
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Modular Control Plane Verification via Temporal Invariants

ANONYMOUS AUTHOR(S)

Monolithic control plane verification cannot scale to hyperscale network architectures with tens of thousands
of nodes, heterogeneous network policies and thousands of network changes a day. Instead,modular verification
offers improved scalability, reasoning over diverse behaviors, and robustness following policy updates. We
introduce Timepiece, a new modular control plane verification system. While one class of verifiers, starting
with Minesweeper [Beckett et al. 2017a], were based on analysis of stable paths, we show that such models,
when deployed naïvely for modular verification, are unsound. To rectify the situation, we adopt a routing
model based around a logical notion of time and develop a sound, expressive, and scalable verification engine.

Our system requires that a user specifies interfaces between module components. We develop methods for
defining these interfaces using predicates inspired by temporal logic, and show how to use those interfaces to
verify a range of network-wide properties such as reachability or access control. Verifying a prefix-filtering
policy using a non-modular verification engine times out on an 80-node fattree network after 2 hours. However,
Timepiece verifies a 2,000-node fattree in 2.37 minutes on a 96-core virtual machine. Modular verification
of individual routers is embarrassingly parallel and completes in seconds, which allows verification to scale
beyond non-modular engines, while still allowing the full power of SMT-based symbolic reasoning.

1 INTRODUCTION
Today, in virtually every facet of our daily lives, we interact with networking infrastructure.
Unreliable or failed infrastructure may lock us out of an ATM, a virtual court hearing, or even calling
emergency services [Evans 2022]. Network operators program this infrastructure using distributed
routing protocols, where each router in a network may run thousands of lines of configuration code.
Routine configuration updates may inadvertently render a router unreachable [Strickx and Hartman
2022] or violate isolation requirements that prevent flooding [Vigliarolo 2022].With networking now
ubiquitous, major cloud providers are seeing sustained financial growth in response to mounting
demand for reliable networking [Miller 2022]. These cloud networks may have hundreds of data
centers, each with hundreds of thousands of devices running thousands of heterogeneous policies,
and receiving thousands of updates every day [Jayaraman et al. 2019b]. This demand suggests a
commensurate infrastructure growth will also take place as networks accommodate more and more
users: with this come greater perils when configuration updates go wrong.
To safeguard against these dangers, operators can use control plane verification techniques to

analyze their networks [Abhashkumar et al. 2020; Beckett et al. 2017a, 2018, 2019; Fayaz et al.
2016; Gember-Jacobson et al. 2016; Lopes and Rybalchenko 2019; Prabhu et al. 2017; Weitz et al.
2016; Ye et al. 2020]. Until recently, however, research has focused on monolithic verification of the
entire network at once, which is not feasible for large cloud provider networks. Such networks
demandmodular techniques that can divide the network into components to verify in isolation. This
approach has proven successful in the context of software verification [Alur and Henzinger 1999;
Flanagan and Qadeer 2003; Giannakopoulou et al. 2018; Grumberg and Long 1994; Henzinger et al.
1998] and network data plane verification [Jayaraman et al. 2019a]. The interfaces between network
components must be annotated with invariants that describe the routes each component may
produce. Given the interfaces of a component’s neighbors, we can then verify that the component
respects its own interface. Modular reasoning can help operators abstract away unnecessary details,
localize network bugs, confirm the validity of configuration updates, and scale verification to
arbitrarily-large networks [Alberdingk Thijm et al. 2022]. When the interfaces imply some useful
property such as reachability or access control, we can conclude that the system as a whole also
satisfies that property.

, Vol. 1, No. 1, Article . Publication date: November 2022.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

We propose Timepiece, the first modular technique with abstract network interfaces to verify
a wide range of properties (including route reachability). Kirigami [Alberdingk Thijm et al. 2022]
proposed an architecture for modular control plane verification, but restricted its interfaces to only
exact routes. Lightyear [Tang et al. 2022] presented an alternative verification technique with more
expressive interfaces, but can only check that a network never receives a route (e.g., for access
control properties) — it cannot check reachability, a keen property of interest.

A temporal model. The basis of Timepiece’s approach is a temporal model of network execution,
where we reason over the states of nodes at all times. This model came as a surprise to us: one
branch of prior work, starting with Minesweeper [Beckett et al. 2017a], sought to avoid the burden
of reasoning over all transient states of the network by focusing on the stable states of the routing
protocol once routing converges. Unfortunately, a naïve combination of modular reasoning and
Minesweeper-style analysis of stable states is unsound. We discovered that the best way to recover
soundness, while maintaining the system’s generality, is to move to a temporal model.
This temporal model appears to ask the verification engine to do a lot more work: the system

must verify that all the messages produced at all times are consistent with a user-supplied interface
for each network component. Nevertheless, because reasoning is modular, ensuring individual
problems are small, the system scales with the size of the largest component rather than the size of
the network. This modular reasoning is general and any symbolic method (e.g., symbolic simulation,
model checking) could use it to verify individual components. We use a Satisfiability Modulo
Theories (SMT)-based method in this work [Barrett and Tinelli 2018]. As a preview of modularity’s
benefits, Figure 1 shows the time it takes Timepiece to verify connectivity for variable-sized fattree
topologies with external route announcements using the eBGP routing protocol, compared with a
Minesweeper-style network-wide stable paths encoding.

0 1,000 2,000
0

2,000
4,000
6,000 timeout

Topology Size (Nodes)

Ve
rifi

ca
tio

n
tim

e
[s
]

Modular
Monolithic

Fig. 1. Verification time comparison between Timepiece

and Minesweeper-style verification.

Timepiece does require more work of users
than monolithic, non-modular systems: users
must supply interfaces that characterize the
routes each network component may generate
at each time. Still, the presence of these inter-
faces, once constructed, will have the typical
benefits of interfaces in any software engineer-
ing context. First, they localize exactly where
an error occurs: if a component is not consistent
with its interface, then one must only search
that component for the mistake, and a coun-
terexample from the SMT solver can help pin-
point it. Second, router configurations change
rapidly, and these changes are often the source
of network-wide problems [Zhang et al. 2022].
Well-defined interfaces will be stable over time. As users update their configurations, they may
easily recheck them against the stable, local interface for problems.

Inspired by temporal logic [Pnueli 1984], we developed a simple language to help users specify
their interfaces. Through this language, users may state that they expect to see certain sets of
routes always, eventually (by some specified time 𝑡 , to be more precise), or until (some approximate
specified time). Moreover, the interface language allows users to generate abstract specifications
that need not characterize irrelevant features of routes, and instead provide only what is necessary
to prove a desired property. For instance, a user might specify a reachability property simply by
stating a node must “eventually receive some route,” without saying which route it must receive.

, Vol. 1, No. 1, Article . Publication date: November 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Modular Control Plane Verification via Temporal Invariants 3

To summarize, the key contributions of this paper are:

• We demonstrate in depth why a natural, but naïve modular control plane analysis based on
an analysis of stable states is unsound.
• We develop a new theory for modular control plane analysis based on time, and prove it

sound and complete with respect to the network semantics. This theory is general, and can
verify individual components using any verification method.
• We design and implement a new, modular control plane verification tool, Timepiece, based

directly on this theory, which uses an SMT-based backend to reason symbolically about all
possible routes at all times.
• We evaluate the tool and check a variety of policies at individual nodes in hundreds of

milliseconds. Thanks to its embarrassingly parallel modular procedure, Timepiece scales to
networks with thousands of nodes.

2 KEY IDEAS
This section introduces the stable routing model of network control planes, which serves as a
foundation for many past network verification tools [Beckett et al. 2017a, 2018, 2019; Fogel et al.
2015]. It illustrates in depth why naïve adoption of this model for modular verification is unsound.
It then introduces a new temporal model for control plane verification and provides the intuition
for why the revised model is superior. This section is long but contains a substantial payoff: the
essence of why a sound and general modular control plane analysis should be based off a temporal
model of control plane behavior.

2.1 Background
To determine how to deliver traffic between two endpoints, routers (also called nodes) run distributed
routing protocols such as BGP [Lougheed and Rekhter 1991], OSPF [Moy 1998], RIP [Hedrick 1988],
or ISIS [Oran 1990]. Each node participating in a protocol receives messages (also called routes)
from its neighboring nodes. After receiving routes from its neighbors, a node will select its “best”
route—the route it will use to forward traffic. Different protocols use different metrics to compare
routes and select the best among those received. For instance, RIP compares hop count; OSPF uses
the shortest weighted-length path; and BGP uses a complex, user-configurable combination of
metrics. Finally, each router sends its chosen route to its neighbors, possibly modifying the route
along the way (for instance, by prepending its identifier to the path represented by the route).

Routing algebras. Routing algebras [Griffin and Sobrinho 2005; Sobrinho 2005] are abstract models
that capture the similarities between different distributed routing protocols. Prior work on control
plane verification [Beckett et al. 2017a; Giannarakis et al. 2020; Griffin et al. 2002] uses similar
abstract models to formalize route computation. We adopt this standard abstract model of routing
protocols, which specifies the following components.

• A directed graph 𝐺 that defines the network topology’s nodes (𝑉) and edges (𝐸). We use
lowercase letters (𝑢, 𝑣 ,𝑤 , etc.) for nodes and pairs (𝑢𝑣) to indicate directed edges.
• A set 𝑆 of routes that communicate routing information between nodes.
• An initialization function I that provides an initial route I𝑣 ∈ 𝑆 for each node 𝑣 .
• A set of edge transfer functions F . Each transfer function f𝑒 ∈ F transforms routes as they
traverse the edge 𝑒 .
• A binary function ⊕ (a.k.a. merge or the selection function) selects the best route between
two options.

, Vol. 1, No. 1, Article . Publication date: November 2022.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

An idealized example. Many large cloud providers deploy data center networks to scale up their
compute capacity. They connect those data centers to each other and the rest of the Internet
via a wide-area network (WAN). To illustrate the challenges of modular network verification,
we will explore verification of an idealized cloud provider network with WAN and data center
components. The picture below presents a highly abstracted view of our network’s topology.

𝑛

𝑤

𝑣 𝑑 𝑒

Neighbor WAN Data Center

filter

tag

allow

The data center network contains
routers d and e where d connects
to the corporate WAN and e con-
nects to data center servers. The
WAN consists of routers w and v.
Router v connects to the data cen-
ter as well as to a neighboring net-
work n, which is not controlled by
our cloud provider.1

The default routing policy uses
shortest-paths. However, in addition, the network administrators want e to be reachable from
all cloud-provider-owned devices (i.e., w, v, d), but not to be reachable from outsiders (i.e., n).
They intend to enforce this property by tagging all routes originating from their network (𝑤) as
“internal” (e.g., using BGP community tags [CISCO 2005]) and allowing those routes to traverse the
de edge. Doing so should allow e to communicate with internal machines but not external machines.
Furthermore, to protect nodes from outside interference, the cloud provider applies route filters to
external peers to drop erroneous advertised routes that may “hijack” [Feamster and Balakrishnan
2005] internal routing.

Modelling the example. To model our example network, we define the network topology as the
graph𝐺 pictured earlier.We assume all routers participate in an idealized variant of eBGP [Lougheed
and Rekhter 1991], which is commonly used in both wide-area networks and data centers [Ab-
hashkumar et al. 2021]. The set of routes 𝑆 used in this protocol are records with 3 fields: (i) an
integer “local preference” that lets users overwrite default preferences, (ii) an integer path length,
and (iii) a boolean tag field that is set to true if a route comes from an internal source and false
otherwise. Lastly, 𝑆 includes∞, a message that indicates absence of a route.
Let’s consider what happens when starting with a specific route at WAN node w, ⟨100, 0, false⟩

(local preference 100, path length of 0, not tagged internal). The I function would assign w that
route, and assign the∞ route to all other nodes.

The transfer function f𝑒 will increment the length field of every route by one across every edge
𝑒 . In addition, edge wv sets the internal tag field to true and edge nv drops all routes (transforms
them into∞). Finally, edge de drops all routes not tagged internal/true.

The merge function ⊕ always prefers some route over the∞ route. In addition, ⊕ prefers routes
with higher local preference over lower local preference. If the local preference is the same, it
chooses a route with a shorter path length. ⊕ ignores the tag field. For example, ⊕ operates as
follows:

⟨100, 2, false⟩ ⊕ ∞ = ⟨100, 2, false⟩
⟨100, 2, false⟩ ⊕ ⟨200, 5, true⟩ = ⟨200, 5, true⟩
⟨200, 2, false⟩ ⊕ ⟨200, 5, true⟩ = ⟨200, 2, false⟩

1Any of the edges could be bi-directional, allowing routes to pass in both directions, but for pedagogic reasons we strip
down the example to the barest minimum, retaining edges that flow from left-to-right except for at v and d where routes
may flow back and forth.

, Vol. 1, No. 1, Article . Publication date: November 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Modular Control Plane Verification via Temporal Invariants 5

allow
𝑛

𝑤

𝑣 𝑑 𝑒∞

⟨100, 0, false⟩

⟨100, 1, true⟩

⟨100, 2, true⟩

⟨100, 3, true⟩
filter

tag

time n w v d e

0 ∞ ⟨100, 0, false⟩ ∞ ∞ ∞
1 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ∞ ∞
2 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ∞
3 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ⟨100, 3, true⟩
4 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ⟨100, 3, true⟩

Fig. 2. Simulation of the example network for a fixed set of initial routes. Node e learns a route to w since the

route is tagged as internal, and the network stabilizes at time 3.

Network simulation. A state of a network is a mapping from nodes to the “best routes” they have
computed so far. One may carry out a simulation by starting in the initial state and repeatedly
computing new states (i.e., new “best routes” for particular nodes). Eventually, well-behaved
networks converge to stable states where no node can compute any better routes, given the routes
provided by its neighbors.
To compute a new best route at a particular node, say v, we apply the f function to each best

route computed so far at its neighbors w, n, and d, and then select the best route among the results
and the initial value at v, using the merge (⊕) function. More precisely:

vnew = f𝑤𝑣 (wold) ⊕ f𝑛𝑣 (nold) ⊕ f𝑑𝑣 (dold) ⊕ I𝑣

The table in Figure 2 presents an example simulation. At each time step, all nodes compute their
best route using the equation above, given the routes supplied by their neighbors at the previous
time step. After time step 3, no node ever computes any new route—the system has reached a stable
state. The picture in Figure 2 annotates each node in the diagram with the stable route it computes.2

Network verification. Since the edge from d to e only allows routes tagged internal, 𝑤 ’s route
would not reach e if v were to receive a better route from n (e.g., if the route filter from 𝑛 was
implemented incorrectly). In other words, the simulation demonstrates that the network correctly
operates when n sends no route (∞). But what about other routes? Will nv filter all routes from n
correctly? SMT-based tools like Minesweeper [Beckett et al. 2017a] and Bagpipe [Weitz et al. 2016]
can answer such questions by translating the routing problem into constraints for a Satisfiability
Modulo Theory (SMT) solver to solve. In doing so, one may represent the set of all possible external
route announcements symbolically and reason simultaneously about any external route announce-
ment (something other verifiers such as Tiramisu [Abhashkumar et al. 2020], Plankton [Prabhu
et al. 2017], Shapeshifter [Beckett et al. 2019], Hoyan [Ye et al. 2020], or DNA [Zhang et al. 2022]
either do not do, or do partially).

2For simplicity, our model assumes a synchronous time semantics to simplify our examples and theory — however, we
believe we could extend our approach to asynchronous time in the style of [Daggitt et al. 2018].

, Vol. 1, No. 1, Article . Publication date: November 2022.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

2.2 The Challenge of Modular Verification
A system for modular verification will partition a network into components and verify each
component separately, possibly in parallel. However, since routes computed at a node in one
component depend on the routes sent by nodes in neighboring components, each component must
make some assumptions about the routes produced by its neighbors.

Interfaces. In our case, for simplicity (though this is not necessary), we place every node in its
own component and define for it an interface that attempts to overapproximate the set of routes
that the node might produce in a stable state. The interface for the network as a whole is a function
𝐴 from nodes to sets of routes where 𝐴(𝑥) is the interface for node 𝑥 .

The person attempting to verify the network will supply these interfaces. Of course, interfaces
may be wrong—that is, they might not include some route computed by a simulation (and hence
might not be a proper overapproximation). Indeed, when there are bugs in the network, the
interfaces a user supplies are likely to be wrong! The user expects the network to behave one
way, producing a certain set of routes, but the network behaves differently due to an error in its
configuration. A sound modular verification procedure must detect such errors. On the other hand,
a useful modular verification procedure should allow interfaces to overapproximate the routes
produced, when users find it convenient. Overapproximations are sound for verifying properties
over all routing behaviors of a network, and they often simplify reasoning, allowing users to think
more abstractly.
Throughout the paper, we use predicates 𝜑 to define interfaces, where 𝜑 stands in for the set

of routes {𝑠 | 𝑠 ∈ 𝑆, 𝜑 (𝑠)}. Returning to our running example, one might define the interface for
w using the predicate 𝑠 .lp = 100 ∧ 𝑠 .len = 0 ∧ ¬𝑠 .tag. Such an interface would include exactly the
one route generated by w in our example: ⟨100, 0, false⟩. However, path length is unimportant in
the current context; to avoid thinking about it, a user could instead provide a weaker interface
representing infinitely many possible routes, such as 𝑠 .lp = 100 ∧ ¬𝑠 .tag. This interface relieves
the user of having to figure out the exact path length (not so hard in this simple example, but
potentially challenging in an arbitrary wide-area network), and instead specifies only the local
preference and the tag. In general, admitting overapproximations make it possible for users to
ignore any features of routing that are not actually relevant for analyzing the properties of interest.

The Strawperson Verification Procedure. For a given node x, the component centered at x is the
subgraph of the network that includes node x and all edges that end at x. Given a network interface
𝐴, our strawperson verification procedure (SV) will consider the component centered at each
node x independently. Suppose a node x has neighbors 𝑛1, . . . , 𝑛𝑘 . For that node x, SV checks that
∀𝑠1 ∈ 𝐴(𝑛1), . . . ,∀𝑠𝑘 ∈ 𝐴(𝑛𝑘),

f𝑛1𝑥 (𝑠1) ⊕ · · · f𝑛𝑘𝑥 (𝑠𝑘) ⊕ I𝑥 ∈ 𝐴(𝑥) (1)

This check is akin to performing one local step of simulation, checking that all possible inputs
from neighbors give rise to an output route that conforms to the interface. One might hope that by
performing such a check on all components independently, one would be able to guarantee that all
nodes converge to stable states described by their interfaces. If that were the case, then one could
verify properties by:

(1) Checking that all components guarantee their interfaces, under the assumption their neigh-
bors do as well; and

(2) Checking that the interfaces imply the network property of interest (e.g., reachability, access
control, no transit).

, Vol. 1, No. 1, Article . Publication date: November 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Modular Control Plane Verification via Temporal Invariants 7

The problem: Execution interference. It turns out this simple and natural verification procedure is
unsound: users can supply interfaces that, when analyzed in isolation, satisfy equation (1) above,
but wind up excluding the stable states computed by simulation. Hence, the second verification step
is pointless: a destination that appears reachable according to an interface may not be; conversely,
a route that appears blocked may not be.

Let us reconsider the running example, where we assign w an initial route with local preference
100, and let us assume the external neighbor 𝑛 can send us any route (true). A user could provide
the interfaces shown below in order to falsely conclude that 𝑒 will not receive a route from𝑤 .

allow
𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞
filter

tag

Here, it is easy to check that nodes n and w satisfy equation (1). Node n’s interface is simply any
route. Node w’s route can be any route with a local preference of 100.3
The surprise comes at node v where its interface only includes routes that satisfy ¬𝑠 .tag, i.e.,

routes not tagged as internal. Those routes have 𝑠 .lp = 200 and may have any path length. But the
route from w is tagged true along the edge𝑤𝑣 — why is such a route erroneously excluded from
v’s interface? We show the component centered at v below. When computing its stable state, v will
compare the routes it receives from w and d: because all routes from w have a local preference set
to 100 by f𝑤𝑣 , whereas all routes from d have a better local preference of 200, v will always wind
up selecting the route from d over the route from w.

allow
𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞
filter

tag

But how then did d acquire these preferential routes tagged false? Such routes came in turn from
v’s interface. Here is the component centered at d.

allow
𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞
filter

tag

What has happened is that v transmits its spurious routes to d, enabling d to justify its own spurious
routes. d transmits these back again to v, where d’s routes interact with the legitimate routes from
w. Since w’s routes have lower local preference, v discards them during computation of stable
states. In a nutshell, the routes from an imaginary simulation proposed by our interface overrule

3It could be any route (true), as the edge 𝑤𝑣 applies the default preference of 100, but for clarity we label the routes at w
with preference 100.

, Vol. 1, No. 1, Article . Publication date: November 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

legitimate routes from the true simulation, through a process of circular self-justification at v and
d. How might we prevent this execution interference?

Other approaches. There are a few ways to modify the suggested verification procedure to make
it sound, but such modifications typically limit the power of the verification procedure or the
expressiveness of the properties it can prove.
One approach is to limit every interface to exactly one route. Doing so avoids introducing any

imaginary executions in the first place. Kirigami [Alberdingk Thijm et al. 2022] takes this approach,
but the cost is that a network engineer analyzing their network must know exactly which routes
appear at which locations. Computing routes exactly can be difficult in practice, and would seem
unnecessary if all one cares about is a high-level property such as reachability. Moreover, it makes
the interfaces brittle in the face of change—any change in network configuration likely necessitates
a change in interface. A superior system would allow operators to define durable and abstract
interfaces that imply key properties, and to check configuration updates against those interfaces.
Another approach is to limit the set of properties that the system can check to only those that

say what does not happen in the network rather than what does happen. This is the approach
Lightyear [Tang et al. 2022] takes. For instance, Lightyear allows one to check that node A will
not be able to reach node B, but cannot prove that A and B will have connectivity — a common
requirement in networks.
A final approach is to try to impose a static ordering on the components, and verify each

component according to this ordering, using no information from the not-yet-verified components.
This approach avoids the circular reasoning between d and e above, but is still unnecessarily
conservative. The running example is overly simple as it shows routes propagated through a
network in a single direction from left to right. In realistic networks, multiple destinations may
broadcast routes in multiple directions at once. In such situations, there may be no way to order
the components, and verification may not be possible. Moreover, we found that being unable to
make assumptions from some neighbors made verifying certain properties, such as reachability,
impossible in most cases.

2.3 The Solution: A Temporal Model
Our key insight is to change the model: rather than focus exclusively on the final stable states of a
system, as a Minesweeper-style verifier would, we ensure that the model preserves the entirety
of every step-by-step execution. To make this work, we need to add information to the model: a
notion of logical time. By associating every route with the time at which a node computes it, we can
(i) ensure that all routes at a particular time are properly considered, and their executions extended
a time step, and (ii) ensure that we avoid collisions between routes computed at different times.

To verify such routing systems modularly, we once again must specify interfaces, but this time
the interface for each node will specify the set of routes that may appear at any time. We write this
now as an interface 𝐴 that takes both a node and a time and returns an overapproximation of the
set of routes that may appear at the node at that time. For example, 𝐴(𝑥) (𝑡) now gives the set of
routes for node 𝑥 and time 𝑡 . To check the interfaces, we use a verification procedure structured
inductively with respect to time, as follows:
• At every node x, check I𝑥 is included in 𝐴(𝑥) (0)
• Consider each node x with neighbors 𝑛1, . . . , 𝑛𝑘 . At time 𝑡 + 1, check that merging any

combination of routes 𝑠1 ∈ 𝐴(𝑛1) (𝑡), . . . , 𝑠𝑘 ∈ 𝐴(𝑛𝑘) (𝑡) from neighbors’ interfaces at time 𝑡
produces a route in 𝐴(𝑥) (𝑡 + 1):

f𝑛1𝑥 (𝑠1) ⊕ · · · ⊕ f𝑛𝑘𝑥 (𝑠𝑘) ⊕ I𝑥 ∈ 𝐴(𝑥) (𝑡 + 1) (2)

, Vol. 1, No. 1, Article . Publication date: November 2022.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Modular Control Plane Verification via Temporal Invariants 9

Because this procedure is structured inductively, we can prove, by induction on time, that all states
at all times are included in their respective interfaces—the procedure is sound.
To reason over times, we borrow notation from temporal logic to specify interfaces. We write
G(𝑃) (“globally 𝑃”) when a node’s interface includes the routes that satisfy predicate 𝑃 for all times
𝑡 . We write 𝑃1 U𝑡 𝑃2 (“𝑃1 until 𝑃2”) when a node may have routes satisfying 𝑃1 until time 𝑡−1 and
𝑃2 afterwards. Finally, we write F 𝑡 (𝑃) (“finally 𝑃”) to mean that eventually at time 𝑡 routes start
satisfying 𝑃 .

Verifying correct interfaces. The picture below presents an interface we may verify with this
model.

allow
𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

G(𝑠 = ∞∨ 𝑠 .tag)

G(𝑠 = ∞∨ 𝑠 .tag)

G(𝑠 = ∞∨ 𝑠 .tag)
filter

tag

We once again assume that node n can send any route at any time, denoted by the interface: G(true).
Similarly, we assume w has some route with default local preference: G(𝑠 .lp = 100). The interesting
part is at nodes v and d where the interfaces state that there is always either no route (e.g., at the
beginning of time), or a tagged route: G(𝑠 = ∞∨𝑠 .tag). Node e is now able to prove a weak property:
if it receives a route, then the route will be tagged internal. Node v is able to prove its interface since
routes are always tagged on import from node w, routes from n are correctly dropped, and any
routes from d must also have a tag per its interface. In fact, all the nodes can prove their interface
given their neighbors’ interfaces.

Proving reachability. The previous interfaces were not strong enough to prove that w will be
able to reach e. The problem is that we were trying to reason about all time, and yet e will not
always have a route to w (i.e., from time 0 onward). Instead, we know that e will eventually be able
to reach w. Consider now the stronger interfaces shown below:

allow
𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

(𝑠 = ∞) U1 (𝑠 .tag)

(𝑠 = ∞) U2 (𝑠 .tag)

F 3 (𝑠 ≠ ∞)
filter

tag

As before, we allow n and w to send any route. However, now nodes v and d declare that they
will not have a route until a specified (logical) time, at which point they receive a tagged route. We
give precise witness times for v and d’s interfaces, as otherwise v could give d a non-null route (or
vice-versa) that would violate the interface before its witness time. e’s interface simply requires that
e receives some route at the witness time (allowing arbitrary routes before the witness time). These
interfaces are sufficient to prove that e will eventually receive a route to w, since d will eventually
have a route tagged as internal, and hence e will allow it.

Debugging erroneous interfaces. Let us revisit the example from before where the user provided
unsound interfaces by introducing spurious routes with local preference 200. The equivalent
interfaces are now shown below.

, Vol. 1, No. 1, Article . Publication date: November 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

allow
𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

G(𝑠 .lp = 200 ∧ ¬𝑠 .tag)

G(𝑠 .lp = 200 ∧ ¬𝑠 .tag)

G(𝑠 = ∞)
filter

tag

Unlike before, the verification procedure detects an error: the interfaces at nodes v and d do not
include the initial route∞ at time 0. As a result, the user will receive a counterexample for time
𝑡 = 0 when verifying v or d. Suppose our imaginative user tries to circumvent this issue by also
including the initial route in the interfaces for v and d with the interface:

G
(
(𝑠 .lp = 200 ∧ ¬𝑠 .tag) ∨ (𝑠 = ∞)

)
However, doing so merely pushes the problem “one step forward in time”—there is no way to
circumvent our temporal analysis. If d’s route may be ∞, v’s interface must also consider what
routes it selects when that is the case, including tagged routes such as ⟨100, 1, true⟩. The user might
receive a counterexample at time 𝑡 = 1 where v’s route is the following:

f𝑤𝑣 (⟨100, 0, false⟩) ⊕ f𝑛𝑣 (∞) ⊕ f𝑑𝑣 (∞) = ⟨100, 1, true⟩
where 𝐴(𝑣) (1) does not contain the result ⟨100, 1, true⟩. This counterexample should reveal the fact
that there is an error in either the specification (as in this case) or the configuration (e.g., if a buggy
configuration tagged routes from w false rather than true as expected).

Properties and ghost state. Since modular properties can only reference the route at any single
node, an observant reader may wonder if this limits the kinds of properties that we can verify.
In the examples so far, we checked to see whether or not node e receives some route, but did not
guarantee that the route originated at w. Fortunately, there is a simple fix.
Enter ghost state, a technique used in a wide variety of settings (see Dafny [Leino 2010], for

instance). Users may model routes as containing additional “ghost” fields that play no role in a
protocol’s routing behavior, yet can capture end-to-end properties. For instance, we could add an
additional “ghost” field to determine if a route initiated at node w—let us call that field “fromw.” We
assume this field is initially true at w, false at all other nodes, and that transfer functions preserve
this field. With this addition, we can now check that e receives a route from w and no other node:

allow
𝑛

𝑤

𝑣 𝑑 𝑒G(¬𝑠 .fromw)

G(𝑠 .lp = 100 ∧ 𝑠 .fromw)

(𝑠 = ∞) U1 (𝑠 .tag ∧ 𝑠 .fromw)

(𝑠 = ∞) U2 (𝑠 .tag ∧ 𝑠 .fromw)

F 3 (𝑠 .fromw)
filter

tag

Ghost state allows us to specify and check many network properties; Table 1 presents a variety of
other possibilities. That said, while ghost state is general and flexible, it can only capture information
about the history of a route at a single node and is thus not a panacea. For instance, properties
involving the routes at more than one node, such as a formulation of local equivalence [Beckett et al.
2017a], where 𝜎 (𝑢) (𝑡) = 𝜎 (𝑣) (𝑡) for some arbitrary 𝑢, 𝑣 and 𝑡 , is inexpressible using our verifier.

3 FORMAL MODELWITH TEMPORAL INVARIANTS
Figure 3 provides a summary of the key definitions and notation needed to formalize our verification
procedure. The notation follows from the previous section, e.g., a network instance𝑁 = (𝐺, 𝑆, I, F, ⊕)

, Vol. 1, No. 1, Article . Publication date: November 2022.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Modular Control Plane Verification via Temporal Invariants 11

Table 1. Ghost state for selected example properties.

Property Added ghost state

reachability to 𝑑 [Fogel et al. 2015] 1 bit to mark routes from 𝑑

isolation [Beckett et al. 2017a] 1 bit per isolation domain
ordered waypoint [Kazemian et al. 2013]. 𝑙𝑜𝑔2 (𝑘) bits for 𝑘 waypoints
unordered waypoint [Beckett et al. 2017a] 𝑘 bits for 𝑘 waypoints
no-transit [Beckett et al. 2016] mark with {peer, prov, cust}
fault tolerance [Beckett et al. 2017a] up to |𝐸 | bits
bounded path length [Lopes et al. 2015] integer length field

Network instances 𝑁 = (𝐺, 𝑆, I, F , ⊕)

𝐺 = (𝑉 , 𝐸) network topology
𝑉 topology nodes
𝐸 ⊆ 𝑉 ×𝑉 topology edges
𝑆 set of network routes
𝑠 ∈ 𝑆 a route
I : 𝑉 → 𝑆 node initialization function
I𝑣 ∈ 𝑆 initial route at node 𝑣
F : 𝐸 → (𝑆 → 𝑆) edge transfer functions
f𝑒 : 𝑆 → 𝑆 transfer function for edge 𝑒
⊕ : 𝑆 × 𝑆 → 𝑆 merge function

Network semantics 𝜎 : 𝑉 → N→ 𝑆

𝜎 (𝑣) (𝑡) ∈ 𝑆 state at node 𝑣 at time 𝑡
preds(𝑣) = {𝑢 | 𝑢 ∈ 𝑉 ,𝑢𝑣 ∈ 𝐸} in-neighbors of 𝑣

𝜎 (𝑣) (0) = I𝑣 (3)

𝜎 (𝑣) (𝑡 + 1) = 𝐼𝑣 ⊕
⊕

𝑢∈preds (𝑣)
f𝑢𝑣 (𝜎 (𝑢) (𝑡)) (4)

Fig. 3. Summary of our formal routing model and notation.

contains the key components introduced earlier. To refer to the route computed by a network
simulator at node 𝑣 at time 𝑡 , we use the notation 𝜎 (𝑣) (𝑡) (defined as before—see Figure 3).

Figure 4 presents our interfaces and language of temporal operators with lifted versions of some
common set operations. As before, we use 𝐴 to denote network interfaces. A valid interface is an
inductive invariant [Giannakopoulou et al. 2018]. Such interfaces satisfy the initial and inductive
conditions specified in Figure 4. Valid interfaces may be used to prove node properties, as specified
by the safety condition in Figure 4.
The most important property of our system is soundness: the simulation states are included in

any interface 𝐴 that satisfies the initial and inductive conditions.

Theorem 3.1 (Soundness). Let 𝐴 satisfy initial and inductive conditions. Then ∀𝑡 ∈ N,∀𝑣 ∈
𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡).

Proof. By induction on 𝑡 . See A.1. □

, Vol. 1, No. 1, Article . Publication date: November 2022.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

Interfaces and Properties

𝐴 : 𝑉 → N→ 2𝑆 node interfaces/invariants
𝑃 : 𝑉 → N→ 2𝑆 node properties
𝜑 : 2𝑆 sets of states

Temporal operators 𝑄 : N→ 2𝑆

G𝜑 = 𝜆 𝑡 . 𝜑 globally
𝜑1 U𝜏 𝜑2 = 𝜆 𝑡 . if 𝑡 < 𝜏 then 𝜑1else 𝜑2 until
F 𝜏𝜑 = 𝜆 𝑡 . 𝑆 U𝜏 𝜑 finally
𝑄1 ⊓𝑄2 = 𝜆 𝑡 .𝑄1 (𝑡) ∩𝑄2 (𝑡) intersection (lifted)
𝑄1 ⊔𝑄2 = 𝜆 𝑡 .𝑄1 (𝑡) ∪𝑄2 (𝑡) union (lifted)
∼𝑄 = 𝜆 𝑡 . 𝑆 \𝑄 (𝑡) negation (lifted)

Verification Conditions
Initial condition for 𝐴:

∀𝑣 ∈ 𝑉 , I𝑣 ∈ 𝐴(𝑣) (0) (5)
Inductive condition for 𝐴:

∀𝑣 ∈ 𝑉 ,𝑢1, 𝑢2, . . . , 𝑢𝑛 ∈ preds(𝑣),∀𝑡 ∈ N,
∀𝑠1 ∈ 𝐴(𝑢1) (𝑡),∀𝑠2 ∈ 𝐴(𝑢2) (𝑡), . . . ,∀𝑠𝑛 ∈ 𝐴(𝑢𝑛) (𝑡),©­«I𝑣 ⊕

⊕
𝑖∈{1,..,𝑛}

f𝑢𝑖 𝑣 (𝑠𝑖)
ª®¬ ∈ 𝐴(𝑣) (𝑡 + 1)

(6)

Safety condition for 𝑃 with respect to 𝐴:
∀𝑣 ∈ 𝑉 ,∀𝑡 ∈ N, 𝐴(𝑣) (𝑡) ⊆ 𝑃 (𝑣) (𝑡) (7)

Fig. 4. Summary of our interfaces and properties, temporal operators and verification conditions.

Since initial and inductive conditions suffice to prove that simulation states are included within
interfaces, it is safe in turn to use interfaces to check node properties.

Corollary 3.2 (Safety). Let 𝐴 satisfy initial and inductive conditions. Let 𝑃 satisfy the safety
condition with respect to 𝐴. Then ∀𝑡 ∈ N,∀𝑣 ∈ 𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝑃 (𝑣) (𝑡).

Proof. From definitions. See A.2. □

Our verification procedure is also complete in the sense that for any network, there exists an
interface that characterizes its behavior exactly. One of the consequences of completeness is that
our modular verification procedure is powerful enough to prove any property that we could prove
via simulation.

Theorem 3.3 (Completeness). Let 𝜎 be the state of the network. Then 𝐴(𝑣) (𝑡) = {𝜎 (𝑣) (𝑡)} for all
𝑣 ∈ 𝑉 and all 𝑡 ∈ N satisfies the initial and inductive conditions.

Proof. By construction of the interface. See A.3. □

4 SMT ALGORITHMS FOR VERIFICATION
Each of the verification conditions (initial, inductive, safety) universally quantify over the (finitely
many) nodes in the network. Consequently, a modular verifier can enumerate the network’s nodes
and independently check each VC for a concrete choice of node. To check an instance of a VC, an

, Vol. 1, No. 1, Article . Publication date: November 2022.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Modular Control Plane Verification via Temporal Invariants 13

off-the-shelf SMT solver will attempt to prove the condition is valid (i.e., true for all choices of 𝑡).
If the instance is not valid, the solver can provide us with a counterexample—the state of a node
at a particular time that the VC does not hold. Counterexamples to initial or inductive conditions
indicate that the interface does not approximate the network’s behavior, while a counterexample
to the safety condition indicates that the interface is not strong enough to prove the property. The
latter case may occur because the property is simply not true (indicating a bug), or alternatively
because we must strengthen the given interface in order to prove the property.

To differentiate our modular procedure from prior work, we present aMinesweeper-style [Beckett
et al. 2017a] monolithic checking procedure in Algorithm 1. This algorithm does not refer to time,
but instead encodes the stable states of the network as a single formula 𝜓 (as presented in §2.1).
Given a property 𝑃 over the stable states (note that here, 𝑃 also ignores time), it checks if 𝑃 always
holds given these states by calling IsValid to ask the solver if𝜓 → 𝑃 is always true.

Algorithm 1 Minesweeper-style checking algorithm.
proc CheckMono(network (𝐺, 𝑆, I, F, ⊕), property 𝑃)
𝜓 ← EncodeStableStates(𝐺)
return IsValid(𝜓 → 𝑃)

We present our modular checking procedure in Algorithm 2. The outer CheckMod function
iterates over each node of the network and encodes the underlying formula (for the current
node) of our three verification conditions by calling EncodeInitCond, EncodeIndCond and
EncodeSafeCond ((5), (6) and (7), respectively). As in Algorithm 1, we then ask the solver if every
encoded formula is valid using IsValid. If IsValid returns false for any check, we then can ask for
the relevant counterexample model𝑚.

Algorithm 2 The modular checking algorithm.
proc CheckMod(network (𝐺, 𝑆, I, F, ⊕), interface 𝐴, property 𝑃)
for all 𝑣 ∈ 𝑉 do in parallel
𝜓1 ← EncodeInitCond(𝑣) ⊲ (5)
𝜓2 ← EncodeIndCond(𝑣) ⊲ (6)
𝜓3 ← EncodeSafeCond(𝑣) ⊲ (7)
if

∨
1≤𝑖≤3 ¬IsValid(𝜓𝑖) then return false

return true

Importantly, unlike Algorithm 1, by using temporal invariants we are able to separate the task of
checking 𝑃 on the network instance into three independent verification tasks, with the encoding of
initial and inductive conditions roughly proportional in size to the complexity of the policy at the
given node (which in turn is related to the in-degree of the node—denser networks that include
nodes with higher in-degree are more expensive to check). The encoding of the safety condition is
proportional to the size of the formulae describing the interface and property (and is generally tiny).
In addition to reducing the size of each SMT formula, the factoring of the problem into independent
conditions makes it possible to use parallelism to check conditions on nodes simultaneously. We
will discuss the performance implications of our procedure further in §6.

If we get back a counterexample𝑚, we can inspect it to understandwhy our checks failed. This can
provide insight into how to strengthen the invariants, or pinpoint a bug in our policy. Anecdotally,
this feature was critical to helping us design interface functions for our own experiments, and for
discovering bugs in our modelling of network policies.

, Vol. 1, No. 1, Article . Publication date: November 2022.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

Table 2. Lines of C# code to write the properties and interfaces for each benchmark.

Benchmark Property LoC Interface LoC

Reach 2 3
Len 5 7
Vf 2 12
Hijack 4 21
BlockToExternal 5 5

5 IMPLEMENTATION
We implemented Timepiece’s modular verification procedure as a library written in C#. The library
allows users to construct models of networks and then modularly verify them. Like the network
modelling framework NV [Giannarakis et al. 2020], Timepiece allows users to customize their
models by choosing the kinds of routes (which may involve integers, strings, booleans, bitvectors,
records, optional data, lists, or sets) and the way initialization, transfer and merge functions process
them. This modelling language makes it easy to add ghost state to routes, as described earlier. It is
also possible to declare and use symbolic values in the model. Hence, one may reason about all
possible prefixes or more generally about all possible external routing announcements.

For example, to model a network running eBGP, we would adopt many of the modelling choices
made in Minesweeper [Beckett et al. 2017a]. For instance, we use integers and the SMT theory of
integers to model path length. We use bitvectors to model local preference and MED. We use the
theory of arrays to model sets of community tags.

Under the hood, Timepiece uses Microsoft’s Zen verification library [Beckett and Mahajan 2020],
which in turn serves as an interface to the Z3 SMT solver. Hence, the only practical limits to a
user’s network model are those that arise from the features and theories supported by Z3.

Timepiece uses multi-threading to run modular checks in parallel.4 As each check is independent,
the time to set up additional threads is the only overhead for parallelization.

6 EVALUATION
To evaluate Timepiece and illustrate its scaling trends, we generated a series of synthetic fattree [Al-
Fares et al. 2008] data center networks and verified four variations on reachability properties. We
also verified an isolation property on a real wide-area network configuration with over 100,000
lines of code. Table 2 shows how the number of lines of code needed to write the interfaces for
each of our benchmarked properties is low-effort. We generated interfaces for our experiments
parametrically for any size of network, based on the distinct roles of nodes: for fattree networks,
a node’s pod and tier determined its role (5 roles, discussed below); for our wide-area network
benchmark, we distinguished internal nodes from external neighbors (2 roles).
To compare our implementation against a baseline, we implemented the monolithic, network-

wide Minesweeper-style procedureMs from Algorithm 1 and compared its performance against
Timepiece.Ms analyzes stable states, which are independent of time. To compareMswith Timepiece,
we first crafted properties for Timepiece, which employs timed invariants. We erased the temporal
components of these invariants to generate properties thatMs could manage. For instance, when
Timepiece would verify properties of the form G𝜑 , F 𝑡𝜑 , or 𝜑2 U𝑡 𝜑 , Ms would instead verify that
the network’s stable states satisfy 𝜑 .

4We use C#’s Parallel LINQ library [Microsoft 2021], which can run up to 512 concurrent threads.

, Vol. 1, No. 1, Article . Publication date: November 2022.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Modular Control Plane Verification via Temporal Invariants 15

𝑐0 𝑐1 𝑐2 𝑐3

𝑎4 𝑎5 𝑎8 𝑎9 𝑎12 𝑎13 𝑎16 𝑎17

𝑒6 𝑒7 𝑒10 𝑒11 𝑒14 𝑒15 𝑒18 𝑒19

¬𝑠 .down

¬𝑠 .down

¬𝑠 .down

𝑠 .down

𝑠 .down

Fig. 5. An example fattree network, showing how Vf sets 𝑠 .down along the path between the destination

node 𝑒19 and 𝑒6. 𝑒6𝑎4 will drop the route from 𝑒6 to prevent valley routing.

0 1,000 2,000
100
101
102
103
104 timeout

Ve
rifi

ca
tio

n
tim

e
[s
] (a) SpReach

0 1,000 2,000

timeout

(b) SpLen

0 1,000 2,000

timeout

(c) SpVf

0 1,000 2,000

timeout

(d) SpHijack

Tp

Tp median
Tp 99𝑡ℎ p.

Ms

0 1,000 2,000
100
101
102
103
104 timeout

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
] (e) ApReach

0 1,000 2,000

timeout

Nodes

(f) ApLen

0 1,000 2,000

timeout

Nodes

(g) ApVf

0 1,000 2,000

timeout

Nodes

(h) ApHijack

Fig. 6. Ms vs. Tp verification times for fattree benchmarks with 8 different policies.

We ran all our benchmarks on a Microsoft Azure D96s v5 virtual machine with 96 vCPUs and
384GB of RAM. We took advantage of the machine’s multi-core processor to run all the modular
checks in parallel, while monolithic checks necessarily ran on a single thread. We timed out any
benchmark that did not complete in 2 hours. We reported four times for each of our benchmarks:
(i) the total time until all Timepiece threads finished (Tp); (ii) the median node check time; (iii) the
99th percentile node check time (99% of checks completed in less than this much time); and (iv) the
total time taken byMs.

Fattrees. We parameterize our fattree networks by their number of pods 𝑘 : a 𝑘-fattree has 1.25𝑘2
nodes and 𝑘3 edges: Figure 5 shows an example 4-fattree as part of our Vf policy. We considered
multiples of 4 for 4 ≤ 𝑘 ≤ 40 to assess Timepiece’s scalability: whereas we expected a monolithic
verifier to time out on larger topologies, we hypothesized that Timepiece would scale to these
networks. We present how verification time grows with respect to the number of nodes in each
fattree in Figure 6. Note that the figure shows verification time on a logarithmic scale.

, Vol. 1, No. 1, Article . Publication date: November 2022.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Table 3. eBGP route fields modelled by Timepiece in SMT for fattree benchmarks.

Route field Modelled type in SMT

Route destination bitvector [SMT-LIB 2010b]
Administrative distance bitvector [SMT-LIB 2010b]
eBGP local preference bitvector [SMT-LIB 2010b]
eBGP multi-exit discriminator bitvector [SMT-LIB 2010b]
eBGP origin type {egp, igp, unknown} [SMT-LIB 2010b]
eBGP AS path length integer [SMT-LIB 2010c]
eBGP communities set<string> [SMT-LIB 2010a, 2020]

We considered four different properties: reachability (Reach), bounded path length (Len), valley
freedom (Vf) and route filtering (Hijack). We tested each property for routing to a fixed destination
edge node (Sp), and all-pairs routing to any edge node (Ap). Our routes modelled the eBGP protocol
in these networks. Table 3 summarizes the eBGP fields represented and how we modelled them in
SMT. We model the major common elements of eBGP routing: a route destination as a 32-bit integer
(representing an IPv4 prefix); administrative distance, local preference, multi-exit discriminators as
32-bit integers (encoded as bitvectors); eBGP origin type as a ternary value; the AS path length as
an (unbounded) integer; and BGP communities as a set of strings.

Witness times. For our fattree properties, we wanted to prove that nodes eventually received
routes to the destination node. To establish that a node 𝑣 eventually has a route at time 𝑡 , we must
show that one of 𝑣 ’s neighbors sent it a route at an earlier time 𝑡 − 1. The destination node dest
will have a route at time 0, its neighbors will have routes at time 1, and so on for their neighbors at
time 2. In the Sp case, dest is a concrete node; in the Ap case, we used a symbolic dest to consider
any choice of edge node as the destination. A node 𝑣 will receive a route to dest at different times
depending on where dest is relative to 𝑣 . This breaks down to five cases (or roles), following the
fattree’s structure, depending on whether 𝑣 is (i) the 𝑑𝑒𝑠𝑡 node (0 hops, 𝑡 = 0); (ii) an aggregation
node in dest’s pod (1 hop, 𝑡 = 1); (iii) a core node, or an edge node in dest’s pod (2 hops, 𝑡 = 2);
(iv) an aggregation node in another pod (𝑡 = 3); or (v) an edge node in another pod (𝑡 = 4). These
cases mirror those identified for local data center invariants in [Jayaraman et al. 2019a]. For brevity,
we use a function dist (𝑣) to specify these times for a node 𝑣 .

Reach. Reach demonstrates the simplest possible routing behavior and serves as a useful baseline.
The policy simply increments the path length of a route on transfer. We initialized one destination
edge node with a route to itself, and all other nodes with no route (∞). Our goal is to prove every
node eventually has a route to the destination (i.e., its route is not∞). More precisely, because our
network has diameter 4, each node 𝑣 should acquire a route in 4 time steps.

𝑃Reach (𝑣) ≡ F 4 (𝑠 ≠ ∞)
Interfaces for these benchmarks mirror the simplicity of the policy and property. If a node’s

route 𝑠 ≠ ∞ at time 𝑡 , then its neighbors will in turn have a route 𝑠 ≠ ∞ at time 𝑡 + 1.
𝐴Reach (𝑣) ≡ F dist (𝑣) (𝑠 ≠ ∞)

SpReach’s policy and property are so simple that Tp is actually slightly slower thanMs, as shown
in Figure 6a. We conjecture theMs encoding reduces to a particularly easy SAT instance. That said,
we can already see that individual checks in Timepiece take only a fraction of the time that Ms

takes, with 99% of node checks completing in at most 1.1 seconds, even for our largest benchmarks.

, Vol. 1, No. 1, Article . Publication date: November 2022.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Modular Control Plane Verification via Temporal Invariants 17

For ApReach, Figure 6e shows that, perhaps from the burden of modelling the symbolic dest,Ms

times out at 𝑘 = 8. Tp verifies our largest benchmark (𝑘 = 40, with 2,000 nodes) in 5.5 minutes, with
99% of individual node checks taking under 9 seconds.

Len. Our next benchmark uses the same policy as Reach, but considers a stronger property:
every node eventually has a route of at most 4 hops to the destination.

𝑃Len (𝑣) ≡ F 4 (𝑠 .len ≤ 4
)

To prove this property, our interfaces specify that path lengths in routes should not exceed the
distance to the destination: 𝑠 .len ≤ dist (𝑣). In addition, because local preference influences routing,
we fix the local preference to the default for all routes when present: 𝑠 .lp = 100.

𝐴Len (𝑣) ≡ G
(
𝑠 = ∞∨ 𝑠 .lp = 100

)︸ ︷︷ ︸
no better routes appear

⊓F dist (𝑣) (𝑠 .len ≤ dist (𝑣)
)︸ ︷︷ ︸

eventually the route appears

Reasoning over path lengths requires Z3 to use slower bitvector and integer theories. Figure 6b
shows that monolithic verification times out at 𝑘 = 12 for SpLen. By contrast, modular verification
is able to solve 𝑘 = 40 in just over 20 minutes, with 99% of nodes verified in under 43 seconds.
Figure 6f shows that monolithic verification is not even possible for ApLen at 𝑘 = 4; Tp completes
for ApLen 𝑘 = 40 in around 66 minutes, with 99% of nodes verified in 2.4 minutes.

Vf. Vf extends Reach with policy to prevent up-down-up (valley) routing [Beckett et al. 2016,
2017b; Pepelnjak 2018], where routes transit an intermediate pod. To implement this policy, we
add a BGP community 𝐷 along “down” edges in the topology (i.e., from a core node or from an
aggregation node to an edge node), and drop routes with 𝐷 on “up” edges (see Figure 5). For brevity,
we write “𝑠 .down” to mean “𝐷 ∈ 𝑠 .tags”. We test the same reachability property as Reach.

The legitimate routes in the fattree all start as routes travelling up from the destination node’s
pod, e.g., the nodes in green (𝑎16, 𝑎17, 𝑒19) in Figure 5. We refer to these nodes as “adjacent nodes”
with a shorthand adj(𝑣): they transmit routes to the core nodes (and thereby to the rest of the
network) along their up edges. These edges will drop the routes if 𝑠 .down, so we require that
adj(𝑣) → ¬𝑠 .down. To ensure this, we add conjuncts to our interfaces requiring that nodes’ final
routes are no better than the shortest path’s route: 𝑠 .lp = 100 ∧ 𝑠 .len = dist (𝑣). This ensures our
inductive condition holds after every node has a route: otherwise, a core node (for instance) could
offer a spurious route with 𝑠 .len < 1 ∧ 𝑠 .down to an adjacent node.

𝐴Vf (𝑣) ≡
(
𝑠 = ∞

)
Udist (𝑣) (𝑠 .lp=100 ∧ 𝑠 .len=dist (𝑣)︸ ︷︷ ︸

no better routes appear

∧
(
adj(𝑣) → ¬𝑠 .down

)︸ ︷︷ ︸
adjacent nodes will share routes

)
Figure 6c shows thatMs verifies up to 𝑘 = 8 before timing out. As with SpLen, Tp time grows

gradually in proportion to the number of nodes, topping out at 6.6 minutes for 𝑘 = 40, with all
node checks completing in under 20 seconds. Figure 6g shows that for all-pairs routing, monolithic
verification times out again at 𝑘 = 12, whereas Tp hits the 2-hour timeout at 𝑘 = 36. We conjecture
this may be due to the added complexity of encoding adj(𝑣) when the destination is symbolic.

Hijack. Hijack models a fattree with an additional “hijacker” node ℎ connected to the core nodes.
ℎ represents a connection to the Internet from outside the network, which may advertise any
route. We add a boolean ghost state tag to 𝑆 for this policy to mark routes as external (from ℎ) or
internal. The destination node will advertise a route with 𝑠 .prefix = 𝑝 , where 𝑝 is a symbolic value
representing an internal address: the core nodes will then drop any routes from ℎ for prefix 𝑝 , but
allow other routes through. Apart from this filtering, routing functions as in the Reach benchmarks.

, Vol. 1, No. 1, Article . Publication date: November 2022.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

For this network, we verified that every internal node eventually has a route for prefix 𝑝 and which
is not via the hijacker (¬𝑠 .tag), assuming nothing about the hijacker’s route (𝐴Hijack (ℎ) ≡ G(true)).

𝑃Hijack (𝑣) ≡ F 4 (𝑠 .prefix=𝑝 ∧ ¬𝑠 .tag)
The Hijack interface is straightforward. We must simply re-affirm that nodes with internal

prefixes never have external routes: 𝑠 .prefix = 𝑝 → ¬𝑠 .tag. Once nodes have received a route from
the destination at time dist (𝑣), they should keep that route forever, and hence their route will have
both 𝑠 .prefix = 𝑝 and ¬𝑠 .tag.

𝐴Hijack (𝑣) ≡ F dist (𝑣) (𝑠 .prefix=𝑝 ∧ ¬𝑠 .tag)︸ ︷︷ ︸
route will be internally reachable

⊓G(𝑠 .prefix=𝑝 → ¬𝑠 .tag)︸ ︷︷ ︸
no hijack route is ever used

In SpHijack, monolithic verification times out at 𝑘 = 8, whereas modular verification time scales
to 𝑘 = 40. 99% of nodes complete their checks in under 3 seconds, with our longest check taking
10.7 seconds at 𝑘 = 40. As with our other benchmarks, verification time grows as the in-degree of
each node — which determines the size of the SMT encoding of our inductive condition — grows
linearly with respect to 𝑘 . Figure 6h shows similar patterns for the all-pairs case, with no monolithic
benchmark completing on time, and modular verification taking at most 36.6 minutes.

Wide-area networks. To better investigate Timepiece’s scalability for other types of networks, we
evaluated it on the Internet2 [Internet2 2013] wide-area network.5 We converted the configuration
files to Timepiece’s model by extracting the policy details using Batfish [Fogel et al. 2015]. The
resulting network has 10 internal nodes within Internet2’s AS and 253 external neighbors. We did
not model all components of Internet2’s routing policies: we focused on IPv4 and BGP routing, and
treated some complex behaviors as “havoc” (soundly overapproximating the true behavior).6 We do
not know Internet2’s intended routing behavior: because of this, we cannot be certain that a coun-
terexample found by Timepiece represents a real violation of the network’s behavior; nonetheless,
we may still use this network to assess how well Timepiece enables modular verification.

It appears that Internet2 uses a BTE community tag to identify routes that must not be shared
with external neighbors. We checked that, if the internal nodes initially have any possible route,
then no external neighbor of Internet2 should ever obtain a route with the BTE tag set, assuming
the external neighbors do not start with such routes.

𝑃BlockToExternal (𝑣) ≡
{
G
(
𝑠 ≠ ∞→ BTE ∉ 𝑠 .tags

)
if 𝑣 is external

G(true) otherwise

We used the property directly as our interface, i.e., ∀𝑣 . 𝐴BlockToExternal (𝑣) ≡ 𝑃BlockToExternal (𝑣).
Modular checking remains fast despite the network’s more complex policies: on a 6-core Macbook
Pro with 16GB of RAM, modular verification completes in 38.3 seconds, with a median check time
of 0.6 seconds and a 99th percentile check time of 4.2 seconds. Monolithic verification does not
complete after 2 hours.

7 RELATEDWORK
Our work is most closely related to other efforts in control plane verification [Abhashkumar et al.
2020; Alberdingk Thijm et al. 2022; Beckett et al. 2017a, 2018, 2019; Fogel et al. 2015; Gember-
Jacobson et al. 2016; Giannarakis et al. 2020; Lopes and Rybalchenko 2019; Prabhu et al. 2017; Tang
et al. 2022; Weitz et al. 2016; Ye et al. 2020]. The following paragraphs recommend different classes
of tools depending on the specifics of one’s verification problem.
5We used the versions of Internet2’s configuration files available here [Weitz 2016].
6These include prefix matching, community regex matching and AS path matching. We also did not model BGP nexthop.

, Vol. 1, No. 1, Article . Publication date: November 2022.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Modular Control Plane Verification via Temporal Invariants 19

If your network is small (in the tens of nodes), then we recommend an SMT-based tool such as
Minesweeper [Beckett et al. 2017a] or Bagpipe [Weitz et al. 2016] for their ease-of-use, generality,
and symbolic reasoning. Minesweeper supports a broad range of properties including reachability,
waypointing, no blackholes and loops, and device equivalence.

If your network is larger, and neither incremental recomputation after device update nor fully
symbolic reasoning is important, use a simulation-based tool [Beckett et al. 2019; Fogel et al. 2015;
Giannarakis et al. 2020; Lopes and Rybalchenko 2019; Prabhu et al. 2017; Ye et al. 2020]. Some of these
tools also employ symbolic reasoning in limited ways to provide useful capabilities. For example,
inspired by effective work on data plane analysis [Khurshid et al. 2013], Plankton [Prabhu et al.
2017] first analyzes configurations to identify IP prefix equivalence classes. Identified equivalence
classes may be treated symbolically in the rest of the computation. Plankton might be able to reason
symbolically about other attributes, but doing so would require additional custom engineering to
find the appropriate sort of equivalence class ahead of time (e.g., for BGP AS paths or communities).
With Timepiece, any component may be treated symbolically and the solver effort is passed off to
the underlying SMT engine.
If your network is large and symbolic reasoning is important, then there are fewer options

to consider. Bonsai exploits symmetry to derive smaller abstractions of a network [Beckett et al.
2018], but does not work if the network has topology or policy asymmetries or one considers
failures (which break topological symmetries). Other tools exploit modularity in network designs.
Kirigami [Alberdingk Thijm et al. 2022] applies assume-guarantee reasoning for control plane
verification, but requires interfaces to specify the exact routes passed between any two components.
As such, it is impossible to craft interfaces that are robust to minor changes in network policies.
Lightyear [Tang et al. 2022] allows users to craft more general interfaces, but can only prove
a limited range of properties, which do not include reachability properties. We conjecture (but
have not proven) that Lightyear verifies properties that Timepiece would express as G𝜑 , but not
properties that require U𝑡 or F 𝑡 temporal operators. On the other hand, Lightyear checks one
neighbor at a time rather than all neighbors at once, and hence may be more efficient.

Daggitt et al. also use a timed model [Daggitt et al. 2018]. However, our verification method and
target properties differ — they focus on convergence properties of routing protocols, whereas we
analyze properties that depend upon a network’s topology and configuration such as reachability.
Other inspirations for our work are SecGuru and RCDC [Jayaraman et al. 2019a] in data plane

verification. Unlike our work, they use non-temporal invariants, which they extract from the
network topology and assume as ground truth for policies on individual devices. Whereas our
experiments likewise used the topology to define local invariants, our verification procedure checks
that these invariants are in fact guaranteed by the other devices in the network.

Compositional reasoning. Our work is inspired by the success of automated methods for compo-
sitional verification of concurrent systems – a recent handbook chapter [Giannakopoulou et al.
2018] provides many useful pointers to the rich literature on this topic. Automated methods using
compositional reasoning have been successfully applied in many application domains – concurrent
programs (e.g., [Flanagan and Qadeer 2003; Gupta et al. 2011; Owicki and Gries 1976]), hardware
designs (e.g., [Henzinger et al. 2000; Kurshan 1988; McMillan 1997], reactive systems (e.g., [Alur
and Henzinger 1999]) — and for a range of properties including safety and liveness, as well as
for refinement checking. [Lomuscio et al. 2010] applies assume-guarantee reasoning for verifying
stability of network congestion control systems. Many such applications use temporal logic for
specifying properties, as well as assumptions and guarantees at component interfaces [Pnueli 1984].
One main challenge is to come up with suitable assumptions that are strong enough to prove the
properties of interest. Toward this goal, Timepiece uses a language of temporal invariants inspired

, Vol. 1, No. 1, Article . Publication date: November 2022.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

by temporal logic to support checking local (i.e., per-router) properties. However, it carefully limits
the expressiveness of this language, e.g., by not allowing nesting of temporal operators, while
allowing efficient verification of the proof obligations using SMT solvers.

Another main difference is that unlike most existing methods, Timepiece uses time as an explicit
variable 𝑡 in the language of invariants. This serves two distinct but related purposes. First, 𝑡
provides a well-founded ordering to ensure that our proof rule is sound. Second, using 𝑡 explicitly
in the language of invariants avoids choosing some static ordering over the components, which
could be otherwise used to break a circular chain of dependencies between their assumptions (cf.
the Circ rule in [Giannakopoulou et al. 2018]). Unfortunately, it is not always possible to determine
a static ordering, especially in cases where we consider multiple destinations at once symbolically.

Others have used induction over time [Misra and Chandy 1981] or over traces in specific models
such as compositions of Moore/Mealy machines [Henzinger et al. 2002; McMillan 1997] and reactive
modules [Alur and Henzinger 1999; Henzinger et al. 2000] to prove soundness of circular assume-
guarantee proof rules. However, to the best of our knowledge, no prior efforts use time explicitly in
the language of assumptions. Although handling time explicitly could be more costly for decision
procedures, in practice we use abstractions (via temporal operators) that result in fairly compact
formulas. Our evaluations show that these formulas can be handled well by modern SMT solvers.
There have also been many efforts that automatically derive assumptions for compositional

reasoning [Giannakopoulou et al. 2018]. Representative techniques include computing fixed points
over localized assertions called split invariants [Cohen and Namjoshi 2007], learning-based meth-
ods [Cobleigh et al. 2003], and counterexample-guided abstraction refinement [Bobaru et al. 2008;
Elkader et al. 2018]. We can view our interfaces as split invariants, since they refer to only the local
state of a component. However, at this time, we depend on the users to provide them as annotations
— we plan to derive them automatically in future work.

Modular verification of distributed systems. There have been many prior efforts [Desai et al.
2018; Hawblitzel et al. 2015; Jung et al. 2015; Ma et al. 2019; Padon et al. 2016; Sergey et al. 2018;
Yao et al. 2021] for modular verification of distributed systems – see a recent work [Sergey et al.
2018] for other useful pointers. In general, these efforts handle much richer program logics or
computational models than the network routing algebras we target; hence the required assumptions
and verification tasks are more complex, and often require interactive theorem-proving. Indeed the
synchronous semantics of network routing algebras [Daggitt et al. 2018] that underlies our work is
more closely related to hardware designs modelled as compositions of finite state machines (FSMs),
where a component FSM’s state at time 𝑡 + 1 depends on its state at time 𝑡 and new inputs at time
𝑡 + 1, some of which could be outputs from other FSM components, i.e., their state at time 𝑡 . As
aforementioned, no existing efforts for such models (e.g., [Henzinger et al. 2002; McMillan 1997])
consider time explicitly in the assumptions.

8 CONCLUSION
Ensuring correct routing is critical to the operation of reliable networks. With the rise of cloud
provider networks with hundreds of thousands of nodes, we need modular control plane verification
techniques that are general, expressive and efficient. We propose Timepiece, a radical new approach
for verifying network routing based on a temporal foundation, which splits the network into small
modules to verify efficiently in parallel. To carry out verification, users provide Timepiece with
local interfaces using temporal operators. We proved that Timepiece is sound and complete with
respect to the network semantics, and argue that its temporal foundation is an excellent choice for
a modular verification procedure.

, Vol. 1, No. 1, Article . Publication date: November 2022.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Modular Control Plane Verification via Temporal Invariants 21

REFERENCES
Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020. Tiramisu: Fast multilayer network

verification. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). 201–219. https:
//www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf.

Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem, Jingyi Yang,
Petr Lapukhov, Aditya Akella, and Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21). USENIX Association, 65–81. https://www.usenix.org/
conference/nsdi21/presentation/abhashkumar https://www.usenix.org/conference/nsdi21/presentation/abhashkumar.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable, Commodity Data Center Network Architec-
ture. In SIGCOMM. https://doi.org/10.1145/1402946.1402967 https://dl.acm.org/doi/10.1145/1402946.1402967.

Tim Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker. 2022. Kirigami, the Verifiable Art of Network Cutting.
In Proceedings of the 30th IEEE International Conference on Network Protocols (ICNP 2022). https://icnp22.cs.ucr.edu/assets/
papers/icnp22-final111.pdf.

Rajeev Alur and Thomas A Henzinger. 1999. Reactive modules. Formal methods in system design 15, 1 (1999), 7–48.
https://doi.org/10.1023/A:1008739929481 https://doi.org/10.1023/A:1008739929481.

Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories. In Handbook of model checking. Springer, 305–343.
https://doi.org/10.1007/978-3-319-10575-8_11 https://doi.org/10.1007/978-3-319-10575-8_11.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017a. A General Approach to Network Configuration
Verification. In SIGCOMM. https://doi.org/10.1145/3098822.3098834 https://doi.org/10.1145/3098822.3098834.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018. Control Plane Compression. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18). ACM, New
York, NY, USA, 476–489. https://doi.org/10.1145/3230543.3230583 https://doi.org/10.1145/3230543.3230583.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2019. Abstract Interpretation of Distributed Network
Control Planes. Proc. ACM Program. Lang. 4, POPL, Article 42 (dec 2019), 27 pages. https://doi.org/10.1145/3371110
https://doi.org/10.1145/3371110.

Ryan Beckett and Ratul Mahajan. 2020. A General Framework for Compositional Network Modeling. In Proceedings of the
19th ACM Workshop on Hot Topics in Networks. 8–15. https://doi.org/10.1145/3422604.3425930.

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. 2016. Don’T Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations. In SIGCOMM. https://doi.org/10.1145/2934872.2934909.

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitu Padhye, and David Walker. 2017b. Network Configuration Synthesis with
Abstract Topologies. In PLDI. https://doi.org/10.1145/3062341.3062367.

Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Giannakopoulou. 2008. Automated Assume-Guarantee
Reasoning by Abstraction Refinement. In Computer Aided Verification (CAV), Proceedings (Lecture Notes in Computer
Science, Vol. 5123). Springer, 135–148.

CISCO. 2005. Using BGP Community Values to Control Routing Policy in Upstream Provider Network. https://www.cisco.
com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html https://www.cisco.com/c/en/
us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html.

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. 2003. Learning Assumptions for Compositional
Verification. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS, Proceedings (Lecture Notes in
Computer Science, Vol. 2619). Springer, 331–346.

Ariel Cohen and Kedar S. Namjoshi. 2007. Local Proofs for Global Safety Properties. In Computer Aided Verification (CAV),
Proceedings (Lecture Notes in Computer Science, Vol. 4590). Springer, 55–67.

Matthew L Daggitt, Alexander JT Gurney, and Timothy G Griffin. 2018. Asynchronous convergence of policy-rich dis-
tributed Bellman-Ford routing protocols. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 103–116. https://doi.org/10.1145/3230543.3230561 https://doi.org/10.1145/3230543.3230561.

Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. 2018. Compositional programming and testing of
dynamic distributed systems. PACMPL 2, OOPSLA (2018), 159:1–159:30.

Karam Abd Elkader, Orna Grumberg, Corina S. Pasareanu, and Sharon Shoham. 2018. Automated circular assume-guarantee
reasoning. Formal Aspects of Computing 30, 5 (2018), 571–595.

Pete Evans. 2022. Rogers says services mostly restored after daylong outage left millions offline. https://www.cbc.ca/news/
business/rogers-outage-cell-mobile-wifi-1.6514373.

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas Sekar, and George Varghese. 2016. Efficient
Network Reachability Analysis using a Succinct Control Plane Representation. In OSDI. https://www.usenix.org/system/
files/conference/osdi16/osdi16-fayaz.pdf.

Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP Configuration Faults with Static Analysis. In NSDI. https:
//www.usenix.org/legacy/events/nsdi05/tech/feamster/feamster.pdf.

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://doi.org/10.1145/1402946.1402967
https://dl.acm.org/doi/10.1145/1402946.1402967
https://icnp22.cs.ucr.edu/assets/papers/icnp22-final111.pdf
https://icnp22.cs.ucr.edu/assets/papers/icnp22-final111.pdf
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3371110
https://doi.org/10.1145/3371110
https://doi.org/10.1145/3422604.3425930
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/3062341.3062367
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://doi.org/10.1145/3230543.3230561
https://doi.org/10.1145/3230543.3230561
https://www.cbc.ca/news/business/rogers-outage-cell-mobile-wifi-1.6514373
https://www.cbc.ca/news/business/rogers-outage-cell-mobile-wifi-1.6514373
https://www.usenix.org/system/files/conference/osdi16/osdi16-fayaz.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-fayaz.pdf
https://www.usenix.org/legacy/events/nsdi05/tech/feamster/feamster.pdf
https://www.usenix.org/legacy/events/nsdi05/tech/feamster/feamster.pdf

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Cormac Flanagan and Shaz Qadeer. 2003. Thread-modular model checking. In International SPINWorkshop on Model Checking
of Software. Springer, 213–224. https://doi.org/10.1007/3-540-44829-2_14 https://doi.org/10.1007/3-540-44829-2_14.

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd Millstein. 2015.
A General Approach to Network Configuration Analysis. In NSDI. https://www.usenix.org/system/files/conference/
nsdi15/nsdi15-paper-fogel.pdf.

Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan. 2016. Fast Control Plane Analysis Using an
Abstract Representation. In SIGCOMM. https://doi.org/10.1145/2934872.2934876 https://doi.org/10.1145/2934872.2934876.

Dimitra Giannakopoulou, Kedar S Namjoshi, and Corina S Păsăreanu. 2018. Compositional reasoning. In Handbook of
Model Checking. Springer, 345–383. https://doi.org/10.1007/978-3-319-10575-8_12 https://doi.org/10.1007/978-3-319-
10575-8_12.

Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: An Intermediate Language for Verification
of Network Control Planes. In PLDI. Association for Computing Machinery, New York, NY, USA, 958–973. https:
//doi.org/10.1145/3385412.3386019 https://doi.org/10.1145/3385412.3386019.

Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002. The Stable Paths Problem and Interdomain Routing.
IEEE/ACM Trans. Networking 10, 2 (2002). https://ieeexplore.ieee.org/abstract/document/993304.

Timothy G. Griffin and Joäo Luís Sobrinho. 2005. Metarouting. In SIGCOMM. 1–12. https://doi.org/10.1145/1080091.1080094
10.1145/1080091.1080094.

Orna Grumberg and David E Long. 1994. Model checking and modular verification. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16, 3 (1994), 843–871. https://doi.org/10.1145/177492.177725 https://doi.org/10.1145/
177492.177725.

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Threader: A Constraint-Based Verifier for Multi-threaded
Programs. In Computer Aided Verification (CAV). Proceedings (Lecture Notes in Computer Science, Vol. 6806). Springer,
412–417.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and
Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the Symposium on Operating
Systems Principles, SOSP. ACM, 1–17.

C. Hedrick. 1988. Routing Information Protocol. Internet Request for Comments. https://datatracker.ietf.org/doc/html/
rfc1058 https://datatracker.ietf.org/doc/html/rfc1058.

Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani. 1998. You assume, we guarantee: Methodology and case studies.
In International Conference on Computer Aided Verification. Springer, 440–451. https://doi.org/10.1007/BFb0028765
https://doi.org/10.1007/BFb0028765.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. 2000. Decomposing Refinement Proofs Using Assume-
Guarantee Reasoning. In Proceedings of the 2000 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE Computer Society, 245–252.

Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. 2002. An assume-guarantee rule for checking
simulation. ACM Transactions on Programming Languages and Systems 24, 1 (2002), 51–64.

Internet2. 2013. About Internet2. https://meetings.internet2.edu/media/medialibrary/2013/08/01/AboutInternet2.pdf.
Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster,

Andrew Helwer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019a. Validating Datacenters at Scale. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19). Association for Computing Machinery,
New York, NY, USA, 200–213. https://doi.org/10.1145/3341302.3342094 https://doi.org/10.1145/3341302.3342094.

Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster,
Andrew Helwer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019b. Validating Datacenters at Scale (Presentation at SIGCOMM
2019). https://conferences.sigcomm.org/sigcomm/2019/files/slides/paper_5_1.pptx.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL. 637–650.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and Scott Whyte. 2013. Real Time Net-
work Policy Checking Using Header Space Analysis. In NSDI. 99–112. https://www.usenix.org/system/files/conference/
nsdi13/nsdi13-final8.pdf.

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. 2013. VeriFlow: Verifying Network-
Wide Invariants in Real Time. In NSDI. https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf.

R. P. Kurshan. 1988. Reducibility in analysis of coordination. In Discrete Event Systems: Models and Applications (LNCIS,
Vol. 103). Springer, 19–39.

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1007/3-540-44829-2_14
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1145/3385412.3386019
https://ieeexplore.ieee.org/abstract/document/993304
https://doi.org/10.1145/1080091.1080094
10.1145/1080091.1080094
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://doi.org/10.1007/BFb0028765
https://doi.org/10.1007/BFb0028765
https://meetings.internet2.edu/media/medialibrary/2013/08/01/AboutInternet2.pdf
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://conferences.sigcomm.org/sigcomm/2019/files/slides/paper_5_1.pptx
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final8.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final8.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Modular Control Plane Verification via Temporal Invariants 23

K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning. Springer, 348–370. https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20.

Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu. 2010. Assume-guarantee reasoning with local specifications. In
International conference on formal engineering methods. Springer, 204–219. https://doi.org/10.1007/978-3-642-16901-4_15

Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese. 2015. Checking Beliefs in
Dynamic Networks. In NSDI. https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-lopes.pdf.

Nuno P Lopes and Andrey Rybalchenko. 2019. Fast BGP simulation of large datacenters. In International Conference on
Verification, Model Checking, and Abstract Interpretation. Springer, 386–408. https://web.ist.utl.pt/nuno.lopes/pubs/
fastplane-vmcai19.pdf.

K. Lougheed and Y. Rekhter. 1991. A Border Gateway Protocol 3 (BGP-3). Internet Request for Comments. https:
//datatracker.ietf.org/doc/html/rfc1267 https://datatracker.ietf.org/doc/html/rfc1267.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A. Sakallah. 2019. I4: incremental
inference of inductive invariants for verification of distributed protocols. In SOSP. ACM, 370–384.

Kenneth L. McMillan. 1997. A Compositional Rule for Hardware Design Refinement. In Computer Aided Verification (CAV),
Proceedings (Lecture Notes in Computer Science, Vol. 1254). Springer, 24–35.

Microsoft. 2021. Introduction to PLINQ. https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
introduction-to-plinq.

Ron Miller. 2022. As overall cloud infrastructure market growth dips to 24%, AWS reports slowdown. https://techcrunch.
com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/.

Jayadev Misra and K. Mani Chandy. 1981. Proofs of Networks of Processes. IEEE Transactions on Software Engineering 7, 4
(1981), 417–426.

J. Moy. 1998. Open Shortest Path First Protocol Version 2. Internet Request for Comments. https://datatracker.ietf.org/doc/
html/rfc2328 https://datatracker.ietf.org/doc/html/rfc2328.

D. Oran. 1990. OSI IS-IS Intra-domain Routing Protocol. Internet Request for Comments. https://datatracker.ietf.org/doc/
html/rfc1142 https://datatracker.ietf.org/doc/html/rfc1142.

Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM
19, 5 (1976), 279–285.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification
by interactive generalization. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI. ACM, 614–630.

Ivan Pepelnjak. 2018. Valley-Free Routing in Data Center Fabrics. https://blog.ipspace.net/2018/09/valley-free-routing-in-
data-center.html.

Amir Pnueli. 1984. In Transition From Global to Modular Temporal Reasoning about Programs. In Logics and Models of
Concurrent Systems - Conference proceedings (NATO ASI Series, Vol. 13). Springer, 123–144. https://doi.org/10.1007/978-3-
642-82453-1_5 https://doi.org/10.1007/978-3-642-82453-1_5.

Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. 2017. Predicting Network Futures with Plankton.
In Proceedings of the First Asia-PacificWorkshop on Networking (APNet’17). 92–98. https://doi.org/10.1145/3106989.3106991
https://dl.acm.org/doi/10.1145/3106989.3106991.

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving with distributed protocols. Proceedings
of ACM Programming Languages 2, POPL (2018), 28:1–28:30.

SMT-LIB. 2010a. ArraysEx. https://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml.
SMT-LIB. 2010b. FixedSizeBitVectors. https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml.
SMT-LIB. 2010c. Ints. https://smtlib.cs.uiowa.edu/theories-Ints.shtml.
SMT-LIB. 2020. Unicode Strings. http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml.
João Luís Sobrinho. 2005. An Algebraic Theory of Dynamic Network Routing. IEEE/ACM Trans. Netw. 13, 5 (October 2005),

1160–1173. https://ieeexplore.ieee.org/abstract/document/1528502.
Tom Strickx and Jeremy Hartman. 2022. Cloudflare outage on June 21, 2022. https://blog.cloudflare.com/cloudflare-outage-

on-june-21-2022/.
Alan Tang, Ryan Beckett, Karthick Jayaraman, Todd Millstein, and George Varghese. 2022. LIGHTYEAR: Using Modularity

to Scale BGP Control Plane Verification. arXiv:2204.09635 [cs.NI] https://arxiv.org/abs/2204.09635.
Brandon Vigliarolo. 2022. After config error takes down Rogers, it promises to spend billions on reliability. https:

//www.theregister.com/2022/07/25/canadian_isp_rogers_outage/.
Konstantin Weitz. 2016. Getting Started With Bagpipe. http://www.konne.me/bagpipe/started.html.
Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. 2016. Formal

Semantics and Automated Verification for the Border Gateway Protocol. In NetPL. https://www.dougwoos.com/papers/
bagpipe-netpl16.pdf.

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-16901-4_15
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-lopes.pdf
https://web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf
https://web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf
https://datatracker.ietf.org/doc/html/rfc1267
https://datatracker.ietf.org/doc/html/rfc1267
https://datatracker.ietf.org/doc/html/rfc1267
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://techcrunch.com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/
https://techcrunch.com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc1142
https://datatracker.ietf.org/doc/html/rfc1142
https://datatracker.ietf.org/doc/html/rfc1142
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1145/3106989.3106991
https://dl.acm.org/doi/10.1145/3106989.3106991
https://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://ieeexplore.ieee.org/abstract/document/1528502
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://arxiv.org/abs/2204.09635
https://arxiv.org/abs/2204.09635
https://www.theregister.com/2022/07/25/canadian_isp_rogers_outage/
https://www.theregister.com/2022/07/25/canadian_isp_rogers_outage/
http://www.konne.me/bagpipe/started.html
https://www.dougwoos.com/papers/bagpipe-netpl16.pdf
https://www.dougwoos.com/papers/bagpipe-netpl16.pdf

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated
Invariant Learning for Distributed Protocols. In OSDI. USENIX Association, 405–421.

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen
Guo, Cheng Jin, Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.
2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a Global WAN. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (Virtual Event, USA) (SIGCOMM ’20). Association for Computing Machinery, New
York, NY, USA, 599–614. https://doi.org/10.1145/3387514.3406217 https://doi.org/10.1145/3387514.3406217.

Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and Hao Li. 2022. Differential Network Analysis.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, Renton,
WA, 601–615. https://www.usenix.org/conference/nsdi22/presentation/zhang-peng https://www.usenix.org/conference/
nsdi22/presentation/zhang-peng.

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Modular Control Plane Verification via Temporal Invariants 25

A PROOFS
We present the full proofs of Theorem 3.1, Corollary 3.2 and Theorem 3.3 below.

Theorem A.1 (Soundness). Let 𝐴 satisfy initial and inductive conditions. Then ∀𝑡 ∈ N,∀𝑣 ∈
𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡).

Proof. Straightforward by induction over time. Let 𝑣 be an arbitrary node in 𝑉 .
At time 0, we have 𝜎 (𝑣) (0) = I𝑣 by the definition of 𝜎 and I𝑣 ∈ 𝐴(𝑣) (0) by the definition of an

inductive invariant, so by substitution we have 𝜎 (𝑣) (0) ∈ 𝐴(𝑣) (0).
For the inductive case, we must show that(

∀𝑣 ∈ 𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡)
)
⇒

(
∀𝑣 ∈ 𝑉 , 𝜎 (𝑣) (𝑡 + 1) ∈ 𝐴(𝑣) (𝑡 + 1)

)
We assume the antecedent (the inductive hypothesis). Consider the neighbors 𝑢1, . . . , 𝑢𝑘 of 𝑣 . By

the definition of an inductive invariant (6), we have:

∀𝑠1 ∈ 𝐴(𝑢1) (𝑡),∀𝑠2 ∈ 𝐴(𝑢2) (𝑡), . . . ,∀𝑠𝑛 ∈ 𝐴(𝑢𝑛) (𝑡),©­«I𝑣 ⊕
⊕

𝑖∈{1,...,𝑛}
f𝑢𝑖 𝑣 (𝑠𝑖)

ª®¬ ∈ 𝐴(𝑣) (𝑡 + 1)
Then by our inductive hypothesis, we have that 𝜎 (𝑢𝑖) (𝑡) ∈ 𝐴(𝑢𝑖) (𝑡) for all 𝑢𝑖 , so we can instantiate
the universal quantifiers with these routes and substitute, which gives us:

I𝑣 ⊕
⊕

𝑖∈{1,...,𝑛}
f𝑢𝑖 𝑣 (𝜎 (𝑢𝑖) (𝑡)) ∈ 𝐴(𝑣) (𝑡 + 1)

The left-hand side is equal to the definition of 𝜎 (𝑣) (𝑡 + 1) in (4), so we have what we wanted to
show:

𝜎 (𝑣) (𝑡 + 1) ∈ 𝐴(𝑣) (𝑡 + 1)
Then ∀𝑡 ∈ N,∀𝑣 ∈ 𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡). □

Corollary A.2 (Safety). Let 𝐴 satisfy initial and inductive conditions. Let P satisfy the safety
condition with respect to A. Then ∀𝑡 ∈ N,∀𝑣 ∈ 𝑉 , 𝜎 (𝑣) (𝑡) ∈ 𝑃 (𝑣) (𝑡).

Proof. Let 𝑣 be a node and 𝑡 be a time. By Theorem 3.1, 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡). By the safety
condition (7), 𝐴(𝑣) (𝑡) ⊆ 𝑃 (𝑣) (𝑡). Then 𝜎 (𝑣) (𝑡) ∈ 𝑃 (𝑣) (𝑡), i.e., 𝑃 holds for 𝑣 at 𝑡 . □

Theorem A.3 (Completeness). Let 𝜎 be the state of the network. Then 𝐴(𝑣) (𝑡) = {𝜎 (𝑣) (𝑡)} for
all 𝑣 ∈ 𝑉 and all 𝑡 ∈ N satisfies the initial and inductive conditions.

Proof. Let 𝐴 be a function from nodes and times to singleton sets of routes such that 𝐴(𝑣) (𝑡) =
{𝜎 (𝑣) (𝑡)} for all 𝑣 ∈ 𝑉 and all 𝑡 ∈ N. Let 𝑣 be an arbitrary node in 𝑉 and let 𝑡 be an arbitrary time.
We want to show that {𝜎 (𝑣) (𝑡)} is an inductive invariant.

Starting with the initial condition case, at time 0, we have 𝜎 (𝑣) (0) = I𝑣 by the definition of 𝜎 .
Since 𝜎 (𝑣) (0) ∈ {𝜎 (𝑣) (0)}, the initial condition holds.

For the inductive condition case, we want to show that:

∀𝑠1 ∈ {𝜎 (𝑢1) (𝑡)} ,∀𝑠2 ∈ {𝜎 (𝑢2) (𝑡)} , . . . ,∀𝑠𝑛 ∈ {𝜎 (𝑢𝑛) (𝑡)} ,

©­«I𝑣 ⊕
⊕

𝑖∈{1,...,𝑛}
f𝑢𝑖 𝑣 (𝑠𝑖)

ª®¬ ∈ {𝜎 (𝑣) (𝑡 + 1)}
, Vol. 1, No. 1, Article . Publication date: November 2022.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

Checking set inclusion of 𝑠 ∈ {𝜎 (𝑣) (𝑡)} is equivalent to checking that 𝑠 = 𝜎 (𝑣) (𝑡), so we can
simplify the expression further by substituting 𝜎 (𝑢𝑖) (𝑡) for 𝑠𝑖 :©­«I𝑣 ⊕

⊕
𝑖∈{1,...,𝑛}

f𝑢𝑖 𝑣 (𝜎 (𝑢𝑖) (𝑡))
ª®¬ = 𝜎 (𝑣) (𝑡 + 1)

This is now simply (4) flipped, so the inductive condition holds.
Then 𝐴 is an inductive invariant. □

, Vol. 1, No. 1, Article . Publication date: November 2022.

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 Background
	2.2 The Challenge of Modular Verification
	2.3 The Solution: A Temporal Model

	3 Formal Model with Temporal Invariants
	4 SMT Algorithms for Verification
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References
	A Proofs

