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Abstract:- In the present paper, we study the generation 

of spiraling beams which introduced by the illumination 

of Flat-topped vortex hollow beam (FtVHB) with curved 

fork-shaped hologram (CFH). Based on the Fresnel 

diffraction integral formula, analytical expression for the 

output amplitudes of the produced beam after diffraction 

is derived. The variation of the intensity profile of the 

diffracted beam in longitudinal and radial directions 

depends on the effect of the incident and the spiraling 

output fields parameters are given with numerical 

examples. The present work gives more general 

characteristic and diffraction by a CFH because the Flat-

topped and Gaussian beams. 
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I. INTRODUCTION 

 

Zero intensity with hollow beam in its center have 

increasing interest attentions because of their higher 

applications [1], [2],[3], [4]. The hollow laser beam with 

different intensity can be generated by applied various 

methods [5], [6], [7], [8],[9],[10],[11],[12],[13].  Properties 

of the hollow laser mode have been devoted with several 
models including: Hollow Gaussian beam [14], High order 

Bessel beam [15] and Controllable-dark hollow beam [16]. 

The optical field of Laguerre Gaussian beam [17], Bessel-

Gaussian beam [18], Hermite -cosine Gaussian beam [19], 

Cosh-Gaussian beam [20],[21] and double-half inverse 

Gaussian hollow beam [22], have been studied. In addition, a 

novel family of doughnut mode as a superposition of 

Kummer beam have been investigated [23],[24],[25]. The 

generalized Humbert beams as a new kind of dark beam is 

demonstrated by our research group [26],[27]. The vortex 

beam of Hermite-Cosh-Gaussian and its diffraction have also 

been introduced [28]. On the other side, Liu et al. [29] have 
presented a theoretical model to describe dark hollow beam 

called Flat-topped vortex hollow beam which was obtained 

from the modulation of Flat-topped mode [30], with spiral 

phase plate (SPP). Besides, many papers carried out have 

been studied to this beam in different optical systems 

[31],[32],[33],[34],[35]. In last few years, the optical field of 

vortex beams have found a considerable attention of 

applications [2],[3],[36],[37],[38]. These vortex beams can be 
produced by using the diffractive optical elements (DOEs) 

[39],[40],[41]. Several theoretical and experimental studies 

are carried out by applied different methods to generate 

optical vortices with laser beam [42],[43], [44],[45], [46], 

[47],[48],[49],[50],[51],[52],[53],[54],[55],[56],[57],[58],[59]

,[60],[61],[62],[63]. The nondiffracting vortex beams can be 

generated by using a SPP with a Gaussian beam [42]. In 

addition, these authors [43] have investigated an important 

technique method to produce quasi-Bessel light beams by 

using the SPP and axicon. In the end of the last century, the 

conversion of the Gaussian mode by means of fork-shaped 

holograms has been investigated [44],[45]. On other hand, in 
1987, Durin [46] has introduced the first nondiffracting 

beams which their wave amplitudes consisting of Bessel 

modes. The higher-order Bessel beams possesses a dark 

region surrounded with bright and dark rings compared with 

the zeroth-order Bessel beam that have a central bright 

intensity. The generation of Bessel beams with zeroth-order 

through an annular aperture at focal plane of a lens, with 

various technical methods has been studied [47], [6], [48]. In 

1989, Vasara et al have introduced a nondiffracting Bessel 

beam of higher order [49]. They observed that the higher 

order Bessel directly generated from Gaussian beams by 
using the axicon-type-computer generated holograms. 

Technical method has demonstrated by the illumination of an 

axicon with Laguerre-Gauss (LG) mode to produce high 

order Bessel beams [15]. In the end of the last decay, a 

theoretical analysis about diffraction of Fraunhofer for 

Gaussian laser amplitude that generated using helical axicon 

(HA) with SPP [50] and fork-shaped gratings [51] are 

derived, separately. Furthermore, the diffraction of an 

incident LG beam by the use of a HA has been presented 

[52],[53]. In addition, Sun et al. [54],[55] have proposed two 

different methods to transform the LG beam into a 

generalized spiraling Bessel beam(GSBB): first one using an 
aperture axicon and a hologram and the later with a HA. 

Topuzoski [56] has introduced and observed the optical 

vortices directly generated by CFH for Gaussian laser beams. 

Recently, the theoretical analysis of generation GSBB by 

means of CFH using LG, hypergeometric-Gaussian, Bessel-

Gaussian and dark/antidark Gaussian beams have been 
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investigated [57],[58],[59],[60]. In addition, Saad et al [61] 

have studied the effect of turbulent atmosphere on GSBB 
optical field. The (l,n)th mode LG diffracted by a fork -

shaped grating has been introduced [62]. More recently, the 

Fresnel diffraction for generalized Humbert-Gaussian beams 

by HA has been demonstrated [63]. In the present work, we 

will explore and investigate how the GSBB can be generated 

in the Fresnel diffraction process of FtVHB by the CFH. 

However, to the best of our knowledge, the transformation of 

the FtVHB by the use of a CFH into GSBB has not been 

investigated yet. Analytical expressions for the FtVHB 

diffracted by the CFH are derived in Section 2. Numerical 

simulations of the diffracted beam are computed and 

discussed in Section 3. In final Section, we conclude our 
results. 

 

II. THEORTICAL MODELS 

 
 Distribution incidnet field of the FtVHB 

In the cylindrical coordinate, the field distribution of 

FtVHB in input plane z=0, is defined by [29] 
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N=1, 2,… is the FtVHB order, M is the topological 

charge and (r,  represent the cylindrical coordinates.  is the 

width of beam at z=0, for Gaussian mode (N=1 and M=0).  

 

 
Fig 1 Transverse intensity of incident FtVHB at z=0 with 

ω=10mm for (a) N=1 and M=0 (b) N= M=1 (c) N= M=2 and 

(d) N= M=6. 

 

From Fig. 1(a), when the order of incident beam are N=1 and 

M=0, the considered beam intensity changes into a Gaussian 

shape. For nonzero topological charge (M>0), the central dark 

spot of zero intensity is shown. This dark center region 
increases with increasing N and M. 

 Conversion of FtVHB into spiraling Bessel beam with 

CFH 
We present a general theoretical method to produce a 

novel laser family by converting a FtVHB with a CFH into 

optical vortex of Bessel beams. Let us first consider based on 

the Fresnel diffraction process, the interference of a computer-

generated hologram by using a wave of optical vortex, whose 

wave front identical to that of helical axicon phase and a wave 

of tilted plane with two constant real amplitudes A1 and A2. 

Both interfering waves are given by the following forms [56]. 

 

    ,exp,, 11  prkziAzrU                         (2) 

 

And 

  

    ,)cos(exp,, 22  rkkziAzrU x              (3)  

 

With α=k(nr ‒1)γ indicate the axicon parameter, where 

,2 k  
 
γ and nr are being the number of wave with the 

wavelength λ, the axicon base angle and the refractive index, 
respectively. p is an integer topological charge of HA, and 

kx=k sin (ε) represents the wave component with an angle  

along x-axis. The intensity distribution of interfering waves at 

z=0, is given by  

 

    coscos20,, 21

2
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Fig. 2 describe the effect of on the transverse intensity 

of the holograms at z = 0, calculated from Eq. (4), with fixed 

parameters are A1 = A2 = 1, , p = 2, nr = 1.48 and = 

810 nm.  

 

 
Fig 2 (a) Fork-shaped hologram with , and (b) curved 

fork-shaped hologram with 

 

Fig. 2a shows the description of the hologram with a 

fixed value of p = 2 and zero angle γ. We observe from this 

figure that the fork shaped is clear while in Fig. 2(b) show 

that the curve of the fork-shaped is formed and becomes 

more observable with increasing γ. In the approximated of 
thin transparency, the general function of transmission for the 

CFH in polar coordinate system for amplitude and phase 

holograms are defined by [56] 
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With tm represents the transmission coefficients defined 

in Ref. [51],   ,exp  pri  denotes the HA transmittance 

and d 2 , being the spatial frequency for x direction, and  

d is a constant determining the hologram period. We are 

considering in Fig.3, the schematic view to describe the 

optical setup by CFH of an arbitrary integer charge p, which 

leads the conversion of FtVHB of topological charge order 

M, into spiraling Bessel-like beams with orders have opposite 

signs (M – mp) and (M + mp). 

 

 
Fig 3 An optical setup description for generating spiraling 

beams. 

 

In order to study the creation of spiraling beam  

transforming of FtVHB by CFH, an optical field distribution 

placed a distance z from the plane  of CFH is described by 
the use of Fresnel-Kirchhoff diffraction integral [64] 
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Where U(r0) represents the incident field amplitude 

at z=0 and   being the area of the element optical 

diffraction of  hologram. This equation is expressed by the 

sum of the zeroth order U0 and both positive U+m and 

negative U-m higher orders diffraction, respectively. 
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Where U0(z) is zeroth–diffraction order and U 

m(z) is higher–diffraction order for the output field 

amplitudes. By inserting Eqs. (1) and (5) in Eq. (6), we 

obtain 
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These last equations can be calculated analytically. To 

calculate the first part of Eq. (8), we will use the following 

well-known integrals [65], [66] 

 

      ,exp2cosexp

2

0


















 z

kr
Jinid

z

kr
iin n

n 







 (10) 

 

And 

 

   
 

,
4

exp
2

exp
2

1

0

21








 








 













 dxxJxx

      (11) 

 

With Reα>0, Rev>-1 and after some developments, we 

obtain the output amplitude field for zeroth-order diffraction 

order as 
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Where    
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0(1 )n z nz z   denotes the radius of the 

transverse beam amplitude, z0=kω2/2 being the Rayleigh 

distance and   0iznzzqn   is the complex beam parameter 

at distance z, which is related with its curvature wavefront 

radius  
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0( ) (1 ).nR z z z nz   Note that, from Eq. (12), we can 

deduce two particular cases. The first case,  for N=1 and M=0 
one obtains a formula which is in agreement with by Eq. (4) 

of Ref. [56] which represents the zeroth-diffraction order for 

Gaussian mode. The second case, when N>1 and M=0, Eq. 

(12) gives the output field amplitude of the zeroth-diffraction 

order in the form of a chargeless Flat-topped beam as follows 
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In the second part and in order to calculate the wave 

amplitudes of higher-diffraction-order presented into Eq. (9), 
we will write the transformation variables concerning in the 
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observation plane as 
mmDmz   cos/cos  , and 

mm   sinsin [51]. Then, by the use the well-known 

integral of Eq. (10) again, and after some algebraic 

calculations, Eq. (9) can be expressed as 
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The integral of Eq. (15) can be expanded analytically 

from the function of axicon to Taylor series [66] as: 
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And then recalling the following radial integral in Eq. (6.631-

1) of Ref. [66] as 
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With   ,1Re,0Re    
we obtain after 

some manipulations, the output field of the produced beam as 
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Where  .11 F  and  .  are the Kummer function and 

the Gamma function, respectively. It is clearly from Eq. (17) 

that, the output beams have a phase singularity carrying 

topological charge M+|mp|. This analytical result is obtained 

as a function of Kummer with complex argument and the 

diffracted field  expressed in infinite sum of Kummer 

function. Thus, it is not suitable for analytical expression in 

the case which can generate the vortex radius. Vasara et al 

[49] have proposed a simple approximation for solving the 

Fresnel diffraction problem for plane wave by axicon-type 
diffractive elements using the radial integral of stationary 

phase method given 

by      
d

n drkrrzrikzkrrJ
0

0

2 22exp   with d is the 

radius of thin circular hologram and r0 is a constant.  

 

The waves, produced by such optical elements, are 

described by Bessel function. In 1996, Paterson and Smith 

[8] have investigated the theoretical study to improve the 

validity of the method of stationary phase starting to consider 

the variation in the integrand due to the Bessel function. 

Then, by comparing the result of ideal Bessel wave with that 

one obtained by the method  of stationary phase in Ref. [49], 

they have observed that a very good approximation. The 

authors in Ref. [8] show that the validity of obtained results 

when the variation in the small factor rJn(krρ/z) over the 
region  of stationary phase, i.e., the Bessel function region 

required a much larger compared the width of the stationary 

phase. This requirement leads to the proved condition ρ2 << 

λz/4. Then, based on the stationary phase [15,49,53,64], we 

will evaluate the radial integral of Eq. (15), thus obtaining the 

output field expression for describing the diffraction interval 

and vortex radius as [49] 

 

   
    

 

, ,

0 ,

exp
exp

c c

c

f r ik µ r
f r ik µ r dr

k r


 




   




 (18) 

 

Where 
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And 
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Where the stationary points for the integrals  ,rY n

m
 

obtained as the root of the equations   ,0 r  
are written 

as: ., kzmrc 
   zrµ c 1, 


 denotes the second 

derivative value at the critical point. Then, after inserting the 

integral representation of Eq. (18) into Eq. (14), the final 

expression for the amplitudes of higher-diffraction-order of 

spiraling Bessel is 
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Where am=mα/k. Eq. (20) describes the created 

spiraling Bessel beam with  phase singularity carrying 
topological charge M+|mp|. Eq. (20) shows both ±m-

diffraction-order for optical vortex beams. M+mp.  and M-

mp, indicate the opposite helicity directions of their wave 

fronts.  Then, the intensity distribution for higher-diffraction-

order beams defined by 
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  (21) 

 
Eq. (21) is the main theoretical result, which describes 

the intensity profile of the higher-diffraction-order FtVHB 

with CFH. A central bright surrounds the vortex rings for 

higher-diffraction order. Moreover, the non-diverging vortex 

radius in the first bright ring from the center is unchanged 

and it expressed as ρmax=μM+p,1/α with μM+p,1 being the Bessel 

function arguments values, for which the first derivative 

defines their first maxima. It denotes that the Bessel function 

argument value is found as a root of the following 

expression:    1 1 .M mp m m M mp m mJ ka J ka        

 

The case M=0, corresponds the Flat-topped beam 

diffracted by the CFH, the Eq. (20) and Eq. (21), reduce to 
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      (23) 

 

The case N=1 and M=0 corresponds the transformation 

of Gaussian beam into high-order spiraling Bessel beam by 

means of CFH, then, Eq. (20) and Eq. (21) reduce to 
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Note that, this obtained result is in agreement with that 

given in Eqs. (7) and (8) of Ref. [56], for Gaussian beam 

diffracted by CFH. 

 

III. NUMERICAL CALCULATIONS AND 

DISCUSSIONS 

 

In order to investigate the output spiraling Bessel beam 

created by converting the FtVHB by the CFH, numerical 

simulations are calculated in this Section using the above 

result elaborated in Eq. (21). The intensity distribution of the 
diffracted beam is numerically calculated at plane placed at 

distance z and using the following parameters are m=1, 

λ=810nm and ω=10mm. The axicon parameters: nr=1.48 and 

γ=1.35°=0.0235 rad.
 
Fig. 4 presents the longitudinal intensity 

of the considered beam, which diffracted by CFH, for p=1 

and m=1 at three values of M (=0,2 and 6) and each value for 

three different beam orders N (=1,2 and 6). In the simulation, 

the radial position is ρmax=0.02mmat the first bright ring. 

From the curves of this figure, it can be shown that, for  N=1 

and M=0 the obtained curve is in agreement with that in the 

case of the Fresnel diffraction by CFH for a Gaussian beam 

elaborated by Topuzoski [56]. When the beam order N 
increasing and a fixed M=0, the intensity changes and its 

maximum decreases gradually. 

  

Similarly, we investigate in Fig. 4(b and c), the 

intensity distribution versus the propagation distance z with 

nonzero M. The curves of this figure see that the intensity 

profile is zero within the first several hundred meters and 

then increases with increasing distance z up to maximum 

intensity value zmax. This distance zmax
 

increases with 

topological charge increasing. In addition, it is clearly from 

the plots of these figures that, the intensity has a maximum 
that decreases with increasing N and M. We also observe that 

the intensity profiles have a similar shape for all beam order 

N. These numerical results can be applied for several various 

applications, such as the optical trapping and tweezers. 
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Figs. 5 and 6 illustrate the transverse and the radial 

intensity distributions of the diffracted FtVHB by CFH for 
two values of p (= 0 and 1) and three values of M (=0, 2 and 

6), for each value of topological charge M+|mp| and three 

values of N (=1, 2 and 6). The other parameter considered in 

the numerical simulations is z=450m Fig. 5 investigates the 

variation of the intensity distribution of the produced output 

beam, for p =0, and three values of M. For each value of M, 

three curves for N are plotted  

 

 

 

 

 

 
Fig 4 Longitudinal intensity profile of FtVHB diffracted by 

CFH for p=1, at (a) M=0, (b) M=2, and (c) M=6.

 
 

From the plots of this figure, we shows that when the 

produced output beams have a zero topological charge (the 

hologram without a phase singularity M+|mp|.=0, the wave 

field amplitude for higher diffraction orders can be described 

by zeroth-order Bessel functions. The intensity profile has a 

central bright spot with maximum intensity surrounded by 

five bright rings with different intensities. The maximum 

intensity decreases gradually with increasing N (see Fig. 5A). 

Other views of the illustrations of this figure are shown in 

Fig. 5 (B and C), for nonzero topological charge with a phase 

singularity  0 mpM . Note that, for this case, the 

topological charge of the diffracted beam is an identical to 
that of the incident beam. From the plots of this figure, it can 

be observed that the intensity profile gets a central dark 

hollow beam of zero intensity with several different peaks of 

vortex bright rings. 

 

    

 
 

 
Fig 5 Transverse and radial intensity distribution of FtVHB 

diffracted by CFH  for p=0 and (A) M=0, (B) M=2and 

(C)M=6. 
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We conclude from these plots that as long as the N 

increases, when M is fixed as much as the intensity maximum 
of vortex radius, which are formed decreases and the region 

radius of central dark of the created beam slightly increases. 

Moreover, we also observe from that, the influence of M on 

the intensity profile is clearly shown. The dark hollow region 

increases but the vortex radius number and their intensity 

decreases with the increase of value of M with the same value 

of N. In Fig. 6, the helical axicon effect is observed (p=1). 

The general variation rule of intensity distribution in this 

figure is similar to that in Fig. 6 (B and C). However, from 

Fig. 6A, we can clearly see that with the increase of p up to 

one and M is equal to zero at three values of N, the higher 

diffraction orders of the output field will be described by 
first-order Bessel functions. 

 

So, the output beam profile gives a dark hollow at the 

center with four values of the bright vortex radius of different 

intensities. This dark spot slightly increases and a maximum 

peak of intensity of the vortex radius which are formed, 

decreases (see Fig. 6A (a-b)). 

 

 
 

 

 
Fig 6 Transverse and radial intensity distribution of FtVHB 

diffracted by CFH for p=1 and (A)M=0, (B) M=2and 

(C)M=6. 

 

The similar remarks of Fig. 6A are seen in Fig. 6(B and 

C), but in the later shapes the influence of the parameter M is 

shown. From the illustration of these plots, we can see that, 

with the increase of the topological charge for the same 

values of N are chosen in Fig. 6A, the central dark radius of 

the produced output beam increases but the vortex radius 
number and their maximal intensities decrease. 

 

On the other hand, we can see in Fig. 7, the transverse 

intensity profile for the generated spiraling Bessel beam in 

the case when the topological charges of helical axicon p and 

of an incident beam M have same values, but opposite signs    

(p= -M). Therefore, in this case, the phase singularity 

annihilates and the zero order Bessel beams whose 

distribution of intensity has a bright central spot will be 

generated. From the drawings of this figure, it can be seen 

that the profile of the outgoing beam gets a central maximum 
intensity of bright spot surrounded with five weak bright 

rings of various peaks intensity i.e., the obtained spiraling 

Bessel beams are chargeless. In addition, the effect of order 

N on the distribution of intensity of the produced beam is 

clearly shown. The maximum of intensity peaks, for vortex 

radius that is generated, decreases.  
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Fig 7 Radial intensity distribution of FtVHB diffracted by 

CFH for P=1 and M= -1 with (a) N=1, (b) N=2 and (c) N=6 

 

IV. CONCLUSION 

 

In the presented paper, we have investigated a new 

Bessel-like beam family called spiraling Bessel beam 
generated by converting the diffracted FtVHB with the CFH. 

Based on the Fresnel diffraction integral formula, the 

analytical expressions of the output field amplitudes of the 

produced beam are derived. In numerical calculations, the 

intensity distributions in longitudinal and radial directions are 

analyzed and discussed, by studying the effect of the incident 

beam order N and the topological charge of the produced 

beam. Our obtained results in this paper, were generalized the 

diffraction cases of flat-topped and Gaussian modes by the 

CFH, respectively. Results of this research can find interest 

applications in optical field of communication. 
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