CPCC

ARCHER2 Performance
Optimisation on EPYC
Practical Notes

Getting started

Logging on to ARCHER?2

You should already have an account on ARCHER2, and should be
able to log on to it using

ssh -X accountname@login.archer2.ac.uk

(replacing accountname with the name of your account on the
system) or with the SSH client of your choice (=X ensures that
graphics are routed back to your desktop). Once you have success-
fully logged in you will be presented with an interactive command
prompt.

For more detailed instructions on connecting to ARCHERZ, or on
how to run commands, please see the Appendix.



Download and extract the exercise files

Firstly, change directory to make sure you are on the /work filesys-

tem on ARCHER2.
cd /work/ta091/ta091/accountname/

Where ta091 is the name of the project being used for this course.
/work is a high performance parallel file system that can be ac-
cessed by both the frontend and compute nodes. All jobs on
ARCHER?2 should be run from the /work filesystem.
ARCHER?2 compute nodes cannot access the /home filesystem at
all: any jobs attempting to use /home will fail with an error.

Use the following commands (on ARCHER2) to get the exercise
files archive from the web and unpack it:

cp /work/z19/shared/SNO.tar .
tar xvf SNO.tar

Exercise 1: Placement

The code for this exercise is in Archer20pt/Placement. The aim
of this exercise is to investigate the performance variation across
the cores on an ARCHER2 node. Currently the code is setup to run
the STREAMSs benchmark with 16 cores, all on a single chiplet on
the ARCHER2 system. The batch script will run xthi, a program
that will print out the placement and binding information for the
current configuration, and then the STREAMs benchmark. You
can build the applications using the command:

make



You can submit the application using the command:
sbatch --reservation=XXX run_streams.sh

XXX should be replaced by the reservation name given to you at
the course.

Run the batch script as is, then edit it to run across NUMA regions
rather than withing a single NUMA region. You can do this by
changing srun -c 1 to srun -c 8. Rerun the application, what
is the performance difference?

Now alter the batch script to run 32 processes rather than 16 pro-
cesses. You will also need to alter the -¢ 8 flag to —¢ 4 to change
the process binding. What performance difference do you see? Try
for other ranges of process counts up to 128.

Exercise 2: CrayPat

The code for this exercise is in Archer20pt/VH1. Please follow
the separate instructions in CrayPAT-intro.pdf.

Exercise 3: Compiler Optimisation

The code for this exercise is in Archer20pt/CompilerQOpt. Please
follow the separate instruction in compilerexercise.pdf.



Exercise 4: Optimisation

The Archer20pt/MD/* directory, where * is either C or Fortran,
contains a sequential implementation of a molecular dynamics sim-
ulation which has been deliberately written to have poor perfor-
mance. Use profiling and compiler listings to look for the perfor-
mance problems. Once you have exhausted the compiler’s ability
to optimise, try some code modifications.

Exercise 5: Bandwidth and NUMA

The example code can be found in Archer20pt/Stream/*. This
is the well-known STREAM benchmark for measuring memory
bandwidth. Use the Makefile to compile the code, and run it using
different numbers of threads using the supplied batch script.

Does the bandwidth scale linearly with processors? Now try re-
moving the OpenMP loop directive from the initialisation of the
arrays. How does the performance change? You can also try us-
ing the “wrong” schedule for the loop, or selecting different sets of
cores to run on.

Extra exercise

Try reducing the array size N by a factor of 100 or 1000 (and
increase the repetition count NTIMES by the same amount).



Exercise 6: Cache blocking

The Archer20pt/Matmul/* directory contains a simple matrix
multiplication code. Try implementing cache blocking by hand,
and see the effect on the performance (stick to =00 to stop the
compiler doing its own optimisation!).

Exercise 7: OpenMP

The Archer20pt/MolDyn/* directory contains a (not very effi-
cient) OpenMP parallel version of a simple molecular dynamics
code (not the same as in Exercise 2!). Run the code using the script

supplied with the script supplied to measure the performance on
1,2, 4, 8 and 16 threads.

Try to identify the performance bottlenecks and fix them! You can
try using pat _build -g omp to instrument the OpenMP runtime
library.



Appendix

Detailed Login Instructions
Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

local$ ssh -X username@login.archer2.ac.uk
Password.:

you should be prompted to enter your password.

Procedure for Windows users

Windows does not generally have SSH installed by default so some
extra work is required. You need to download and install a SSH
client application - PuTTY is a good choice:

http://www.chiark.greenend.org.uk/ “sgtatham/putty/

When you start PuTTY you should be able to enter the ARCHER?2
login address:

login.archer2.ac.uk

When you connect you will be prompted for your user ID and
password.

Running commands

You can list the directories and files available by using the s (LiSt)
command:



username@archer2: > 1s
bin work

You can modify the behaviour of commands by adding options.
Options are usually letters or words preceded by ‘-” or “~'. For
example, to see more details of the files and directories available
you can add the ‘-’ (I for long) option to Is:

username@archer2:”> 1ls -1

total 8

drwxr-sr-x 2 user z01 4096 Nov 13 14:47 bin
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 work

If you want a description of a particular command and the options
available you can access this using the man (MANual) command.
For example, to show more information on [s:

username@archer2:”> man 1s
Man: find all matching manual pages
x 1s (1)
1ls (1p)
Man: What manual page do you want?
Man:

In the manual, use the spacebar to move down a page, ‘u’ to move
up, and ‘q’ to quit and exit back to the command line.

Using the Emacs text editor

As you do not have access to a windowing environment when using
ARCHERZ2, Emacs will be used in in-terminal mode. In this mode
you can edit the file as usual but you must use keyboard shortcuts



to run operations such as “save file” (remember, there are no menus
that can be accessed using a mouse).

Start Emacs with the emacs command and the name of the file
you wish to create. For example:

username@archer2:”> emacs sharpen_batch.sh

The terminal will change to show that you are now inside the
Emacs text editor.

Typing will insert text as you would expect and backspace will
delete text. You use special key sequences (involving the Ctrl and
Alt buttons) to save files, exit Emacs and so on.

Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually ab-
breviated in Emacs documentation to “C-x C-s”). You should see
the following briefly appear in the line at the bottom of the window
(the minibuffer in Emacs-speak):

Wrote ./sharpen_batch.sh

To exit Emacs and return to the command line use the sequence
“C-x C-¢”. If you have changes in the file that have not yet been
saved Emacs will prompt you (in the minibuffer) to ask if you want
to save the changes or not.

Although you could edit files on your local machine using whichever
windowed text editor you prefer it is useful to know enough to use
an in-terminal editor as there will be times where you want to
perform a quick edit that does not justify the hassle of editing and
re-uploading.



Useful commands for examining files

There are a couple of commands that are useful for displaying the
contents of plain text files on the command line that you can use to
examine the contents of a file without having to open in in Emacs
(if you want to edit a file then you will need to use Emacs). The
commands are cat and less. cat simply prints the contents of the
file to the terminal window and returns to the command line. For
example:

username@archer2:”> cat sharpen_batch.sh
aprun -n 4 ./sharpen

This is fine for small files where the text fits in a single terminal
window. For longer files you can use the less command. less gives
you the ability to scroll up and down in the specified file. For
example:

username@archer2: > less sharpen.c

Once in less you can use the spacebar to scroll down and ‘u’ to
scroll up. When you have finished examining the file you can use
‘q’ to exit less and return to the command line.

Hardware

Each node of ARCHER2 consist of two sockets, each containing a
64-core AMD Epyc Rome processor.



Compiling

The default compilers are the Cray compilers for Fortran 90 and
C. To use the AMD or GNU compilers:

username@archer2:”> module load PrgEnv-aocc

or
username@archer2:”> module load PrgEnv-gnu

The compiler is always invoked with ftn or cc, but you will need
to modify the flags for the different compilers.

Job Submission

To run codes, you should submit a batch job as follows:
sbatch --reservation <resnum> scriptfile.sh

where resnum is the reservation name for the session.

You can monitor your jobs status with the squeue command, and
jobs can be deleted with scancel.

10



