
Using CrayPAT and

Apprentice2: A Step- by-step

guide

Abstract

This tutorial introduces HPE Cray users to the Cray Performance Analysis Tool

and its Graphical User Interface, Apprentice2. The examples are based on the

code supplied in the tarball, however, the techniques can easily be applied to

any application that is compiled and executed on a HPE Cray supercomputer.

Introduction

The Cray Performance Analysis Tool (CrayPAT) is a powerful framework for

analysing a parallel application's performance on Cray supercomputers. It can

provide very detailed information on the timing and performance of individual

application procedures, directly incorporating information from the raw

hardware performance counters available on AMD Rome processors.

Sampling vs. Tracing

CrayPAT has two modes of operation, Sampling and Tracing. Sampling takes

regular snapshots of the application, recording which routine the application

was in. This can provide a good overview of the important routines in an

application without interfering with the run time, however it has the potential to

miss smaller functions and cannot provide the more detailed information like

MPI messaging statistics or information from hardware performance counters.

Tracing involves instrumenting each subroutine with additional instructions that

can record this extra information when they enter and exit. This approach

ensures full capture of information, but can result in high overheads, especially

where individual functions and subroutines are very small (as is typical in

Objected Oriented languages like C++), it can also generate very large amounts

of data which become difficult to process and visualise.

CrayPAT's Automatic Program Analysis aims to capture the most important

performance information without distorting the results by over instrumentation

or generating large volumes of data. APA uses two steps, the first uses sampling

to identify important functions in the application, it then uses this data, along

with information about the size and number of calls to generate a modified

binary with tracing included. This approach aims to cover the vast majority of

application runtime with the minimum of overhead and provides a quick and

straightforward method of analysing an application's performance on Cray

supercomputers.

A step-by-step guide to using APA

This step-by-step guide demonstrates how to profile an application using

CrayPAT's Automatic Program Analysis.

First, after logging on to the main system, users should load the perftools

module.

module load perftools

The perftools module has to be loaded while all source files are compiled and

linked. Next, load the NetCDF and HDF5 module (required by VH1):

 module load cray-netcdf

 module load cray-hdf5

The VH1 can be built with a simple call to:

cd src; make

To instrument then the binary, run the pat_build command with the -O apa

option. This will generate a new binary with +pat appended to the end.

cd ../bin;

pat_build -O apa vh1-mpi-cray

You should now run the new binary on the backend using the run.sh script in

the run directory. In this example you should edit the batch script change the

name of the executable to vh1-mpi-cray+pat. You should then submit this

executable to run on the Cray backend.

sbatch --reservation=XXXX run.sh

(Replace the XXXX with the reservation name given to you by the course

organisers). Once this has run, you will see that the run has generated an extra

directory, vh1-mpi-cray+pat+<number>s in a directory <jobid_number>. This file

contains the raw sampling data from the run and needs to be post processed

to produce useful results. This is done using the pat_report tool which converts

all the raw data into a summarised and readable form.

pat_report vh1-mpi-cray+pat+2681227-198s

This tool can generate a large amount of data, so you may wish to capture the

data in an output file, either using a shell redirect like >, or adding the -o <file>

option to the command.

Table 1: Profile by Function

 Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 2,359.3 | -- | -- |Total

|---

| 57.7% | 1,361.6 | -- | -- |USER

||--

|| 20.0% | 472.2 | 38.8 | 7.9% |parabola_

|| 12.7% | 298.7 | 43.3 | 13.2% |riemann_

|| 5.9% | 140.2 | 20.8 | 13.5% |sweepz_

|| 5.6% | 133.2 | 33.8 | 21.1% |remap_

|| 3.2% | 76.3 | 9.7 | 11.8% |sweepy_

|| 3.0% | 71.5 | 14.5 | 17.6% |paraset_

|| 1.9% | 45.8 | 14.2 | 24.8% |evolve_

|| 1.9% | 44.2 | 14.8 | 26.2% |states_

|| 1.1% | 27.1 | 7.9 | 23.5% |flatten_

|| 1.0% | 22.8 | 11.2 | 34.4% |sweepx1_

||==

| 37.6% | 887.8 | -- | -- |MPI

||--

|| 36.5% | 861.8 | 83.2 | 9.2% |mpi_alltoall

||==

| 4.2% | 100.0 | -- | -- |ETC

||--

|| 2.6% | 60.3 | 13.7 | 19.3% |__cray_sset_SNB

|| 1.5% | 34.4 | 8.6 | 20.9% |__cray_scopy_SNB

|===

Table 1 - User functions profiled by samples

Table 1 above shows the results from sampling the application. Program

functions are separated out into different types, USER functions are those

defined by the application, MPI functions contains the time spent in MPI library

functions, ETC functions are generally library or miscellaneous functions

included. ETC function can include a variety of external functions, from

mathematical functions called in by the library (as is this case) to system calls.

The raw number of samples for each code section is show in the second column

and the number as an absolute percentage of the total samples in the first. The

third column is a measure of the imbalance between individual processors being

sampled in this routine and is calculated as the difference between the average

number of samples over all processors and the maximum samples an individual

processor was in this routine.

The profile also generated two other files that are useful in the profiling

directory, one with the extension .ap2 which holds the same data as the .xf but in

the post processed form. The other file has a .apa extension and is a text file

with a suggested configuration for generating a traced experiment. You are

welcome and encouraged to review this file and modify its contents in

subsequent iterations, however in this first case we will continue with the

defaults.

This .apa file acts as the input to the pat_build command and is supplied as the

argument to the -O flag.

pat_build -O build_options.apa

This will produce a third binary with extension +apa. Copy this binary into the

bin/ directory. This binary should once again be run on the back end, so the input

run.sh script should be modified and the name of the executable changed to vh1-

mpi-cray+apa. The script is then submitted to the backend.

sbatch --reservation=XXXX run.sh

(Replace the XXXX with the reservation name given to you by the course

organisers). Again, a new profile directory will be generated by the application,

which should be processed by the pat_report tool. As this is now a tracing

experiment it will provide more information than before

pat_report vh1-mpi-cray+apa+2681298-198s

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 | | | | | PE=HIDE

 100.0% | 67.740903 | -- | -- | 7,373,686.5 |Total

|---

| 76.4% | 51.733412 | -- | -- | 7,372,951.0 |USER

||--

|| 24.8% | 16.776085 | 2.516269 | 13.6% | 460,800.0 |remap_

|| 11.1% | 7.529205 | 3.421455 | 32.6% | 1.0 |vhone_

|| 11.0% | 7.447873 | 0.953479 | 11.8% | 50.0 |sweepz_

|| 10.6% | 7.186668 | 0.967835 | 12.4% | 100.0 |sweepy_

|| 9.3% | 6.289532 | 2.906604 | 33.0% | 4,147,200.0 |parabola_

|| 4.5% | 3.048572 | 0.517124 | 15.1% | 460,800.0 |riemann_

|| 1.6% | 1.104668 | 0.641691 | 38.3% | 921,600.0 |paraset_

|| 1.4% | 0.964630 | 0.366043 | 28.7% | 460,800.0 |evolve_

|| 1.1% | 0.727949 | 0.346536 | 33.7% | 460,800.0 |flatten_

|| 1.0% | 0.658229 | 0.320822 | 34.2% | 460,800.0 |states_

||==

| 21.9% | 14.863376 | -- | -- | 363.2 |MPI_SYNC

||--

|| 17.5% | 11.826659 | 9.977789 | 84.4% | 300.0 |mpi_alltoall_(sync)

|| 3.9% | 2.608508 | 2.592821 | 99.4% | 51.0 |mpi_allreduce_(sync)

||==

| 1.7% | 1.144092 | -- | -- | 371.3 |MPI

||--

|| 1.6% | 1.086442 | 0.023866 | 2.2% | 300.0 |mpi_alltoall

|===

Table 2 – User functions profiled using tracing

The updated table above (Table 2) is the version generated from tracing data

instead of the previous sampling data table (Table 1). This version makes true

timing information is available (averages per processor) and the number of

times each function is called. Table 3 shows the information available for

individual functions. Timings are more accurate and features like the number of

calls are available. Information from the Rome hardware performance counters

is also available.

===

 USER / remap_
--

 Time% 24.8%

 Time 16.776085 secs

 Imb. Time 2.516269 secs

 Imb. Time% 13.6%

 Calls 0.025M/sec 460,800.0 calls

 CPU_CLK_UNHALTED:THREAD_P 87,504,487,183

 CPU_CLK_UNHALTED:REF_P 2,979,085,085

 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 20,952,547

 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 7,282,943

 L1D:REPLACEMENT 1,714,128,948

 L2_RQSTS:ALL_DEMAND_DATA_RD 1,861,959,568

 L2_RQSTS:DEMAND_DATA_RD_HIT 1,747,562,343

 FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 1,642

 FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE 772,302,817

 FP_COMP_OPS_EXE:X87 845,393,483

 FP_COMP_OPS_EXE:SSE_PACKED_SINGLE 127,020,303

 SIMD_FP_256:PACKED_SINGLE 5,099,855,700

 User time (approx) 18.663 secs 50,407,589,746 cycles 100.0% Time

 CPU_CLK 2.94GHz

 HW FP Ops / User time 2,300.039M/sec 42,924,624,751 ops 10.6%peak(DP)

 Total SP ops 2,254.740M/sec 42,079,229,626 ops

 Total DP ops 45.299M/sec 845,395,124 ops

 MFLOPS (aggregate) 55,200.93M/sec

 D2 cache hit,miss ratio 93.3% hits 6.7% misses

 D2 to D1 bandwidth 6,089.462MiB/sec 119,165,412,368 bytes

 Average Time per Call 0.000036 secs

 CrayPat Overhead : Time 11.7%

Table 3 – Per function hardware performance counter information

Additional documentation is available for CrayPAT and can be accessed either

through the man pages for individual commands or through the interactive

CrayPAT command (requires perftools to be loaded):

pat_help

Or though man pages:

man intro_pat

man pat_build

man pat_report

Apprentice2

Apprentice2 is the Graphic User Interface and visualisation suite for CrayPAT's

performance data. It reads the .ap2 files from the profile output directory

generated by pat_report's the profile files. It is launched from the command line

with:

app2 <profile_directory>

Figure 1 shows a screenshot of the call tree information available from

CrayPAT. It shows how time is spent along the call tree, inclusive time

corresponds to the width of boxes, excluding time to the height. Yellow

represents the load imbalance time between processors. Extra information is

provided by holding the mouse over areas of the screen, the “?” box will

provide hints on how to interpret the information displayed.

Accessing Temporal Information

Tracing an application can potentially generate very large amounts of data, to

reduce this volume the CrayPAT will, by default, summarise the data over the

entire application run. To see more detailed information about the timing of

individual events (like the sequencing of MPI messages between processors or

the number of hardware counter events in a time interval) CrayPAT has to be

instructed to store all data from throughout the run. This is controlled by the

PAT_RT_SUMMARY environment variable, setting it to 0 in run.sh will prevent

summarising and allow access to even more data.

export PAT_RT_SUMMARY=0

Warning! Running tracing experiment on a large number of processors for a

long period of time will generate VERY large files! Most tracing experiments

should be conducted on a small number of processors (<= 256) and over a short

wall clock time period (< 5 minute).

Figure 1 – A screenshot of Apprentice 2.

