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Introduction

curesurv is an R-package to fit a variaty of cure models using excess hazard modelling method-
ology. It can be a mixture cure model with the survival of uncured patients following a Weibull
(Botta et al. 2023, BMC Medical Research Methodology). The package also implements non-
mixture cure models such as the time-to-null excess hazard model proposed by Boussari et
al (2021) (Boussari et al. 2021). If the modelling assumption of comparability between the
expected hazard in the study cohort and the general population doesn’t hold, an extra effect
(due to life table mismatch) can be estimated for these two classes of cure models. In the
following we will only be interested by mixture cure models implemented in the curesurv
R-package.

For more details regarding mixture cure models in net survival setting please read the methods
section in the article untitled: “A new cure model that corrects for increased risk of non-cancer
death. Analysis of reliability and robustness, and application to real-life data” in BMC medical
research methodology.

Installation

The latest version of curesurv can be installed using the tar.gz version of the R-package
uploaded to the journal website using the following r script:

install.packages("curesurv_0.1.0.tar.gz",
repos = NULL,
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type = "source")

curesurv depends on the stringr and survival R packages, which can be installed directly
from CRAN.

It also uses other R packages that can be imported, such as: numDeriv, stats, randtoolbox,
bbmle, optimx, Formula, Deriv, statmod, and xhaz.

Once these other packages are installed, load the curesurv R package.

library(xhaz)
#> Warning: le package 'xhaz' a été compilé avec la version R 4.2.2
#> Le chargement a nécessité le package : statmod
#> Le chargement a nécessité le package : survival
library(survexp.fr)
library(curesurv)
#> Le chargement a nécessité le package : stringr

Fitting a classical mixture cure model in excess hazard modelling
setting (M0)

We illustrate the fitting of mixture cure models using a simulated dataset named
testiscancer. This dataset is available in the curesurv package. It consists of 2,000
patients with information on their age, follow-up time, and vital status. The patients are
assumed to be male and diagnosed in 2000-01-01 for a testis cancer. The French life table
in the R package survexp.fr can be used as the mortality table of the French general
population for illustration purposes.

Importing the dataset

# We had these information in the dataset
data("testiscancer", package = "curesurv")

head(testiscancer)
#> age age_cr age_classe time_obs event cumehazard ehazard
#> 1 30.81199 -1.0669519 <40 15.0000000 0 4.360425e-03 1.060500e-03
#> 2 30.36516 -1.0905122 <40 0.6849198 1 1.332385e-05 2.169431e-05
#> 3 24.87704 -1.3798868 <40 10.7766145 0 2.748548e-04 8.644893e-05
#> 4 32.19556 -0.9939996 <40 8.6270943 0 1.151121e-03 3.347585e-04
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#> 5 30.36346 -1.0906016 <40 0.9690360 1 1.976659e-05 2.375032e-05
#> 6 30.52206 -1.0822390 <40 15.0000000 0 4.068062e-03 9.952639e-04
#> weisurvpop
#> 1 0.9956491
#> 2 0.9999867
#> 3 0.9997252
#> 4 0.9988495
#> 5 0.9999802
#> 6 0.9959402

dim(testiscancer)
#> [1] 2000 8
testiscancer$sex <- "male"
levels(testiscancer$sex) <- c("male", "female")
testiscancer$year <- as.Date("2000-01-01")

Extracting the population background mortality from the French life table

Here we show how to extract background mortality information from survexp.fr (2022), the
life table for France available in the eponymous R package.

attributes(survexp.fr)
#> $dim
#> [1] 100 2 43
#>
#> $dimnames
#> $dimnames[[1]]
#> [1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
#> [16] "15" "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29"
#> [31] "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44"
#> [46] "45" "46" "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59"
#> [61] "60" "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72" "73" "74"
#> [76] "75" "76" "77" "78" "79" "80" "81" "82" "83" "84" "85" "86" "87" "88" "89"
#> [91] "90" "91" "92" "93" "94" "95" "96" "97" "98" "99"
#>
#> $dimnames[[2]]
#> [1] "male" "female"
#>
#> $dimnames[[3]]
#> [1] "1977" "1978" "1979" "1980" "1981" "1982" "1983" "1984" "1985" "1986"
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#> [11] "1987" "1988" "1989" "1990" "1991" "1992" "1993" "1994" "1995" "1996"
#> [21] "1997" "1998" "1999" "2000" "2001" "2002" "2003" "2004" "2005" "2006"
#> [31] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"
#> [41] "2017" "2018" "2019"
#>
#>
#> $dimid
#> [1] "age" "sex" "year"
#>
#> $factor
#> [1] 0 1 0
#>
#> $cutpoints
#> $cutpoints[[1]]
#> [1] 0.000 365.241 730.482 1095.723 1460.964 1826.205 2191.446
#> [8] 2556.687 2921.928 3287.169 3652.410 4017.651 4382.892 4748.133
#> [15] 5113.374 5478.615 5843.856 6209.097 6574.338 6939.579 7304.820
#> [22] 7670.061 8035.302 8400.543 8765.784 9131.025 9496.266 9861.507
#> [29] 10226.748 10591.989 10957.230 11322.471 11687.712 12052.953 12418.194
#> [36] 12783.435 13148.676 13513.917 13879.158 14244.399 14609.640 14974.881
#> [43] 15340.122 15705.363 16070.604 16435.845 16801.086 17166.327 17531.568
#> [50] 17896.809 18262.050 18627.291 18992.532 19357.773 19723.014 20088.255
#> [57] 20453.496 20818.737 21183.978 21549.219 21914.460 22279.701 22644.942
#> [64] 23010.183 23375.424 23740.665 24105.906 24471.147 24836.388 25201.629
#> [71] 25566.870 25932.111 26297.352 26662.593 27027.834 27393.075 27758.316
#> [78] 28123.557 28488.798 28854.039 29219.280 29584.521 29949.762 30315.003
#> [85] 30680.244 31045.485 31410.726 31775.967 32141.208 32506.449 32871.690
#> [92] 33236.931 33602.172 33967.413 34332.654 34697.895 35063.136 35428.377
#> [99] 35793.618 36158.859
#>
#> $cutpoints[[2]]
#> NULL
#>
#> $cutpoints[[3]]
#> [1] "1977-01-01" "1978-01-01" "1979-01-01" "1980-01-01" "1981-01-01"
#> [6] "1982-01-01" "1983-01-01" "1984-01-01" "1985-01-01" "1986-01-01"
#> [11] "1987-01-01" "1988-01-01" "1989-01-01" "1990-01-01" "1991-01-01"
#> [16] "1992-01-01" "1993-01-01" "1994-01-01" "1995-01-01" "1996-01-01"
#> [21] "1997-01-01" "1998-01-01" "1999-01-01" "2000-01-01" "2001-01-01"
#> [26] "2002-01-01" "2003-01-01" "2004-01-01" "2005-01-01" "2006-01-01"
#> [31] "2007-01-01" "2008-01-01" "2009-01-01" "2010-01-01" "2011-01-01"
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#> [36] "2012-01-01" "2013-01-01" "2014-01-01" "2015-01-01" "2016-01-01"
#> [41] "2017-01-01" "2018-01-01" "2019-01-01"
#>
#>
#> $class
#> [1] "ratetable"

fit.haz <- exphaz(
formula = Surv(time_obs, event) ~ 1,
data = testiscancer,
ratetable = survexp.fr,
only_ehazard = FALSE,
rmap = list(age = 'age',

sex = 'sex',
year = 'year'))

#instantaneous population hazard
testiscancer$haz <- testiscancer$ehazard
#cumulative population hazard
testiscancer$cumhaz <- testiscancer$cumehazard

Fitting a conventional mixture cure model with the uncured survival following a
Weibull distribution

We fit a mixture cure model in the excess hazard modeling setting. We assume that reduced
and centered age affect the cure rate through a logistic link function and uncured survival
proportionally (De Angelis et al. 1999).

fit_mod0 <- curesurv(Surv(time_obs, event) ~ age_cr | age_cr,
pophaz = "haz",
cumpophaz = "cumhaz",
model = "mixture", dist = "weib",
data = testiscancer,
method_opt = "L-BFGS-B")

fit_mod0
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ age_cr | age_cr, data = testiscancer,
#> pophaz = "haz", cumpophaz = "cumhaz", model = "mixture",
#> dist = "weib", method_opt = "L-BFGS-B")
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#>
#> coef se(coef) z p
#> beta0 1.24636 0.08549 14.579 < 2e-16
#> beta_1_age_cr -1.20017 0.10120 -11.859 < 2e-16
#> lambda -1.28957 0.10792 -11.949 < 2e-16
#> gamma 0.52508 0.07693 6.825 8.79e-12
#> delta_1_age_cr -0.29320 0.08734 -3.357 0.000788
#>
#> Baseline hazard estimates and their 95% CI
#>
#> after back-transformation
#> exp(coef) LCI UCI
#> lambda 0.2754 0.2171 0.334
#> gamma 1.6906 1.4357 1.946
#>
#> Cured proportion �(Z) = ((1+exp(-�0-�Z))^-1 and its 95% CI
#> (For each Z of (age_cr) the others are at reference level)
#> estimates LCI UCI
#> �0 0.7767 0.7476 0.806
#> �_1_age_cr 0.5115 0.4620 0.561
#>
#> log-likelihood: -2561.118 (for 5 degree(s) of freedom)
#> AIC: 5132.237
#>
#> n= 2000 , number of events= 949

We found that the effect of reduced and centered age on survival of uncured patients was 0.29
with a standard error of 0.08. The cure rates and their 95% confidence intervals for patients
51.05 and 70.01 years of age (representing individuals with the average age in the study cohort
and that of individuals whose age corresponds to an increase of one unit of reduced centered
age) were 77.67% [74.76; 80.60] and 51.15% [46.20; 56.10], respectively.

Fitting a new mixture cure model with the uncured survival (M1)
allowing the background mortality to be corrected

We fit a new mixture cure model in the excess hazard modelling setting proposed by Botta et
al. 2023. It allows the background mortality to be corrected using the argument pophaz.alpha
= TRUE, in order to account for increased non-cancer mortality as in (Phillips, Coldman, and
McBride 2002). As previously, the new model assumes that reduced and centered age affects
the cure rate through a logistic link function and the uncured survival proportionally. This
model was presented at the 15th Francophone Conference on Clinical Epidemiology (EPICLIN)
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and at the 28th Journées des statisticiens des centres anticancéreux (CLCC), in Marseille,
France (Botta et al. 2021).

fit_mod1 <- curesurv(Surv(time_obs, event) ~ age_cr | age_cr,
pophaz = "haz",
cumpophaz = "cumhaz",
model = "mixture", dist = "weib",
data = testiscancer,
pophaz.alpha = TRUE,
method_opt = "L-BFGS-B")

fit_mod1
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ age_cr | age_cr, data = testiscancer,
#> pophaz = "haz", cumpophaz = "cumhaz", pophaz.alpha = TRUE,
#> model = "mixture", dist = "weib", method_opt = "L-BFGS-B")
#>
#> coef se(coef) z p
#> beta0 1.87764 0.13503 13.905 < 2e-16
#> beta_1_age_cr -0.38887 0.14957 -2.600 0.00933
#> lambda -1.53696 0.18253 -8.420 < 2e-16
#> gamma 0.78748 0.07703 10.223 < 2e-16
#> delta_1_age_cr -0.35511 0.13654 -2.601 0.00930
#> pophaz.alpha0 0.67301 0.04690 14.350 < 2e-16
#>
#> Baseline hazard estimates and their 95% CI
#>
#> after back-transformation
#> exp(coef) LCI UCI
#> lambda 0.2150 0.1381 0.292
#> gamma 2.1979 1.8660 2.530
#> pophaz.alpha0 1.9601 1.7799 2.140
#>
#> Cured proportion �(Z) = ((1+exp(-�0-�Z))^-1 and its 95% CI
#> (For each Z of (age_cr) the others are at reference level)
#> estimates LCI UCI
#> �0 0.8673 0.8369 0.898
#> �_1_age_cr 0.8159 0.7719 0.860
#>
#> log-likelihood: -2496.391 (for 6 degree(s) of freedom)
#> AIC: 5004.781
#>
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#> n= 2000 , number of events= 949

We found that the effect of reduced and centered age on survival of uncured patients was
higher in the new model and was 0.35 with a standard error of 0.13. The cure rates and their
95% confidence intervals for patients 51.05 and 70.01 years of age (representing individuals
with the average age in the study cohort and that of individuals whose age corresponds to an
increase of one unit of reduced centered age) were also higher with the new mixed cure model,
with estimates of 86.73% [83.69; 89.80]% and 81.59% [77.19; 86.00]%, respectively. The new
mixture cure model also estimated the increased risk of non-cancer death to be 1.96, with
95% confidence intervals [1.77; 2.14] not including 1. These results support the hypothesis of
increased non-cancer mortality in the simulated testicular cancer patients.

How to select the best model

We can compare the output of these two models using Akaike information criteria (AIC).

fit_mod0$AIC
#> [1] 5132.237
fit_mod1$AIC
#> [1] 5004.781

The best model was the new mixture cure model accounting for increased risk of non-cancer
death.

Plot of net survival, excess hazard and probability of being cured
for the two models

Predictions by varying age values

We can be interested in the prediction of excess hazard and net survival. We propose to calcu-
late these predictions of excess hazard and net survival at equal time 2 years since diagnosis,
as a function of centered and reduced age ranging from -1.39 to 1.5, which corresponds to
age values ranging from 24.69 to 83.48. We also added the curves of Pi(t), the probability of
being cured at a given time t after diagnosis knowing that he/she was alive until the time 2
years since diagnosis (Boussari et al. 2018),which can be obtained from the estimates of these
models.
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val_age <- seq(-1.39, 1.8, 0.1)
newage <- round(val_age * sd(testiscancer$age) + mean(testiscancer$age), 2)

newdata3 <- with(testiscancer,
expand.grid(

event = 0,
age_cr = val_age,

time_obs = 2))

pred_age_mod0 <- sapply(1:(nrow(newdata3)),
function(i)

predict(object = fit_mod0,
newdata = newdata3[i, ]))

pred_age_mod1 <- sapply(1:(nrow(newdata3)),
function(i)

predict(object = fit_mod1,
newdata = newdata3[i, ]))

par(mfrow=c(2,2))
plot(newage,

unlist(pred_age_mod0["ex_haz",]), type = "l",
lty=1, lwd=2,
xlab = "age",
ylab = "excess hazard")

lines(newage,
unlist(pred_age_mod1["ex_haz",]), type = "l",
lty=1, lwd=2, col = "blue")

legend("topleft",
legend = c("M0",

"M1"),
lty = c(1,1),
lwd = c(2,2),
col = c("black", "blue"))

grid()
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plot(newage,
unlist(pred_age_mod0["netsurv",]) , type = "l", lty=1,
lwd=2, xlab = "age", ylab = "net survival")

lines(newage,
unlist(pred_age_mod1["netsurv",]) , type = "l", lty=1,
lwd=2, col = "blue")
grid()

legend("bottomleft",
legend = c("M0",

"M1"),
lty = c(1,1),
lwd = c(2,2),
col = c("black", "blue"))

plot(newage,
unlist(pred_age_mod0["pt_cure",]), type = "l", lty=1, lwd=2,
xlab = "age",
ylab = "Pi(t)")
grid()

lines(newage,
unlist(pred_age_mod1["pt_cure",]), type = "l", lty=1, lwd=2,
xlab = "age", col = "blue")
grid()

legend("bottomleft",
legend = c("M0",

"M1"),
lty = c(1,1),
lwd = c(2,2),
col = c("black", "blue"))

par(mfrow=c(1,1))
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Predictions by varying time since diagnosis and for age 50 and 70

age50 <- c(50)
agecr50 <- (age50 - mean(testiscancer$age))/sd(testiscancer$age)

age70 <- c(70)
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agecr70 <- (age70 - mean(testiscancer$age))/sd(testiscancer$age)

time <- seq(0.1, 15, 0.1)

newdata_age50 <- with(testiscancer,
expand.grid(

event = 0,
age_cr = agecr50,
time_obs = time))

newdata_age70 <- with(testiscancer,
expand.grid(

event = 0,
age_cr = agecr70,
time_obs = time))

pred_age50_mod0 <- sapply(1:(nrow(newdata_age50)),
function(i)

predict(object = fit_mod0,
newdata = newdata_age50[i, ]))

pred_age70_mod0 <- sapply(1:(nrow(newdata_age70)),
function(i)

predict(object = fit_mod0,
newdata = newdata_age70[i, ]))

pred_age50_mod1 <- sapply(1:(nrow(newdata_age50)),
function(i)

predict(object = fit_mod1,
newdata = newdata_age50[i, ]))

pred_age70_mod1 <- sapply(1:(nrow(newdata_age70)),
function(i)

predict(object = fit_mod1,
newdata = newdata_age70[i, ]))

par(mfrow=c(2,2))
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plot(
time,
unlist(pred_age50_mod0["ex_haz", ]),
type = "l",
lty = 1,
lwd = 2,
xlab = "time since diagnosis (years)",
ylab = "excess hazard", ylim = c(0,0.20))

lines(
time,
unlist(pred_age50_mod1["ex_haz", ]),
type = "l", col = "blue",
lty = 1,
lwd = 2)

lines(
time,
unlist(pred_age70_mod0["ex_haz", ]),
type = "l",
lty = 2,
lwd = 2)

lines(
time,
unlist(pred_age70_mod1["ex_haz", ]),
type = "l", col = "blue",
lty = 2,
lwd = 2)

grid()

legend("topright",
legend = c("M0 - age = 50",

"M1 - age = 50",
"M0- age = 70",
"M1- age = 70"),

lty = c(1,1,2,2),
lwd = c(2,2,2,2),
col = c("black", "blue", "black", "blue"))

plot(time,
unlist(pred_age50_mod0["netsurv",]) , type = "l", lty=1,
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lwd=2,
xlab = "time since diagnosis (years)",
ylab = "net survival",
ylim = c(0,1))

lines(time,
unlist(pred_age50_mod1["netsurv",]) , type = "l", lty=1,
lwd=2, col = "blue")

lines(time,
unlist(pred_age70_mod0["netsurv",]) , type = "l", lty=2,
lwd=2)

lines(time,
unlist(pred_age70_mod1["netsurv",]) , type = "l", lty=2,
lwd=2, col = "blue")
grid()

legend("bottomleft",
legend = c("M0 - age = 50",

"M1 - age = 50",
"M0- age = 70",
"M1- age = 70"),

lty = c(1,1,2,2),
lwd = c(2,2,2,2),
col = c("black", "blue", "black", "blue"))

plot(time,
unlist(pred_age50_mod0["pt_cure",]),
type = "l", lty=1, lwd=2,
xlab = "time since diagnosis (years)",
ylab = "Pi(t)",
ylim = c(0,1))
grid()

lines(time,
unlist(pred_age50_mod1["pt_cure",]),
type = "l", lty=1, lwd=2,
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xlab = "age", col = "blue")

lines(time,
unlist(pred_age70_mod0["pt_cure",]),
type = "l", lty=2, lwd=2)

lines(time,
unlist(pred_age70_mod1["pt_cure",]),
type = "l", lty=2, lwd=2,
xlab = "age", col = "blue")
grid()

legend("bottomright",
legend = c("M0 - age = 50",

"M1 - age = 50",
"M0- age = 70",
"M1- age = 70"),

lty = c(1,1,2,2),
lwd = c(2,2,2,2),
col = c("black", "blue", "black", "blue"))

par(mfrow=c(1,1))
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Session info

sessionInfo()
#> R version 4.2.1 (2022-06-23 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
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#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=French_France.utf8 LC_CTYPE=French_France.utf8
#> [3] LC_MONETARY=French_France.utf8 LC_NUMERIC=C
#> [5] LC_TIME=French_France.utf8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] curesurv_0.1.0 stringr_1.4.1 survexp.fr_1.1 xhaz_2.0.1 survival_3.3-1
#> [6] statmod_1.4.37
#>
#> loaded via a namespace (and not attached):
#> [1] Formula_1.2-4 rstudioapi_0.14 knitr_1.40
#> [4] magrittr_2.0.3 splines_4.2.1 lattice_0.20-45
#> [7] rlang_1.0.6 fastmap_1.1.0 tools_4.2.1
#> [10] optimParallel_1.0-2 parallel_4.2.1 grid_4.2.1
#> [13] xfun_0.33 cli_3.4.1 htmltools_0.5.4
#> [16] yaml_2.3.5 digest_0.6.29 numDeriv_2016.8-1.1
#> [19] Matrix_1.5-1 WriteXLS_6.4.0 evaluate_0.16
#> [22] rmarkdown_2.16 stringi_1.7.8 compiler_4.2.1
#> [25] jsonlite_1.8.2

License

GPL 3.0, for academic use.
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