Supplementary Material for “Causal Mediation Analysis for
Longitudinal Mediators and Survival Outcomes”

Proof for Theorem 1

We first provide the required regularity assumptions. (i) Suppose the potential survival
time V;(z,m) as a function of the mediator process m is Lipschitz continuous on [0, T
with probability one. Namely, there exists a constant A < oo such that |Vi(z,m) —
Vi(z,m')| < A|lm — m/||2 for any z, m, m’ almost surely. (ii) Any path of m we consider
is Lipschitz continuous. There exists a constant B, such that |m(t;) —m(ta)| < Blt; —ts]
for any t1,t, € [0, 7.

Fix a time point ¢ and suppose the domain for the covariates is X', with X! € X. For
any z,z € {0,1}, we have
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For any path m on the [0,t], we make equal partitions into H pieces at points My =
{to = 0,t4 = t/H,ty = 2t/H,--- ,ty = t} and corresponding values on path m are
{mg,my,--- ,my}. Then, we consider using a step function from [0, ¢] — R with jumps
at points My. Denote the step function as my, which is:

m(0) = mg 0<z<t/H,
mpy (z) = m(t/H) =m t/H <x < 2t/H,

m((H — )t/H) =my (H—1t/H<z<Lt

We employ this step function my(z) to approximate function m. First, given m is Lips-
chitz continuous, there exists B > 0 such that |m(x;) — m(zy)| < Blz; — x2|. Therefore,
the step function my can approximate the original function m well as H goes up,
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Therefore, we can approximate the survival probability given a continuous mediator



process with the mediator values on the jumps, (mg, mq,- -+ ,my). That is,
/ Pr(Vi(z,m) > t|Z; = 2, X! = x", M} = m) X d{Fppt| 7,0 xt—xt(m)}
R[()’t] 2 [l
= / Pr(Vi(z,mp) > t|Z; = 2, X = x', M = mp) X {{Fmr|z,— xt—xt (mp) } + O(H 7).
R[O,t] (3 Kl 2

This step applies the regularity condition that the potential survival time V;'(z, m) as a
function of m is continuous with the L, metrics of m. As the values of steps function
mpy are completely determined by the values on finite jumps, we can further reduce the
conditional survival probability to,
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Under assumption 1, we have,
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With a slightly abuse of notations, let my(2z) denote the potential step functions induced
by the original potential process M!(z) and m;(z) to denote potential values of M(z)
evaluated at point t; = it/H. Under Assumption 2, we can choose a large H such that
t/H < e. Then we have the following conditional independence conditions,
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where are equivalent to,

‘/z(zamH) J-I—mO‘ZiaX'tLa
‘/;(ZamH) JL(’rnl - m0)|ZZ‘aX§am07

Vi(z,mpg) L(my —my)|Z;, XL, mo, my,

‘/Z(ZamH) J.I_(mH - mH—1)|ZZ‘7X§7mOam1 e, My,



as the step function mz/ H, i < H is completely determined by values at jumps {mg, - - ,m;}.

With the established conditional independence, we have,
Pr(Vi(z, mpy) > t|Z; = 2, X! = x', mg, my, ma, - --mpg) = Pr(Vi(z, mp) > t|Z; = 2, X! = x").

With similar arguments, we can show that,

As a conclusion, we have shown that,
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The last equivalence follows from the regularity condition of V;(z, m(z")) as a function of
m(z’). Let H goes to infinity, we have,
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Under Assumption 3, the conditional survival function can be estimated with a non-
parametric Kaplan Meier estimator,
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where t; < to <, -+, <t <, -+, < tg < --- is the time grid where we observe failure
event (§; = 1) and the selected fixed time point ¢ lies between tx and tx,;. Hence, we
complete the proof for Theorem 1.



Details of Gibbs Sampler

In this section, we provide detailed descriptions on the Gibbs sampler for the model in
Section 4. The sampling of mediator process is similar to the one in Kowal and Bourgeois
(2020) and Zeng et al. (2021a). Therefore, we omit the details for simplicity and refer
the reader to Zeng et al. (2021b).
Next, we describe the sampling for the survival model. As we have the model,
A(t) = Xo(t) exp(Zia + X385 + FAM, 7}).
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The survival function for a specific subject becomes,

Si(t) = Pr(V; > t) = exp(—H;(t)) = exp(— /Ot hi(s)ds)

where H;(t) is the cumulative hazard function, which is a right-continuous increasing
function with H;(0) = 0. For a given observation (V;,d;, X,;, M;;, Z;), the likelihood of
this observation is,

where ¢;; is the indicator for whether the subject is still alive at time point ¢;;. To derive
an explicit formula for the likelihood, we let Aq, Ag, -+ , A be the baseline hazard for
a specified time grids t; < to,---,< tx that at least one failure happens in each bin
(tg—1,tx]. Then the cumulative hazard function becomes,
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where

Uii(t, o, Bs,v) = (tx — ti—1) exp(Zia + X[* Bs + fF{MF,v}) if t > ¢
Ui,k(tv «, 657 IY) = (t - tk—l) eXp(Zia + ka_lﬁs + f{Mzﬂ 7}) ift < tk

As such, we can express the likelihood of the data as a function of parameter ({\z }2_;,
@, Bs,7). First, we describe the prior of baseline hazard rate {\;}5 ;. We specify a
Gamma Process prior on )\, that is the increments are independent across each other and
follow a Gamma distribution, A\, ~ Gamma(ay, f). We specify oy, i in the following
way that, we let ap = Aa(ty) and By = B, where a(t) is strictly increasing function that
captures the mean of the hazard rate. For example, when a(t) = ¢, then E{\;} = t, A/B.
For the hyperparameter A, B, we specify a Gamma prior such that A, B ~ Gammal(e, )
with e = 0.001.

Then the conditional posterior distributions of the parameters in the sample are:
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e Baseline hazard rate \y|—:
p(Akl=) = Ga(\lag + ng, Br + me(a, Bs, 7)),
where ny, is the number of failure in (¢5_1, tx] and my(«, Bs,7) = sz\il > ity Uik(tiy, o, Bs, ).
e The hyperparameter for the Gamma Process A, B—-,

. ) K /\?(O‘(tk)_a(tk—l))
A— AE— _ A Baa tK
bl o A exp( )0 g

Ala(tr) — altr-1))’

K
p(B|=) oc BA*O e exp(—B(e + > Ay)
k=1

This step can be updated using a one step of Metropolis random walk.

e The coefficient for treatment, covariates and mediator process: «, g, vy|—
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This step can be updated efficiently using the adaptive rejection methods in Gilks
and Wild (1992) as the density is log-concave in («, fBg,7). The parameterization
of the cumulative model f{M! ~) is similar in the construction of spline basis in
mediator process. We refer the readers to Kowal and Bourgeois (2020) and Zeng

et al. (2021a) for details.
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