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1. Introduction 

According to a 2021 study, worldwide, the number of 
people aged 30 to 79 years with hypertension doubled from 
331 million women and 317 million men in 1990 to 626 mil-
lion women and 652 million men in 2019 [1]. At the same 
time, according to estimates by the World Health Organiza-
tion (WHO), 46 % of adults with hypertension are unaware 
of the presence of the disease [2]. Uncontrolled hypertension 
can be the cause of extremely dangerous complications, in-
cluding angina pectoris, myocardial infarction, heart failure, 
arrhythmia, and stroke.

It is known [3] that hypertension is characterized by an 
excessive increase in blood (arterial) pressure, which, in turn, 
is a force acting on the arteries during blood circulation.

BP can be considered a periodic signal with a frequency 
equal to heart rate (HR). This signal is characterized by two 
main parameters: a maximum in the form of systolic pres-
sure (SP) and a minimum – diastolic pressure (DP). SP occurs 
in the blood vessels at the time of contraction of the heart. DP 
emerges when the heart is at rest between two contractions.

The diagnosis of “hypertension” is assigned at 
SP≥140 mmHg and/or DP≥90 mmHg [3]. Although BP 
varies depending on the time of day, physical exertion, 
emotional state, food intake, and other factors, its regular 
measurement guarantees the identification of elevated indi-
cators and, therefore, effective control and prevention of the 
development of hypertension.

For non-invasive determination of BP, sphygmomanom-
eters are most widely used, providing high measurement 
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Determining the level of blood 
pressure (BP) in a non-invasive way 
and without a sphygmomanometer cuff 
is of great relevance when conducting 
continuous monitoring or screening studies. 
In this regard, a method for predicting 
BP parameters based on the signals of 
the photoplethysmogram (PPG) and 
electrocardiogram (ECG) signals has 
been developed. It is proposed to use, as 
informative features, the time of pulse wave 
propagation (PTT) and a set of calculated 
pulse parameters of PPG. PTT is defined as 
the time intervals between the R-wave of the 
ECG and the corresponding characteristic 
points on the PPG acquired optically from 
the finger. As parameters of the PPG pulse, 
the known characteristics of this signal 
described in the literature are used, as well 
as additional informative features selected 
during the study.

In accordance with the above, the tools 
of machine learning theory were used to 
construct a classifier model and regression 
models. The approach described in this 
paper to determine BP makes it possible 
to use 10-second ECG signals in any of the 
12 common leads and PPG signals from any 
optical type of sensor.

The built model of the classifier detects 
three levels of BP: low, normal, and high, at 
the accuracy metric=0.8494. The regression 
models predict systolic, diastolic, and mean 
BP parameters in accordance with the 
requirements of the British Hypertension 
Society (BHS) standard by the magnitude of 
the absolute error.

The proposed method for assessing the 
level of BP involves real-time measurements 
and can be used in the design of measuring 
equipment for screening studies, as well as 
in continuous monitoring tasks within the 
framework of BHS requirements
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as the diameter of the lumen of the vessel, and, consequently, 
varying over time and from person to person.

 For (1), the PTT value can be estimated as the time inter-
val between the R wave on the ECG and the corresponding 
point on PPG. Fig. 1, a shows the fragment of the ECG signal 
in the first standard lead, and Fig. 1, b – the PPG, recorded 
synchronously with the ECG optically from the finger.

As follows from Fig. 1, there are several options for 
determining PTT. PTT Peak is the time between the max-
imum of the R-wave of the ECG and the maximum of the 
PPG (systolic peak). PTT Foot is the time interval between 
the maximum of the R-wave of the ECG and the minimum 
of the PPG. PTT Middle is the time between the maximum 
of the R-wave of the ECG and the maximum of the first de-
rivative of the PPG (Max. Slope). 

It should be noted that in a number of studies it is 
proposed to use additional parameters related to the func-
tioning of the cardiovascular system, for example, hr heart 
rate and previous measurements Pn-1 to improve accuracy in 
determining the BP [7]:

1 2 3 1 4lnPTT .n nP C C hr C P C−= + ⋅ + +    (2)

For models (1) and (2), the values of Ci can be obtained 
by primary calibration, the procedure of which is described 
in the literature and tested in the laboratory [6, 8]. 

The need for calibration significantly narrows the scope 
of use of models such as (1) or (2) when assessing the level 
of BP. At the same time, devising a method that does not 
require calibration will allow it to be used for extensive 
screening studies, and will also greatly simplify the task of 
continuous monitoring.

To solve this problem, work [9] proposes to use, in addi-
tion to PPG data, personal characteristics of a person, such 

accuracy. These devices consist of a manometer for measur-
ing air pressure; a special cuff worn on the patient’s arm, as 
well as an air blower equipped 
with an adjustable descent valve. 
The use of a sphygmomanometer 
causes certain inconvenience to 
the patient due to the use of a 
cuff that squeezes the arteries. 
In this regard, this technique 
is inconvenient for screening 
where maximum simplicity and 
speed of measurements are re-
quired. 

In addition, sphygmomanom-
eters cannot be used for long-term 
continuous monitoring of BP since 
constant compression of the cuff 
can affect the tone of the patient’s 
vessels and skin. In widespread 
practice, long-term monitoring of 
BP is performed in an invasive 
way, when a catheter is placed in a 
blood vessel to gain direct access 
to the arterial bed [4]. It is obvious 
that this method is painful for the 
patient, has contraindications, re-
quires specialized equipment and 
constant monitoring.

Due to these circumstances, 
researchers are currently paying 
great attention to the search for 
methods for measuring BP, devoid of these shortcomings. 
It is required to provide an acceptable level of measurement 
accuracy with minimal discomfort for the patient and the pos-
sibility of continuous monitoring. It should also be possible to 
apply the proposed method without taking into consideration 
the individual characteristics of the patient.

Thus, devising a method for non-invasive assessment of 
the level of BP of acceptable accuracy without the use of a 
sphygmomanometer cuff, and not requiring individual cali-
bration, is timely and relevant.

2. Literature review and problem statement

The most promising in this area are indirect measurements 
based on the established relationship between the BP and pulse 
wave propagation rate, Pulse Wave Velocity (PWV) [5].

According to [5], the pulse wave is formed as a result of 
the movement of blood exerting pressure on the elastic walls 
of blood vessels and is perceived as a pulse. It is shown that 
the time in which a pulse wave travels a certain distance 
along the artery (Pulse Transit Time, PTT) is inversely pro-
portional to PWV and can be used to determine BP. 

It has been established that BPP and PTT can be related 
via the following dependence [6]:

 = +1 2

1
,P C C

PTT
  (1)

where C1 and C2 are some constants depending on the length 
of the artery section, the thickness of the vessel walls, the 
elasticity of the vessel walls, the density of the blood, as well 

a

b

Fig. 1. Determining Pulse Transit Time using an electrocardiogram and a 

photoplethysmogram, recorded synchronously: a – electrocardiogram; 

b – photoplethysmogram
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as gender, age, weight, body mass index, etc. It is obvious 
that such a solution is inconvenient for screening and is ac-
tually comparable to preliminary calibration. 

In [10], the authors propose a promising method for de-
termining PTT based on the measurement of bioimpedance. 
However, the study does not provide information on the 
results obtained on the prediction of BP. 

In work [11], for training regression models, among others, 
signs are used that are automatically extracted from the ECG 
signal. At the same time, a database [12] is used to train models, 
in which compression algorithms were used for ECG signals, 
which greatly limits the possibility of automatic analysis. In 
such a situation, the solutions proposed in [11] are controversial.

In studies [13, 14], the size of the training sample is limited, 
which does not make it possible to unambiguously interpret the 
results obtained. In addition, to solve the described problem, 
the authors of [15] use the procedure of registration of PPG 
from two limbs (arm and leg) with a sampling frequency of 
2500 Hz, which imposes significant restrictions on the type of 
sensor used and the simplicity of signal registration.

In study [16], in addition to the PPG data, heart rate 
variability (HRV) parameters are used as additional infor-
mative signs. This requires the analysis of long 
recordings of signals from 5 minutes and above. 
This approach greatly narrows the scope of ap-
plication of the BP prediction method described 
in [16] both in screening tasks and in continu-
ous monitoring.

Thus, our review of the literature 
data [10, 11, 13–16] shows the existence of an 
actual problem of measuring blood pressure by 
a non-invasive method without a sphygmoma-
nometer cuff and without preliminary calibra-
tion. The solutions to this problem proposed 
in the literature have significant drawbacks 
such as a small size of the training sample, the 
extraction of informative signs of their ECG 
on the basis of [12], the need to personalize 
measurements, the lack of a methodology for 
measuring, the use of HRV features. Therefore, 
measurement methods should be improved for 
practical use. This confirms the need for new 
research aimed at developing a non-invasive 
method for predicting the level of BP from ECG 
and PPG signals.

3  . The aim and objectives of the study

The purpose of this study is to devise a 
non-invasive method for predicting the level 
of BP according to the data of PPG and ECG 
signals. This will make it possible to design 
new measuring equipment, which, without prior 
individual calibration and with acceptable ac-
curacy, will make it possible to solve the tasks of 
screening and monitoring the level of BP.

To accomplish the aim, the following tasks 
have been set:

– to define informative features from the 
studied signals and build a training data set;

– to find the optimal model of the classifier 
according to the known quality metrics;

– to determine the strategy for training the classifier 
model;

– to build regression models for predicting the value of 
systolic, diastolic, and mean BP, as well as to propose a gen-
eral method of forecasting.

4.  The study materials and methods

When building models, the study used a dataset 
from [17], compiled to construct algorithms for estimating 
BP without using a cuff. This database includes ECG sig-
nals for the second standard lead, PPG from the finger, and 
blood pressure (BP). This dataset was formed from records 
selected from The Multi-parameter Intelligent Monitoring 
in Intensive Care (MIMIC) II database [12]. 

All signals in this database have a sample rate of 125 Hz 
and a bit depth of at least 8 bits. As a result, the dataset used 
to build the models contains 12,000 records with a total 
duration of 741.53 hours from about 1,000 different patients. 
Fig. 2 shows a fragment of a synchronous recording of three 
signals from this dataset.

a

b

c

Fig. 2. Fragment of synchronous recording of three signals: 

a – electrocardiogram; b – photoplethysmogram; c – blood pressure
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Information on BP indicators is determined by the sig-
nal of blood pressure: SP – the maximum signal on the 
analyzed time period; DP is its minimum in the section. 
The mean BP (MeanP) is calculated using the formula 
MeanP=1/3 (SP–DP)+DP [18]. To obtain more variable 
values of BP and take into consideration the dynamics of their 
change, the long records from the data set were divided into 
segments of 10 s duration (1250 samples), and the parameters 
of the BP were calculated for them. As a result, Fig. 3 shows 
the distribution of SD and DP values within the obtained 
space of X objects in the form of a set of ten-second records.

In accordance with the purpose of the study, we consider 
two approaches to building models for predicting BP: for 
screening studies, it is proposed to use a classifier model; 
for continuous monitoring tasks – regression models. These 
classes of models are developed using modern tools from the 
theory of machine learning (ML). The use of self-learning 
ML algorithms will reveal hidden patterns in the multidi-
mensional space of the received informative features and 
summarize the results of forecasting for the general totality. 

Based on the above, in order to solve the classification 
problem in accordance with [3, 19, 20], all records were 
divided into three classes according to the value of BP with 
the assignment of the label Y={0, 1, 2} as shown in Table 1.

Table 1

Division of samples according to BP level

Category SP, mmHg – DP, mmHg Class Y label
Low pressure <90 or <50 1 

Normal pressure 90–129 and 50–84 0
High pressure ≥130 or ≥85 2

As a result, Table 2 gives the main statistical indicators 
of BP parameters for certain classes.

In Table 2, the following symbols are adopted: D – selec-
tive mean; sd – standard deviation; min is the minimum in 
a sample;  max is the maximum in a sample. As follows from 
Table 2, the resulting number of samples in the classes is 
not balanced, which must be taken into consideration in the 
process of training the classifier model. It is also possible to 
note a higher variance of BP indicators for SP. 

Prior to the extraction of informative features, the ECG 
and PPG signals were subjected to a high-frequency filter-
ing procedure to remove low-frequency components in the 
range of 0–0.7 Hz. For this purpose, wavelet filtration was 

used, as a result of which the decomposition of ECG 
and PPG is performed to a level corresponding to 
low-frequency drift, zeroing of the obtained approx-
imation coefficients, and subsequent restoration of 
signals. The Daubechies orthonormal wavelet (db8) 
is used as a wavelet function.

To train the classifier and regressor models, the 
values of PTT Peak (ptt_ p), PTT Middle (ptt_m), 
and PTT Foot (ptt_ f) were used, given in Fig. 1, b. 
In addition, for each ten-second interval, the heart 
rate (hr) was calculated.

In addition, it was decided to use additional 
informative features obtained on the basis of the 
characteristics of the pulse shape of the PPG signal 
since these parameters reflect the state of the car-
diovascular system [21]. At the same time, informa-
tive features were not extracted from the available 
ECG signals since compression algorithms were 
used in the process of obtaining them, which do 
not make it possible to perform adequate automatic 
analysis [12]. 

Thus, in order to construct informative features, the pa-
rameters of the PPG pulses are calculated. To do this, first 
of all, it is necessary to determine the position of the charac-
teristic points of the waveform. 

The characteristic impulse points of the PPG, shown in 
Fig. 4, a, include the Minimum Point (Foot Point) Fi, the 
Systolic Peak S, the Diastolic Peak D, the Dicrotic Notch N, 
the Inflection Point I, and the Max. Slope point M. 

In turn, to determine the position of these points, the 
first P(t)’ and the second P(t)” derivatives of the PPG P(t) 
signal are used according to the scheme shown in Fig. 4.

At the first stage of detecting characteristic points, the 
minima (point Fi in Fig. 4, a) and systolic maxima (point S) 
are searched. Since the shape of the PPG pulses is very 
variable, methods for determining the maxima in the signal 
that require setting the threshold or size of the search box 
may give low results. In this regard, in this work, for finding 
points Fi and S (Fig. 4, a) the algorithm of automatic multi-
scale-based peak detection (AMPD) in noisy periodic and 
quasi-periodic signals is used [22]. This algorithm does not 
use a fixed threshold procedure, and the size of the search 
box is scaled automatically.

Fig. 3. Distribution of blood pressure indicators across the training data set

Table 2

Statistical indicators of BP parameters by class

Class Y label
DP, mmHg SP, mmHg

Number of samples
D sd min max D sd min max

0 62.55 6.94 50.0 84.0 113.36 10.13 90.0 129.0 129,045
1 58.60 5.13 50.0 80.0 84.92 3.74 67.0 89.0 5,168
2 73.11 12.49 50.0 182.0 147.98 15.29 93.0 199.0 127,346

Total for classes 67.62 11.37 50.0 182.0 129.65 22.33 67.0 199.0 261,559
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The position of the Fi points is determined by applying 
the AMPD algorithm to the inverted version of the PPG 
signal – P(t).

In the second stage of the search for characteristic 
points, the position of the point of maximum inclination 
is determined (M in Fig. 4, a). It is always located on the 
ascending momentum between points F0 and S and is deter-
mined by the maximum value of the first derivative of the 
signal P(t)’, that is, point M’ in Fig. 4, b.

The third step implies more complex procedures for 
determining the diastolic peak (point D in Fig. 4, a) since 
it can be weakly manifested in various forms of the PPG 
pulse (for example, as in the PPG signal in Fig. 2, b). In this 
regard, for the downward section of the momentum between 
points S and F1, the procedure of spline interpolation with 
polynomials of the 7th power is applied to eliminate possible 
artifacts of the waveform [16]. For all subsequent actions, the 
first and second derivatives are calculated for the resulting 
approximated function ( )ˆ .P t  Now, the position of the dia-
stolic peak is taken as the point D’, where the first derivative 
is zero, and the second has a negative value.

In the fourth step, the location of the dicrotic notch at point 
N in Fig. 4, a is determined. Its position is at the local maximum 
of the second derivative of the function ( )P̂ t  at the correspond-
ing point N”, lying up to point D of the diastolic peak.

The fifth step determines the position of the inflection 
point I, which is between the dicrotic notch N and the di-
astolic peak D. In this segment, its position is taken as the 
position of point I”, where the second derivative of the func-
tion ( )P̂ t  is zero. If it is not possible to determine the point I”, 
then point I is taken to lie in the middle of the segment ND.

After establishing the position of the characteristic 
points, the parameters of the PPG pulses are determined.

All digital signal processing and training 
sampling operations were performed in python 
3.10 using the libraries numpy 1.22, scipy 1.7.3, 
pandas 1.3.5, pywavelets 1.2, neurokit2 0.1.5, 
pyampd 0.0.1.

Model training was performed using the 
scikit-learn 1.0.2 and xgboost 1.5.1 libraries.

5.  Results of the study to devise a method for 
predicting blood pressure levels

5. 1. Defining informative features in the 
studied signals and the formation of a training 
data set

Fig. 5 shows the PPG pulse parameters used 
to construct informative features.

Table 3 describes the PPG pulse parameters 
used in accordance with Fig. 5.

It should be noted that when choosing infor-
mative features, parameters in the form of ampli-
tude relations or areas of the pulse form of the PPG 
were purposefully used. This makes it possible 
to apply models trained on these features with 
various devices for taking PPG without the need 
to agree on measuring scales. In addition, at the 
stage of selecting features, the informativeness of 
the selected parameters of the PPG was taken into 
consideration when training classifier and regres-
sor models. In addition to the pulse parameters 
of the PPG described in the literature, additional 
features were constructed, as shown in Table 3.

Thus, the feature space of each object in the training 
sample will represent the vector x=(x1, ... , xd), where d=25 
by the number of features used, including ptt_ p, ptt_m, 
ptt_ f, hr, as well as attributes from Table 3.

In the process of forming a training sample X=(xi, yi) 
l
i=1, the calculation of these features for the analyzed signals 
within a ten-second interval for each ECG complex and the 
PPG pulse was performed.

Due to artifacts of different nature, the shape of the sig-
nals can be severely distorted. Therefore, from the calculated 
series of values of the current parameter, those values that lie 
outside the range [Q1–1.5·IQR: Q3+1,5·IQR]. Here, Q1, Q3 
are the first and third quartiles of the analyzed parameter, 
and IQR is its interquartile scope. For the remaining series 
of values, the arithmetic mean is determined, which is taken 
as the value of the current informative feature of this sample.

The parameter values calculated in this way ptt_ p, 
ptt_m, ptt_ f have strong outliers, up to 5–6 seconds, as 
shown by the box plots in Fig. 6, a. 

It is obvious that such values are greatly inflated and 
indicate the incorrectness of some part of the analyzed data. 
Therefore, for the correct implementation of ML algorithms, 
the training sample was adjusted by filtering the outliers in 
the PTT parameters by 0.99 quantile, as shown in Fig. 6, b.

To train and test the models of the classifier and regres-
sors, the resulting training sample X with a size of l=253624 
was used. To select the ML a(x) algorithms, all data were 
randomly divided into two subsamples in the proportion 
of 9 to 1. Training and quality control of algorithms using 
cross-validation was performed on the first sub-sample, and 
the adequacy of the algorithms was checked on the second – 
control subsample

a

b

c

Fig. 4. Determining the position of the characteristic points of the pulse of the 

photoplethysmogram: a – signal of the photoplethysmogram P(t); b – the first 

derivative of the P(t) signal; c – the second derivative of the P(t) signal
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Fig. 5. Pulse parameters of the photoplethysmogram

Table 3

PPG impulse parameters 

No. Designation Description 

PPG pulse parameters described in the literature [21]

1 ΔТ Time between systolic and diastolic peaks

2 LASI
Large Artery Stiffness Index represents the time interval between the systolic peak and 

the point of inflection

3 CT Crest Time – time interval from the beginning of the impulse to the systolic peak

4 AI
Augmentation Index is defined as the ratio of the amplitude of the diastolic peak y to the amplitude of 

the systolic peak x: AI=y/x

5 RI
Reflection Index – this is the ratio of the pulse amplitude at the inflection point y1 to the amplitude of 

the systolic peak x: RI=y1/x

6 IPA
Inflection Point Area Ratio is calculated as the ratio of the area A2 under the impulse curve after the 

inflection point to the area A1 up to that point: IPA=A2/A1

7 S/S2, S/S3, S/S4
The ratio of the total area under the waveform curve S to the areas for different sections of the wave-

form between given characteristic points S2, S3, S4 [23]

Additional parameters of the PPG pulse

8 TSF1 Time interval between systolic peak and end of pulse

9 TSN Time interval between systolic peak and dicrotic notch

10 NI
The ratio of the pulse amplitude at the point of the dicrotic notch y2 to the amplitude of the systolic 

peak x: NI=y2/x

11 MI
The ratio of the pulse amplitude at the point of maximum slope y3 to the amplitude of the systolic peak 

x: MI=y3/x

12 TF0M Time interval between the start of the impulse and the point of maximum slope

13 TDF1 Time interval between diastolic peak and end of impulse

14 tgα The ratio of the amplitude of the systolic peak x to the value of the rise time CT: tgα=x/CT

15 tgβ The ratio of the amplitude of the systolic peak x to the value TSF1: tgβ=x/TSF1

16 tgα’ The ratio of the pulse amplitude at the point of maximum slope y3 to the value TF0M: tgα’=y3/TF0M

17 tgβ’ The ratio of the amplitude of the diastolic peak y to the value TDF1: tgβ’=y/TDF1

 18 TMN Time interval between the point of maximum slope and the dicrotic notch

19 TMD Time interval between the point of maximum inclination and the diastolic peak
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5. 2. Finding the optimal classifier model
The highest results in the classification task were 

achieved for random forest (Random Forest Classifier, 
RFC), k-nearest neighbors (k-Nearest Neighbors Classifier, 
kNNC) [24], and Extremely Randomized Trees Ensem-
ble Classifier (ERTC) [25]. For these algorithms, optimal 
hyperparameters were selected. The model based on the k 
algorithm of the nearest neighbors was trained on the data 
with a standardized assessment made.

Table 4 gives the stratified five-fold cross-validation 
quality metrics of the classification of selected models.

The designations of quality metrics and hyperparam-
eters, given in Table 4, correspond to those adopted in 
the python library scikit-learn [26]. The hyperparam-
eter values, not listed in Table 4, are accepted as the 
default values.

As follows from Table 4, the model based on ERTC is 
slightly superior to RFC. The kNNC algorithm loses in the 
quality of the classification to ERTC and RFC. It is also 
obvious that due to the strong imbalance of classes (Ta-
ble 2), the mean value of the f1-score (macro) metric differs 
significantly from its weighted value.

5. 3. Defining a training strategy for the classifier 
model

Fig. 7, a shows the quality metrics of the ERTC model 
for the available unbalanced dataset from a 25 % deferred 
subsample. Due to the much smaller number of Y=1 (low 
pressure) class samples, there are strong differences in 
the precision and recall metrics. To correct the imbal-
ance, it is proposed to equalize the number of samples in 
the training subsample by adding synthetic data using 
the SMOTE method (Synthetic Minority Oversampling 
Technique) [27].

Fig. 7, b shows the quality metrics of the ERTC model 
on a deferred subsample for class-balanced data.

Table 5 gives the obtained quality metrics of the clas-
sification of this model. Fig. 8 shows the corresponding 
error matrix. 

Table 5

ERTC model classification quality metrics

Feature classes 
and multiclass 

metrics

preci-
sion

recall
specific-

ity
f1-

score

Number 
of sam-

ples

Normal pressure 0.8717 0.8248 0.8798 0.8476 31,538

Low pressure 0.6826 0.6659 0.9935 0.6742 1,305

High pressure 0.8353 0.8825 0.8380 0.8582 30,563

Accuracy – – – 0.8494 63,406

Macro mean 0.7965 0.7911 0.9038 0.7933 63,406

Weighted mean 0.8502 0.8492 0.8835 0.8492 63,406

Table 6 gives a comparison of the obtained classification 
results from this study with other works in the subject area 
under consideration.

Table 6 gives the research data of the multiclass classifi-
cation metrics, the number of samples in the training sample, 
as well as the types of classes detected.

a

b

Fig. 6. Box plots for Pulse Transit Time features: a – calculated 

Pulse Transit Time parameters; b – adjusted 

Pulse Transit Time parameters

Table 4

Classifier models

Classifier a(x) Hyperparameters

Quality metrics

Macro 
precision

Macro 
recall 

Macro 
f1-score

Weighted 
f1-score

Micro 
f1-score

RFC – number of trees n_estimators=463 0.8715 0.7146 0.7637 0.8435 0.8449

kNNC
– Minkowski metric p=1;

– number of neighbors n_neighbors=6;
– weight function weights=‘distance’

0.8096 0.7323 0.7635 0.8243 0.8249

ERTC – number of trees n_estimators=443 0.8733 0.7272 0.7746 0.8488 0.8504
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a b

Fig. 7. Comparison of classification quality indicators: 

a – for an unbalanced data set; b – for balanced according to the SMOTE method

a b

Fig. 8. Error matrix of the Extremely Randomized Trees Ensemble Classifier: 

a – by the number of samples; b – in percentage terms

Table 6

Comparison of the classification quality of the ERTC model with other studies

Metric precision recall specificity f1-score Number of samples Class Reported in

Macro avg No data 0.6930 0.8770 0.6840 942

Optimal/Normal/
High Normal/Grade 1 
Hypertension/Grade 2 
Hypertension/Grade 3 

Hypertension/
Isolated Systolic Hypertension

[16]

Macro avg No data 0.9426 0.9617 0.9484 80 Normal/Hypertension [14]

Macro avg No data 0.8392 0.8476 0.8434 87 Normal/Prehypertension [14]

Macro avg No data 0.8747 0.9593 0.8849 121
Normal +Prehypertension/

Hypertension
[14]

Macro avg 0,7965 0.7911 0.9038 0.7933 63406
Low/Normal/High This work

Weighted avg 0,8502 0.8492 0.8835 0.8492 ‒
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5. 4. Construction of regression models and a gen�
eral method for performing predictions

To build regression models according to the criterion 
of maximizing the coefficient of determination R2 and 
the minimum of the mean absolute error MAE, the algo-
rithms a(x), given in Table 7, were selected; it also lists 
the hyperparameters selected for them.

Table 7

Regression models

Regression model 
a(x)

Hyperparameters

Random forest 
(RFR)

– number of trees n_estimators=464

k-nearest neigh-
bors (kNNR)

– Minkowski metric p=1;
– Number of neighbors n_neighbors=6;

– weight function weights=‘distance’

Gradient boosting 
(XGBR) [28]

– column subsampling relation when 
building each tree colsample_bytree=0.7;

– learning rate learning_rate=0.1;
– tree maximal depth max_depth=15;

– the minimum sum of instance weights 
to split a node min_child_weight=6;

– subsampling ratio of training instances 
subsample=0.95;

– number of trees n_estimators=500

Extra Random 
Trees (ERTR)

– number of trees n_estimators=329

Fig. 9 shows the quality indicators of regression 
models for algorithms from Table 7 obtained by means 
of a five-fold cross-check.

According to the results obtained (Fig. 9), the most 
efficient algorithm is ERTR (SP: R2=0.6738±0.0017, 
MAE=8.6764±0.0291 mmHg; DP: R2=0.61031±0.005, 
MAE=4.4787±0.0033 mmHg; MeanP: R2=0.6627±
±0.0035, MAE=5.0815±0.0154 mmHg).

However, to improve the regression characteristics, 
it is proposed to use a stacked generalization of algo-
rithms [29] as an ensemble tool. To form meta-features, we 
used the best-found regression algorithm ERTR (n_esti-
mators=100), as well as basic models of different nature: 
kNNR (p=1, n_neighbors=6, weights=’distance’), ridge re-
gression and Lasso regression with default parameters [26].

The role of a metamodel that performs the final fore-
cast belongs to XGBR (n_estimators=50).

Fig. 10–12 show scatterplots with regression lines 
for the resulting metamodels on a deferred 25 % subsam-
ple. Fig. 10–12 also demonstrate the calculated median 
absolute MedAE error.

Fig. 13–15 also show the distributions of metamodel 
prediction errors for SP, DP, and MeanP, respectively.

To conduct a comparative assessment of the quality of 
forecasting the proposed regression metamodels, the pro-
tocol of the British Hypertension Society (BHS) can be 
used [30]. This protocol is used to assess the accuracy of BP 
measurement by various devices and methods and is widely 
used in practice. The BHS protocol is based on the calcula-
tion of percentiles for absolute error at its values of 5, 10, and 
15 mmHg. At the same time, according to the results of mea-
surements, three classes of accuracy of devices (methods) are 
determined – A, B, and C. Fig. 8 shows the requirements of 
BHS and the corresponding forecasting results achieved in 
the present study.

Table 8

Obtained forecasting results in comparison with the 

requirements of BHS

Absolute error ≤5 mmHg ≤10 mmHg ≤15 mmHg

This work

SP 52.26 % 72.71 % 83.33 %

DP 71.8 % 89.44 % 95.80 %

MeanP 67.88 % 86.61 % 94.32 %

BHS

class А 60 % 85 % 95 %

class В 50 % 75 % 90 %

class С 40 % 65 % 85 %

a

b

Fig. 9. Indicators of the quality of regression models: 

a – coefficient of determination; b – the mean absolute error
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In addition, the ANSI/AAMI SP10 (Association 
for the Advancement of Medical Instrumentation) 
standard can be used to assess the accuracy of BP 
forecasting [31]. Table 9 also provides comparative 
information on the requirements of ANSI/AAMI 
SP10 regarding the results of this study.

Table 9

ANSI/AAMI SP10 error limits compared to the results 

of this study

Parameter D, mmHg sd, mmHg n

This work

SP –0.0358 12.1843 ≥85

DP –0.032 6.9092 ≥85

MeanP –0.0352 7.3176 ≥85

ANSI/AAMI SP10 0–0.5± 6.95–6.93 ≥85

This standard regulates the values of the sample mean 
D and the standard deviation sd for the measurement error 
calculated from a sample with the number of objects n≥85.

Based on the described solutions to the tasks set, a meth-
od for forecasting SP, DP, and MeanP, and/or classification 
of BP has been developed, the general structure of which is 
shown in Fig. 16.

As can be seen from the diagram in Fig. 16, at the initial 
stage, the ECG and PPG signals are filtered. Moreover, in 
addition to high-frequency filtering, in practice, it is also nec-
essary to perform low-frequency filtering to eliminate inter-
ference and artifacts that occur during the recording process. 

When designing low-pass digital filters, one should place 
the cut-off frequency below the AC frequency and avoid 
phase distortion.

On the filtered ECG signal (ECG filt. in Fig. 16), the po-
sitions of R-wave are determined. For the PPG filt signal, the 
position of the characteristic points is determined (Fig. 4). 
After that, 25 described informative features are calculated. 
Next, the calculated features are cleaned up – outliers in the 
data are not taken into consideration.

Fig. 10. Systolic pressure scatterplot

Fig. 11. Diastolic pressure scatterplot

Fig. 12. Mean pressure scatterplot

Fig. 13. Error distribution for systolic pressure predictions
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After that, according to Fig. 16, depending on the 
task being solved, the prediction of the parameters of SP, 
DP, and MeanP can be performed using the developed 
regression models, or the classification of BP into three 
classes based on the obtained classifier model can be 
conducted.

6. Discussion of results of the study to devise a 
method for predicting blood pressure levels

In the course of our study, the most optimal 
quality of classification was obtained on the ERTC 
model, built using a balanced training subsample. 

As follows from Table 5 and Fig. 8, the developed 
classifier is more successful in the task of detecting 
high pressure (Y=2). This fact is especially important 
in the context of the problem being solved. The quality 
of the low-pressure classification (Y=1) is significantly 
lower, due to the insufficient number of samples in the 
data set used. However, when conducting screening 
studies, the task of identifying a low (reduced) BP will 
be less in demand. The training strategy using synthet-
ic data makes it possible to eliminate the imbalance 
on precision and recall, as follows from Fig. 8. That, 
in turn, makes it possible to optimize the work of the 
classifier by the threshold of decision-making.

In accordance with Table 7, the quality of classifi-
cation in work [14] exceeds the results of the present 
study. However, in [14], the number of samples is lim-
ited to the 121st record, which can significantly reduce 
the generalization ability of the model. In study [16], 
the authors implement a multiclass classification for 
7 levels of BP from a sample of 942 samples. However, 
for screening studies, this approach may be redundant.

The results of the comparison, given in Ta-
bles 8, 9, show that the developed regression meta-
models meet the requirements of the BHS class C 
protocol for forecasting SP; Class A for DP; class B 
for MeanP (absolute error differs from the require-
ments by 0.68 % only for values ≤15 mmHg). The 
requirements of ANSI/AAMI SP10 are met by the 
forecasts of the metamodel for DP. It can be assumed 
that the worst results of forecasting SP are associ-
ated with a higher variance of this parameter in the 
training sample (Table 2).

A distinctive feature of the proposed method is 
the use for forecasts of only signs of the FGG signal 
relative in the amplitude or area, which will allow 
the use of developed models with different types of 
sensors in terms of characteristics. In addition, time, 
frequency, or any other analysis of the ECG shape 
was not used to form the forecast. This makes it pos-
sible to reduce the number of informative features, 
as well as reduce the analysis time to 10-second 
intervals. It also makes it possible to use the ECG 
signal in any lead, for example, in the first standard 
lead (left and right hand), which is convenient to use 
for building mobile recorders.

The achieved quality of classification makes it 
possible to use the proposed model of the classifier to 
design devices for screening assessment of the level 
of BP or collect preliminary data. The proposed 
regression models, in terms of the quality of predic-
tion, meet the requirements of BHS and, in part, the 

requirements of ANSI/AAMI SP10, and, therefore, can be 
used to monitor BP in the equipment of the corresponding 
accuracy class.

The limitations of the proposed method include the 
impossibility of its use to measure BP in children. Note the 
parameters of BP in childhood are different from adults.

Fig. 14. Error distribution for diastolic pressure predictions

Fig. 15. Error distribution for mean pressure predictions 

Fig. 16. Structure of the method of forecasting blood pressure and/or 

its classification
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To improve the quality of the presented method, it is 
necessary to increase the database for training classifier and 
regressor models. The more variable the data used in the 
training sample, the higher the generalizability of the devel-
oped models demonstrated. 

At the time of writing this manuscript, we were testing a 
prototype of an electronic device that we designed, based on 
the MAX86150 biosensor (Maxim Integrated, USA). This 
device enables the prediction of the level of BP using the 
method described in this work.

7. Conclusions 

1. In the process of our study, well-known informative 
features were isolated from the PPG signal according to 
the criterion of maximum information gain; we also defined 
the new ones. The resulting set of features together with 
the parameters PTT and heart rate made it possible to form 
a representative dataset ( ( ) 1

253624
, ,

l

i i i
X x y

=

=
=  x=(x1, ..., xd), 

where d=25) for training ML models.
2. The analysis and testing of known ML algo-

rithms have made it possible to identify the opti-
mal model of the classifier based on the Extremely Ran-
domized Trees ensemble Classifier algorithm, which 
showed the following quality metrics at cross-valida-
tion: macro precision=0.8733; macro recall=0,7272; 
macro f1-score=0,7746; weighted f1-score=0,8488; 
 micro f1-score=0,8504.

3. When choosing a training strategy for the classifier, a 
strong imbalance of classes in the training set was account-

ed for. Given this, synthetic data generated by the SMOTE 
method were used to train the model. This has made it possi-
ble to optimize the value of the decision threshold with such 
parameters as precision=0.6826, recall=0.6659 for class Y=1.

4. We have built regression models to predict the value of 
SP, DP, and MeanP. For SP – R2=0,7071, MAE=8,0547 mmHg, 
MedAE=4,6583 mmHg, D=‒0,0359 mmHg, sd=12,1843 mmHg. 
For DP – R2=0,63, MAE=4,2787 mmHg, MedAE=
=2,4577 mmHg, D=‒0,032 mmHg, sd=6,9092 mmHg. 
For MeanP – R2=0,6872, MAE=4,7868 mmHg, Me-
dAE=2,8519 mmHg, D=‒0,0352 mmHg, sd=7,3176 mmHg. 
These indicators meet the requirements of BHS and make it 
possible to apply the proposed method of forecasting BP to 
design measuring equipment.
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