Using CrayPAT and
Apprentice2: A Step- by-step
guide

Abstract

This tutorial introduces HPE Cray users to the Cray Performance Analysis Tool
and its Graphical User Interface, Apprentice2. The examples are based on the
code supplied in the tarball, however, the techniques can easily be applied to
any application that is compiled and executed on a HPE Cray supercomputer.

Introduction

The Cray Performance Analysis Tool (CrayPAT) is a powerful framework for
analysing a parallel application's performance on Cray supercomputers. It can
provide very detailed information on the timing and performance of individual
application procedures, directly incorporating information from the raw
hardware performance counters available on AMD Rome processors.

Sampling vs. Tracing

CrayPAT has two modes of operation, Sampling and Tracing. Sampling takes
regular snapshots of the application, recording which routine the application
was in. This can provide a good overview of the important routines in an
application without interfering with the run time, however it has the potential to
miss smaller functions and cannot provide the more detailed information like
MPI messaging statistics or information from hardware performance counters.

Tracing involves instrumenting each subroutine with additional instructions that
can record this extra information when they enter and exit. This approach
ensures full capture of information, but can result in high overheads, especially
where individual functions and subroutines are very small (as is typical in
Objected Oriented languages like C++), it can also generate very large amounts

of data which become difficult to process and visualise.

CrayPAT's Automatic Program Analysis aims to capture the most important
performance information without distorting the results by over instrumentation
or generating large volumes of data. APA uses two steps, the first uses sampling
to identify important functions in the application, it then uses this data, along
with information about the size and number of calls to generate a modified
binary with tracing included. This approach aims to cover the vast majority of
application runtime with the minimum of overhead and provides a quick and
straightforward method of analysing an application's performance on Cray
supercomputers.

A step-by-step guide to using APA

This step-by-step guide demonstrates how to profile an application using
CrayPAT's Automatic Program Analysis.

First, after logging on to the main system, users should load the perftools
module.

module load perftools

The perftools module has to be loaded while all source files are compiled and
linked. Next, load the NetCDF and HDF5 module (required by VH1):

module load cray-netcdf
module load cray-hdf5

The VH1 can be built with a simple call to:
cd src; make

To instrument then the binary, run the pat_build command with the -O apa
option. This will generate a new binary with +pat appended to the end.

cd ../bin;
pat_build -O apa vh1l-mpi-cray

Y ou should now run the new binary on the backend using the run. sh script in
the run directory. In this example you should edit the batch script change the

name of the executable to vhl-mpi-cray+pat. You should then submit this
executable to run on the Cray backend.

shatch --reservation=XXXX run.sh

(Replace the XXXX with the reservation name given to you by the course
organisers). Once this has run, you will see that the run has generated an extra
directory, vh1-mpi-cray+pat+<number>s in a directory <jobid_number>. This file
contains the raw sampling data from the run and needs to be post processed

to produce useful results. This is done using the pat_report tool which converts
all the raw data into a summarised and readable form.

pat_report vhl-mpi-cray+pat+2681227-198s

This tool can generate a large amount of data, so you may wish to capture the
data in an output file, either using a shell redirect like >, or adding the -o <file>
option to the command.

Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function

| | | | PE=HIDE
100.0%]2,359.3| --| --|Total
|
|
| 57.7%|1,361.6| --| --|USER
|

|| 20.0% | 472.2|38.8| 7.9% |parabola_
|| 12.7% | 298.7|43.3|13.2% |riemann_
|| 5.9%| 140.2|20.8|13.5% |sweepz_
|| 5.6%| 133.2]33.8]|21.1% |remap_
| 3.2%| 76.3| 9.7]11.8% |sweepy_
|| 3.0%| 71.5]|14.5|17.6% |paraset_
| 1.9%| 45.8|14.2|24.8% |evolve_
| 1.9% | 44.2]14.8|26.2% |states_

| 1.1%| 27.1] 7.9]|23.5% |flatten_

| 1.0%| 22.8]11.2|34.4% |sweepxl_

i
| 37.6%| 887.8| --| --|MPI
|

|
|| 36.5% | 861.8]83.2| 9.2% |mpi_alltoall

|
| 42%]| 1000| | --|ETC

|

|

| 2.6% | 60.3]13.7]19.3% | cray sset SNB
| 1.5%| 34.4| 8.6|20.9% |__cray _scopy SNB

Table 1 - User functions profiled by samples

Table 1 above shows the results from sampling the application. Program
functions are separated out into different types, USER functions are those
defined by the application, MPI functions contains the time spent in MPI library
functions, ETC functions are generally library or miscellaneous functions
included. ETC function can include a variety of external functions, from
mathematical functions called in by the library (as is this case) to system calls.

The raw number of samples for each code section is show in the second column
and the number as an absolute percentage of the total samples in the first. The
third column is a measure of the imbalance between individual processors being
sampled in this routine and is calculated as the difference between the average
number of samples over all processors and the maximum samples an individual
processor was in this routine.

The profile also generated two other files that are useful in the profiling
directory, one with the extension .ap2 which holds the same data as the .xf but in
the post processed form. The other file has a .apa extension and is a text file
with a suggested configuration for generating a traced experiment. You are
welcome and encouraged to review this file and modify its contents in
subsequent iterations, however in this first case we will continue with the
defaults.

This .apa file acts as the input to the pat_build command and is supplied as the
argument to the -O flag.

pat_build -O build_options.apa

This will produce a third binary with extension +apa. Copy this binary into the
bin/ directory. This binary should once again be run on the back end, so the input
run.sh script should be modified and the name of the executable changed to vhi-
mpi-cray+apa. The script is then submitted to the backend.

shatch --reservation=XXXX run.sh

(Replace the XXXX with the reservation name given to you by the course
organisers). Again, a new profile directory will be generated by the application,
which should be processed by the pat_report tool. As this is now a tracing
experiment it will provide more information than before

pat_report vhl-mpi-cray+apa+2681298-198s

Table 1: Profile by Function Group and Function

Time%| Time| Imb.| Imb.| Calls|Group
| | Time|Time% | | Function
| | | | PE=HIDE
100.0% | 67.740903| --| --]7,373,686.5 |Total
|
|
| 76.4% |51.733412| --| --]7,372,951.0 |[USER
|

|

|| 24.8% | 16.776085 | 2.516269 | 13.6% | 460,800.0 |[remap_

|| 11.1% | 7.529205 | 3.421455 | 32.6% | 1.0 [vhone_

|| 11.0% | 7.447873|0.953479 | 11.8% | 50.0 |sweepz_

|| 10.6% | 7.186668 | 0.967835 | 12.4% | 100.0 |sweepy_

|| 9.3% | 6.289532 | 2.906604 | 33.0% | 4,147,200.0 |parabola_
|| 4.5% | 3.048572|0.517124|15.1% | 460,800.0 |[riemann_
|| 1.6% | 1.104668 | 0.641691 | 38.3% | 921,600.0 |paraset_
|| 1.4% | 0.964630 | 0.366043 | 28.7% | 460,800.0 |evolve_
|| 1.1% | 0.727949 | 0.346536 | 33.7% | 460,800.0 |flatten_

|| 1.0% | 0.658229 | 0.320822 | 34.2% | 460,800.0 |states_

Il
| 21.9% | 14.863376 | -~ - 363.2 [MPI_SYNC
I
|| 17.5% | 11.826659 | 9.977789 | 84.4% | 300.0 |mpi_alltoall_(sync)
|| 3.9% | 2.608508 | 2.592821 | 99.4% | 51.0 |mpi_allreduce_(sync)
I
| 1.7% | 1.144092 | - - 371.3 |MPI
Il
|| 1.6% | 1.086442 |0.023866 | 2.2% | 300.0 |mpi_alltoall

Table 2 — User functions profiled using tracing

The updated table above (Table 2) is the version generated from tracing data
instead of the previous sampling data table (Table 1). This version makes true
timing information is available (averages per processor) and the number of
times each function is called. Table 3 shows the information available for
individual functions. Timings are more accurate and features like the number of
calls are available. Information from the Rome hardware performance counters
is also available.

USER / remap_

Time% 24.8%

Time 16.776085 secs

Imb. Time 2.516269 secs

Imb. Time% 13.6%

Calls 0.025M/sec 460,800.0 calls
CPU_CLK_UNHALTED:THREAD_P 87,504,487,183
CPU_CLK_UNHALTED:REF_P 2,979,085,085
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 20,952,547
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 7,282,943
L1D:REPLACEMENT 1,714,128,948

L2 RQSTS:ALL_DEMAND_DATA _RD 1,861,959,568
L2_RQSTS:DEMAND_DATA_RD_HIT 1,747,562,343
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 1,642
FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE 772,302,817
FP_COMP_OPS_EXE:X87 845,393,483
FP_COMP_OPS_EXE:SSE_PACKED_SINGLE 127,020,303
SIMD_FP_256:PACKED_SINGLE 5,099,855,700

User time (approx) 18.663 secs 50,407,589,746 cycles 100.0% Time
CPU_CLK 2.94GHz

HW FP Ops / User time 2,300.039M/sec 42,924,624,751 ops 10.6%peak(DP)
Total SP ops 2,254.740M/sec 42,079,229,626 ops

Total DP ops 45.299M/sec 845,395,124 ops

MFLOPS (aggregate) 55,200.93M/sec

D2 cache hit,miss ratio 93.3% hits 6.7% misses

D2 to D1 bandwidth 6,089.462MiB/sec 119,165,412,368 hytes
Average Time per Call 0.000036 secs

CrayPat Overhead : Time 11.7%

Table 3 — Per function hardware performance counter information

Additional documentation is available for CrayPAT and can be accessed either
through the man pages for individual commands or through the interactive
CrayPAT command (requires perftools to be loaded):

pat_help
Or though man pages:

man intro_pat
man pat_build
man pat_report

Apprentice2

Apprentice? is the Graphic User Interface and visualisation suite for CrayPAT's

performance data. It reads the .ap2 files from the profile output directory
generated by pat_report's the profile files. It 1s launched from the command line
with:

app2 <profile_directory>

Figure 1 shows a screenshot of the call tree information available from
CrayPAT. It shows how time is spent along the call tree, inclusive time
corresponds to the width of boxes, excluding time to the height. Yellow
represents the load imbalance time between processors. Extra information is
provided by holding the mouse over areas of the screen, the “?”” box will
provide hints on how to interpret the information displayed.

Accessing Temporal Information

Tracing an application can potentially generate very large amounts of data, to
reduce this volume the CrayPAT will, by default, summarise the data over the
entire application run. To see more detailed information about the timing of
individual events (like the sequencing of MPI messages between processors or
the number of hardware counter events in a time interval) CrayPAT has to be
instructed to store all data from throughout the run. This is controlled by the
PAT_RT_SUMMARY environment variable, setting it to 0 in run.sh will prevent
summarising and allow access to even more data.

export PAT_RT_SUMMARY=0

Warning! Running tracing experiment on a large number of processors for a
long period of time will generate VERY large files! Most tracing experiments
should be conducted on a small number of processors (<= 256) and over a short
wall clock time period (< 5 minute).

Eile Help

- About Apprentice2 % w vihil-mpEcray+apa+40358-2528t ap2 é@ |

el E

¥ Overview émvl'mﬁk 5 wCallTree g)g|
Info
Imb Time |Name

a

6.2375 mpi_alltoall_(syr

3.7448 mpi_alltoall_(syr
3.4215

25930

vhone_
mpi_allreduce_(:
0.9678 sweepy_

0.9535 sweepz_

ppmir_[1]

TR

0.8456 remap_ [1]
0.8414

0.6507

remap_ [0]
parabola_ [2]
parabola_ [0]
remap_ [3]

remap_ [2]
mpi_finalize_(sy

riemann
(e=1.5

0.6417 :
0.4147 By ol
0.4146
s)]

0.3862

0.3279 parabola_ [1]

parabola_ [3]
parabola_ [4]

0.3228
0.2187

0.21832 parabola_ [5]

/l

arabola
P (e=1 .95‘%‘2]

0.1741 riemann_ [0]

0.1699 riemann_ [1]

[

2l

ey

/l

CETON

T

o stog o) 1

9% | Time | Imb % Ilmb Time

ﬂ Search:|

&|Q

Wallclock time: 89.190897s

}wh‘l-mpi-cra)ﬁ-apa+40358-2528t.ap2 (176,973,275 events in 0.072s)

Figure 1 — A screenshot of Apprentice 2.

