
Supplementary Material for “Causal Mediation Analysis for
Longitudinal Mediators and Survival Outcomes”

Proof for Theorem 1

We first provide the required regularity assumptions. (i) Suppose the potential survival
time Vi(z,m) as a function of the mediator process m is Lipschitz continuous on [0, T ]
with probability one. Namely, there exists a constant A < ∞ such that |Vi(z,m) −
Vi(z,m

′)| ≤ A||m−m′||2 for any z,m,m′ almost surely. (ii) Any path of m we consider
is Lipschitz continuous. There exists a constant B, such that |m(t1)−m(t2)| ≤ B|t1− t2|
for any t1, t2 ∈ [0, T ].

Fix a time point t and suppose the domain for the covariates is X , with Xt
i ∈ X . For

any z, z′ ∈ {0, 1}, we have∫
X

∫
R[0,t]

Pr(Vi > t|Zi = z,Xt
i = xti,M

t
i = m)dFMt

i|Zi=z,Xt
i=x

t(m)dFXt
i
(xt)

=

∫
X

∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xti,M

t
i = m)dFMt

i|Zi=z,Xt
i=x

t(m)dFXt
i
(xt)

For any path m on the [0, t], we make equal partitions into H pieces at points MH =
{t0 = 0, t1 = t/H, t2 = 2t/H, · · · , tH = t} and corresponding values on path m are
{m0,m1, · · · ,mH}. Then, we consider using a step function from [0, t]→ R with jumps
at points MH . Denote the step function as mH , which is:

mH(x) =


m(0) = m0 0 ≤ x < t/H,

m(t/H) = m1 t/H ≤ x < 2t/H,

· · ·
m((H − 1)t/H) = mH (H − 1)t/H ≤ x ≤ t.

We employ this step function mH(x) to approximate function m. First, given m is Lips-
chitz continuous, there exists B > 0 such that |m(x1)−m(x2)| ≤ B|x1 − x2|. Therefore,
the step function mH can approximate the original function m well as H goes up,

||mH −m||2 ≤
H∑
i=1

t

H
B2 t

2

H2
� O(H−2).

Therefore, we can approximate the survival probability given a continuous mediator
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process with the mediator values on the jumps, (m0,m1, · · · ,mH). That is,∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xt,Mt

i = m)× d{FMt
i|Zi=z′,Xt

i=xt(m)}

�
∫
R[0,t]

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,Mt

i = mH)× d{FMt
i|Zi=z′,Xt

i=xt(mH)}+O(H−2).

This step applies the regularity condition that the potential survival time V t
i (z,m) as a

function of m is continuous with the L2 metrics of m. As the values of steps function
mH are completely determined by the values on finite jumps, we can further reduce the
conditional survival probability to,

�
∫
RH

E(Y t
i (z,mH)|Zi = z,Xt

i = xt,m0,m1,m2, · · ·mH)

×d{Fm0,m1,··· ,mH |Zi=z′,Xt
i=xt(m0,m1,m2, · · ·mH)}+O(H−2).

Under assumption 1, we have,

d{Fm0,m1,··· ,mH |Zi=z′,Xt
i=xt(m0,m1,m2, · · ·mH)}

= d{Fm0(z′),m1(z′),··· ,mH(z′)|Xt
i=xt(m0,m1,m2, · · ·mH)},

= d{FmH(z′)|Xt
i=xt(mH)}.

With a slightly abuse of notations, let mH(z) denote the potential step functions induced
by the original potential process Mt

i(z) and mi(z) to denote potential values of Mt
i(z)

evaluated at point ti = it/H. Under Assumption 2, we can choose a large H such that
t/H ≤ ε. Then we have the following conditional independence conditions,

Vi(z,mH) ⊥⊥m0|Zi,Xt
i,

Vi(z,mH) ⊥⊥(m1 −m0)|Zi,Xt
i,m

0
H ,

Vi(z,mH) ⊥⊥(m2 −m1)|Zi,Xt
i,m

t/H
H ,

· · ·
Vi(z,mH) ⊥⊥(mH −mH−1)|Zi,Xt

i,m
t(H−1)/H
H ,

where are equivalent to,

Vi(z,mH) ⊥⊥m0|Zi,Xt
i,

Vi(z,mH) ⊥⊥(m1 −m0)|Zi,Xt
i,m0,

Vi(z,mH) ⊥⊥(m2 −m1)|Zi,Xt
i,m0,m1,

· · ·
Vi(z,mH) ⊥⊥(mH −mH−1)|Zi,Xt

i,m0,m1 · · · ,mH−1,
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as the step functionm
it/H
H , i ≤ H is completely determined by values at jumps {m0, · · · ,mi}.

With the established conditional independence, we have,

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,m0,m1,m2, · · ·mH) = Pr(Vi(z,mH) > t|Zi = z,Xt

i = xt).

With similar arguments, we can show that,

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt) = Pr(Vi(z,mH) > t|Zi = z′,Xt

i = xt),

= Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,m0 = m0(z

′), · · ·mH = mH(z′)),

= Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,mH(z′) = mH),

= Pr(Vi(z,mH) > t|Xt
i = xt,mH(z′) = mH).

As a conclusion, we have shown that,∫
X

∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xt,Mt

i = m)dFXt
i
(xt)× d{FMt

i|Zi=z′,Xt
i=xt(m)},

�
∫
X

∫
R[0,t]

Pr(Vi(z,mH) > t|Xt
i = xt,mH(z′) = mH)× d{FmH(z′)|Xt

i=xt(mH)}dFXt
i
(xt) +O(H−2),

�
∫
X

Pr(Vi(z,mH(z′)) > t|Xt
i = xt) +O(H−2) �

∫
X

Pr(Vi(z,m(z′)) > t|Xt
i = xt) +O(H−2).

The last equivalence follows from the regularity condition of Vi(z,m(z′)) as a function of
m(z′). Let H goes to infinity, we have,∫

X

∫
R[0,t]

Pr(Vi > t|Zi = z,Xt
i = xt,Mt

i = m)dFXt
i
(xt)× d{FMt

i|Zi=z′,Xt
i=xt(m)}

=

∫
X

Pr(Vi(z,m(z′)) > t|Xt
i = xt)dFXt

i
(xt) = Pr(Vi(z,m(z′)) > t) = Sz,z′(t)

Under Assumption 3, the conditional survival function can be estimated with a non-
parametric Kaplan Meier estimator,

Pr(Vi > t|Zi = z,Xt
i = xt,Mt

i = m) =
K∏
k=1

Pr(Ṽi > tk|Ṽi > tk−1,M
t
i = m.Xt

i, Zi = z)

=
K∏
k=1

Pr(Ṽi > tk|Ṽi > tk−1,Mi = mtk .Xtk
i , Zi = z),

where t1 < t2 <, · · · , < tk <, · · · , < tK < · · · is the time grid where we observe failure
event (δi = 1) and the selected fixed time point t lies between tK and tK+1. Hence, we
complete the proof for Theorem 1.
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Details of Gibbs Sampler

In this section, we provide detailed descriptions on the Gibbs sampler for the model in
Section 4. The sampling of mediator process is similar to the one in Kowal and Bourgeois
(2020) and Zeng et al. (2021a). Therefore, we omit the details for simplicity and refer
the reader to Zeng et al. (2021b).

Next, we describe the sampling for the survival model. As we have the model,

λ(t) = λ0(t) exp(Ziα +X ′ijβS + f{Mt
i, γ}).

The survival function for a specific subject becomes,

Si(t) = Pr(Vi > t) = exp(−Hi(t)) = exp(−
∫ t

0

hi(s)ds)

where Hi(t) is the cumulative hazard function, which is a right-continuous increasing
function with Hi(0) = 0. For a given observation (Ṽi, δi,Xij,Mij, Zi), the likelihood of
this observation is,

Lij = (1− δij) Pr(Vi > tij) + δij Pr(Vi = tij).

where δij is the indicator for whether the subject is still alive at time point tij. To derive
an explicit formula for the likelihood, we let λ1, λ2, · · · , λK be the baseline hazard for
a specified time grids t1 < t2, · · · , < tK that at least one failure happens in each bin
(tk−1, tk]. Then the cumulative hazard function becomes,

Hi(t) =
K∑
k=1

λkUi,k(t, α, βS, γ),

where

Ui,k(t, α, βS, γ) = (tk − tk−1) exp(Ziα +X tk
i βS + f{Mtk

i , γ}) if t > tk

Ui,k(t, α, βS, γ) = (t− tk−1) exp(Ziα +X
tk−1

i βS + f{Mt
i, γ}) if t < tk.

As such, we can express the likelihood of the data as a function of parameter ({λk}Kk=1,
α, βS, γ). First, we describe the prior of baseline hazard rate {λk}Kk=1. We specify a
Gamma Process prior on λk, that is the increments are independent across each other and
follow a Gamma distribution, λk ∼ Gamma(αk, βk). We specify αk, βk in the following
way that, we let αk = Aα(tk) and βk = B, where α(t) is strictly increasing function that
captures the mean of the hazard rate. For example, when α(t) = t, then E{λk} = tkA/B.
For the hyperparameter A,B, we specify a Gamma prior such that A,B ∼ Gamma(ε, ε)
with ε = 0.001.

Then the conditional posterior distributions of the parameters in the sample are:
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• Baseline hazard rate λk|−:

p(λk|−) = Ga(λk|αk + nk, βk +mk(α, βS, γ)),

where nk is the number of failure in (tk−1, tk] andmk(α, βS, γ) =
∑N

i=1

∑ni

j=1 Ui,k(tij, α, βS, γ).

• The hyperparameter for the Gamma Process A,B—-,

p(A|−) ∝ Aε−1 exp(−εA)Bεα(tK)

K∏
k=1

λ
A(α(tk)−α(tk−1))
k

Γ(A(α(tk)− α(tk−1))
,

p(B|−) ∝ BAα(t)+ε−1 exp(−B(ε+
K∑
k=1

λk)

This step can be updated using a one step of Metropolis random walk.

• The coefficient for treatment, covariates and mediator process: α, βS, γ|−

p(α, βS, γ|−) ∝ p(α, βS, γ) exp(
N∑
i=1

δi(Ziα +Xini
βS + f{Mtini

i , γ)−
K∑
k=1

λkmk(α, βS, γ)),

This step can be updated efficiently using the adaptive rejection methods in Gilks
and Wild (1992) as the density is log-concave in (α, βS, γ). The parameterization
of the cumulative model f{Mt

i, γ) is similar in the construction of spline basis in
mediator process. We refer the readers to Kowal and Bourgeois (2020) and Zeng
et al. (2021a) for details.
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