% threshold 48 (100) 7,455 (155)

Model + 50% threshold 46 (96) 4,885 (106)

Model + 75% threshold 40 (83) 2,375 (59)

Number of ECGs reviewed reduced by up to 77%, with reduction AF diagnoses of up to 17%.



Discussion
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• Using a model to order ECGs only slightly reduced the reviewing workload since 

most participants don’t have AF, and didn’t result in missed diagnoses.

• Using a threshold to exclude ECGs can greatly reduce the reviewing workload, 

but results in some missed diagnoses.



Discussion
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Research Directions

Optimising AF detection algorithms

• Beat detection

• Signal quality assessment

• Detecting AF from inter-beat intervals

• Incorporating P-wave analyses

Reducing clinical workload

• Assessing ECG reviewing workload in real-world screening

• Prioritising ECGs for manual review

• (incorporating optimized AF detection algorithms)



Consumer Wearables TranslationClinical Applications

CFCF, https://commons.wikimedia.org/wiki/File:Normal-heart.jpg (CC0 1.0) Brother UK,
https://www.flickr.com/photos/brother-uk/31501281284/in/photostream/ (CC BY 2.0)

0 1 2 3 4 5

PP
G

Atrial Fibrillation

0 1 2 3 4 5
Time (s)

EC
G

0 1 2 3 4 5

PP
G

Normal Sinus Rhythm

0 1 2 3 4 5
Time (s)

EC
G

Luke Chesser,
https://commons.wikimedia.org/wiki/File:Apple_Watch_user_(Unsplash).jpg (CC0 1.0)

https://commons.wikimedia.org/wiki/File:Normal-heart.jpg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/brother-uk/31501281284/in/photostream/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Apple_Watch_user_(Unsplash).jpg
https://creativecommons.org/publicdomain/zero/1.0/


Peter Charlton 57

Observations based on the literature

• Much research in this field focuses on developing signal processing algorithms

• Less research focuses on translation

• There is much opportunity for, and benefit to, translational research

Based on:
- Charlton PH et al., ‘Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review’: 
https://doi.org/10.1109/RBME.2017.2763681
- Charlton PH et al., ‘Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet’:
https://doi.org/10.1152/ajpheart.00392.2021

https://doi.org/10.1109/RBME.2017.2763681
https://doi.org/10.1152/ajpheart.00392.2021
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Selecting a clinical use case for research

Consider:

• Would a wearable add value to current practice? e.g.

• Physiological assessment where it would not otherwise be performed

• Frequent monitoring where measurements would otherwise be intermittent

• Would the results be actionable? e.g.

• Prompt further assessment (relatively safe)

• Diagnosis (and treatment) (higher risk)

• Could it be integrated into a clinical pathway?

• Is it cost-effective?

• Many use cases focus on "prevention of avoidable illness and its exacerbations" (NHS Long Term Plan)
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Potential clinical pathways

• Screening

• Patient-led measurements to prompt clinical assessment e.g.

• Bradycardia as sign of possible heart block: https://doi.org/10.1016/j.jaccas.2019.11.087

• Smartwatch ECG capturing ventricular tachycardia: https://doi.org/10.1016%2Fj.hrcr.2020.08.003

• Population-level surveillance

• Self-directed health monitoring

https://doi.org/10.1016/j.jaccas.2019.11.087
https://doi.org/10.1016%2Fj.hrcr.2020.08.003
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Validation processes

• Much work has been done, and is ongoing, on validation of cuffless blood pressure devices, e.g.
• IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices
• New standard in development
• Mukkamala et al., ‘Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and 

Proposals’: https://doi.org/10.1161/HYPERTENSIONAHA.121.17747
• The Interlive Network has produced validation protocols for other parameters:

• step counts
• heart rate
• energy expenditure
• maximal oxygen consumption

• A personal interest: Can individual parts of a system be validated in isolation?
• Explored somewhat in: Charlton PH et al., ‘Establishing best practices in photoplethysmography signal acquisition 

and processing’: https://doi.org/10.1088/1361-6579/ac6cc4

https://doi.org/10.1161/HYPERTENSIONAHA.121.17747
https://www.interlive.org/
https://doi.org/10.1088/1361-6579/ac6cc4


Peter Charlton 61

Developing devices suitable for clinical 
decision making
Personal considerations:
• What are the respective roles of academia and industry? e.g. in academia:

• Algorithm development
• Algorithm validation
• (?) Algorithm source code
• (?) Teaching, e.g. Biomedical Signal Processing Jupyter book

• What are the most pressing research directions?
• ‘The 2023 Wearable Photoplethysmography Roadmap’ should be published shortly. It’s written by 51 researchers 

from academia, industry and clinical practice, and presents a comprehensive overview of pressing research 
directions within the field of wearable photoplethysmography.

Charlton P.H. et al., Establishing best practices in photoplethysmography signal acquisition and processing, 
Phys Meas, 2022: https://doi.org/10.1088/1361-6579/ac6cc4

https://peterhcharlton.github.io/bsp-book/intro.html
https://doi.org/10.1088/1361-6579/ac6cc4
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The functionality of wearable devices is 
expanding, and they have a wide range of 
potential clinical applications.

There is much opportunity for research into 
if, and how, to best use consumer wearables 
for clinical decision making

If used for clinical decision making, then 
consumer wearables should be like a 
climbing rope:
- highly reliable
- used for their specific, intended purpose

https://commons.wikimedia.org/wiki/File:Kamar_Zard_Buzhan_-_Nishapur_1.jpg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Charlton P.H. et al., Wearable Photoplethysmography for Cardiovascular Monitoring, 
Proc. IEEE, 2022, https://doi.org/10.1109/JPROC.2022.3149785

Peter Charlton, Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Max_Health_Band.jpg (CC BY 4.0)

For further reading see:
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