CSC/SD-86/6704/UD6

Computer Sciences Corporation

UARS CDHF SOFTWARE SYSTEM (UCSS)

PROGRAMMER'S GUIDE TO
PRODUCTION SOFTWARE SUPPORT
SERVICES

oG

Prepared for

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, Maryland

Under

Contract NAS 5-31000

FEBRUARY 1993

'6p.00092

Prepared by:

S.
c.
G.
P.
L.
J.

Pedersen
Adamson

Blackwell
Goldstein

CSC/SD-86/6704/UD6

UARS CDHF SOFTWARE SYSTEM (UCSS)
PROGRAMMER'S GUIDE
TO
PRODUCTION SOFTWARE SUPPORT SERVICES

Prepared for
GODDARD SPACE FLIGHT CENTER

By
COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-31000

February 1993

Approved by:

N D. Tayln

2/25/43

at K. D. Taylo¥

Date

ABSTRACT

This document defines the interfaces to production software
support services at the Upper Atmosphere Research Satellite (UARS)
Central Data Handling Facility (CDHF) and production testing services
on Remote Analysis Computers (RACs). These services developed under
the UARS CDHF Software System (UCSS) contract support access to all
levels of instrument data files and other types of cataloged data
including Level 0 engineering, quality, spacecraft, and onboard
computer (OBC) data. In addition, the UCSS provides routines to

initialize and terminate production programs and to perform error
reporting.

ii

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 PURPOSE AND SCOPE . + ¢ « ¢ o« ¢ o o o o o o o » o 1=1
1.2 UARS PRODUCTION PROCESSING OVERVIEW 1-1
1.3 DOCUMENT ORGANIZATION . . ¢ ¢ ¢ o« o ¢ o o o o o« o 1=2

CHAPTER 2 UCSS PRODUCTION PROCESSING ENVIRONMENT
2.1 UARS CATALOG .+ « « « « o o o o o o o o o o o o o . 2=1
2.2 PRODUCTION JOBS « v & o ¢ o o o o o o o o o v o o« 2=2
2.2.1 PRODUCTION PROGRAM . . + « v ¢ o ¢ v o o o o o . 2=3
2.2.2 PROCESSING TIME RANGE . . . « « « & o o o « . . 2=3
2.2.3 PRODUCTION INPUT « + « « « v « o « o o o« o « » . 25
2.2.4 PRODUCTION OUTPUT . . « « v « v « o o « o o + . 2=5
2.2.5 SCRATCH FILES .« + « v v « o o o o o« o« « o o « . 2=9
2.2.6 CONDITIONAL PROCESSING + + v » » » » » 2-10
2.3 PRODUCTION SCHEDULING . . « . « &« &« o« o « « « . 2-10
2.3.1 PRODUCTION PROGRAM CATALOG ENTRIES 2-11
2.3.2 PRODUCTION JOB DEFINITIONS 2-11
2.3.3 SCHEDULING REQUESTS . « « v « v &« & o o « o o 2=12
2.4 UCSS PRODUCTION RECOVERY GUIDELINES 2-12
2.4.1 PRODUCTION JOB RERUN . « « + « o « v « o o o . 2=-13
2.4.2 OPERATING SYSTEM CHECKPOINT/RESTART 2-13
2.4.3 USER SUPPLIED RECOVERY . . + « « « o « « « . . 2-14
2.5 PRODUCTION PROGRAM TESTING « + « « « « « « « + . 2-14
CHAPTER 3 UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES
3.1 PRODUCTION CONTROL ROUTINES . . « « « « « « « . o 3-1
3.1.1 PROGRAM INITIALIZATION (PGINIT) « . . . 3-1
3.1.2 PROGRAM TERMINATION (PGTERM) « o« o . . . 3-2
3.2 FILE ACCESS .+ + « v o o o o o o o o o o« « o« o « o« 3=3
3.2.1 OPEN LEVEL O DATA (OPENLO) . . . « . « « 3-6
3.2.2 ASSIGN CATALOGED FILE (ASGCAT) . « « « « « . . . 3=7
3.2.3 ASSIGN CORRELATIVE FILE (ASGCOR) 3-9
3.2.4 ASSIGN CALIBRATION FILE (ASGCAL) 3=9
3.2.5 ASSIGN SCRATCH FILE (ASGSCR) . « « « « « « . . 3-11
3.2.6 ASSIGN USER STATUS FILE (ASGUSR) 3-12
3.2.7 OPEN LEVEL 3AT DATA (OPENL3AT) 3=13
3.2.8 OPEN LEVEL 3AL DATA (OPENL3AL) 3-15
3.2.9 OPEN LEVEL 3S DATA (OPENL3S) . . « « « 3-17
3.2.10 OPEN LEVEL 3TP DATA (OPENL3TP) 3=19
3.2.11 OPEN LEVEL 3LP DATA (OPENL3LP) 3=20
3.2.12 QUALITY READ (QUALRD) . . « o & & o o o o o o 3-22
3.2.13 READ LEVEL O (READLO) . .+ &+ + o « o o « « « o 3=23
3.2.14 READ LEVEL 3AT (READL3AT) . . . « « « « « . . 3=25
3.2.15 READ LEVEL 3S (READL3S) . + + +. « « « « « . . 3-28

iii

3.2.16 READ LEVEL 3AL (READL3AL) . « « « « o « « « o 3=317"m
3.2.17 READ LEVEL 3TP DATA (READL3TP) 3-34
3.2.18 READ LEVEL 3LP DATA (READL3LP) 3=36
3.2.19 WRITE LEVEL 3AT (WRITEL3AT) . . « « 3=38
3.2.20 WRITE LEVEL 3S (WRITEL3S) . « « « « « « « « . 3=39
3.2.21 WRITE LEVEL 3AL (WRITEL3AL) « « . . . 3=40
3.2.22 WRITE LEVEL 3TP DATA (WRITEL3TP) 3=42
3.2.23 WRITE LEVEL 3LP DATA (WRITEL3LP) 3-43
3.2.24 CLOSE LOGICAL FILE (CLOSELF) . . . « « . « . . 3-44
3.2.25 DEASSIGN LOGICAL ID (DASLID) . . « « « « . . . 3-46
3.3 UTILITY SERVICES . . « « o o o o « « o « « « « + 3-48
3.3.1 ERROR CODE REPORTING (ERRCDE) 3-48
3.3.2 UDTF TO VMS TIME CONVERSION (UTL_ CON UDTF ' _VMS) 3-48
3.3.3 PRESSURE/ALTITUDE GRID UTILITY (VERT DEF)~ . . 3-49
3.3.4 DECODE OBC EMAF INTO OBC REPORTS (OBCDECODE) . 3-50
3.3.5 COMPARE TIMES (UTL_COMPARE TIME) 3=52
3.3.6 COMPUTE SECONDS BETWEEN UDTF TIMES

(UTL_SEC TIMEDIF) . « « « « o « « « + s « o« . 3=53
3.3.7 CONVERT UARS DAY TO UDTF FORMAT

(UTL UARS_TO UDTF) « « o « « o « « o« o « « « . 3=53
3.3.8 CONVERT UDTF FORMAT TO UARS DAY

(UTL_UDTF_TO UARS) « « & o « o « o o o « « « . 3=53

CHAPTER 4 RAC SIMULATED SERVICES
4.1 PROGRAM CONTROL SERVICES . « « « « « « « =« « « « . 4-4 ™
4.1.1 JOB INITIALIZATION (RSS_JOB INIT) e e e e . . 4-4
4.1.2 PROGRAM INITIALIZATION (PGINIT) 4-4
4.1.3 PROGRAM TERMINATION (PGTERM) . . « « « . « . . 4=12
4.1.4 JOB TERMINATION (RSS_JOB TERM) 4-12
4.2 FILE ACCESS .+ + + v & o o o o o o o o o« o o o « 4=-12
4.3 UTILITY SERVICES + + « « « « « o o o« « o« o« o« + « 4-13
4.4 JOB RUNSTREAM FOR THE SIMULATED ENVIRONMENT . . 4-13
CHAPTER 5 UCSS ANALYSIS SERVICES

5.1 ANALYSIS SERVICES .+ + « « « « o o « o o o o o o o 5=1
5.2 PROGRAM CONTROL SERVICES . « « « « « « « « « o« « . 5-4
5.2.1 PROGRAM INITIALIZATION (PGINIT) 5-4
5.2.2 PROGRAM TERMINATION (PGTERM) « 5=4
5.3 FILE ACCESS . « + « o « « « o o o« o« o o o o o « . 5=5
5.3.1 LEVEL 3 FILE SERVICES . « « + « « « « « o« « « . 5=5
5.3.2 ASSIGN / DEASSIGN SERVICES . . + « « « « o« « « + 5=5
5.3.3 OPEN QUICK-LOOK FILE (OPENQL) . . « . « « . . . 5=8
5.3.4 READ QUICK-LOOK FILE (READQL) . . « « « « « + . 5=9
5.3.5 READ QUICK-LOOK DATA QUALITY FILE (QUALQL) . 5-11
5.4 OTHER SERVICES . +« « + « « « o o o o o o = « « « 5=12
5.4.1 SET VERSION/CYCLE PARAMETERS (SETVERCY) . . . 5-12
5.4.2 GET VERSION/CYCLE PARAMETERS (GETVERCY) . . . 5-14 _

iv

¢/ APPENDIX A UARS DATE AND TIME FORMAT

APPENDIX B UCSS PRODUCTION SERVICE FORTRAN EXAMPLE
APPENDIX C LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES
APPENDIX D LEVEL 0 FILE FORMATS
D.1 SCIENCE TELEMETRY FORMATS AND DECOMMUTATION . . . D-1
D.2 DECOMMUTATED FILE FORMATS« . ¢« « « « « . D=3
D.2.1 GENERAL COMMENTS . . . « « ¢« ¢ « ¢ « « s « « &« « D=3
D.2.2 FILE LABEL RECORD FORMAT . . . « « « &« o o o & D=3
D.2.3 LEVEL 0 VIRTUAL FILES . . . ¢« ¢« « « « « « « « « D=8
D.2.4 DATA RECORD HEADER INFORMATION D=10
D.2.5 DATA RECORD BODY . . « . . ¢« ¢« ¢« ¢ &« ¢ &« « « o+ D=12
D.2.6 MULTIPART RECORDS ¢« ¢« ¢« o o« o « - D=23
D.3 ABSOLUTE TIME CODE (ATC) JUMPS AND SPLIT EMAFS . D-23
APPENDIX E LEVEL 3 FILE FORMATS
1 GENERAL COMMENTS ¢« ¢« ¢« ¢« « « « o o o o« +» » E=1
@WA .1.1 LEVEL 3AT DATA . . . ¢« ¢ ¢ ¢ o o ¢« o ¢ o o o« « «» E=1
.1.2 LEVEL 3AL DATA . . ¢ ¢« ¢ ¢ « + =+ o o o o o o o « E=2
1.3 LEVEL 3AS/3BS DATA . . . +. ¢ « ¢ « o o o« o« o« o« « E-2
1.4 LEVEL 3A PARAMETER FILES « « « « « o E=3
.2 UARS STANDARD DATA ARRAY ¢ ¢ ¢ ¢« o o« o « o E=3
2.1 PRESSURE REFERENCED ARRAY ¢« ¢« ¢« + + . E-3
2.2 ALTITUDE REFERENCED ARRAY « + « « « « « E-4
2.3 WAVELENGTH REFERENCED ARRAY . . . ¢« « « « « . « E-4
.3 LEVEL 3 FILE FORMAT . . « « ¢ ¢ « o o o o« o o « o« E-4
.3.1 SFDU STANDARD INFORMATION . . . « o« « o« E-4
3.2 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AT/3TP AND
3AS/3BS FILES e o e . . . E-5
.3.3 FILE LABEL RECORD FOR LEVEL 3AT/3TP FILES « « « E=7
.3.4 CONTINUATION LABEL RECORD FOR LEVEL 3AT/3TP AND

3AS/3BS FILES e o ¢ ¢ o o o « « E-10
3.5 DATA RECORD FOR LEVEL 3AT FILES « ¢« « ¢ o« « o E-11
«3.6 DATA RECORD FOR LEVEL 3TP FILES E-=14
3.7 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AL/3LP FILES E-15
.3.8 FILE LABEL RECORD FOR LEVEL 3AL/3LP FILES . . E-16
3.9 CONTINUATION LABEL RECORD FOR LEVEL 3AL/3LP

FILES . ¢ + ¢ ¢« ¢ ¢ o o o o o o o o « o« « « » E=20
.3.10 DATA RECORD FOR LEVEL 3AL FILES . . « . « . » E=22
.3.11 DATA RECORD FOR LEVEL 3LP FILES E-24
.3.12 FILE LABEL RECORD FOR LEVEL 3AS/3BS FILES . . E-26
.3.13 CONTINUATION LABEL RECORD FOR LEVEL 3AS/3BS

FILES L] L] - L] L] . . - . L] . L] L] L] L] L 4 . E-z 9
.3.14 DATA RECORD FOR LEVEL 3AS/BBS FILES e « o« o o« E=29

APPENDIX F
F.1
F.2

APPENDIX G

APPENDIX H
H.1l
H.2

APPENDIX I

APPENDIX J

ERROR HANDLING

STATUS CODES . .
FATAL CONDITIONS

LEVEL 0 SFDU FILE DESCRIPTION

LEVEL 0 OBC REPORT NAMES

OBC REPORT NAMES AND NUMBERS
OBC REPORT MNEMONICS .

GLOSSARY

REFERENCES

CHAPTER 1

INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to define the production software
support services provided under the Upper Atmosphere Research
Satellite (UARS) Central Data Handling Facility (CDHF) Software System
(UCss) contract. Calling sequences are provided for the services
needed by the Principal Investigators (PIs) to develop their
production processing software. The orbit and attitude services are
addressed in the UARS Programmer's Guide for Orbit/Attitude Services
(Reference 4).

The UCSS production software support services are divided into
three areas. The production control routines are used to pass
information to and from production programs. These routines aid in
the control and monitoring of the production processing flow. The
file access services provide access to UCSS-managed data files.
Services are provided to access all levels of instrument data,
calibration files, correlative files, user status files, and scratch
files. The utility services provide functions including error
reporting.

1.2 UARS PRODUCTION PROCESSING OVERVIEW

One of the primary activities performed at the UARS CDHF is the
processing of the scientific data from Level 0 to Level 3B.
Scientific data processing is performed at the CDHF for 9 of the 10
UARS instruments. The instrument investigators are responsible for
developing the data processing software. The UCSS provides a
collection of production software support services which are used by
the PI-developed programs to access UCSS-managed data files and to
control the processing flow.

The PIs will initially develop the data processing software on
the Remote Analysis Computers (RACs). The UCSS provides a set of
simulated software support services to aid the PIs in the testing of
their software at the RACs. The calling sequences of the simulated

1-1

INTRODUCTION

services are identical to those of the productlon services. As a
result, production programs developed using the simulated services do
not have to be modified in order to use the production services.

Eventually, after sufficient testing, the data processing
software will be run in a production mode at the CDHF. The UCSS
provides scheduling tools that are used by CDHF operations personnel
to schedule and run production jobs. The information needed to
schedule production processing is maintained under configuration
control by operations personnel. Original (first time) processing is
scheduled when the required input data becomes available and when
there are sufficient computer resources to run the job. Reprocessing
(subsequent times) is performed as requested with the approval of the
UARS Project. Changes in software, calibration tables, or input files
normally result in reprocessing of data.

The UCSS provides a capability to run data processing software in
the production environment in test mode. The PIs can use this
capability to perform final testing of their software or for testing
after minor changes have been made to their programs.

1.3 DOCUMENT ORGANIZATION

This document is organized into five chapters. Chapter 1
provides an introduction to the types of support services provided for
production programs. Chapter 2 presents an overview of production
processing environment. Chapter 3 describes the detailed interfaces
of the production software support services. Chapter 4 discusses the
simulated services which are provided for use in testing production
programs at the RACs. Chapter 5 describes the analysis services.
Appendix A prov1des a detailed description of the UARS date and time
format used in many of the calling sequences to the software support
services. Appendix B provides an example to demonstrate the use of
some of the services, and Appendix C presents the guidelines for
Level 1 and 2 data processing. Appendix D presents a detailed
description of the Level 0 file formats. Appendix E contains the
description of the Level 3A file formats. Appendix F provides
information about error handling. Appendix G gives the Level 0 SFDU
File Description. Appendix H gives information needed for using the
OBCDECODE routine. Appendix I is a glossary and Appendix J is a list
of references.

m

CHAPTER 2
UCSS PRODUCTION PROCESSING ENVIRONMENT

One of the primary UCSS functions is the support of UARS
scientific data processing. The instrument investigators are
developing the software to process the data from Level 0 to Level 3A.
The UCSS provides production software support services which are used
by the PI-developed programs. These services provide access to UARS
data files and aid in the control of the production processing flow.
In addition, the UCSS provides scheduling tools which are used by CDHF
operations personnel to schedule and run production jobs. The
scheduling tools also support the capability of running jobs in a test
mode.

The UCSS must provide a flexible production environment that
accommodates a wide range of processing needs. In order to meet these
diverse needs, the UCSS has established some guidelines for the
production processing software. The purpose of this section is to
define these guidelines. Section 2.1 provides an overview of the UARS
Catalog. Section 2.2 describes in detail the elements of a production
job. Section 2.3 discusses the UCSS approach to production scheduling
and provides a description of the information the PIs must supply in
order to schedule processing. Section 2.4 provides guidelines for
recovery of production jobs. Section 2.5 describes the approach to
testing production software in the production scheduling environment.

2.1 UARS CATALOG

The UARS Catalog is an index of the UCSS-managed files that are
available to the UARS community. The files tracked in this catalog
are the Levels 0, 1, 2, 3AT, 3AS, 3AL, and 3BS, correlative,
calibration, orbit, attitude, Level 3 parameter files, and production
program files. Files can be added to the Catalog during production
processing or when the UCSS receives files from an external source
(e.g. Level 0 files from the Data Capture Facility). The UARS Catalog
is used to identify and locate the input files required for production
processing.

UCSS PRODUCTION PROCESSING ENVIRONMENT

The Catalog can be viewed as a collection of logical records ™
describing important characteristics or attributes of each file. 1In
production processing, some of the attributes of output files are
supplied by the user program and some are supplied by the UCSS
software. The user program provides the initial file attributes when
assigning or opening a new file using the ASGCAT, OPENL3AT, OPENL3AL,
OPENL3S, OPENL3TP, and OPENL3LP services (see Sections 3.2.2 and 3.2.7
through 3.2.11). Additional attributes can be provided when the user
program requests that a file be cataloged using the CLOSELF or DASLID
services (see Sections 3.2.24 and 3.2.25). For input cataloged files,
the user program specifies the catalog attributes necessary to
identify the required file when opening or assigning the files using
the OPENLO, ASGCAT, ASGCAL, ASGCOR, OPENL3AT, OPENL3AL, OPENL3S,
OPENL3TP, or OPENL3LP services (see Sections 3.2.1 through 3.2.4 and
3.2.7 through 3.2.11).

The UARS Catalog is maintained as a collection of relational
tables managed by the INGRES data base management system. The UCSS
Data Base Administrator (DBA) is responsible for defining the
structure of these tables in the UARS Catalog. In order to accomplish
this task, the DBA must have knowledge of the attributes applicable to
each class of data and of the valid values of the attributes. For
example, the DBA must know the valid Level 3AT data subtypes for each
instrument. The UCSS is required to be able to support changes in the
catalog structure as these changes are identified and approved.
Attributes can be added or deleted from the catalog structure or their N
possible values can be changed with approval by the controlling ;
authority.

Errors occur when a user program attempts to catalog a file with
an unknown attribute or invalid attribute value.

2.2 PRODUCTION JOBS

A production job is a job requiring support services that is
initiated by the UCSS scheduler. A production job nominally processes
all data for an instrument from one level of data abstraction to the
next higher level for a specified time period. Other types of
production jobs can be supported such as single species or multilevel
processing. A production job is run as a series of one or more
production programs, executed in a specific order, using cataloged
input data, and producing cataloged output files, user status files,
and auxiliary files. Figure 2-1 depicts a sample production job. The
UCSS supports the capability of conditional branching within the
production job's runstream so that specific paths can be taken for
data dependent processing (see Section 2.2.6).

UCSS PRODUCTION PROCESSING ENVIRONMENT

Figure 2-1. Sample UARS Production Job

e ok o ok ok ok ok ok ok ok ok
* .

Level M * * : Level N
Data Files ==cccccaaaa > * * cmccccccccccas > Data files

* *

* *

* *
Calibration * * User Status
Data Files = «—-—=ce-ee-- > % UARS * —e- - > Files

* *

* Production *

* * .
Correlative * Job * Auxiliary
Data Files ====ec——--- > % ¥ —mmeeccce——ee— > Files

* *

* *

* *
Orbit/Attitude * * cmmmcccme————— > Scratch
Data Files ==—cceccac-- > % * < - - Files

* *x

2323313322233 2 2]

2.2.1 PRODUCTION PROGRAM

A production program is a load module that is used in the
processing of UARS scientific data. Production programs are
maintained under configuration control by CDHF operations personnel
and are tracked in the UARS Catalog. A production program may be used
in more than one production job. A production program processes data
from a specific instrument for a given data level or levels. The
input data time range is provided to the program by the UCSS PGINIT
service (see Section 3.1.1) at run time. Nominally, the input data
time range should correspond to the output data time range. All UCSS-
managed files used by a production program, including both input and
output files, are assigned dynamically using the UCSS subroutine
interfaces (see Section 3.2) at run time.

2.2.2 PROCESSING TIME RANGE

The nominal time span for production processing jobs is one day.
However, the UCSS provides the flexibility to support multiple day and
partial day processing. These processing alternatives are addressed
in the following sections.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.2.2.1 Default Input File Time Span

A nominal Level 1 production processing job reads 24 hours worth
of Level 0 data and produces a Level 1 file(s) spanning this same 24
hour period. The UCSS scheduler provides the actual time span to be
processed. However, in order to handle events spanning day
boundaries, the time span actually processed may not be exactly
24 hours. An event that crosses a day boundary can be processed into
one output file. If the event is to be associated with the start day
of the event, processing continues into the next day until the event
is complete and the output data is stored in the file for the start
day. Processing of the next day's data must ignore the partial event
at the beginning of the day. If the event is to be associated with
the stop day of the event, processing begins at the start of the event
in the previous day and the output data is stored in the file for the
stop day. Processing of the first day's data must ignore the partial
event at the end of the day. Using either alternative, the output
files do not correspond exactly to the nominal day boundaries, but the
output files from successive days processing would not overlap. The
catalog entries for these files indicate the actual time coverage.

The Level 1 file produced in this way is described in part by a
day number (UARS day) that corresponds to the number of days from the
launch date. The catalog entry for the file contains the UARS day
number associated with the file, the file start and stop times, and
other pertinent information. UARS day provides a means of identifying
the production processing run for a set of data.

In general, each subsequent level of processing uses files with
the same UARS day number as input and produces files with those same
characteristics as output. The time range for a file cataloged with a
given UARS day number must at least partially overlap the time range
of the Level 0 file with the same UARS day number.

2.2.2.2 Multiple Day and Sub-Day Processing

Some production processing jobs require input data that spans
several full days. The UCSS accommodates this type of processing job,
but assumes that the output files produced by such jobs adhere to the
UARS day conventions discussed above. For example, a production
processing job requiring 3 days of input data would produce three
output data files, each containing 1 day of data.

There are production processing job designs that would produce
more than one output file of a given type for a day. For example,
within a certain day, an instrument may have been cycled from a data-
taking state to a standby state and back to a data-taking state. The
developers of the production software may prefer to ignore standby
periods, which would appear to result, in this case, in two separate
output "files" of the same type for the given day. The UCSS assumes
that the two "files" produced for the same day are concatenated to

2-4

~

UCSS PRODUCTION PROCESSING ENVIRONMENT

form a single file that is identified by the UARS day.

2.2.3 PRODUCTION INPUT
2.2.3.1 Input Files

All input files to a production job must be cataloged. Cataloged
files are read-only files that are assigned using catalog attributes
of the file such as instrument, UARS day number, and level.

Production programs can also use, as input, files created by a
previous program in the same production job. These files can be files
intended for subsequent cataloging or scratch files (see

Section 2.2.5).

All input files must be assigned with the OPENLO, OPENL3AT,
OPENL3S, OPENL3AL, OPENL3TP, OPENL3LP, ASGCAT, ASGCAL, ASGCOR, or
ASGSCR services (see Section 3.2). For Level 0, 3AT, 3AS, or 3AL data
and parameter files associated with Level 3AT or 3AL data, the UCSS
treats the data as if it were a single virtual file. The production
program does not need to be aware of how many physical files are to be
accessed; it sees the data as one logical file. The UCSS provides
read services for Level 0, 3AT, 3AS, and 3AL data and for parameter
files associated with Level 3AT or 3AL data, which have nominal levels
of 3TP and 3LP, respectively. The user is responsible for developing
read services for Level 1, Level 2, calibration, correlative, and
scratch files.

2.2.3.2 Program Parameters

Each production program can define and use up to 50 input
parameters which are specific to the program. These parameters are
passed from the UCSS scheduler to the production program by the PGINIT
service. PGINIT also supplies the processing time range and the
primary processing day to the program.

2.2.4 PRODUCTION OUTPUT
2.2.4.1 cataloged Files

A production program creates files to be cataloged and can both
write to and read from these files. Level 3AT files are opened using
the OPENL3AT service (see Section 3.2.7). Level 3AL files are opened
using the OPENL3AL service (see Section 3.2.8). Level 3AS or 3BS
files are opened using the OPENL3S service (see Section 3.2.9).
Parameter files are opened using the OPENL3TP or OPENL3LP service (see
Sections 3.2.10 and 3.2.11). Level 1 and 2 files are assigned using
the ASGCAT service (see Section 3.2.2). The UCSS provides write

2-5

UCSS PRODUCTION PROCESSING ENVIRONMENT

services for all type of Level 3A files. The user is responsible for ™
providing the write services for Level 1 and 2 files. The CLOSELF

(see Section 3.2.24) and DASLID (see Section 3.2.25) services are used

to actually request cataloging of the Level 3A and the Level 1 or 2
files, respectively. Once a file is requested to be cataloged, it

cannot be modified by subsequent production programs.

The information used in creating catalog entries for data files
comes from two sources. The production program supplies initial file
attributes via the call to the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, or ASGCAT services. Additional attributes are provided by
the call to the CLOSELF or DASLID services. The UCSS supplies the
other attributes including the file location.

These catalog entries are not actually finalized in the cCatalog
until the successful completion of the production job. If any of the
programs in a production job fails or terminates abnormally, then
catalog entries created by the programs in that production job are not
inserted into the Catalog. The corresponding files remain online for
further analysis.

2.2.4.2 User Status Files

User status files are temporary files that are maintained in the ﬂw\
UCSS-managed disk space. There are separate user status file
directories for each production job definition (e.g. HALOE Level 1
processing job). These files are maintained cyclically so that only
an operationally controlled number of versions are saved on the disk.
User status files are 3551gned using the ASGUSR service (see
Section 3.2.6). The user is responsible for providing any I/0
services required. User status files are deassigned using the DASLID
service (see Section 3.2.25).

2.2.4.3 Auxiliary Files

Auxiliary files are output files that are created in the user-
managed disk space of the instrument investigator responsible for the
job. These files are not cataloged. Auxiliary files cannot be used
as input to production jobs.

The instrument PI is responsible for 1nsur1ng that there is
sufficient quota and free space available in the auxlliary directory
used by the production jobs. If sufficient disk space is not
avallable, then the production job cannot generate the auxiliary
files. 1In order to avoid job failure due to problems creating
auxiliary files, the production software must have sufficient error
detection logic to handle I/0 errors encountered when processing
auxlllary files. Auxiliary files are not primary productlon
processing outputs. All primary production processing output files

2-6

UCSS PRODUCTION PROCESSING ENVIRONMENT

should be cataloged.

The only UCSS support of auxiliary files is the definition of the
logical name AUX_DIRECTORY in each production job's runstream. This
logical name identifies the disk device and directory to be used to
create auxiliary files. It must be used by the program to specify the
device and directory when opening an auxiliary file. In addition, the
Fortran logical unit numbers 100 to 119 are reserved for I/0 to
aux111ary files. Use of dedicated log1ca1 unit numbers is necessary
in order to prevent collisions with assignments made internally within
the UCSS services.

2.2.4.4 Program Summary Report

"The UCSS produces a program summary report for each program
executed during the job. This report provides information about the
program including completion status, processing time range, input
parameters, input files and output files. The format of this report
is described in Figure 2-2. A wide discrepancy between an estimated
output file size and the actual file allocation is marked in the
Program Summary Report by an asterisk to the left of the output file
name.

Figure 2-2. Program Summary Report

PROGRAM SUMMARY REPORT
Uucss JOB ID: . . . JOB STEP NUMBER: . . . PROGRAM 1ID: .
PROCESSING TIME RANGE: ... = ... UARS PRIMARY PROCESSING DAY:
INPUT PARAMETERS:
PARAMETER NAME PARAMETER VALUE

CATALOGED INPUT FILES:

UARS CALIB SOURCE
LOGICAL FILE ID TYPE SUBTYPE LEVEL DAY VERS CYC ID ID
OUTPUT FILES:
UARS EST ALLOC
LOGICAL FILE ID TYPE SUBTYPE LEVEL DAY VERS CYC SIZE SIZE DISP

. . . ® o0 ® o0 * 0 0 e s @ - 00 * 0o e e LRI .

SCRATCH FILES:

EST ALLOCATED

LOGICAL FILE ID SIZE SIZE DISP SCRATCH FILE NAME

USER STATUS FILES:

USER STATUS
FILE NUMBER USER STATUS FILE NAME

. - - . . .

ERROR MESSAGES:

PROGRAM START TIME: . . . PROGRAM STOP TIME: . . .
PROGRAM COMPLETION STATUS: . . . PROGRAM CPU USAGE: . . .
DIRECT I/O COUNT: . . . BUFFERED I/O COUNT: . . .

PROGRAM COMPLETION COMMENTS: . . .
* Asterisks mark wide discrepancies between allocation and estimate

2-8

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.2.4.5 Job Summary Report

Thg UC§S produces a job summary report at the end of each
production job. Tpis report provides information about the job
including the job identifier, job completion status, job statistics,

input files, and output files. The format of this report is described
in Figure 2-3.

Figure 2~3. Job Summary Report
JOB SUMMARY REPORT

UCSs JOB ID: AAAAAAAAAAAAAAAAAAAAA CPU ID: AAAAA

UCSS VERSION: XXXXX UOAS VERSION: XXXXXX

JOB START TIME: DD-MMM-YYYY HH:MM:SS

JOB STOP TIME DD-MMM-YYYY HH:MM:SS

JOB COMPLETION STATUS: AAAA JOB CPU USAGE: DDD HH:MM:SS.CC
DIRECT I/O COUNT: NNNNNNNNNN BUFFERED I/0 COUNT: NNNNNNNNNN

MAX WORKING SET SIZE: NNNNNNNNNN

JOB ERROR MESSAGES:

2.2.4.6 Error Messages

A production program can use the UCSS service ERRCDE (see
Section 3.3.1) to report and log any serious errors detected by the
program. These error messages are written to a UCSS log file and are
included on the program summary report.

2.2.5 SCRATCH FILES

Scratch files are maintained in the UCSS-managed disk space.
They are created during a production job for the life of the job only.
They can be used to pass information between programs in a job or as a
scratch area. Scratch files can both be written and read by

2-9

UCSS PRODUCTION PROCESSING ENVIRONMENT

production programs. The ASGSCR service (see Section 3.2.5) must be S
used to assign scratch files so that the UCSS can manage the d1§k
allocation. The user is responsible for providing the I/O services to
access scratch files. The DASLID service (see Section 3.2.25) is used

to deassign scratch files.

All scratch files associated with a job are deleted at the
successful completion of the job. Since the scratch files are not
deleted when a job reports a failed condition or when a system failure
occurs, they can aid in determining the cause of a failure and in
recovering the job if the programs were written to take advantage of
this capability.

2.2.6 CONDITIONAL PROCESSING

A production program exits with a condition code that can be
tested by job control statements. This condition code is set using
the PGTERM service (see Section 3.1.2). The results of these tests
can be used to control further job execution (e.g., which program to
execute next). The message number, associated message text, and
mnemonic name for each message must be defined by each investigator
supplying production software. The Virtual Address Extension (VAX)
Virtual Memory System (VMS) message utility should be used to define
the message number and mnemonic in order to generate a standard VMS ™
condition code. See the VAX VMS Utility Reference Manual for further
information.

2.3 PRODUCTION SCHEDULING

Production scheduling is the routine scheduling of scientific
data processing jobs. The UCSS provides scheduling tools which are
designed to aid the operations personnel in efficient and timely
scheduling of production jobs. The UCSS provides automatic scheduling
of production jobs over a specified time period. The scheduling tools
also allow the operator to manually schedule individual production
jobs. The primary functions of the scheduling software are to insure
availability of the resources required by the production jobs and to
submit the jobs for execution at the appropriate time.

The UCSS scheduler schedules production jobs based on information
contained in production program catalog entries, production job
definitions and scheduling requests. All of the scheduling
information is maintained under configuration control. The UCSS
scheduler uses this information to determine which jobs need to be
run. These data structures are maintained by operations personnel,
but rely heavily upon information supplied by the instrument PIs. The
following sections describe each of these structures.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.3.1 PRODUCTION PROGRAM CATALOG ENTRIES

The UCSS tracks all versions of the production programs in the
UARS Catalog. A program catalog entry identifies the program name,
program version, load module location, the memory and CPU resources
required by the program, and other important information. New
versions of production programs are cataloged upon approval by the
UARS Project.

The following information must be supplied in order to create
program catalog entries:

- Program identification, including program name, program
version, and instrument identifier

- User status file information

- Resource usage information including estimated CPU usage,
wall clock time, and working set size

- DAuxiliary file flag indicating whether the program needs to
access auxiliary files

- Required input file specifications (type, subtype, level, and
relative time range for each required input file)

- Output file requirements (sizing estimates)
- Orbit and attitude data requirements

- Scratch file requirements (sizing estimates)

2.3.2 PRODUCTION JOB DEFINITIONS

A production job definition defines the basic structure of a
production job. It identifies the production programs that are
invoked by the job, the input data requirements, and the skeletal
runstream including any special job control needed to test program
exit status.

The following information must be supplied in order to define a
production job to the scheduling software:

- Job identification, including job name and version

- Orbit and attitude data requirements (predicted, definitive,
best, or none)

UCSS PRODUCTION PROCESSING ENVIRONMENT

- Auxiliary file disk and directory
- DCL runstream defining the job

- Default program parameter values

2.3.3 SCHEDULING REQUESTS

A scheduling request is a request to run a specific production
job for a given time period. It identifies the production job, the
applicable time range, and parameters indicating execution frequency
and times allowed. It also specifies the version rules to be used for
the input and output cataloged files. Optionally, program parameters
can be modified.

The following information must be supplied in order to schedule
production processing:

- Job identification, including job name and version
- Start and end date/time of the processing period

- Input data file version information

- Modified program parameter values

- Auxiliary file output location

- Orbit and attitude data requirements (predicted, definitive,
best, or none)

The UCSS scheduler uses the scheduling request to identify which
jobs to run. The information in the scheduling request is used in
conjunction with the production job definition to identify the input
data required, the output files to be produced, the program
parameters, and the time range for each production job to be
scheduled. This information is used to create the expanded production
job runstream for each job. The scheduler stages required input files
to insure that the data is available on magnetic disk. The scheduler
submits jobs for execution when the required resources are available
and when the constraints on the job can be satisfied.

2.4 UCSS PRODUCTION RECOVERY GUIDELINES

It is expected that there will be times during the operation of
the CDHF that the system will halt while a variety of activities are
underway, including the processing of production jobs. The UCSS is

2-12

UCSS PRODUCTION PROCESSING ENVIRONMENT

responsible for detecting and recovering from this kind of problem
only for UCSS specific functions such as production scheduling and
catalog management. The recovery of the production jobs is initiated
by the UCSS but relies on PI-developed recovery software and
instructions. PI-developed recovery systems must include the software
and control language necessary to confirm the existence of all
required files and data, eliminate questionable files, and reinitiate
processing. Several options are available to the production
processing software.developers for this capability. These are
discussed in the following sections.

2.4.1 PRODUCTION JOB RERUN

One option available to the production processing developers is
to do nothing; recovery means simply deleting all partially completed
files and rescheduling production processing from the beginning. This
option is desirable for those production jobs that can run to
completion without requiring massive CDHF resources and this avoids
the expense of developing complicated recovery systems.

Another option is to restart the production job at a particular
job step. In this case the state of the files generated by the job
must be restored to the restart point and any files created at or
beyond that point must be deleted.

Both options are available through the UCSS Job Recovery
function.

2.4.2 OPERATING SYSTEM CHECKPOINT/RESTART

For those production jobs that may require a significant fraction
of a day to complete, some means of periodically saving intermediate
results is desirable. One option that may be available is the use of
checkpoint/restart procedures provided with the operating system and
utilities. Periodically taking file checkpoints during processing
would cause the state of the production job to be saved to that point
in processing. If a system failure were to occur, a UCSS invoked
restart routine could reinitiate the processing of that job from the
point of the last checkpoint. It should be noted that a proven vendor
provided checkpoint/restart capability is not available with the DEC
vAX system. Moreover, this type of capability can, when available,
consume significant amounts of system resources. Given the expected
probability of system failure, it may not be cost effective to use the
vendor provided checkpoint/restart capability.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.4.3 USER SUPPLIED RECOVERY . ™

The remaining options for production job recovery rely
exclusively on software and control language produced by the
developers of the production job. Two alternatives to this option are
apparent: multiple-program production jobs and periodic file
closings. There are "gray" areas between these options as well. A
UCsSS production job may consist of a segquence of programs, where each
program produces either scratch product files used in subsequent
programs of the job, or a separate file for one of the components of
the output product (e.g., specie concentrations). Production job
recovery in this case could be implemented by determining which file
had been partially completed among the sequence of files that should
have been produced. That file would be eliminated and the
corresponding job step reinitiated. Alternately, the production job
developers may elect to use a single program that produces one or more
files. An approach to recovery in this situation is to periodically
execute a Fortran CLOSE on the currently open files. This saves the
results produced to that point in the processing. The file(s) may
subsequently be reopened and used for further processing. On recovery
from system failure, the user developed software would need to OPEN
the partially completed file(s), determine the point in processing at
which the failure occurred, and reinitiate processing.

It should be reiterated that the last two recovery schemes
described above rely heavily upon PI-developed software. The UCSS .\
would detect the system failure condition, provide for recovery of :
ucss functions, and invoke the appropriate PI-developed production
processing recovery job. In general, production processing recovery
jobs are required for each level of processing, and perhaps more than
one may be required for a given level of processing.

2.5 PRODUCTION PROGRAM TESTING

The UCSS provides the capability of testing production programs
while in the production processing environment. This test mode should
be used after completion of initial testing of production programs
using the UCSS simulated services (see Section 4).

The UCSS scheduling tools can be used to create catalog entries
for test programs. Test programs do not have to be configuration-
controlled. A test program can remain in the user directory so that
it can be modified without updating the catalog entry each time. A
job definition (see Section 2.3.2) that uses the test program must be
created. To run the test job the user submits a scheduling request to
CDHF operations.

Any job that includes a test program is defined as a test job.
All of the output catalog products are identified as test files.

CHAPTER 3

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

This section provides the detailed calling sequences for the UCSS
production software support services. These services are designed for
use by production programs run in the production environment on the
CDHF.

The UCSS production software support services are divided into
three areas. Section 3.1 describes the production control services
which include production program initialization and termination
routines. The file access services are discussed in Section 3.2.
Section 3.3 describes the utility services. Appendix A documents the
UARS date and time format (UDTF) that is used in many of the calling
sequences. Appendixes B and C provide examples of the usage of the
production software support services. Appendix F provides information
about error handling.

3.1 PRODUCTION CONTROL ROUTINES
3.1.1 PROGRAM INITIALIZATION (PGINIT)

PGINIT provides the mechanism for passing input parameters to a
production program. The parameters are supplied to the production job
by the scheduling software. PGINIT also initializes the production
environment for the program and updates the UCSS production accounting
tables with the initial program statistics. PGINIT must be called at
the start of each production program.

The processing start and stop times provided by PGINIT define the
expected time range of the output data to be generated by the
production program. For a nominal UARS production job, these times
would specify a 24 hour period starting at 00 Greenwich Mean
Time (GMT).

PGINIT supplies the user defined parameters to the program
through an ASCII table. The dimension of this table is specified by
the optional argument PARAM TBL_SIZE. A maximum of 50 parameters can
be specified. The default is 20 parameters if PARAM_TBL_SIZE is not

3-1

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

given. A table entry consists of two items, the name of the parameter'ﬁwﬁ
and the parameter value. The parameter values are provided to the
scheduler at job definition time or, optionally, at schedule request

time (see Section 2.3). No specific order of the table entries should

be assumed.

The calling sequence for PGINIT is as follows:

CALL PGINIT (PARAM TABLE, STRT_DATTIM, STOP_DATTIM, UARS DAY
(., PARAM TBL SIZE])

ARGUMENT TYPE I/0 DEFINITION
PARAM TABLE CHAR*20 o A table used to pass parameters for
(2,%) control of processing. Each entry in

the table consists of a pair, a
parameter name and its corresponding
value. -Parameters are specific to a
particular production program. The
size of this table may be from 1 to
50 entries as specified by
PARAM_TBL_SIZE.

STRT_DATTIM I*4(2) o] Start date and time of nominal
processing range in UDTF

STOP_DATTIM I*x4(2) o Stop date and time of nominal
processing range in UDTF

UARS_DAY I*4 (o} First UARS day (DDDD) for catalog
output from this program

PARAM TBL_SIZE 1I*4 I Specifies the size of PARAM_TABLE

The last argument, PARAM_TBL SIZE, is optional. If it is not
specified, the size of PARAM TABLE is CHAR*20(2,20) by default.
PARAM TBL_SIZE may be from 1 “to 50.

3.1.2 PROGRAM TERMINATION (PGTERM)

PGTERM terminates the production program. The production program
is respon51ble for determining the success or failure of the
processing and reports this determination to PGTERM. PGTERM updates
the UCSS accounting statistics with program completion information and
produces a standard format program summary report (see Figure 2-2) to
a disk file. PGTERM must be called at the end of execution of each
production program. Any program that does not call PGTERM is
automatlcally marked with a failed status by the UCSS software. This
precaution is necessary so that the UCSS can properly handle
uncontrolled program aborts. ﬁmﬁ

@W“

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

PGTERM sets the user program's exit condition code to the value
supplied in COND CODE. If the program fails, the condition code
uniquely identifies the reason for the failure. In the case of a
successful run, this parameter can be used to control the subsequent
program flow via the use of conditional job control language.

The calling sequence for PGTERM is as follows:

CALL PGTERM (PASS_FAIL, COND_CODE, PROG_COMMENT)

ARGUMENT TYPE I/0 DEFINITION
PASS_FAIL- CHAR*4 I Program completion status
'PASS' = successful completion

'FAIL' = unsuccessful completion

COND_CODE I*4 I A VMS condition code specifying
additional status information about
the program completion

PROG_COMMENT CHAR*80 I A character string supplied by the
production program to indicate any

additional information. This message

will be displayed on the program
summary report. . '

3.2 FILE ACCESS

This section describes the production software support services
designed to provide access to UCSS-managed files. Services are
provided to access all levels of instrument data, calibration files,
UARS day oriented correlative files, user status files, and scratch
files. Table 3-1 summarizes the use of the file access services by
file type.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-1. Calling Routine Matrix ™
FILE FILE DE-
DATA TYPE ASSIGN OPEN READ WRITE CLOSE ASSIGN
Level 0
-Engineering| N/A OPENLO READLO N/A CLOSELF N/A
-Instrument N/A OPENLO READLO N/A CLOSELF N/A
-Onboard
Computer N/A OPENLO READLO N/A CLOSELF N/A
-Quality N/A OPENLO READLO or N/A CLOSELF N/A
QUALRD
-Spacecraft N/A OPENLO READLO N/A CLOSELF N/A
Level 1 ASGCAT * * * * DASLID
Level 2 ASGCAT * * * * DASLID
Level 3AT N/A OPENL3AT| READL3AT| WRITEL3AT| CLOSELF N/A
Level 3AS N/A OPENL3S READL3S WRITEL3S CLOSELF N/A
Level 3BS N/A OPENL3S READL3S WRITEL3S CLOSELF N/A
Level 3AL N/A OPENL3AL| READL3AL| WRITEL3AL| CLOSELF N/A ™
Level 3LP N/A OPENL3LP| READL3LP| WRITEL3LP| CLOSELF N/A
Level 3TP N/A OPENL3TP{ READL3TP| WRITEL3TP| CLOSELF N/A
Calibration ASGCAL * * * * DASLID
Correlative ASGCOR * * * * DASLID
Scratch ASGSCR * * * * DASLID
User Status ASGUSR * * * * DASLID
Auxiliary * * * * * *
* = PI-SUPPLIED
The UCSS provides open, read, and close services for Level 0
data. The Level 0 read services provide a time range read capability
so that the user does not have to be concerned with physical file
boundaries. A special service is available to read quality data.
Appendix D provides a description of the Level 0 file record formats. BN

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The UCSS provides open, read, write, and close services for
Level 3AT data. A time range read capability is provided for the
Level 3AT data. The close service allows the user to inform the UCSS
of the file's disposition and furnishes the capability to catalog new
Level 3AT files. Appendix E provides a description of the Level 3AT
data file formats.

The UCSS provides open, read, write, and close services for
Level 3AS and Level 3BS solar data. A time range read capability is
provided for the Level 3AS and Level 3BS data. The close service
allows the user to inform the UCSS of the file's disposition and
furnishes the capability to catalog new Level 3AS and Level 3BS files.
Appendix E provides a description of the Level 3AS and Level 3BS data
file formats.

The UCSS provides open, read, write, and close services for
Level 3AL data. The read service provides the ability to retrieve
data for a specified latitude band over a time range. The close
service allows the user to inform the UCSS of the file's disposition
and furnishes the capability to catalog new Level 3AL files.

Appendix E provides a description of the Level 3AL data file formats.

The UCSS provides open, read, write and close services for
Level 3TP data, i.e. parameter data associated with Level 3AT files.
A time range read capability is provided for the Level 3TP data. The
close service allows the user to inform the UCSS of the file's-
disposition and furnishes the capability to catalog new Level 3TP
files. Appendix E provides a description of the Level 3TP data file
formats.

The UCSS provides open, read, write and close services for
Level 3LP data, i.e. parameter data associated with Level 3AL files.
A time range read capability is provided for the Level 3LP data. The
close service allows the user to inform the UCSS of the file's
disposition and furnishes the capability to catalog new Level 3LP
files. Appendix E provides a description of the Level 3LP data file
formats.

The UCSS provides services to assign and deassign Level 1,
Level 2, correlative, calibration, user status, scratch, and
orbit/attitude files. For input cataloged files, the assign routines
identify the file specified using the supplied attributes, insure that
it is on magnetic disk, and associate the logical file identifier with
the physical file name. For new output files, the UCSS assign
routines reserve the requested file space on a UCSS-managed disk,
generate a file name, and associate the full file specification with
the logical file identifier. For existing output files, the assign
services identify the physical file to be accessed. The user program
issues the open/read/write/close calls for Level 1, Level 2,
correlative, calibration, user status, and scratch files. The logical
file identifier supplied at assign time must be used to open the file
since the program does not know the physical location of the data.
The logical unit number returned at assign time must also be used when

3-5

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

calling the Fortran I/0 services to prevent conflict with.any logical ’mﬁ
unit numbers used internally by the production service routines. The
deassign service is called to release the file and, optionally, to
catalog a file (Level 1 or Level 2 only). The user must specify the
file's disposition.

The user's program is responsible for issuing the I/O service
calls to access auxiliary files. The UCSS only provides the logical
name that specifies the disk and directory name where the auxiliary
files are to be created. Logical unit numbers 100 to 119 are reserved
for use in accessing auxiliary files (see Section 2.2.4.3).

3.2.1 OPEN LEVEL 0 DATA (OPENLO)

The OPENLO routine is used to initiate read access to Level 0
data. The production program supplies the data type and the time
range of the Level 0 data required for Level 0 to 1 processing. The
time range required should be calculated relative to the processing
time range provided by PGINIT. OPENLO identifies the physical Level 0
files containing the data covering the requested time range, insures
that the files are on magnetic disk, and opens the files for read
access in shared mode. The production program can subsequently use
the logical file identifier (LID) to read any data in the time range
specified by the open calling sequence parameters. ™

The calling sequence for OPENLO is as follows:
CALL OPENLO (DATA_TYPE, STRT_DATTIM, STOP_DATTIM, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA_TYPE CHAR*12 I Level 0 data type
= 'ACRIM!
'CLAES'
'HALOE'
'HRDI'
'ISAMS'
'MLS!
'PEM!
'SOLSTICE'
'SUSIMA'
'SUSIMB'
'WINDII'
'ENGINEERING'
'OBC!
'QUALITY'
' SPACECRAFT'

nonnmone o nniuwl

STRT_DATTIM I*4(2) I Start of processing date and time range _
in UDTF R

3-6

ARGUMENT TYPE I/0 DEFINITION

STOP_DATTIM I*4(2) I Stop of the processing date and time
range in UDTF .

LID CHAR*16 I Logical file identifier associated with
the virtual file

STATUS I*4 o Status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA NODATARECS (RSS) - Physical file
without data exists in user's
processing range

PFA NOOLDFILE - No data found or held
file does not exist

PFA_NOOPTDATA - No optional data
available

PFA_OPTFILMISS - Missing one or more
optional files in a multiday range

PFA_OVRLPTIME - Two physical files
have overlapping times

PFA_SOMEFILSTGD - File was staged

3.2.2 ASSIGN CATALOGED FILE (ASGCAT)

ASGCAT assigns a logical file identifier (LID) to a physical
cataloged file for input or to a Level 1 or 2 file for output from a
production program. ASGCAT provides a logical unit number (LUN) that
can be used to perform Fortran I/O.

This routine provides access to existing files which include
cataloged files and files that have been created by a previous job
step and that are to be cataloged subsequently. For cataloged files,
ASGCAT identifies the file using the input parameters, stages the file
to magnetic disk if necessary, and associates the file name with the
specified logical file identifier. The production program must open
the cataloged file for read-only access. To access a file that was
created by a previous program in the same job and that has not been
cataloged, the LID must be the same as the one used by the program
that created the file. Files that have not yet been cataloged can be

modified.

ASGCAT also provides access to new files. It reserves disk space
on a UCSS-managed disk, generates a unique file name, and associates
the logical file identifier with the physical file name. The
production program is responsible for the actual creation of the file.
The logical file identifier must be used to open the file. The
logical unit number can be used to perform Fortran I/O.

Jaqunu 3Tun TeoThoT

I9TJITIUSPT o113 TeoThoT

*aTTJ Mau ' Hurjzeaad
uaym poarnbax Afuo sT juaunbie sSTYL
*SY00Tq UT STTJ e3ep 3JO 92TS pajeurisy

81713 PIaY
o113 bur3stxe

91T MdU =
Herz a0ua3lsIXd STTd

s dTIH,
s QIO
s M3IN,

*adi3qns ou 3T burays

xuetq Atddng

ay3 uo juapuadsp) ejep 3o

arqeottdde TsAaT ou

dLt
dl1t

g€
sd¢
LYE
Ve

SYE
N z
1
0

ToA91
19A91
192A91
T9A9]
T2A91
19A97T
T9A87
T9A91
T2A97T
12A91

—

s IIANIM,
yHISNS,
1y AOILSI0S,
yWad

s STH,

1 SHYSTI,
+ JAQ¥H,
s JOTYH,
1 SAVYIO,

onuunuwnowopni

* (TIAAT pue IAJAL VIVA

adAaqns

' '
1dLE,
1d1E,
3 ¢
1 SHEE,
1LY E
IYE,
s SYE,
A
s Ty
i 04

AST ®3ed .

rejep ¢ ToA91 103
I0 T TOAST I0J ISTITIUSPT JUsUNIJISUI
ad&3 ejeq

(gaaa) asqunu Aep sSyvN

NOILINIJAA

I

I

I

o/1

(snIvis_‘NN1T

el

9T +dYHD

x1

P xdVYHO

ZTxYYHO

£»YYHO

CT+¥VYHO

bl

ddAL

ar1

d21s

MAN Q@10

ddALd0S

TIAI1

AdAL ¥YIVd-
A¥d s¥vn

INIWNOEV

‘g1 ‘4ZIS ‘MAN QI0 ‘FAAIENS ‘TIAIT 'gdxd ¥INVA ‘AVd S¥¥N) IYO9SY TIVD

SANIINOY Id0ddns FYYMILIOS NOILONAO¥d SSON

:SMOTTOJF Sse ST IY¥O9SV 103 aousnbas PurTTeD IAYL

ARGUMENT TYPE I/0 . DEFINITION

STATUS I*4 o Status code
SS$_NORMAL - Normal return
PFA_NOOLDFILE - No data found
PFA_NOOPTDATA (PDS) - Optional file
not available
PFA_SOMEFILSTGD - File was staged

3.2.3 ASSIGN CORRELATIVE FILE (ASGCOR)

ASGCOR provides Fortran-callable read access to UARS day oriented
correlative data. It identifies the file using the input parameters,
insures that it is on magnetic disk, and associates the logical file
identifier with the physical file name. The unique logical unit
number should be used to perform Fortran I/0 and the logical file
identifier must be used to open the file. Correlative files must be
opened for read only access. The user's program is responsible for
issuing the read.

The calling sequence for ASGCOR is as follows:

CALL ASGCOR (SOURCE, SUBTYPE, UARS_DAY, LID, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION

SOURCE CHAR#*12 I Source of correlative data

SUBTYPE CHAR*12 I Subtype of data. Supply blank string
if no subtype

UARS_DAY I*4 I UARS day number assigned to identify
the correlative file

LID CHAR*16 I Logical file identifier

LUN I*4 o Logical unit number

STATUS I*4 0 Status code

SS$_NORMAL - Normal return

PFA_NOOLDFILE - No data found

PFA_NOOPTDATA (PDS) - Optional file
not available

3.2.4 ASSIGN CALIBRATION FILE (ASGCAL)

ASGCAL assigns a logical file identifier (LID) to a cataloged
calibration file for input or to a calibration file for output from a
production program. It returns a unique logical unit number (LUN)
that can be used to perform FORTRAN I/O on the file. Calibration
files are those user-generated, instrument-oriented files of data that

3-9

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

are brought into the CDHF, placed under configuration control, and
made available for production processing.

ASGCAL provides access to existing calibration files, namely
cataloged files and files that have been created by a previous job
step and are to be cataloged subsequently. For cataloged calibration
files, ASGCAL identifies the file using the input parameters, stages
the file to magnetic disk, if necessary, and associates the file name
with the specified LID. The production program must open the
cataloged for read-only access. To access a calibration file that was
created by a previous program in the same job, and that has not yet
been cataloged, the LID must be the same as the one used by the
program that created the file. Files that have not yet been cataloged
can be modified. Since calibration tables are time-indexed but are
not always generated on a daily basis, a parameter is provided that
allows the user to select the calibration file closest (either before,
after, or nearest) to the processing day.

ASGCAL also provides access to new calibration files. It
reserves disk space on a UCSS-managed disk, generates a unique file
name, and associates the LID with the physical file name. The
production program is responsible for the actual creation of the file.
The LID must be used to open the file.

The calling sequence for ASGCAL is as follows:

CALL ASGCAL (SUBTYPE, CALB_ID, LEVEL, UARS_DAY, DMATCH, LID, LUN,
STATUS, SIZE) ’

ARGUMENT TYPE I/0 DEFINITION

SUBTYPE CHAR*12 I Instrument ID associated with
calibration data
'CLAES'!
'HALOE'
'HRDI'®
'ISAMS!
'MLS!
lpEMl
'SOLSTICE'
'SUSIM!
'WINDII'®

CALB_ID CHAR*12 I Calibration table identifier

LEVEL CHAR*3 I Data level associated with the
calibration table
'0 ' = Level 0
L Level 1
2 ! Level 2
'3AL! Level 3AL
'*3AS! Level 3AS
'3BS! Level 3BS

3-10

ARGUMENT TYPE I/0 DEFINITION

'3AT' = Level 3AT
' ' = no level applicable

UARS_DAY I*4 I/O UARS day number (DDDD). Actual day
returned for input file.
0 = UARS day not applicable

DMATCH CHAR*4 I Day match criteria if file is old (Not
used if UARS_DAY is not applicable)
'EXCT' = Locate file for the
specified day
'PREV' = Locate file for the
specified day or for the
closest day less than the
specified day
'NEXT' = Locate file for the
specified day or for the
closest day greater than the
specified day
Locate file for the closest
day to the =nerified day
0ld_new_flag if file is new or hela

'NEAR'

'NEW' = New file

'YRTN' = Held file
LID CHAR*16 I Logical file identifier
LUN I*4 o Logical unit number
STATUS I*4 (o] Status code

SS$_NORMAL - Normal return

PFA_NOOLDFILE - No data found

PFA_NOOPTDATA (PDS) - Optional file
not available

SIZE I%4 I Estimated size of data in blocks. This
argument is only required when creating
a new file.

3.2.5 ASSIGN SCRATCH FILE (ASGSCR)

ASGSCR provides access to scratch files. It reserves disk space
for the file on a UCSS-managed disk and associates the logical file
identifier with the physical scratch file name. The production
program must use the logical file identifier to open the scratch file.
A unique logical unit number is provided that must be used to perform
Fortran reads and writes. Scratch files exist only for the duration
of the production job. Upon successful completion of the production
job, all scratch files are deleted. Scratch files are not deleted
when a production job fails so that the files can be used to determine
the reason for the failure. All scratch files must be assigned using

3-11

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

the ASGSCR routine to allow proper management of the UCSS production h
processing storage space.

Scratch files can be used to pass information from one program to
another in the same production job. To access a scratch file that was
created by a previous program, the same LID must be used. For
example, PROGRAM1 created a 'NEW' scratch file with LID 'XY2'. 1If
PROGRAM2 needs to read the same scratch file, the ASGSCR parameters
must specify that the file is 'HELD' and that the LID is 'XY2'. If
the same LID is used to access more than one new scratch file in the
same job, then no subsequent program can use the LID to access the
older scratch file(s).

The calling sequence for ASGSCR is as follows:

CALL ASGSCR (SIZE, OLD_NEW, LID, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION
SIZE I*4 I Estimated size of data file in blocks.

This argument is required only when
creating a new file.

OLD_NEW CHAR*4 I File existence flag
'NEW ' = new file
'"HELD' = held file fmm
LID CHAR*16 I Logical file identifier
LUN I*q o] Logical unit number
STATUS I*4 o) Status code

SS$_NORMAL - Normal return
PFA_NOOLDFILE - File not found

3.2.6 ASSIGN USER STATUS FILE (ASGUSR)

ASGUSR assigns the user-supplied LID to a user status file so
that the production program can write to it. User status files are
maintained in a directory associated with a specific type of job.
These files are maintained cyclically so that the oldest version is
deleted when a new version is created. The production program must
use the logical file identifier to open the user status file. A
unique logical unit number is provided that must be used to perform
Fortran writes. The user's program is responsible for issuing the
actual writes.

-

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for ASGUSR is as follows:

CALL ASGUSR (LID, FILE_NUM, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 I Logical file identifier
FILE_NUM I*4 I User status file number. A job may

access a number of status files up to a
maximum specified in the job

definition.
LUN I*x4q (o] Logical unit number
STATUS I%4 (o] Status code

SS$_NORMAL - Normal return
PFA_NOOLDFILE - File not found

3.2.7 OPEN LEVEL 3AT DATA (OPENL3AT)

The OPENL3AT routine is used to initiate access to Level 3AT
data.

To open for reading, the production program supplies the file
type and the time range of the Level 3AT data to be read. OPENL3AT
identifies the physical Level 3AT files required, insures that the
files are on magnetic disk, and .opens the files for read access in
shared mode. OPENL3AT returns the base index within the UARS standard
data array and maximum number of points to indicate the lowest index
and maximum number of points available for the time range of the data.
The production program must subsequently use the logical file
identifier to read any data in the time range specified by the open.
Appendix E describes the Level 3AT file format.

For output files, OPENL3AT reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
base index and maximum number of points parameters are used to
determine the record size. The production program must use the.LID
when writing the Level 3AT record.

The calling sequence for OPENL3AT is as follows:

CALL OPENL3AT (DATA_TYPE, SUBTYPE, STRT DATTIM, STOP_DATTIM, UARS_DAY,
OLD_NEW, SIZE, BASE_INDEX, MAX POINTS, LID, STATUS)

ARGUMENT TYPE I/0 . DEFINITION
DATA_TYPE CHAR*12 I Instrument identifier:
= 'CLAES'
= 'HALOE'

3-13

ARGUMENT

SUBTYPE
STRT_DATTIM
STOP_DATTIM
' UARS_DAY

OLD_NEW

SIZE

BASE_INDEX

MAX_POINTS

LID

STATUS

TYPE

CHAR*12

I*4(2)

I*4(2)

I*4

CHAR*4

I*4

I*4

I*4

CHAR*16

I*4

1/0

I/0

DEFINITION

"HRDI '
'ISAMS
IMLS'
IPEMI
'WINDII'

Type of data. The set for each
instrument is defined by the
investigator.

Start date and time in UDTF. Required
only when accessing cataloged Level 3AT
data.

Stop date and time in UDTF. Required
only when accessing cataloged Level 3AT
data.

UARS day number (DDDD). Required only
when accessing a new or held Level 3AT
file.

File existence flag
'NEW ' = new file
'OLD ' = existing file
'HELD' = held file from previous job
step

Estimated size of data file in blocks.
This argument is required only when
creating a new file.

Start index (lowest) into the standard
data array to be included in the file
Input when creating a new file. Output
when accessing an existing file.

Maximum number of data points reported
in the data array. Input when creating
a new file. Output when accessing an
existing file.

Logical file identifier

Open status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
physical file in user's processing
range

PFA_NOOLDFILE - No data found or file
does not exist

3-14

ARGUMENT TYPE I/0 DEFINITION

PFA_NOOPTDATA - No optional data
available

PFA OPTFILMISS - One or more optional
file(s) missing in the time range

PFA_OVRLPTIME - Two physical files
have overlapping data

3.2.8 OPEN LEVEL 3AL DATA (OPENL3AL)

The OPENL3AL routine is used to initiate access to Level 3AL
data.

To open for reading, the production program supplies the file
type and the subtype of the Level 3AL data to be read. The time range
of the data to be retrieved is supplied in UDTF. OPENL3AL identifies
the physical Level 3AL files required, insures that the files are on
magnetic disk, and opens the first file for read access in shared
mode. OPENL3AL returns the base index and maximum number of points to
indicate the lowest index and maximum number of points available for
the time range of the data. The minimum and maximum latitudes are
also returned to identify the latitude range of the available data for
the specified time range. . The production program must subsequently
use the logical file identifier to read any data in the time range
specified by the open. Appendix E describes the Level 3AL file record
formats.

For output files, OPENL3AL reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
base index and maximum number of points parameters are used to
determine the Level 3AL record size. The production program must use
the LID when writing the Level 3AL records.

The calling sequence for OPENL3AL is as follows:
CALL OPENL3AL (DATA_TYPE, SUBTYPE, STRT DATTIM, STOP_DATTIM, UARS_DAY,
OLD_NEW, SIZE, BASE INDEX, MAX POINTS MAX_LAT,
MIN_ LAT, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA_TYPE CHAR*12 I Instrument identifier:
'CLAES'

'HRDI'

'*ISAMS '

'MLS?

lpEMl

'WINDII'

g nawnn

SUBTYPE CHAR*12 I Type of data. The set for each
instrument is determined by the
investigator.

3-15

ARGUMENT

STRT_DATTIM

STOP_DATTIM

UARS_DAY

OLD_NEW

SIZE

BASE_INDEX

MAX POINTS

MAX_LAT

MIN_LAT

LID

STATUS

TYPE

I%4(2)

I*4(2)

I*4

CHAR*4

I*4

I*4

I*4

REAL*4

REAL*4

CHAR*16

I*x4

I/0

1/0

Start date and time in UDTF.
only when accessing cataloged Level 3AL

data.

DEFINITION

Stop date and time in UDTF. Required

only when accessing cataloged Level 3AL

data.

UARS day number (DDDD). Required only
when accessing an uncataloged Level 3AL

file.

File existence flag

'NEW '
'‘oLD !
'HELD'

=

new file

existing file

held file from previous job
step

Estimated size of data file in blocks.
This argument is required only when
creating a new file.

Start index (lowest) into the standard

data array to be included in the file.

Input when creating a new file. Output
when accessing an existing file.

Maximum number of data points reported
in the data array. Input when creating
a new file. Output when accessing an
existing file.

For existing files, the highest
latitude value available for the

physical files spanned by the requested

time range (between -88. and 88.)

For existing files, the lowest latitude

value available for the physical files
spanned by the requested time range
(between -88. and 88.)

Logical file identifier

Open status code
SS$_NORMAL - Normal return
PFA_CLSEERROLD - Error closing file
PFA_NODATARECS - No data records in
physical file in user's processing

range

Required 'ﬁwN

PFA_NOOLDFILE - No data found or file
does not exist ™

3-16

ARGUMENT TYPE I/0 : DEFINITION

PFA_NOOPTDATA - No optional data
available

PFA_OPTFILMISS - One or more optional
file(s) missing in the time range

PFA_OVLPTIME - Two physical files
have overlapping times

3.2.9 OPEN LEVEL 3S DATA (OPENL3S)

The OPENL3S routine is used to initiate access to Level 3AS and
3BS data.

To create a new Level 3 solar data file, the calling program
supplies the instrument ID, data level, UARS day number, starting wave
length, wave length units, and the number of wave length bins. The
number of wave length bins is used to calculate the Level 3 solar data
record size. OPENL3S reserves the necessary UCSS-managed disk space
(as specified in SIZE), generates a unique file name and opens the
file.

To open a cataloged Level 3 solar data, the calling program
supplies the instrument ID, data level, and UARS day range. OPENL3S
uses these attributes to identify the required Level 3 solar data
files, opens the first physical file, and returns the base wave length
in nanometers as well as the number of wave length bins available in
the data.

The calling sequence for OPENL3S is as follow:
CALL OPENL3S (DATA TYPE, LEVEL, START DAY, STOP DAY, UARS DAY,

OLD_NEW, SIZE, BASE_WVLNGTH, MAX VALUES, WVLNGTH_UNITS,
LID, STATUS) '

ARGUMENT TYPE I/0 DEFINITION
DATA_TYPE CHAR*12 I Instrument identifier:
= 'SOLSTICE'
= 'SUSIM'
LEVEL CHAR*3 I Data level:
= '3AS!
= '3BS'
START_DAY I*4 I The first UARS day of a range from

which data may be subsequently read
Required only when accessing cataloged
Level 3AS or 3BS data

STOP_DAY I*4 I The last UARS day of a range from which
data may be subsequently read

3-17

ARGUMENT

UARS_DAY

OLD_NEW

SIZE

BASE_WVLNGTH

MAX_VALUES

WVLNGTH_UNITS

LID

STATUS

TYPE I/0

I*4 I
CHAR*4 I
I*4q I

REAL*4 1I/0

I+4 I/0

CHAR*8 1I/0

CHAR*16 I

I*4 o

DEFINITION

Required only when accessing cataloged
Level 3AS or 3BS data

UARS day number (DDDD). Required only
when accessing a new or uncataloged
file.

File existence flag:

'NEW ' = new file

'OLD ' = old file

'HELD' = held file from previous job
: step

Estimated ‘size of data file in blocks.
This argument is required only when
creating a new file.

The wavelength associated with the
first value to be retrieved or written
Input when creating a new file. Output
when accessing an existing file.

Maximum number of data values to be
written or retrieved. Input when
creating a new file. Output when
accessing an existing file.

Indicates the unit of BASE WVLNGTH. On
output, will only be 'NM'. Possible
values are:

'NM' - For nanometers, the standard
bin size

'STANDARD' - Equivalent to 'NM'

'A' - For angstroms, calculated as
the standard wavelength values
times 10

'MICRON' - Calculated as the standard
wavelength value times 1.E-03

'CM' - For centimeters, calculated as
the standard wavelength value times
1.E-07

Logical file identifier

Open status condition code

SS$_NORMAL - Success

PFA_CLSEEROLD - Error closing file

PFA_NODATARECS - No data records in
file

PFA_NOOLDFILE - No old fileor file
does not exist

PFA_NOOPTDATA - No optional data
available

3-18

ARGUMENT TYPE I/0 DEFINITION

PFA_OPTFILMISS - One or more optional
files missing

PFA_OVLPTIME - Two physical files
have overlapping times

3.2.10 OPEN LEVEL 3TP DATA (OPENL3TP)

The OPENL3TP routine is used to initiate access to Level 3AT
parameter files, also known as Level 3TP files.

To open for reading, the production program supplies the file
type and the time range of the Level 3TP parameter data to be read.
OPENL3TP identifies the physical Level 3TP files required, insures
that the files are on magnetic disk, and opens the files for read
access in shared mode. OPENL3TP returns the maximum number of 32-bit
words to be contained in a parameter file record. The production
program must subsequently use the logical file identifier to read any
parameter data in the time range specified by the open. Appendix E
describes the Level 3TP file format.

For output files, OPENL3TP reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
maximum number of parameters is used to determine the record size.
The production program must use the LID when writing the Level 3TP
record.

The calling sequence for OPENL3TP is as follows:

CALL OPENL3TP (DATA_TYPE, SUBTYPE, START DATTIM, STOP_DATTIM,
UARS_DAY, OLD_NEW, SIZE, MAX NP, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA_TYPE CHAR*12 I Instrument identifier

SUBTYPE CHAR*12 I Type of data. The subtypes for each
instrument are defined by the
investigator

START_DATTIM I*4(2) I Start date and time in UDTF. Required

only when accessing cataloged data.

STOP_DATTIM I*4(2) I Stop date and time in UDTF. Required
only when accessing cataloged data.

UARS_DAY I*4 I UARS day number (DDDD). Required only
when accessing a new or held Level 3
parameter file.

ARGUMENT TYPE I/0 DEFINITION

OLD_NEW CHAR*4 I File existence flag ™
'NEW ' = New file
'OLD ' = Existing file
'HELD' = Held file from previous job
step
SIZE I*4 I Estimated size of the parameter file in

blocks. This argument is required only
when creating a new file.

MAX_NP I*4 I/0 For a new file, the number of 32-bit
words to be contained in a parameter
file record. For an existing file, the
maximum number of 32-bit words
contained in a record.

LID CHAR*16 I Logical file identifier

STATUS I*4 o Open status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA NODATARECS - No data records in
file

PFA_NOOLDFILE ~ No data found or file
does not exist

PFA_NOOPTDATA - No optional data L\
available

PFA OPTFILMISS - One or more optional
files missing in time range

PFA_OVRLPTIME - Two physical files
have overlapping data

3.2.11 OPEN LEVEL 3LP DATA (OPENL3LP)

The OPENL3LP routine is used to initiate access to Level 3AL
parameter files, also known as Level 3LP files.

To open for reading, the production program supplies the file
type and the subtype of the Level 3LP data to be read. The time range
of the data to be retrieved is supplied in UDTF. OPENL3LP identifies
the physical Level 3LP files required, insures that the files are on
magnetic disk, and opens the first file for read access in shared
mode. OPENL3LP returns the maximum number of 32-bit words available
from each parameter data record. The production program must
subsequently use the logical file identifier to read any data in the
time range specified by the open. Appendix E describes the Level 3LP
file formats.

For output files, OPENL3LP reserves the necessary UCSS-managed .
disk space, generates a unique file name, and opens the file. The Amﬂ
number of parameters is used to determine the Level 3LP record size.

3-20

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The production program must use the LID when writing the Level 3LP

records.

The calling sequence for OPENL3LP is as follows:

CALL OPENL3LP (DATA_TYPE, SUBTYPE, START_DATTIM, STOP_DATTIM,
UARS_ DAY, OLD_NEW, SIZE, MAX NP, MAX LAT MIN_LAT, LID,

ARGUMENT
DATA_TYPE

SUBTYPE

START_DATTIM

STOP_DATTIM

UARS_DAY

OLD_NEW

SIZE

MAX_NP

MAX_LAT

MIN_LAT

LID

STATUS)
TYPE
CHAR*12

CHAR*12

I*4(2)

I*4(2)

I*4

CHAR*4

I*4

I*4

REAL*4

REAL*4

CHAR*16

1/0

I
I

I/0

DEFINITION

Instrument identifier

Type of data. The subtypes for each
instrument are defined by the
investigator

Start date and time in UDTF. Required
only when accessing cataloged data.

Stop date and time in UDTF. Required

_ only when accessing cataloged data.

UARS day number (DDDD). Required only
when accessing a new or held Level 3
parameter file.

File existence flag
'NEW ' = New file
'OLD ' Existing file
'HELD' Held file from previous job
step

Estimated size of the parameter file in
blocks. This argument is required only
when creating a new file.

For a new file, the maximum number of
32-bit words to be contained in a
parameter file record. For an existing
file, the maximum number of 32-bit
words contained in a record.

For existing files, the highest
latitude value available (between -88
and 88)

For existing files, the lowest latitude
value available (between -88 and 88)

Logical file identifier

3-21

ARGUMENT TYPE I/0 DEFINITION

STATUS I*4 o Open status code

SS$ NORMAL - Normal return

PFA CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
file

PFA_NOOLDFILE - No data found or file
does not exist

PFA_NOOPTDATA - No optional data
available

PFA OPTFILMISS - One or more optional
files missing in time range

PFA_OVRLPTIME - Two physical files
have overlapping data

3.2.12 QUALITY READ (QUALRD)

QUALRD provides the Fortran-callable read service for the Level 0
quality data. Reguests for data are time-referenced by Engineering
Major Frame (EMAF). Each call returns the instrument data from one
EMAF. If the requested time does not correspond to an actual record
time, the closest EMAF with a 'time greater than the requested time is
returned. The time of the EMAF is returned along with the time of the
next available EMAF.

The calling sequence for QUALRD is as follows:

CALL QUALRD (LID, REQ_DATTIM, RET_DATTIM, PARITY, FILL, VERSION,

STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENLO call

REQ_DATTIM I*4(2) I/0 on input, date and time of the
requested EMAF in UDTF. On output,
date and time of the next EMAF
available. If the end of data has been
reached, REQ_DATTIM will be zero. If
requested time is beyond the file stop
time, REQ_DATTIM will be the file stop
time.

RET_DATTIM I%4(2) o Date and time in UDTF of the EMAF
returned. RET_DATTIM will be zero if
the requested time is beyond the file
stop time.

PARITY BYTE(256) O An array of bytes, each bit

corresponding to one of the 2048
Science Minor Frames (SMIFs) of the

3-22

ARGUMENT TYPE I/0 DEFINITION

EMAF, indicating parity errors detected
or presence of fill
0 = SMIF has good cyclical
redundancy check (CRC)
1 = SMIF has bad CRC or fill

FILL BYTE(256) O An array of bytes, each bit
corresponding to one of the 2048 SMIFs
of the EMAF, indicating whether the
SMIF is filled

0 = SMIF contains data
1 = SMIF contains fill
VERSION I*2(2) o CCB version and cycle number associated

with Level 0 file read

STATUS I*4 o Status code
SS$_NORMAL - Normal return
PFA_ATCINCRMENT - ATC increment error
PFA CLSEERROLD - Error closing file
PFA EOF - Last record of file
PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap
PFA_REQTMPAST - Requested time is
beyond file stop time
PFA_RETTMPAST - Retrieved time is
beyond processing stop time
PFA_RETTMPREV - Retrieved time
precedes processing start time

3.2.13 READ LEVEL 0 (READLO)

READLO provides a Fortran-callable read service for all types of
Level 0 data. Requests for data are time-referenced by EMAF. Each
call returns the instrument data from one EMAF. If the requested time
does not correspond to an actual record time, the closest EMAF with a
time greater than the requested time is returned. The time of the
EMAF is returned along with the time of the next available EMAF. For
files with one record per EMAF, the data returned is in the format
described in Appendix D. For files with two records per EMAF, the
data returned consists of the data header from the first record
followed by the data from both records.

When the last EMAF of a Level 0 file has been returned as part of
a read, the returned status will be set to PFA EOF to show that no
more data is available for further sequential Input from the file and
the time of the next available EMAF will be set to zero.

3-23

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for READLO is as follows: N

CALL READLO (LID, REQ_DATTIM, RET_DATTIM, EMAF REC, PARITY, FILL,

ARGUMENT

LID

REQ_DATTIM

RET_DATTIM

EMAF_REC

PARITY

FILL

GAP_FLAG

TYPE

CHAR*16

I*4(2)

I*4(2)

BYTE(*)

BYTE(8)

BYTE(8)

I*2

I/0
I

1/0

GAP_FLAG, TIME_FLAG, EMAF_RATE, VERSION, STATUS)

DEFINITION

Logical file identifier as specified in
the OPENLO call

on input, date and time of the
requested EMAF in UDTF. On output,
date and time of the next EMAF
available. If the end of data has been
reached, REQ DATTIM will be zero. 1If
requested time is beyond the file stop
time, REQ DATTIM will be the file stop

time.

Date and time in UDTF of the start of
the EMAF returned. RET DATTIM will be
zero if the requested time is beyond
the file stop time.

Level 0 telemetry record for the

selected data type. See Appendix D for ™
the specific format for the type of ‘
Level 0 data to be read. EMAF_REC
contains one EMAF of data.

A binary array of parity flags for the
64 Science Major Frames (SMAFs) in the

EMAF.
SMAF.

There is one bit flag for each

all SMIFs in SMAF have good CRC
codes

one or more SMIFs have CRC
errors or contain f£fill data

A binary array of fill flags for the
SMAFs in the EMAF. There is one bit
flag for each SMAF.

0 =

1 =

all SMIFs in the SMAF contain
data
one . or more SMIFs contain fill

Indicates whether or not the EMAF
follows a gap
0

no gap
EMAF follows a gap

ARGUMENT TYPE I/0 DEFINITION

TIME_FLAG I*2 o ATC time increment flag
0 = normal ATC increment
1 = abnormal ATC increment

EMAF_RATE I*4 o EMAF rate (msec/EMAF)

VERSION I*2(2) o] CCB version and cycle number of the
Level 0 file read

STATUS I*4 (o] Status code

SS$_NORMAL - Normal return

PFA_ATCINCRMENT - ATC increment error

PFA CLSEERROLD - Error c1051ng file

PFA_ __EOF - Last record of file

PFA FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_REQTMPAST - Requested time is
beyond file stop time

PFA_RETTMPAST - Retrieved time is
beyond processing stop time

PFA_RETTMPREV - Retrieved time
precedes processing start time

3.2.14 READ LEVEL 3AT (READL3AT)

READL3AT provides a Fortran-callable read service for nonsolar,
time-referenced Level 3AT data. Data is requested by-time range,
allowing the user to read multiple records of data at a time.
START_INDEX and NUM_POINTS must overlap the range that was returned by
the OPENL3AT routine via BASE_INDEX and MAX_POINTS. READL3AT
retrieves the requested portions of all of the records within the
specified time range, with their corresponding times. READL3AT
returns the actual number of records read and the time of the next
available record. A fill value of X'00008000' is used when data for a
requested element of the UARS standard array is not available. This
value was chosen because it is a reserved value and not a valid
floating point number (special handling required). If the number of
records in the time range exceeds the maximum dimension of the user
array, READL3AT only reads MAX_DIM records and returns the appropriate
status.

When the last record of a Level 3AT file has been returned as
part of a read, the returned status will be set to PFA_EOF to show
that no more data is available for further sequential Input from the
file and the time of the next available record will be set to zero.

The values of the local solar time and the solar zenith angle
associated with each profile are also returned if requested in the
call via the LST and SZA arguments.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The time ranges of the Level 3AT files are not expected to
overlap. However, if there is time overlap of files in the virtual
time range requested, READL3AT handles the situation. 1In the example
shown in Figure 3-1, READL3AT retrieves records from File 1 starting
at time T[start] through time T[2], continues reading records from
File 2 with times after T[2) through T(4], and finishes by retrieving
records from File 3 with times between T{4] and T[stop]. In the case
of retrieving a single record with a time that lies within two
physical files, the file from which the record is retrieved is
dependent upon which file is the last one to have been read. For
example, if T[r] lies between T[3) and T[2] and T(r] is the first
record to be read or the last record read was from File 1, then the
requested record is retrieved from File 1. Otherwise, the record is
retrieved from File 2. Stated another way, records in the overlap
time range are retrieved from the first file when reading sequentially
in the forward direction, and are retrieved from the second file when
reading backwards through the time range.

Figure 3-1. READL3AT Record Overlap Example

READ REQUESTED TIME RANGE |==--=====- - ————-|
T[start] T[r] T(stop]

PHYSICAL FILE 1 |-—--=-=-—- — :
T(1) : T[2) :
PHYSICAL FILE 2 | ~—mmmmm e |
T(3) T(4] :

PHYSICAL FILE 3 —— ——-|

T(5] T(6)

3-26

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for READL3AT is as follows:

CALL READL3AT (LID, STRT_DATTIM, STOP_DATTIM, START INDEX, NUM_POINTS,
MAX_DIM, RET_DATTIM, NXT_DATTIM, NUM_ REC, DATA3A, QUAL,
LAT, LONG, VERSION, STATUS, LST, SZA)

ARGUMENT

LID

STRT_DATTIM

STOP_DATTIM

START INDEX

NUM_POINTS

MAX_DIM

RET_DATTIM

NXT_DATTIM

NUM_REC

DATA3A

QUAL

TYPE I/0

CHAR*16 I

I*4(2) I
I*4(2) I
I*4 I
I*4 I
I*4 I
I*4)
(2,NR)

I*4(2) o)
I*4 o)
REAL*4 0
(NP, NR)
REAL*4)
(NP, NR)
REAL*4 o)
(NR)

DEFINITION

Logical file identifier as specified in
the OPENL3AT call

Start date/time of Level 3AT data to be
retrieved, in UDTF

Stop date/tlme of Level 3AT data to be
retrieved, in UDTF

Index of first element in the UARS
standard data array to be retrieved

Number of elements in the UARS standard
data array (NP) to be retrieved

Maximum number of records (NR) to be
retrieved

Array containing the dates and times
for the Level 3AT records retrieved, in
UDTF

Date/time of next available Level 3AT
record in UDTF. 2Zero if end of data
has been reached.

Number of Level 3AT records retrieved

Two dimensional array containing the
data type specified at OPENL3AT time.
The first index, offset by START_INDEX
is associated with the element number
in the UARS standard data array. The
second index is associated with time.

Two dimensional array containing
quality information associated with the
data values returned in DATA3A. The
indices are the same as for DATA3A.

Array of geodetic latitudes
corresponding to the Level 3AT records
retrieved

ARGUMENT TYPE I/0 DEFINITION

LONG REAL*4 o Array of geodetlc longitudes /mﬁ
(NR) corresponding to the Level 3AT records
retrieved
VERSION I*2 : 0 Array containing the source file CCB
(2,NR) version and cycle associated with each

Level 3AT record retrieved

STATUS I*4 o) Read status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing
cataloged file

PFA_EOF - Last record of file
returned

PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLAPTRNG - No overlap between
requested time range and files time
range

PFA NROVRMXDIM - More records in
time range than can be retrieved at

one time
PFA_RETTMPAST - Retrieved time(s) are
beyond processing stop time ﬁW\

PFA_RETTMPREV - Retrieved time(s)
precede processing start time

LST ' REAL*4 o Array containing the local solar times
(NR) associated with each Level 3AT record
retrieved (optional)
SZA REAL*4 o) Array containing the solar zenith
(NR) angles associated with each

Level 3AT record retrieved (optional)

3.2.15 READ LEVEL 3S (READL3S)

READL3S provides a Fortran-callable read service for the
Level 3AS and Level 3BS data. Requests are time-referenced by UARS
day. A fill value of X'00008000' is used when data for a requested
element is not available. The calling program specifies the UARS day
range to be read, the starting wavelength bin, and the number of flux
values to be retrieved. The program also provides the wavelength
unit, the flux unit and the distance flag which are used to specify
the units of the wavelengths and flux values returned and to indicate
whether the flux values should be corrected or not. READL3S reads the
data record from each Level 3 solar file in the specified day range or
up to the number of days specified by MAX_DAYS if the range is too JWW
large. The wavelengths are returned in WVLNGTHS and are in the units

3-28

UCSS PRODUCTION SOFTWARE SUPPORT ROﬁTINES

spec1f1ed by WVLNGTH_UNITS. The UARS day number of the next available
day is also returned.

When the last record of a Level 35S file has been returned as part
of a read, the returned status will be set to PFA_EOF to show that no
more data is available for further sequential input from the file and
the time of the next available record will be set to zero.

The calling sequence for READL3S is as follows:
CALL READL3S (LID, START_DAY, STOP_DAY, MAX DAYS, START_ WVLNGTH,
NUM_VALUES, FLUX UNITS, WVLNGTH UNITS DISTANCE FLAG,
RET_DAY, NXT DAY, NUM_ RET DAYS, WVLNGTHS DATA3S,
QUALITY, NUM_PARAMS, PARAMS, VERSION STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 1 Logical file identifier as specified in
the OPENL3S call

START_DAY I*4 I The first UARS day of Level 3S data to
be retrieved

STOP_DAY I*4 I The last UARS day of Level 3S data to
be retrieved

MAX DAYS I*x4 I Maximum number of days (ND) of data to
be retrieved

START _WVLNGTH REAL*4 I The wavelength associated with the
first value to be returned (in the
units indicated by the value of
WVLNGTH_UNITS as defined below)

NUM_VALUES I*4 I The number of data values (NV) to be
returned, and correspondingly, the
number of wavelength values returned in
WVLNGTHS

FLUX UNITS CHAR*17 I Indicates the units in which the DATA3S
- array will be returned. Possible
values are:

'W/M~3' - The standard unit in which
the data is stored (Watts per cubic
meter)

'*STANDARD' - Same as the above

'W/CM~3' - Watts per cubic centimeter
(calculated by multiplying the
standard values by 1.E-06)

'‘MW/M"2/NM' - Milliwatts per meter
squared per nanometer (calculated
by multiplying the standard value
by 1.E=06)

3-29

ARGUMENT TYPE I/0 DEFINITION

'ERGS/S/CM~2/A' - Ergs per second per ﬁmﬁ
‘centimeter squared per angstrom
(calculated by multiplying the
standard value by 1.E-07)

'PHOTONS/S/CM~2/NM' - Photons per
second per centimeter squared per
nanometer (calculated by :
multiplying the standard value by
503.438 times the wavelength in
nanometers)

'PHOTONS/S/CM~2/A' - Photons per
second per centimeter squared per
angstrom (calculated by multiplying -
the standard value by 50.3438 times
the corresponding wavelength value
in nanometers)

WVLNGTH_UNITS CHAR*8 I Indicates the units of START_WVLNGTH.
Possible values are:

'‘NM' - Nanometers, the standard bin
size

'STANDARD' - Equivalent to 'NM*

'A' - Angstroms, calculated as the
standard wavelength value times 10

'MICRON' - Calculated as the standard
wavelength value times 1.E-03 ™

'CM' - Centimeters, calculated as the
standard wavelength value times
1.E-07

DISTANCE_FLAG CHAR*11 I Indicates whether the DATA3S array of
solar fluxes should reported at 1 AU
distance from the sun or reported at
the actual point of measurement.

Values are:

‘1_AU' - Reported at 1 AU distance
(stored this way)

'UNCORRECTED' - Reported at the point
of measurement adjusted by applying
the inverse square law to the mean
solar distance attribute stored
with the data

RET_ DAY I*gq o Array containing the UARS day number
(ND) for the Level 3 solar records retrieved
NXT_ DAY I*q o The UARS day of the next available

Level 3 solar data record. 2Zero if end
of data has been reached

NUM_RET DAYS I*4 o Number of days of Level 3 solar data S
returned 3

3-30

ARGUMENT

WVLNGTHS

DATA3S

QUALITY

NUM_PARAMS

PARAMS

VERSION

STATUS

TYPE I/0

REAL*4 0
(NV)

REAL*4 0
(NV,ND)

REAL*4 o

(NV,ND)

I*4 0
(ND)
CHAR*¥20 O
(2,40,ND)
I*2 0
(2,ND)

I*4 o

DEFINITION

Wavelength values in the units
specified by WVLNGTH_UNITS
corresponding to the solar flux array
DATA3S. NV is the number of values.

Returned flux values in FLUX_ UNITS.
The first subscript (NV) is the
wavelength bin index. The second
subscript (ND) is the UARS day number
index.

The quality values corresponding to the
flux data

The number of parameter name and value
pairs provided in PARAMS

A table used to return parameters
stored with the data. Each entry in
the table consists of a pair, a
parameter name and its corresponding
value.

Array containing the CCB version and
cycle associated with each Level 3
solar record retrieved

READL3S status condition code:
SS$_NORMAL - Normal return
PFA_CLSEERROLD - Error closing file
PFA_EOF - Last record of file
PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLAPTRNG - No overlap between
requested time range and files time
range

PFA_NROVRMXDIM - Number of records
requested exceeds MAX_DAYS

PFA_RETTMPAST - Returned records
beyond processing time range

PFA_RETTMPREV - Returned records
precedes processing time range

3.2.16 READ LEVEL 3AL (READL3AL)

READL3AL provides a Fortran-callable read service for Level 3AL
data. Data is requested for a latitude band (at 4 degree intervals
between -88. and 88.) by time range and profile range. The profile
range as specified by START_INDEX and NUM_POINTS must fall within the

3-31

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

range that was returned by the OPENL3AL routine via BASE_INDEX and
MAX_POINTS. READL3AL retrieves the requested portions of all of the
records for the requested latitude band within the specified time
range. The time, the longitude, the quality values, and the version
numbers are also returned for each set of profiles. READL3AL returns
the actual number of records read and the time of the next available
record. A fill value of X'00008000' is used when data for a requested
element of the UARS standard array is not available. This value was
chosen because it is a reserved value and not a valid floating point
number (special handling required). If the number of records in the
time range exceeds the maximum dimension of the user array, READL3AL
only reads MAX_DIM records and returns the appropriate status.

When the last record of a Level 3AL file has been returned as
part of a read, the returned status will be set to PFA_EOD to show
that no more data is available for further sequential input at the
desired latitude and the time of the next available record will be set
to zero. .

The values of the local solar time and the solar zenith angle
associated with each profile are also returned if requested in the
call via the LST and SZA arguments.
The calling sequence for READL3AL is as follows:
CALL READL3AL (LID, LAT, STRT_DATTIM, STOP_DATTIM, START_INDEX, ﬂw\
NUM_POINTS, MAX DIM, RET_DATTIM, NXT_DATTIM, NUM_REC,
DATA3A, QUAL LONG, VERSION, STATUS TLST, SZA)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENL3AL call

LAT REAL*4 I Geodetic grid latitude of data to be
retrieved (must be at 4 degree interval
between -88. and 88 with an allowed
tolerance of 0.5 degrees.)

STRT_DATTIM I*4(2) I Start date/time of Level 3AL data to be
retrieved, in UDTF .

STOP_DATTIM I*4(2) I Stop date/time of LeQel 3AL data to be
retrieved, in UDTF

START _INDEX I*4 I Index of first element in the UARS
standard data array to be retrieved

NUM_POINTS I*4 I Number of elements in the UARS standard
data array (NP) to be retrieved

MAX DIM I*4 I Maximum number of records (NR) to be ﬂmﬁ
retrieved

3-32

ARGUMENT TYPE

RET_DATTIM I*4
(2,NR)

NXT_ DATTIM I*4(2)

NUM_REC I*4
DATA3A REAL*4
(NP, NR)
QUAL REAL*4
(NP, NR)
LONG REAL*4
(NR)
VERSION I*2
(2,NR)
STATUS I*4

1/0

o

DEFINITION

Array containing the dates and times
for the Level 3AL records retrieved, in
UDTF

Date/time of next available Level 3AL
record in UDTF. Zero, if end of data
has been reached.

Number of Level 3AL records retrieved

Two-dimensional array containing the
data type specified at OPENL3AL time.
The first index, offset by START INDEX
is associated with the element number
in the UARS standard data array. The
second index is associated with time.

Two dimensional array containing
quality information associated with the
data values returned in DATA3A. The
indices are the same as for DATA3A.

Array of geodetic longitudes
corresponding to the Level 3AL records
retrieved

Array containing the source file CCB
version and cycle associated with each
Level 3AL record retrieved

Read status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD Error closing
cataloged file

PFA_EOD - Last record of file
returned

PFA_NODATAFND - No data in file for
requested time range at requested
latitude

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLPTRNG - No overlap between
requested time range and file's
time range

PFA_NROVRMXDIM - More records in time
range than can be retrieved at one
time

PFA_REQLATOUT - No data for requested
latitude

PFA_RETTMPAST - Retrieved time(s) are
beyond processing stop time

PFA_RETTMPREV - Retrieved time(s)
precede processing start time

3-33

ARGUMENT TYPE I/0 DEFINITION

LST REAL*4 o Array containing the local solar times
(NR) associated with each Level 3AL record
retrieved (optional)
SzZA REAL*4 0 Array containing the solar zenith
(NR) angles associated with each

Level 3AL record retrieved (optional)

3.2.17 READ LEVEL 3TP DATA (READL3TP)

READL3TP provides a Fortran-callable read service for non-solar
time-referenced Level 3AT parameter files, also known as Level 3TP
files. Parameter data is requested by time range, allowing the user
to read multiple records of data at a time. The value of MAX_ NP
requested must not exceed the corresponding value returned by the
OPENL3TP routine. READL3TP retrieves parameter data in the requested
portions of all of the records that fall within the specified time
range, with their corresponding times. READL3TP returns the actual
number of records, the number of parameters, and the time of the next
available record. If the number of records in the time range exceeds
MAX_DIM, the maximum dimension of the user array, READL3TP only reads
MAX DIM records and returns the appropriate status.

Overlapping time ranges in Level 3TP files are handled in the
same manner as for Level 3AT files (see Section 3.2.14).

The calling sequence for READL3TP is as follows:
CALL READL3TP (LID, START_DATTIM, STOP_DATTIM, MAX NP, MAX DIM,
RET_DATTIM, NEXT_DATTIM, NUM_REC, NP, PARAMETERS, LAT,
LONG, VERSION, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier specified in
the OPENL3TP call

START _DATTIM I*4(2) I Start date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

STOP_DATTIM I*4(2)

-

Stop date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

MAX_NP I*4 I Maximum number of 32-bit words to be
retrieved from the parameter file
record

SE-¢

swTl
3UO0 3 PIASTIISI o9 ued ueyy abuex
SWT3 UT SPIOD9T SIOK - WIAXWIAOYN Vid
sbuex awmT3y
S,9113 pue abpuex awury paissnbax
usomiaq deTasAo ON - SNILATIAOON ¥dd
ejep ou
sey 91TJ PTaY 10 MON - SOFUVIVAON Vdd
deb Teuzou popeaoxa.salTJ TeoTsAyd
oM} uaamlaq deb aull ~ JVOWIITII Vdd
pauanjal
9T1T3 3O paod3ax 3se] - JOI_Vdd
9113 bursolo 101337 - QTONNIASTO_Vdd
uInN3lax TewIoON - TVWRION $SS
8poo sn3els peay

pPaAaTI3aX paooaa aajsuweaed yoes
Y3TM pajeroosse SaTOA0 pue.SUOTSIDA
g00 9TT3 20anos ay3 bururejzuod Aeaay

POASTIISX paoO3dx aojsweaed yoed
Y3ITA PO3RTOOSSE SPI0O3aT elep € [9A9]
3y 3Jo sapnythbuor ayjz bututejuodo Aexay

paAaTI3OX paooaax xojzawexed yoes
Y3TM pajeroosse SpIodal ejep £ T9A97
ay3 Jo sopnitiel 9yl Hurturejuod Aeaay

*L3TTTqTSUOdsax
S,I03eHPT3SaAUT JuUdUWNIAJISUT BYJ

ST pIooax Iejsueded yoes JO aINIONIFS

_bue jewlos ayl °sSpIooax ajawmeded
OFY WNN suTejuoo Aexxe ayl °p3AsTIIaX
sSpaooax aojswexed ayj burutejuod Aeaay

paoosa
9713 Iojswexed yoes UT pauTejuod spaom
ITq-2€ 3O Iaqunu ayly bututrejuoo ALexay

pouanilad ép.xooa.z J9j3ameaed Jjo aoqunN

pIooax asjauexed aTqerTeAR
Ixeu ay3 jyo (JIdn UT) BwUT3} pue ajed

paAsTaIlax
spiooox I93awexed ayjz pejeroOosSse

SpIoo®x ¢ TaA9T 2yl Jo (J4rdn ur)
S9WT3 pue sajep ayl buturejuoo Aeaay

_ ‘pauinlax axe
SpPI003X WId XVH 3ISITI @Yl STY3 Sposoxo
punoj spaooax Jo Jaqunu JI °PIAITIIOX

2q 03 (¥N) spaooea JO I9qunuU WNUTXeR

NOILINTIJIA

bl SNIVLS

(AN‘2)
tal NOISHIA

(¥N)

v+ IVIY 9NO'T
(¥N) ,

v+ IVIY IN'1

(IN’dNxV)

dLXd SHYILINNIVA

(UN) v+I dN

bxl o3d WAN

(2)v*I WILIVGQ IX3AN

(uN‘2) -
vl WILIYA I3¥

pxI WIQ XYW

ddAlL LNIRNOYVY

ARGUMENT TYPE I/0 DEFINITION

PFA_RETTMPAST - A retrieved time is ~)
beyond processing stop time

PFA_RETTMPREV - A retrieved time
precedes processing start time

3.2.18 READ LEVEL 3LP DATA (READL3LP)

READL3LP provides a Fortran-callable read service for Level 3AL
parameter files, also known as Level 3LP files. Parameter data is
requested for a latitude band (at 4 degree intervals between -88 and
88.) by time range and number of parameters. The number of parameters
must not exceed the value of MAX NP returned by the OPENL3TP routine.
READL3AL retrieves parameters within the requested portions of all of
the records that lie at the requested latitude band and within the
specified time range. The time, longitude, version numbérs and number
of parameters are returned for each parameter record. READL3TP also
returns the actual number of records retrieved and the time of the
next available record. If the number of records available in the time
range exceeds MAX_DIM, the maximum dimension of the user array,
READL3TP only reads MAX _DIM records and returns the appropriate
status.

The calling sequence for READL3LP is as follows:
CALL READL3LP (LID, LAT, START DATTIM, STOP_DATTIM, MAX_NP, MAX DIM,

RET DATTIM, NEXT_DATTIM, NUM REC, NP, PARAMETERS
LONG, VERSION, STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 I Logical file identifier specified in

the OPENL3LP call

LAT REAL*4 I Latitude corresponding to the
associated Level 3 data records

START_DATTIM 1I%*4(2) I Start date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

STOP_DATTIM I*4(2) I Stop date and time (in UDTF) of the the
Level 3 data records associated with
the parameters to be retrieved

MAX_NP I*4 I Maximum number of 32-bit words to be
retrieved from the parameter file
record

ARGUMENT

MAX_DIM

RET_DATTIM

NEXT DATTIM

NUM_REC

NP

PARAMETERS

TYPE

I*4

I*4
(2,NR)

I*4
(2)

I*4

I*4
(NR)

BYTE

(4*MAX_NP,NR)

LONG

VERSION

STATUS

REAL*4
(NR)

I*4
(2,NR)

I*4

DEFINITION

Maximum number of records (NR) to be
retrieved. If number of records found
exceeds this, the first MAX DIM records
are returned.

Array containing the dates and times
(in UDTF) of the Level 3 records
associated with the parameter records
retrieved

Date and time (in UDTF) of the next
available Level 3 record associated
with a parameter record

Number of parameter records returned

Array containing the number of 32-bit
words contained in each parameter file
record. NP may be greater than MAX NP,
but only MAX NP 32-bit words will be
returned.

Array containing the parameter records
retrieved. The array contains NUM_REC
parameter records. The format and
structure of each parameter record is
the instrument investigator's
responsibility

Array containing the longitudes of the
Level 3 data records associated with
each parameter record retrieved

Array containing the source file CCB
versions and cycles associated with
each parameter record retrieved

Read status code

SS$_NORMAL - Normal return

PFA CLSEERROLD - Error closing file

PFA EOD - Last record returned

PFA_NODATFND - No data in file for
requested time range at requested
latitude

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLPTRNG - No overlap between
requested time range and file's
time range

PFA_NROVRMXDIM - More records in time
range than can be retrieved at one
time

3-37

ARGUMENT TYPE I/0 DEFINITION

PFA_REQLATOUT - No data in file for |
requested latitude

PFA_RETTMPAST - A retrieved time is
beyond processing stop time

PFA_RETTMPREV - A retrieved time
precedes processing start time

3.2.19 WRITE LEVEL 3AT (WRITEL3AT)

WRITEL3AT writes time-referenced Level 3AT data in the standard
record format (see Appendix E). The Level 3AT file first must be
created by calling the OPENL3AT routine. Level 3AT records are
written on UARS minute boundaries. START_INDEX and NUM_POINTS specify
the range of the data provided by the user. This range must fall
within the range specified to OPENL3AT via the BASE_INDEX and
MAX POINTS parameters. If the user-prOV1ded data range is a subset of
the file data range, WRITEL3AT inserts the fill value (X'00008000')
for the remalnlng data elements. The user must provide the fill value
for any missing elements in the middle of the user-provided data
range. The user does not need to create fill records.

WRITEL3AT also calculates the local solar time and the solar
zenith angle for the record to be written and stores their values in
the record's header. These calculated values may then be retrieved ”Wg
when the record is read by specifying the LST and S2A arguments in the
call to READL3AT.

The calling sequence for WRITEL3AT is as follows:

CALL WRITEL3AT (LID, DATTIM, START_ INDEX, NUM_POINTS, DATA3A, QUAL,
LAT, LONG, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENL3AT call

DATTIM I*4(2) I Date and time of the Level 3AT record
in UDTF

START_INDEX I*4 I Index of first element of the UARS
standard data array provided

NUM_POINTS I*4 I Number of elements in the UARS standard
data array provided

DATA3A REAL*4 I One dimensional array containing the

(NUM_POINTS) data type specified at OPENL3AT time.

This array contains NUM_POINTS data oy
values for consecutive elements in the A

3-38

ARGUMENT TYPE I/0 DEFINITION

UARS standard data array starting at
element index, START_INDEX

QUAL REAL*4 I Array containing the quality
(NUM_POINTS) information associated with the data
values in DATA3A

LAT REAL*4 I Geodetic latitude corresponding to the
Level 3AT data record

LONG REAL*4 I Geodetic longitude corresponding to the
Level 3AT data record (0-360)

STATUS I*4 o Write status code
SS$_NORMAL - Normal return
PFA ~TIMAFTUARS - Record time beyond
nominal UARS day
PFA_TIMPREUARS - Record time before
nominal UARS day

3.2.20 WRITE LEVEL 3S (WRITEL3S)

WRITEL3S writes a single record of Level 3AS or Level 3BS data.
The Level 3AS or Level 3BS file must first be created by calling the
OPENL3S routine. The calling program must use the same LID as
specified to OPENL3S.

The Level 3 solar data is stored in a UARS standard solar data
array, where each array element contains the integrated flux from a
1.0 nm wide wavelength bin centered on the 0.5 nm from 115.5 to
425.5 nm. The array can, therefore contain up to 311 solar flux
values. The DATA3S array must contain the number of flux values
specified by MAX VALUES in the call to OPENL3S. The calling program
must supply the same number of values in the QUALITY array. The units
of the flux values must be watts per cubic meter.

Additional information that is stored in the solar data file with
a solar spectrum includes the irradiance values for 4 coronal lines,
Lyman Alpha, a Magnesium line and a Calcium line. Also, the mean
solar distance value (MSD) which is needed to perform the
1 AU-to-actual distance irradiance correction in READL3S must be
provided. This information is supplied by the calling program in the
PARAMS array, which can hold up to 40 parameters. Each parameter in
the array is specified by a pair of values, the first one containing
the parameter's name and the second one, its value.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for WRITEL3S is as follows:
CALL WRITEL3S (LID, DATA3S, QUALITY, NUM_PARAMS, PARAMS, STATUS)
ARGUMENT TYPE 1/0 DEFINITION
LID CHAR*16 I Logical file identifier as specified in
the OPENL3S call
DATA3S REAL*4 I Level 3AS or 3BS data. The irradiance
(NP) array is assumed to be in WATTS/M*3

units. NP is the value specified as
MAX_VALUES in the OPENL3S call.

QUALITY REAL*4 I Level 3AS or Level 3BS data quality.
(NP) NP same as above.
NUM_PARAMS I*4 I The number of parameter name and value
pairs provided in PARAMS
PARAMS CHAR*20 I A table used to pass parameters to be
(2,40) stored with the data for subsequent

use. Each entry in the table consists
of a pair of values, namely a parameter
name and its corresponding value in
ASCII. The Mean Solar Distance (MSD)
parameter MUST be provided.

STATUS I*4 (o] Write status condition code
SS$_NORMAL - Normal return
PFA_PREVSOLDAT - Already wrote solar
record to file

3.2.21 WRITE LEVEL 3AL (WRITEL3AL)

WRITEL3AL writes Level 3AL data in the standard record format
(see Appendix E). The Level 3AL file must first be created by calling
the OPENL3AL routine. Level 3AL records are written on UARS minute
boundaries. START_INDEX and NUM_POINTS spe01fy the range of the data
provided by the user. This range must fall within the range specified
to OPENL3AL via the BASE_INDEX and MAX_POINTS parameters. If the
user-prov1ded data range is a subset of the file data range, WRITEL3AL
inserts the fill value (X'00008000') for the remainlng data elements.
The user must provide the fill value for any missing elements in the
middle of the user-provided data range.

WRITEL3AL also calculates the local solar time and the solar
zenith angle for the record to be written and stores their values in
the record's header. These calculated values may then be retrieved
when the record is read by specifying the LST and SZA arguments in the
call to READL3AL.

3-40

/‘W\

@Wﬁ

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

. The Level 3AL records are written at standard values of latitude,
l.e. every 4 degrees of latitude from -88. to 88. For each data array

prov@ded, the user must provide the associated GMT date and time and
longitude values.

The calling sequence for WRITEL3AL is as follows:

CALL WRITEL3AL (LID, DATTIM, START_ INDEX, NUM_POINTS, DATA3A, QUAL,

ARGUMENT

LID

DATTIM

START INDEX

NUM_POINTS

DATA3A

QUAL

LONG

STATUS

LAT, LONG,
TYPE 1/0
CHAR*16 I
I%4(2) I
I*4 I
I*4 I
REAL*4 1

(NUM_POINTS)

REAL*4
(NUM_POINTS)

REAL*4

REAL*4

I*4

STATUS)

DEFINITION

Logical file identifier as specified in
the OPENL3AL call

Date and time of the Level 3AL record
in UDTF

Index of first element of the UARS
standard data array provided

Number of elements in the UARS standard
data array provided

One dimensional array containing the
data type specified at OPENL3AL time.
This array contains NUM_POINTS data
values for consecutive elements in the
UARS standard data array starting at
element index, START_INDEX.

Array containing the quality
information associated with the data
values in DATA3A

Geodetic latitude grid value
corresponding to the Level 3AL data
record. A tolerance of 0.5 degrees is
allowed in the specification of this
value.

Geodetic longitude corresponding to the
Level 3AL data record (0-360)

Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time beyond
nominal UARS day
PFA_TIMPREUARS Record time before
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.2.22 WRITE LEVEL 3TP DATA (WRITEL3TP)

WRITEL3TP writes time-referenced Level 3AT parameter files, also
know as Level 3TP files, in the standard record format (see

Appendix E).
OPENL3TP routine.

The Level 3TP file first must be created by calling the
Level 3TP records, like the Level 3AT records, are

written on UARS minute boundaries. NUM_PARAMS specifies the number of
32-bit words to be written to the parameter file. This number must
not be greater than the maximum number of parameters specified to the

OPENL3TP routine via MAX NP.

If the user-provided number of

parameters is less than that value of MAX_NP, WRITEL3TP inserts zeros
as fill data.

The calling sequence for WRITEL3TP is as follows:

CALL WRITEL3TP (LID, DATTIM, LAT, LONG, NUM_PARAMS, PARAMETERS,

ARGUMENT

LID

DATTIM

LAT

LONG

NUM_PARAMS

PARAMETERS

STATUS

STATUS)

TYPE - 1/0

CHAR*16 I

I*4(2) I

REAL*4 1

REAL*4 I

I*4 I

BYTE I
(4*MAX_NP)

I*4)

DEFINITION

Logical file identifier specified in
the OPENL3TP call

Date and time of the associated Level 3
data record (in UDTF)

Latitude corresponding to the
associated Level 3 data record

Longitude corresponding to the
associated Level 3 data record (0-360)

Number of 32-bit words to be written to
the parameter file

Buffer containing the parameters to be
associated with the Level 3 data
record. The format and structure of
this buffer is the instrument
investigator's responsibility.

Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time is
beyond nominal UARS day
PFA_TIMPREUARS - Record time precedes
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.2.23 WRITE LEVEL 3LP DATA (WRITEL3LP)

WRITEL3LP writes Level 3AL parameter file, also known as
Level 3LP files, in the standard record format (see Appendix E). The
Level 3LP file must first be created by calling the OPENL3LP routine.
Level 3LP records, like Level 3AL records, are written on UARS minute
boundaries. NUM_PARAMS specifies the number of parameters provided by
the user. This number must not be greater than the value of MAX_ NP
specified to the OPENL3LP routine. If the user-provided number of
parameters is less than the value of MAX NP, WRITEL3LP inserts zeros
as fill data.

The Level 3LP records are written at standard values of latitude,
i.e. every 4 degrees of latitude from -88 to 88. For each parameter
array provided, the user must provide the associated GMT date and time
and longitude values.

The calling sequence for WRITEL3LP is as follows:

CALL WRITEL3LP(LID, DATTIM, LAT, LONG, NUM_PARAMS, PARAMETERS, STATUS)

ARGUMENT TYPE I1/0 DEFINITION

LID CHAR*16 I Logical file identifier specified in
the OPENL3LP call

DATTIM I*4(2) I Date and time of the associated Level 3
data record (in UDTF)

LAT REAL*4 I Latitude corresponding to the
associated Level 3 data record

LONG REAL*4 I Longitude corresponding to the
associated Level 3 data record (0-360)

NUM PARAMS I*4 I Number of 32-bit words to be written to

- the parameter file
PARAMETERS BYTE I Buffer containing the parameters to be
(4*MAX_NP) associated with the Level 3 data

record. The format and structure of
this buffer is the instrument
investigator's responsibility.

STATUS I%4 o Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time is
"beyond nominal UARS day
PFA_TIMPREUARS - Record time precedes
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES'

3.2.24 CLOSE LOGICAL FILE (CLOSELF)

The CLOSELF routine is used to terminate file access activity for
the Level 0, 3AT, 3AS, 3BS, 3AL, 3LP, and 3TP data. The production
program specifies the logical file identifier associated with the
virtual or physical file to be closed, and the file disposition
(FDISP). Table 3-2 indicates the valid values for the DISP parameter.
If the disposition specifies cataloging of a new Level 3 data file,
CLOSELF closes the file and creates a catalog entry in the UARS
Catalog. The production program provides the file attributes for the
catalog entry (see Table 3-3). If the program asks for a new Level 3
file to be held for further use within the job, the file is closed and
the hold status is entered into the UCSS accounting. For all other
cases, the physical files are closed and the accounting is updated.

Table 3-2. File Disposition Usage

ASSIGN ASGCAT/OPENL3 /ASGCAL
PRE-EXISTING | POTENTIAL | ASGCOR | ASGSCR | ASGUSR | OPENLO
CATALOGED CATALOGED
DISP FILE FILE
CATALOG N/A 1 N/A N/A N/A N/A
FREE 2 3 2 3 N/A 2
HOLD N/A 4 N/A 5 6 N/A

1 == A REQUEST TO CATALOG THE FILE IS GENERATED AND THE CATALOG ENTRY
WILL BE CREATED UPON SUCCESSFUL COMPLETION OF THE JOB

2 -- THE FILE IS NO LONGER NEEDED BY THE PROGRAM AND IS RELEASED

3 == THE FILE IS NO LONGER NEEDED BY THE JOB AND IS DELETED FROM THE
SYSTEM :

4 -- THE FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN THE SAME
PRODUCTION JOB AND THE DECISION TO CATALOG IS DEFERRED

5 =- THE SCRATCH FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN THE
PRODUCTION JOB

6 -- THE USER STATUS FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN
THE SAME PRODUCTION JOB FOR POST-PRODUCTION ANALYSIS

3-44

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-3. CLOSELF Catalog Attributes
ATTRIBUTE REQUIRED
NAME DESCRIPTION OPTIONAL FORMAT
DATA_GAP(N) * start and stop optional two 23 character VMS
times of data times
gap N (DD-MMM=~-YYYY
HH:MM:SS.CC)
separated by a space
DATA_QUALITY_ PI user assigned optional | n.m
quality value
DATA_QUALITY_ UARS | user assigned optional | n.m
quality value
COMMENTS user comments optional up to 80 characters
*N=1, 2, ... 100

The calling sequence for CLOSELF is as follows:

{ CALL CLOSELF (LID, DISP, NUM_ATTR, DATA_ATTR, STATUS)

ARGUMENT TYPE
LID CHAR*16
DISP CHAR*4
NUM_ATTR I*4
DATA_ATTR CHAR*80
(2,NUM_ATTR)
P

1/0

I

I

I

DEFINITION

Logical file identifier associated with
this data file. This LID must be the
same logical file identifier specified
in the corresponding open for ‘this data
file.

File disposition
'FREE' = File no longer needed by
program
'HOLD' = Hold file for use by
subsequent program in job
'CAT ' = Catalog a new Level 3A file

Number of user supplied catalog
attributes. Required only when
cataloging a file. A maximum of 100
attributes may be given.

User supplied attributes for cataloging
a created data file (see Table 3-3).
The table of attributes is meaningful
only when cataloging a new file. A

3-45

ARGUMENT TYPE 1/0 DEFINITION

dummy string is required when not M-
cataloging the file.

STATUS I*4 (o) Status code
SS$ NORMAL - Normal return

PFA_ CLSEERROLD - Error closing input

file

PFA_FILNOTFREE - Input file could not
be freed

PFA?NODATARECS - No data records in
file

PFA_UNKOPTSFDU - Unknown optimal SFDU
descriptor id

PFA_UNMTCHFDSP - Specified wrong file
disposition for input file

3.2.25 DEASSIGN LOGICAL ID (DASLID)

DASLID terminates the logical connection between the production
program and the data file assigned by ASGCAT, ASGCOR, ASGCAL, ASGUSR,
or ASGSCR. The production program specifies the disposition of the
file with the DISP parameter. For a file (Level 0, 1, 2, 3, or
level-less) with a disposition of 'CAT', DASLID creates a catalog
entry. The user provides the file attributes (see Table 3-4) for the ™
catalog entry via the DATA_ATTR parameter. If an existing catalog ‘
file is freed, DASLID ignores the data attributes and updates the
catalog entry only for accounting purposes. For all other types of
files a disposition of 'FREE' results in deletion of the file at job
end and no catalog access. The 'HOLD' option is used when the user
wishes to keep track of a scratch file, user status file or an
uncataloged file for use in a subsequent program in the job.
Table 3-2 provides a description of the usage of the DISP parameter.

’?%

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-4. DASLID Catalog Attributes
REQUIRED
ATTRIBUTE DESCRIPTION OPTIONAL FORMAT
START_TIME file start required | 23 character VMS time
time (DD-MMM-YYYY
HH:MM:SS.CC)
STOP_TIME file stop required | 23 character VMS time
time
RECORD_SIZE record size optional encoded integer
for files with
fixed length
records
DATA_GAP (N) start and stop optional two 23 character VMS
times of data times separated by a
gap N space
DATA_QUALITY_ UARS | user assigned optional | n.m
quality value
DATA_QUALITY_ PI user assigned optional n.m
quality value
COMMENTS user comments optional up to 80 characters

*N=1, 2, ... 100

The calling sequence for DASLID is as follows:

CALL DASLID (LID, DISP, NUM_ATTR, DATA_ATTR, STATUS)

ARGUMENT
LID

DISP

NUM_ATTR

TYPE I/0
CHAR*16 I
CHAR*4 I
I*4 I

DEFINITION

Logical file identifier

File disposition
'FREE' - release file
'HOLD' - hold file for subsequent use
'CAT ' - catalog file

Number of user supplied attributes in
DATA_ATTR. Required only when
cataloging a file. A maximum of 100
attributes may be given.

3-47

ARGUMENT TYPE I/0 DEFINITION

DATA ATTR CHAR*80 I User supplied attributes for cataloging'ww
- (2,N) a created data file (see Table 3-4).
The table of attributes is meaningful
only when cataloging a new file.
Otherwise, the attributes are ignored.
A dummy string is required when not
cataloging the file

STATUS I*4 o Status code

SS$ NORMAL - Normal return

PFA_FILNOTFREE - Input file could not
be freed

PFA_NODATARECS - File contains
no data

PFA_UNMTCHFDSP - Specified wrong file
disposition for input file or user
status file

3.3 UTILITY SERVICES
3.3.1 ERROR CODE REPORTING (ERRCDE)

ERRCDE allows the user to report error conditions encountered
during a production program. An entry is made in the system error
file each time the subroutine is called and the error is included on
the program summary report.

The calling sequence for ERRCDE is as follows:

CALL ERRCDE (ERROR, COMMENTS)

ARGUMENT TYPE I/0 DEFINITION
ERROR I*4 I VMS message facility condition code
COMMENTS CHAR*80 I Comments about the error condition

3.3.2 UDTF TO VMS TIME CONVERSION (UTL_CON_UDTF_VMS)

UTL_CON_UDTF_VMS converts date/time in UDTF to the 23 character
VMS time format, DD-MMM-YYYY HH:MM:SS.CC.

3-48

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

oo The calling sequence for UTL_CON_UDTF_VMS is as follows:

CALL UTL_CON_UDTF_VMS (UDTF_TIME, VMS_TIME, STATUS)

ARGUMENT TYPE I/0 DEFINITION

UDTF_TIME I*4(2) I Date/time in UDTF

VMS_TIME CHAR*23 o Date/time in VMS character format
STATUS I*4 0 Conversion status

SS$_NORMAL - Normal return
PFA_INVUDTFYR - Invalid year

PFA INVUDTFDAY - Invalid day of year
PFA_INVUDTFMSEC - Invalid
milliseconds of day

3.3.3 PRESSURE/ALTITUDE GRID UTILITY (VERT_DEF)

VERT_DEF provides a Fortran-callable support service to obtain
UARS grid definitions. Instrument and level 3 subtypes are used to
return the associated UARS grid which includes index values, units of
grid, and valid pressure and altitude levels.

ﬁwh The calling program specifies the instrument and level 3 subtype.
The VERT_DEF routine returns the base index, number of points,
pressure and altitude levels, and units of grid.
When an unknown instrument or level 3 subtype in specified, the
VERT_DEF routine returns a warning status in the status field.
Please note that the User's Guide also describes the grid utility
function.
The calling sequence for VERT DEF is as follows:
CALL VERT_DEF(INSTRUMENT_ ID, SUBTYPE, BASE_INDEX, MAX POINTS,
PRESSURE, ALTITUDE, UNITS, STATUS)
ARGUMENT TYPE I/0 DEFINITION
INSTRUMENT _ID C#*12 I Instrument Identifier
SUBTYPE C*12 I Type of data. The subtypes for each
instrument are defined by the
investigator.
BASE_INDEX I*4 o Start index (lowest) into the
standard data array for which
ﬁW“ measurements can be taken for this
data type

3-49

ARGUMENT TYPE 1/0 DEFINITION

MAX_POINTS I*4 o The maximum number of pressure levels ~)
- or altitudes for which measurements
can be taken for this data type (N)

PRESSURE R*4 o An array of the pressure levels for
(N) this data type in millibars

ALTITUDE R*4 (o) An array of the geometric altitudes
(N) for this data type in kilometers

UNITS C*12 (o] The units in which the measurements

for this data type are expressed

STATUS I*4 o Completion status
SS$_NORMAL - Normal return
PFA_INVINSTR - Unknown instrument
PFA_INVDATAGRID - Unknown subtype

3.3.4 DECODE OBC EMAF INTO OBC REPORTS (OBCDECODE)

OBCDECODE extracts information contained in an OBC report from an
OBC Level 0 record. The OBC reports and the OBC report variables are
defined in PIR 1k21-UARS-403 Rev. B. The calling program supplies the
OBC Level 0 record containing the desired OBC report, a report number
identifying the type of report requested and the time of the report
requested. If the requested time does not correspond to an actual
report time, the time of the first report after the requested time is
used. If more than one report exists for the requested time the first
occurrence of the report with the best data quality is returned. The
requested time must be greater than zero when calling OBCDECODE.

only the two least significant digits of the report number are
used to identify a report. Predefined OBC report elements are
converted to VAX format and returned in the data arrays. A copy of
the entire OBC report in telemetry format is returned as well. A
FORTRAN include file OBC_REP_PARMS.INC is available to allow reports
and report elements to be referenced using the G.E. mnemonics.
OBC_REP_PARMS.INC contains parameter statements that equate the report
name to report numbers and report item names to offsets in the
returned VAX formatted data arrays. Appendix H lists the OBC report
names and numbers and the OBC variables that are reformatted by
OBCDECODE. An example using mnemonics to access report items appears
in Appendix H.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for OBCDECODE is as follows:
CALL OBCDECODE(EMAF_REC, OBC_RPT_NUM, REQ DATTIM, RET_DATTIM,
OBC_QUALITY, OBC REAL OBC INTEGER, OBC _BYTE,
OBC_ _REC, STATUS)

ARGUMENT TYPE I/0 DEFINITION

EMAF_REC BYTE(14400) I Level 0 OBC telemetry record containing
one EMAF of data

OBC_RPT NUM 1I*4 I The OBC report number of the report
requested. The include file
OBC_REP_PARMS.INC contains the
parameter statements to associate
mnemonics for the OBC reports with the
OBC report numbers.

REQ_DATTIM I*4(2) I/0 On input, date and time in UDTF format
of the generation time of the requested
OBC report. On output the generation
time of the next available OBC report
of the requested type available. If no
more reports are in the EMAF,
REQ_DATTIM will be set to zero. On
input the value of REQ_DATTIM must be
greater than zero.

RET_DATTIM I*4(2) (o] Date and time in UDTF format of the
returned OBC report generation

OBC_QUALITY BYTE(1) o) Indicates parity or f111 data for
returned report

good data

parity error

£fill data

no data returned

Mwe o
il

OBC_REAL R*8 (*) o Floating point values for report. Use
mnemonics defined in the include file
to reference returned values.

OBC_INTEGER I%*4 (%) (o] Integer values for report. Use
mnemonics defined in the include file
to reference returned values.

OBC_BYTE BYTE(*) (o] Integer byte and unpacked bit values
for report. Use mnemonics defined in
the include file to reference returned
values.

OBC_REC BYTE(28) o Returned copy of the specified report
unformatted. The first byte is the

3~-51

ARGUMENT TYPE I/0 DEFINITION

report number followed by the report
data. In terms of the G.E.
documentation this buffer contains
words 0 through 27.

STATUS I*x4 o Status Code

SS$_NORMAL - Normal return

PFA_BADEPOCHYR - Bad ASC09 Epoch year
(UFL reports only)

PFA_BADOBCEMAF - Bad EMAF record
header

PFA_INVUDTFDAY - Bad UDTF day
requested

PFA_INVUDTFMSEC - Bad UDTF msec
requested

PFA_INVUDTFYR - Bad UDTF year
requested

PFA_OBCDATATIM - No data for time
specified

PFA_UNKOBCRPT - Unknown report

* Indicates that the minimum size needed varies by OBC report. The
Maximum dimension for OBC_REAL is 12, for OBC_INTEGER is 11, and for
OBC_BYTE is 52.

3.3.5 COMPARE TIMES (UTL_COMPARE_ TIME)

UTL_COMPARE_TIME is a function that compares two times expressed
in 8-byte format and returns a 2-byte integer result. The value of
the result is 1 if the first time is later than the second, zero if
the times match, and -1 if the first time is earlier than the second.

The calling sequence for UTL_COMPARE_TIME is as follows:

Result = UTL_COMPARE TIME (FIRST_TIME, SECOND_TIME)

ARGUMENT TYPE I1/0 DEFINITION
FIRST_TIME I*4(2) I First time to be compared
SECOND_TIME I*4(2) I Second time to be compared
UTL_COMPARE_TIME I*2 (o] Result:

1 iff FIRST TIME > SECOND_TIME
0 iff FIRST_TIME SECOND_TIME
-1 iff FIRST_TIME < SECOND_TIME

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.3.6 COMPUTE SECONDS BETWEEN UDTF TIMES (UTL_SEC_TIME DIF)
UTL_SEC_TIME_DIF is a function that returns a real*8 result
contailning the number of seconds between two UDTF times. The
difference is positive when the first time exceeds the second.
The calling sequence for UTL_SEC_TIME DIF is as follows:

Result = UTL_SEC_TIME DIF (FIRST_UTDF_TIME, SECOND_UTDF_TIME)

ARGUMENT TYPE /0 DEFINITION

FIRST UTDF_TIME I%4(2) I First UTDF time
SECOND_UTDF_TIME I*4(2) I Second UTDF time
UTL_SEC_TIME_DIF R*8 0 Result: Difference in seconds

(first_time - second_time)

FIRST_TIME I*4(2) 1 First time to be compared

3.3.7 CONVERT UARS DAY TO UDTF FORMAT (UTL_UARS_TO_ UDTF)

UTL_UARS_TO_UDTF converts a UARS day into a two-word time array
in UDTF format.

The calling sequence for UTL _UARS_TO_UDTF is as follows:

CALL UTL_UARS_TO_UDTF (UARS_DAY, UDTF_TIME)

ARGUMENT TYPE I/0 DEFINITION
UARS_DAY I*4 I UARS processing day
UDTF_TIME I*4(2) 0 Time in UDTF format

3.3.8 CONVERT UDTF FORMAT TO UARS DAY (UTL_UDTF_TO_UARS)

UTL_UDTF_TO_UARS converts a date in UTDF format to a date in UARS
format.

3-53

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for UTL_UDTF_TO_UARS is as follows:

CALL UTL_UDTF_TO_UARS (UDTF_TIME, UARS_DAY)

ARGUMENT TYPE I/0 DEFINITION
UDTF_TIME I*4(2) o) Time in UDTF format
UARS_DAY I*4 I UARS processing day

CHAPTER 4

RAC SIMULATED SERVICES

The UCSS provides a collection of services developed to simulate
the production software support services described in Section 3.
These services are designed to facilitate the testing of production
processing software outside of the production environment. Programs
using the simulated services can run at the RACs or in user
directories on the CDHF.

In addition to providing 'a test capability, the simulated
services can be used by analysis programs that are run on the RACs or
on the CDHF. For example, quick-look files can be transferred to a
RAC and the program to analyze the data can use the OPENLO, READLO,
QUALRD, and CLOSELF routines to access the quick-look files.

The calling sequences for the simulated services are the same as
for the production services. Table 4-1 lists the simulated services,
identifies the section defining the calling sequence, and indicates
the differences in the services.

Table 4-1. Simulated Services

SUBROUTINE | INTERFACE DIFFERENCES BETWEEN THE SIMULATED SERVICES
NAME DEFINITION AND THE PRODUCTION SERVICES
PGINIT 3.1.1 1. Uses user-supplied PROGRAM_ PARAMS namelist
to supply program parameters
2. Uses user-supplied FILE_PARAMS namelist to
provide file information
3. Uses user-supplied DEFAULT_ PARAMS namelist
to supply default values for file parameters
4. Creates file parameter table to simulate
the catalog access
PGTERM 3.1.2 1. Program summary report is sent to SYS$OUTPUT
OPENLO 3.2.1 1. Uses file parameter table to identify
file(s) ‘
OPENL3AT 3.2.7 2. Provides access to either a single pseudo-
virtual file created via RAC data transfer
OPENL3AL 3.2.8 or a pool of day files
3. A pool of virtual input day files is
OPENL3S 3.2.9 specified in the FILE_PARAMS Namelist via
DATA_FILE_NAME and VIRTUAL_ UARS_DAY
OPENL3TP 3.2.10 4. REQUIRED FLAG in FILE PARAMS Namelist is
used to iIndicate if all files in the user's
OPENL3LP 3.2.11 processing range are required to be present
ASGCAT 3.2.2 1. Uses file parameter table to identify file
2. Output file location provided in file
parameter table
ASGCOR 3.2.3 1. Uses file parameter table to identify file
ASGCAL 3.2.4 1. Uses file parameter table to identify file
ASGSCR 3.2.5 1. Uses file parameter table to identify file
2. Output file location provided in file
parameter table
ASGUSR 3.2.6 1. Uses file parameter table to identify file

Table 4-1. Simulated Services (Continued)

SUBROUTINE INTERFACE DIFFERENCES BETWEEN SIMULATED AND PRODUCTION

QUALRD 3.2.12 1. For virtual input, files in the user's
processing range are selected from the pool

READLO 3.2.13 of files specified via FILE_PARAMS

READL3AT 3.2.14

READL3S 3.2.15

READL3AL 3.2.16

READL3TP 3.2.17

READL3LP 3.2.18

WRITEL3AT 3.2.19 1. Requires Ephemeris file to be specified as
cataloged input via FILE_PARAMS namelist
WRITEL3AL 3.2.21

WRITEL3S 3.2.20 No differences
WRITEL3TP 3.2.22

WRITEL3LP 3.2.23

CLOSELF 3.2.24 1. No access to the catalog
2. Catalog attributes are output to SYS$OUTPUT

DASLID 3.2.25 1. No access to the catalog
2. Catalog attributes are output to SYS$OUTPUT

ERRCDE 3.3.1 1. Error is output to SYSS$SERROR
2. Error is not logged to log file

UTL_CON 3.3.2 Same routine (UTL_CON_UDTF_VMS)
_UDTF_VMS

RAC SIMULATED SERVICES

4.1 PROGRAM CONTROL SERVICES
4.1.1 JOB INITIALIZATION (RSS_JOB_INIT)

The first program executed in a job run in the simulated
environment is the UCSS job initialization program, RSS_JOB_INIT. It
generates the first portion of the job summary report, the
initialization statistics. The job initialization program is optional
in the runstream, but is provided to be consistent with the production
services.

4.1.2 PROGRAM INITIALIZATION (PGINIT)

The PGINIT subroutine provides the mechanism for passing input
parameters to a user program run in the simulated environment. It
returns the processing time range, the UARS day number, and any user-
defined parameters specific to the program. In the production
environment these parameters are supplied to PGINIT by the scheduler,
but in the simulated environment they are provided by the user in the
job's runstream. The user must provide the required parameters via
the PROGRAM_PARAMS namelist. The PROGRAM_ PARAMS namelist is described
in Table 4-2.

RAC SIMULATED SERVICES

Table 4-2. PROGRAM_PARAMS Namelist

NAMELIST PARAMETER DESCRIPTION FORMAT
PROG_NAME program name c20
PROCESSING_START_ TIME processing start time - c23

'DD-MMM-YYYY HH:MM:SS.CC!
PROCESSING_STOP_TIME processing stop time c23

'DD-MMM-YYYY HH:MM:SS.CC'
UARS_PROCESSING_DAY primary UARS processing day I
LAUNCH_DATE UARS launch date used as the ca3

epoch date for UARS day number
- 'DD-MMM-YYYY HH:MM:SS.cCC'

DEF_EXISTS flag for specifying presence of c1
DEFAULT_PARAMS namelist (T or F)

PARAMS(n) * user parameter name n Cc20

VALUES (n) * user parameter value n c20

*n=1t%to 50

In the RAC simulated services environment, the user supplies
information about files to be accessed by the program via the
FILE_PARAMS namelists. The FILE_PARAMS namelist identifies the
primary catalog attributes and the fully qualified file(s)
specification. 1In the case of a virtual input file, one FILE_PARAMS
namelist is used to identify a pool of physical files in which all
share the same file attributes. The physical file names and their
associated UARS day are spec1f1ed via the DATA_FILE_NAME and
VIRTUAL_UARS_DAY parameters in the FILE_PARAMS “namelist. During the
open, the pool matching the user's file attributes is selected, files
which exist and which contain data and which are in the user's
specified processing range are then selected.

PGINIT creates a file parameter table which is used to simulate
the UARS Catalog using FILE PARAMS namelist data from the runstream.
This namelist is described iIn Table 4-3. The namelist parameters
required for a file are determined by the type of file and its usage.
Table 4-4 identifies the required parameters by file service.

Table 4-3. FILE_PARAMS Namelist
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
CALIBRATION_ID calibration table Ccl2
table identifier
CALIBRATION_MATCH calibration day C4 'EXCT' or
match criteria 'PREV' or
'NEXT' or
'NEAR'
DATA_FILE_NAME list of one or C80 (*) See Notes 1,2
more VMS file
specifications
VIRTUAL_UARS_DAY list of UARS days I(*) See Note 2
in virtual input
pool
DATA_LEVEL data level c3 1st char '0',
ll!'lzl'l3l'
or blank
DATA_TYPE data type ci12
ESTIMATED_FILE SIZE estimated file I
size in blocks
FILE_VERSION_NUMBER(1) cCB file version I
number
FILE_VERSION_ NUMBER(2) file cycle number I
LOGICAL_FILE_ID logical file C16
identifier
OLD_NEW file status flag c4 'OLD' or 'NEW'
or 'HELD'
PRE_NXT_UARS_DAY actual UARS day I
SOURCE correlative data ci12
source
SUBTYPE data subtype C12
UARS_DAY UARS day number I
USER_STATUS_FILE_NUMBER | user status file I

file number

Table 4-3. FILE_PARAMS Namelist (Continued)
M NAMELIST PARAMETER DESCRIPTION FORMAT VALUES

REQUIRED_ FLAG optional parameter| cC1 'T' or 'F!
which, for input,
indicates if all
files in UARS
processing range
are required to be
present

Notes:

l. Only one file name may be specified via DATA_FILE NAME for all file
types except for virtual input files. For virtual input files up
to 250 files may be specified.

2. The VIRTUAL UARS_DAY parameter is required for virtual input files
containing more than one physical file. It supplies, in one-to-one
correspondence, the nominal UARS days associated which each
physical file specified by the DATA_ FILE NAME parameter.

Table 4-4. Required FILE_PARAMS Parameters and Defaults
P A R A E T E R
FILE SERVICE 1 2| 3 4| 5| 6] 7 9| 10} 11| 12| 13| 14| 15
OPENLO X| OD| D X2
ASGCAT
OLD X| Oob| D D X| oD
NEW X| ND| D D X| ND
HELD X X| DI X X X X
OPENL 3AT,
3AL,3TP,3LP
OLD X| oD| D D X X2
NEW X| ND| D X D X| ND
HELD X X| D X X X X
OPENL3S
OLD X] OD| D D X2
NEW X| ND{ D X D ND
HELD X|{ D| X X X
*ASGCAL
OLD X| D1} X| OD X1 D(oD
NEW X X| ND X D| ND
HELD X X X X X D X
ASGCOR X X X| oD
ASGSCR
NEW X SD
HELD X X X
ASGUSR X X
Legend:
1 CALIBRATION_ID 6 ESTIMATED_FILE SIZE 11 SOURCE
2 CALIBRATION MATCH 7 FILE_VERSION_NUMBER 12 SUBTYPE
3 DATA_FILE NAME 8 LOGICAL FILE_ID 13 UARS_DAY
4 DATA_LEVEL 9 OLD_NEW 14 USER_STATUS_FILE_ NUMBER
5 DATA_TYPE 10 PRE_NXT_ UARS_DAY 15 VIRTUAL_UARS_DAY

’”@B\

Table 4-4. Required FILE_PARAMS Parameters and Defaults (Continued)

X1

X2

D1

ND
oD
SD

For dayless calibration, UARS_DAY is set to zero and
CALIBRATION_MATCH and PRE_. NXT UARS_DAY are omitted

Parameter always required, no default exists

Parameter required only for calibration by day with
CALIBRATION_MATCH not equal to 'EXCT'

Parameter required only when more than one physical file has been
specified by DATA_FILE NAME

Parameter required, if not given, use DEF <f11e-parameter-name>
Parameter required only for calibration by day, if not given, use
DEF_CALIBRATION MATCH

Parameter required, if not glven, use DEF_NEW_<file-parameter-name>
Parameter required, if not glven, use DEF oLD <file-parameter-name>
Parameter required, if not given, use default value 'NEW'

RAC SIMULATED SERVICES

The user has the ability to supply default file parameters via
the DEFAULT PARAMS namelist. Default file parameters are used when
required file parameters are not supplied in the FILE_PARAMS namelist
and a default parameter is applicable and has been specified. The
DEFAULT_PARAMS namelist is described in Table 4-5. Table 4-4 shows
which default parameters are applicable based on file access type.
The DEFAULT_PARAMS namelist is entered in the job runstream after the
PROGRAM PARAMS namelist and before the first FILE_PARAMS namelist. If
default parameters are supplied, the DEF_EXISTS parameter in the
PROGRAM_PARAMS namelist must be set to *T', If DEF_EXISTS is not
specified in the PROGRAM_PARAMS namelist then defaults will not be
applied and values specified via the DEFAULT_ PARAMS namelist will be
ignored.

RAC SIMULATED SERVICES

Table 4-5. DEFAULT_PARAMS Namelist
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
DEF_OLD_NEW default for old or new C4 'OLD',
files requiring OLD_NEW or
(see Note 1.) 'NEW'
DEF_OLD_DATA_ LEVEL default for old files ok 1st char
requiring DATA_LEVEL ‘o', "1,
(see Note 1.) '2','3?',
or blanks
DEF_NEW_DATA_LEVEL default for new files c3 1st char
requiring DATA_LEVEL 1,020,
(see Note 1.) 13', or
blanks
DEF_OLD_UARS_ DAY default for old files I
requiring UARS_DAY
(see Note 1.)
DEF_NEW_UARS_DAY default for new files I
requiring UARS_DAY
(see Note 1.)
DEF_DATA_TYPE default for all files ci2
requiring DATA_TYPE
DEF_CALIBRATION_MATCH Default for Calibration C4 'EXCT!,
files with nonzero 'PREV',
UARS_DAY specified 'NEXT', or
(see Note 2.) 'NEAR'
DEF_SUBTYPE Default for Calibration C12
files requiring subtype
Notes:

1. There is no default for DATA_LEVEL, UARS_DAY, and OLD_NEW for held

files.

2. If CALIBRATION MATCH is omitted for a calibration file then
DEF_CALIBRATION_MATCH will be used if and only if UARS_DAY is

non-zero.

RAC SIMULATED SERVICES

4.1.3 PROGRAM TERMINATION (PGTERM) ™

PGTERM terminates a program run in the simulated environment.
The user's program is respon51b1e for determining the success or
failure of the proce551ng and reports the result via PGTERM. PGTERM
updates the accounting information and produces a program summary
report which is sent to the SYS$OUTPUT device. PGTERM must be called
at the end of each program.

4.1.4 JOB TERMINATION (RSS_JOB_TERM)

The last program executed in a job run in the simulated
environment is the job termination program, RSS_JOB_TERM. It
generates the second portion of the job summary report, the job
completion statistics. The job termination program is optional in the
runstream, but is provided to be consistent with the production
services.

4.2 FILE ACCESS

This section describes the software support services designed to
provide access to user-managed files in the simulated environment. N
Services are provided to access all levels of instrument files, '
calibration files, correlative files, user status files, and scratch
files.

The UCSS provides the OPENLO, READLO, QUALRD, and CLOSELF
services to access Level 0 data in the simulated environment. The
access to the UARS Catalog required to identify the requested file is
simulated using the file parameter table created by PGINIT. The
simulated environment allows access to both day files and pseudo-
virtual files generated via RAC data transfer. However, when a
pseudo_virtual file is specified, no other physical file may be listed
as part of the DATA_FILE_NAME parameter.

The UCSS provides the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, READL3AT, READL3S, READL3AL, READL3TP, READL3LP, WRITEL3AT,
WRITEL3S, WRITEL3AL, WRITEL3TP, WRITEL3LP, and CLOSELF services to
access Level 3 data and Level 3 data parameters at processing levels
3AT, 3AL, 3AS, and 3BS in the simulated environment. The access to
the UARS Catalog required to identify the requested input file is
simulated using the file parameter table created by PGINIT. The file
parameter- table is also used to identify output file locations. The
simulated environment allows access to both day files and pseudo-
virtual files in the same manner as described above for Level 0 data.

There are no differences in the functions of the Level 3 write
services from the production versions. Write services for Level 3AT Mwﬁ
and Level 3AL files require the use of an ephemeris file as input.

4-12

RAC SIMULATED SERVICES

This file provides information that is used to calculate the values of
local solar time (LST) and solar zenith angle (SZA) that are stored in
each Qata record. The CLOSELF service simulates the cataloging
function by writing the catalog attributes to SYS$OUTPUT when the user
program requests cataloging of a Level 3 file.

.The UCSS provides the ASGCAT, ASGCOR, ASGCAL, ASGUSR, and ASGSCR
services to assign Level 0, Level 1, Level 2, Level 3, correlative,
cal;bration, user status, and scratch files in the simulated
environment. The access to the UARS Catalog required to identify the
requested cataloged files is simulated using the file parameter table
created by PGINIT. The file parameter table is also used to identify
the locations of output files. The UCSS also provides the DASLID
service to record the user supplied file disposition and to simulate
the cataloging function.

The user is responsible for providing the I/0 services to access
auxiliary files. If the user program generates auxiliary files, the
user must define the AUX_DIRECTORY logical name in the runstream to
identify the disk and directory where the files are to be created.

4.3 UTILITY SERVICES

The UCSS provides the utility services (see Section 3.3) in the
simulated environment. Table 4-1 shows the functional differences in
these services between the simulated and production environments.

4.4 JOB RUNSTREAM FOR THE SIMULATED ENVIRONMENT

Figures 4-1 and 4-2 present sample runstreams for jobs that use
the simulated services. The Level 1 processing job in the first
example consists of two program steps. The job uses Level 0,
calibration, and correlative data as input, generates an intermediate
scratch file to pass information between programs, and produces a
Level 1 file. The second example illustrates a job that produces a
Level 3AT file using a Level 2 data file and an ephemeris file as
input. The ephemeris file is needed for the solar zenith angle (SZA)
and local solar time (LST) stored with each record in the Level 3AT
file. The following notes pertain to the annotated runstreams in
Figure 4-1 and Figure 4-2:

1. The AUX DIRECTORY logical name, defined for the job,
identifies the disk and directory to be used for auxiliary
files. AUX DIRECTORY must be defined for any job that
creates auxiliary files.

2. The UCSS_JOB_ID logical name is a 21 character identifier for
the job. It is not required for simulated runstreams, but
the job identifier is included on the job summary reports if

4-13

10.

11.

12.

RAC SIMULATED SERVICES

it is provided.

The RSS_JOB_INIT program is the UCSS job initialization
program for the simulated environment. It is the first
program run in the job. RSS_EXE is the logical name
identifying the disk and directory location of the UCSS
executable code. The RSS_JOB_INIT can be omitted from the
simulated runstream.

The UARS _PASS_FLAG is used to indicate the success or failure
of each job step. The UARS _PASS_FLAG must be tested after
each job step to prevent further proce551ng in the event of
job failure. The UARS_PASS FLAG is controlled by the UCSS
software.

The start of each job step can be labeled to accommodate
user-supplied conditional tests.

The JOB_STEP logical name identifies the job step number.
Each job step is numbered sequentially. The job step number
appears on the program summary report.

This run command causes execution of the user-supplied
program. MLSEXE is the logical name identifying the disk and
directory location of the MLS executable code.

The PROGRAM_PARAMS namelist provides the input parameters
(see Table 4-2) to the program.

The PROGRAM_PARAMS namelist parameters PROCESSING START _TIME,
PROCESSING_ STOP_TIME, and LAUNCH_DATE may be specified in
either VAX/VMS 23 character date and time format or UARS
standard Date and Time (UDTF) format. When UDTF time/date
format is used the two 1ntegers must be separated by one or
more blanks. UDTF format is described in Appendix A.

The DEFAULT_PARAMS namelist provides default values for
required file parameters. Default values are used if
required parameters are not specified in a FILE _PARAMS
namelist. Table 4-4 shows the required file parameters and
applicable defaults by file access type. Table 4-5 describes
each DEFAULT_PARAMS parameter.

A FILE_PARAMS namelist must be provided for each file
accessed by the program. Table 4-3 identifies the namelist
parameters and Table 4-4 identifies which parameters are
required for each type of file access.

In the case of a virtual input Level 0 or Level 3 file, the
FILE_PARAMS namelist is used to set up a pool of physical
files each sharing the same general file attributes. The
DATA_FILE_NAME parameter specifies each physical file and the
VIRTUAL_UARS_DAY parameter lists the nominal UARS day

4-14

RAC SIMULATED SERVICES

associated with each physical file specified. During the
open, the pool with attributes matching those specified by
the user is identified and files within the user's processing
range are selected.

13. The VIRTUAL_UARS_DAY parameter is only required for a virtual
input file containing two or more physical files.

14. The job termination or exit step must be labeled. This label
is required even when RSS_JOB_TERM is not used.

15. The RSS_JOB_TERM program is the UCSS job termination program
for the simulated environment. It is the last program run in
the job. RSS_EXE is the logical name identifying the disk
and directory location of the UCSS executable code.
RSS_JOB_TERM can be omitted from the simulated runstream.

16. An SFDU file containing appropriate information for
generating SFDU headers should be provided whenever new
Level 3 data files are to be generated. (See Appendix G for
a description of the format and content of this file.)

17. An appropriate epheméris file must be specified whenever a

new Level 3AL, Level 3AT, Level 3AS, or Level 3S file is to
be generated.

Figure 4-1. First Sample Simulated Environment Job Runstream

e

€T

A
1T

0T

N O~ (o)}

M <

anas
1 STH,=2dAL4NS
' T=TIATT_VINd
' IVA° TISHYEYd TVOTTISTH(IVOSTH] : €XSIA=THWYN aTId YIVa
+ LOXT s =HOLVW_NOIIVYLITYD
'+ SWRVd TV¥D,=0I NOILVMLITVO
SWWVIVYd T1Id$
anas
10, =TIAIT VIVd
P 22T’TeT'02T'6TT=AVA SYVN TVAINIA
A\ LYA * 22TA0TSTH [0TIATTST] ¢ €MSIA,
' IYA " TZTQOTISTH ([0TIATTISTIN] ¢ ENSIA,
'+ I¥A*02TAOTSTH [OTIATTSTH] : €MSIA, _ _
‘1 I¥A° 6 TTAOTSTH [0TIATTSTN] ¢ €MSIA, =TAWYN ATIJ YIVQ
SHYYVYd TTIdS
anNas
6TT =XYQ sy¥v¥n Q10_J3d
1 S'TH =3dAL VIVd J3q
SHYIVd I1Invd3as
anNas
_ + To=(T)SaNTVA
1OVId NOILVNEITVD,=(T)SHYIVd
L, =SISIXT J43a
10 GEET6,=TIVA HONNVT
6TT=AVA_SNISSIOOUd S¥VN
106666£98 68026,=THIL dOLS_ONISSIDO0Nd
10 68026,=AWIL I¥VLS ONISSIOONd
 TVOTTISTIH, =FWYN 90dd
SHVYVYd WYID0ud$
TYOTISTH :IXTSTH unx
T d31s dor ssaoozd/aur;ap
:T ddIs dgor
l
T d3Is i
]
WaLgor 0306 uayy (wIIVds °SO0F° OVIAd SSVd Ss¥vn) 3T
LINI 90rf SSY:IXT SSY unx
]
UOTIeZTTRTITUI qor s$son sT wexboad asatd

i

002000T000TO0TOOTSTH AI 90L SSOon ssaooad/sutjep
(sATIIIXAV] : €NSIA AYOLOAYIA XNV ssaooad/surIsp
(HOLWVIOSSTIN] : ¥MSIA 3ITnejsp 219s

WALGOL 0109 NIHI Ho¥¥E NO

]

U P Urr rYrUr Ur - X U Ur Ur

weaIjsuny qor JIUSWUOITAUZ pajernurs oardues 3satd °T-v 2anbtTd

SIDIAYIS QILYINWIS OWd

LT~V

anNas$
+ INON =ZdXL8NS
s MEN,=MIN QT0
' I¥Q 6 TTATISTIN TTIATTISTH] : €MSIQ . =TWYN ATId VIV
SHYIVYd JTIJd$
_ _ anNdgs$
006=921IS IT1Id QILVWILST
+QTIH, =MIN Q10
,aIT HOLVYOS,=AI dTId TV¥IIO0T
+ IVA * HOLVEOSTISTH, =FWYN dTId YIva
SWYIYd JTILS
_ _ anas
1 STH, =3dAL YIVd_J3d
61T =AVd_Syvn_aTIo_d43da
61T =AYQ_SYvN_MIN_J3a
 To=TIATT YIVA MIN JId
SWWIVYd IINVJIIAs
_ aNdgs$
1L =SISIXT J3d
100°00:00:00 T66T-03d-T0,=IIVA HONNVT
6 TT=AYd_S5SNISSIOOUd SyvN
166°6G:66:€2 Z266T-UVH-6C,=FHIL dOLS_OSNISSIOOUd
100°00:00:00 Z66T-UYH-6Z,=FHIL IYVIS ONISSIOOud
+ LNOTTISTH, =TWYN 90¥d
SHIVd WYIO0Ud$
INOTTISTH::AXISTH unz $
Zz d3ls gor ssaoozd/aut;ap $
12 ddis gor §
i $
2 ddis i $
_ _ i s
Wargor o3ob uayy (,TIvVd, °SOF° OVId SSYd s¥vn) 3T §
aN3s$
+dIT HOIVYOS,=QI ATId ‘IV2IDOT
s L¥Q * HOIWEOS TISTH =3WUN 31Id VIVa
SHYIYd dTIJS
_ anNdgs
02T=AvYd Sy¥n
1 STH, =ZdAL1ENS
+MEN,=MIN Q70
' T =TIATT_VIVd
'V MEN TISHVEVA TVOTTISTIH[TYOSTH] : €SI, =EWYN T1Td YIVa
s SHRIVd ‘IVO 1 =AI NOILVNEITVD
SHYIVd JTIdS

weaI3suUnNy qor FUSWUOITAUF pajernurs arduwes 3sxTd *T-v 2anbtg

SIOIAYIS QILVINHIS OV

RAC SIMULATED SERVICES
Figure 4-1. First Sample Simulated Environment Job Runstream

$FILE_PARAMS
DATA_FILE_NAME='DISK1l:[CORREL]NMCD119.DAT'
SOURCE="'NMC'
SUBTYPE= ‘'NMC_DATA'
SEND
!
Last Program is UCSS Job Termination

- pum o

$
$
$
$JOBTERM: 14
$ run RSS_EXE:RSS_JOB_TERM 15

$ exit
Figure 4-2. Second Sample Simulated Environment Job Runstream

6T~V

aNd$
62T = AVd_syvn_MAN_J3d
6ZT = AVd_syv¥n_a10_Jd3da

WIVE, = TIATT_VIVA_MIN_JI3A
12 = 13A31 YIvd d70_J3d
,IQ¥H, = IdAL VYIvVd J3d
SHYYVd I10vdads
anNds
1000T,=(%)SINTVA
+INNOD 0Ty XVWH,=(¥) SHIVd
102, = (€)sanIva
' ,SINIOd WON,=(f)SH¥ivd
_ aTy=(2)sanTva
! |\ XFIANI JHVYIS,=(2) SHYIvd
100%,=(T)SINTVA
*,92Isd 1S3 VET,=(T)SHNIVd
vIi = SISIXdT J43d
100°00:00:00 T66T-120-T0,=23ed Udune]
'GZT=AYd_SNISSTO0¥d S¥VN
’,66°65:6G:€Z 266T-933~-20,= TWIL dOLS_OHNISSIOOUd
‘,00°00:00:00 266T-qTJI-20,=TWIL_IYYLS ONISSIO0dd
‘,2pTaY eET O3 OT.=AWYN 90dd
SHYIYd WYI90dd$
9xa°IVET OL ¢T:IXIIAYH unx
T didls HOD ssaoo.:d/aur;ap
:T d3is dor
L - tc AR i

-— -— [
WwiaLgor o3ob usyl (,TIVd. °SOF° SYId SS¥d_syvn) 3T
IINI €Oor SS¥:3XT SSs¥ una

UOT3IRTITUI qor SSon sT weaboad 3satd

9T VIVQ° ITI4 NAdS SYYN:ITP np3s FTI4 nAdS_sdvn sseooad/surjep
10000ISILLI IVET IQUH I 9OCL SSJn Ss900ad/surzep

[HOILWMOSSTH] : ¥MSIA 3TheIsp 3oS

WIILE0L 0LOD NIHL JOWIT NO

"ILAANI SY JTId SIYIWIHdE NV ANV dT1Id VL¥d
¢-TIAIT ¥ ONIsSN JTId ILVE TIAIT ¥ SIONAOYd dO0L SIHL

WeaI3suny qof JUSUUOITAUT pajeTnurs atdwes puoosads °*z-p aanbrd

SIOIAYIS QILVINWIS OV

LR RN RO RN R R R RO R R R R RN R Z R Z D g

ww§

RAC SIMULATED SERVICES

Figure 4-2. Second Sample Simulated Environment Job Runstream ™

EPHEMERIS file

SFILE_PARAMS
DATA FILE_NAME='IPD$DISK: {UOAS)SLPEPHEM D0001.V0001_COl_PROD', 17
DATA _LEVEL=' ',
DATA TYPE—'SLPephem'
SUBTYPE="' !,
OLD_NEW='OLD',
UARS _DAY=1
$END

! HRDI level 2 input file
1
$FILE_PARAMS
DATA FILE NAME='hrdi_data:hrd_l2_day_0125.dat'
SUBTYPE = 'TEMPERATURE'
OLD_NEW = 'OLD'
S$END
|

! hrdi Level 3at output data
1
S$SFILE_PARAMS ’Mﬁ
DATA FILE_NAME='hrdi_data:hrd_l3at_day_125.dat’,
FILE VERSION NUMBER(l)—Z,
FILE VERSION _NUMBER(2)=2,
OLD NEW"NEw'
SUBTYPE= 'teMPErature',
SEND
1

|
! Last Program is UCSS Job Termination
!

run RSS_EXE:RSS_JOB_TERM
EXIT

AR O OROELEN T TS

CHAPTER 5

UCSS ANALYSIS SERVICES

5.1 ANALYSIS SERVICES

The UCSS provides a collection of services that allows a user
program read access to cataloged files in the UCSS-managed system
space and that can stage the cataloged data from the MSS, if the data
is offline.

. The calling sequences for these services is compatible with the
corresponding services available in the production environment.
Table 5-1 lists the analysis service, identifies the section defining
the calling sequences, and indicates the difference between the
analysis service and its production counterpart. The major difference
for all the services is that all errors are returned to the caller in
the analysis environment.

Table 5-1. Analysis Services

SUBROUTINE | INTERFACE DIFFERENCES BETWEEN THE ANALYSIS SERVICES
NAME DEFINITION AND THE PRODUCTION SERVICES
PGINIT 5.2.1 1. Initializes global tables
2. No production accounting
PGTERM 5.2.2 1. Cleans up files
2. No production accounting or summary report
OPENLO 3.2.1 1. No production accounting
ASGCAT 3.2.2 1. Existing cataloged files only
2. No production accounting
3. No output files
ASGCOR 3.2.3 1. No production accounting
ASGCAL 3.2.4 1. No production accounting
ASGQL 5.3.2.1 1. Not available as a production service
GENASG 5.3.2.2 1. Not available as a production service
OPENL3AT 3.2.7 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3AL 3.2.8 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3S 3.2.9 l. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3TP 3.2.10 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3LP 3.2.11 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENQL 5.3.3 1. Not available as production service
QUALRD 3.2.12 1. No production accounting

!

Table 5-1. Analysis Services (Continued)

@WM' SUBROUTINE INTERFACE DIFFERENCES BETWEEN ANALYSIS AND PRODUCTION

QUALQL 5.3.5 1. Not available as production service
READLO 3.2.13 1. No production accounting
READL3AT 3.2.14 1. No production accounting
READL3S 3.2.15 1. No production accounting
READL3AL 3.2.16 1. No production accounting
READL3TP 3.2.17 1. No production accounting
READL3LP 3.2.18 1. No production accounting
READQL 5.3.4 1. Not available as prodﬁction service
CLOSELF 3.2.22 1. No production accounting
2. No output files
DASLID 3.2.23 1. No production accounting
2. No output files
@ SETVERCY 5.4.1 1. Not available as production service
GETVERCY 5.4.2 1. Not available as production service
N

UCSS ANALYSIS SERVICES

5.2 PROGRAM CONTROL SERVICES ™
5.2.1 PROGRAM INITIALIZATION (PGINIT)

The PGINIT service establishes an exit handler and initializes
the global tables and variables used by the analysis services. 1In
particular, it initializes the file version parameters in the file
version table to default values, generates and stores the current
process job identification in the program status table and obtains a
virtual memory zone from the system for any dynamic memory the
services may need. PGINIT should be called at the beginning of each
analysis program.

The calling sequence for PGINIT is as follows:

CALL PGINIT (STATUS)

ARGUMENT TYPE I/0 DEFINITION
STATUS I*4q (o} Status code returned

SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.2.2 PROGRAM TERMINATION (PGTERM) ”W\
The PGTERM service initiates program termination by invoking its

exit handler, which in turn closes and releases any cataloged files

left open and releases the virtual memory zone assigned the current

process. PGTERM should be called at the end of each analysis program.
The calling sequence for PGTERM is as follows:

CALL PGTERM (PASS_FAIL, COND_CODE, PROG_COMMENT)

ARGUMENT TYPE I/0 DEFINITION
PASS_FAIL CHAR*4 I Program completion status

'PASS' Successful completion
'FAIL' Unsuccessful completion

COND_CODE I*x4 I A VMS condition code specifying
additional status information about
program completion

PROG_COMMENT CHAR*80 I Dummy string provided to make interface
consistent with production and RAC
simulated services

gw“

UCSS ANALYSIS SEﬁVICES

5.3 FILE ACCESS

This section describes the software support services designed to
proylde access to any cataloged file by user programs in the analysis
environment. Most of these services have their counterpart in the
production and RAC simulated environments and will be described only
briefly here insofar as they differ from the corresponding services in
the production environment. The others, namely those that access
cataloged quick-look data files, will be described in more detail.

The UCSS provides the OPENLO, READLO, QUALRD, and CLOSELF
services to access cataloged Level 0 data from programs in the
analysis environment. The mode of access is the same as in the
production environment but, unlike the production versions, the
analysis versions provide no production accounting and no summary
report. The appropriate sequences in which these routines are to be
called is shown in Table 3-1.

By default, the Analysis Services access production files. To
access test files, define the logical name UCSS_TEST DATA FLAG to
TRUE, causing the UCSS software to disregard the test/prod file
attribute.

5.3.1 LEVEL 3 FILE SERVICES

The UCSS provides the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, READL3AT, READL3AL, READL3S, READL3TP, READL3LP, and CLOSELF
services to access cataloged Level 3 data as well as Level 3.
parameters from programs in the analysis environment. The mode of
access is the same as in the production environment but, unlike the
production versions, the analysis versions provide no production
accounting and no summary report and do not support the generation of
output files. The appropriate sequence in which these routines are to
be called is shown in Table 3-1.

5.3.2 ASSIGN / DEASSIGN SERVICES

In the analysis enviroment, the UCSS provides most file
assign/deassign services available in the production enviroment. They
include:

ASGCAL - assign instrument-oriented cataloged file

ASGCOR - assign UARS day oriented correlative file

ASGCAL - assign user-generated, instrument-oriented
calibration file

DASLID - terminate logical connection between analysis

program and assigned data file
The mode of access is the same as in the production enviroment.

5=5

UCSS ANALYSIS SERVICES

However, unlike the production versions, the analysis version does not "M
support production accounting, summary report generation, nor

generation of output files. For detail description, refer to

Sections 3.2.2 - 3.2.4 and Section 3.2.25.

The UCSS also provides two additional services which are
available only to the analysis enviroment. ASGQL assigns logical unit
number to a QUICKLOOK data file, and GENASG, a generic file assignment
service, assigns any types of cataloged data file based on user
provided file attributes.

5.3.2.1 ASSIGN QUICKLOOK DATA FILE (ASGQL)

ASGQL assigns a logical file identifier (LID) to a cataloged
QUICKLOOK data file (e.g. instrument, engineering, OBC, spacecraft,
quality and attitude) for read-only access. It returns a unique
logical unit number (LUN) that can be used to perform Fortran I/O on
the file.

ASGQL identifies the file using the input parameters (see calling
sequence below), stages the file to magnetic disk, if necessary, and
associates the file name with the given LID. The analysis program
must open the file using the returned LUN for read-only access in
shared mode. ‘%m

The calling sequence for ASGQL is as follows:
CALL ASGQL (DATA_TYPE, QL_PASS, QL UARS_ DAY, LID, LUN, STATUS)

ARGUMENT TYPE 1/0 DEFINITION

DATA_TYPE CHAR*12 I Type of QUICKLOOK data to be accessed,

namely
'CLAES'
'HALOE'
'HRDI'
'ISAMS!
lMLSI
'PE]'I'
'SOLSTICE!
'SUSIMA!
'SUSIMB!
'WINDII'
'"ENGINEERING'
'OBC'
'QUALITY'
' SPACECRAFT!
YEXTRSC'
'SSPPGIMBALS'

ARGUMENT TYPE I/0 DEFINITION

QL_PASS I*4 I/0 QUICKLOOK pass number (n)
on input,
if > 0, pass n of day QL UARS DAY
if = 0, the latest pass -
if < 0, the nth previous pass
on output,
the actual pass number selected

QL_UARS_DAY I*4 I/0 UARS day number
on input,
required, if QL PASS > 0
ignored, otherwise
on output,
the UARS day number of the pass
selected

LID CHAR*12 I Logical file identifier to be
associated with the requested
QUICKLOOK data file

LUN I*4 (o} Logical unit number assigned to the
LID
STATUS I*4 o Status code returned

SS$_NORMAL - Normal return
other codes - Error (See Table F-1)

5.3.2.2 GENERIC FILE ASSIGNMENT SERVICE (GENASG)

GENASG provides a generic manner of assigning a cataloged file.
Files that can be assigned via this service include all levels of
instrument data files, all types of calibration data files, all types
of user-generated, instrument-oriented correlative data files, and all
types of quick-look data files. GENASG identifies the requested file
using the input attributes, ensures that the file is on magnetic disk,
and associates the input LID with the name of the identified file.

It returns a unique logical unit number (LUN) that can be used to
perform FORTRAN I/0 on the file. The analysis program must open the
file for READONLY access.

The calling sequence for GENASG is as follows:

CALL GENASG (LID, NUM_ATTRS, ATTR_NAMES, ATTR_VALUES, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier to be
associated with the requested
data file

5-7

ARGUMENT TYPE

NUM_ATTRS I*4

1/0

I

ATTR_NAMES CHAR* (*) (N) I

ATTR_VALUES CHAR#*(*) (N) I

LUN I*4
STATUS I*4
Notes:

o)

DEFINITION

Number of attributes (N) T

Names of attributes defining the
requested file
(See Notes below)

Associated Values of attributes in
ATTR_NAMES

Logical unit number assigned to the
LID

Status code returned
SS$_NORMAL - Normal return
other codes - Error (See Table F-1)

Required attributes per data type:

INSTRUMENT CORRELATIVE CALIBRATION _QUICKLOOK
TYPE TYPE TYPE TYPE
(=instr. id) (='CORRELATIVE') ='CALIBRATION') ='QUICKLOOK') ™
SUBTYPE SUBTYPE SUBTYPE SUBTYPE
(Note 1)
LEVEL SOURCE LEVEL (Note 2) QUICKLOOK_ID
DAY DAY DAY (Note 3) DAY
CALIBRATION_ID
Notes 1. Not applicable for Level 0 data
2. Not applicable for levelless file
3. Not applicable for dayless file
5.3.3 OPEN QUICK-LOOK FILE (OPENQL)
The OPENQL service opens a quick-look data file (e.gq.
instrument, engineering, OBC, spacecraft or quality) for read access
by a program in the analysis environment. OPENQL identifies the file,
ensures that it is on magnetic disk and opens the file for read access
in shared mode. The analysis program can then use the logical file
identifier (LID) to read data from the quick-look file. o

5-8

UCSS ANALYSIS SERVICES

The calling sequence for OPENQL is as follows:
CALL OPENQL (DATA_TYPE, QL PASS, UARS_DAY, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA TYPE CHAR*12 I Mnemonic for type of quick-look data to
be accessed, namely

'CLAES'
'"HALOE'
'HRDI'
'ISAMS'
'MLS'
IPEMl
'SOLSTICE!®
'SUSIMA'
'SUSIMB'
'WINDII'
'ENGINEERING'
'OBC!
'QUALITY'
'SPACECRAFT'

QL_PASS I*4 I/0 Quick=-look pass number (n)
On input,
if > 0, pass n of day UARS_DAY
if = 0, the latest pass
if < 0, the nth previous pass
On output, the actual pass number

UARS_DAY I%*4 I/0 UARS day number. Required on input if
QL_PASS > 0; ignored otherwise. On
output, the UARS day number of the pass

selected.
LID CHAR*16 I Logical file identifier
STATUS I*4 o) Status code returned

SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.3.4 READ QUICK-LOOK FILE (READQL)

READQL provides a read service for cataloged quick-look data from
a program in the analysis environment. OPENQL must be called to
select the quick-look file before READQL can be used. Requests for
data are time-referenced by Engineering Major Frame (EMAF). Each call
returns the instrument data from one EMAF. If the specified time does
not match the time associated with any EMAF, the first EMAF of the
guick-look pass after the specified time is returned. Therefore, the
first EMAF in a file can be read by specifying a zero date and time in

5-9

UCSS ANALYSIS SERVICES

the REQ DATTIM argument field. On return the REQ DATTIM field ™
contains the date and time of the next available EMAF. RET_DATTIM
provides the actual date and time of the returned EMAF. If a time

after the last EMAF in the pass is specified, a 'no-data-read' status

is returned.

When the last EMAF of a quicklook data file has been returned as
part of a read, the returned status will be set to PFA EOF to show
that no more data is available for further sequential input from the
file and the time of the next available EMAF will be set to zero.

The calling sequence for READQL is as follows:

CALL READQL (LID, REQ DATTIM, RET_DATTIM, EMAF_REC, PARITY, FILL,
GAP_ FLAG, TIME FLAG, EMAF_RATE, VERSION STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 I Logical file identifier
REQ_DATTIM I*4(2) I/0 On input, date and time of the

requested EMAF in UDTF format. On
output, date and time of the next EMAF
available.

RET_DATTIM I*4(2) 0 Date and time in UDTF format of the N
returned EMAF, namely EMAF_REC

EMAF_REC BYTE(*) (o} Quick-look telemetry record for the
selected instrument. See Appendix D
for the specific format based on
data type. The record contains one
EMAF of data.

PARITY BYTE (8) o) A binary array of parity flags for the
64 Science Major Frames (SMAFs) in
EMAF_REC. There is one bit flag per
SMAF.
0 All SMIFs in the SMAF have good CRC
codes
1l One or more SMIFs have CRC errors
or contain fill data

FILL BYTE(8) o} A binary array of fill flags for the 64
SMAFs in EMAF_REC. There is one bit
flag per SMAF.

0 All SMIFs in the SMAF contain data
1l One or more SMIFs contain fill

GAP_FLAG I*2 o Indicates whether or not EMAF_REC
follows a gap .
0 No gap ™
1 EMAF follows a gap

5-10

ARGUMENT TYPE I/0 DEFINITION

TIME_FLAG I*2 o) Indicates a questionable absolute time
code (ATC) time in EMAF_REC
0 Normal ATC increment
1 Abnormal ATC increment

EMAF_RATE I*4 o Time interval between EMAFs in msec

VERSION I*2(2) o CCB version and cycle number of the
quick=-look file read

STATUS I*4 o Status code returned
SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.3.5 READ QUICK-LOOK DATA QUALITY FILE (QUALQL)

QUALQL provides a read service for cataloged quick-look quality
data from a program in the analysis environment. OPENQL must be
called to select the quick-look file before QUALQL can be used.
Requests for data are time-referenced by Engineering Major Frame
(EMAF). Each call returns one quality record associated with a
particular EMAF. If the specified time does not match the time
associated with any EMAF, the first record of the quality file after
the specified time is returned. On return the REQ_DATTIM field
contains the date and time of the next available record. RET_DATTIM
provides the actual date and time of the returned record. If a time
after the last EMAF in the pass is specified, a 'no-data-read' status
is returned.

When the last EMAF of a quicklook quality file has been returned
as part of a read, the returned status will be set to PFA_EOF to show

that no more data is available for further sequential input from the
file and the time of the next available EMAF will be set to zero.

The calling sequence for QUALQL is as follows:

CALL QUALQL (LID, REQ_DATTIM, RET_DATTIM, PARITY, FILL, VERSION,"

STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier

REQ_DATTIM I*4(2) I/0 Oon input, date and time of the
requested EMAF in UDTF format. On
output, date and time of the next EMAF
available.

RET_DATTIM I*4(2) o Date and time in UDTF format of the

start of the EMAF returned

5-11

ARGUMENT TYPE I/0 DEFINITION

PARITY BYTE(256) O A binary array of flags for the 2048

Science Minor Frames (SMIFs) in an EMAF

indicating parity errors detected
0 SMIF has good CRC code
1 SMIF has bad CRC code or fill data

FILL BYTE(256) O A binary array of flags for the 2048

SMIFs in an EMAF indicating whether the

SMIFs are filled or not
0 SMIF contains data
1 SMIF contains fill

VERSION I*%2(2) (o] CCB version and cycle number of the
quick-look quality file read

STATUS I*4 0 Status code returned

SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.4 OTHER SERVICES
5.4.1 SET VERSION/CYCLE PARAMETERS (SETVERCY)

The SETVERCY service provides a means by which the file version
and/or cycle information for a cataloged file may be specified before
a file is actually opened or assigned via the analysis services.

SETVERCY allows the version/cycle information to be input in two
different forms. The first form provides a version and/or cycle

range, a corresponding selection rule that applies to that range and a

threshold time used to exclude files created after that time. It is
particularly applicable to virtual files spanning more than one day.
The second form provides individual values, of version and cycle for
specific days in a file's processing time range. Both forms can be
specified at the same time. When they are, the second form takes
precedence over the first for any days where the specifications
overlap.

The calling sequence for SETVERCY is as follows:
CALL SETVERCY (LID, START_VERSION, STOP_VERSION, VERSION_RULE,

START _ CYCLE, STOP CYCLE, TCYCLE RULE, THRESHOLD _TIME,
FILE REQUIRED FLAG, NUM ENTRIES, DAY, VERSION, CYCLE,

STATUS)
ARGUMENT TYPE I/0 DEFINITION
LID c*16 I Logical file identifier of file to be
opened or assigned
START_VERSION I*2 I Lower bound of version range over which

5-12

ARGUMENT

STOP_VERSION

VERSION_RULE

START_CYCLE

STOP_CYCLE

CYCLE_RULE

THRESHOLD_TIME

FILE_REQUIRED FLAG

NUM_ENTRIES

DAY

VERSION

CYCLE

STATUS

TYPE I/O
I*2 1
I*2 I
I*2 I
I*2 I
I*2 I
c*23 I
L*1 I
I*4 I
I*4 I
(NE)
I*2 I
(NE)
I*2 I
(NE)
I*4 O

DEFINITION

version rule will apply for file with
given LID

Upper bound of version range over which
version rule will apply for file with
given LID

Rule to be used in selecting the file
version over specified version range
1 HIGHEST in range
2 HIGHEST in common range
9 Do not stage

Lower bound of cycle range over which
cycle rule applies

Upper bound of cycle range over which
cycle rule applies

Rule to be used in selecting file cycle
over specified cycle range. Only
meaningful if version range is not
specified.
1 Highest in range
2 Highest common in range
(default = 1)

Time in VAX ASCII format used as a
threshold in the selection of files by
version rule. Files with values of
creation time exceeding THRESHOLD_ TIME
will not be selected (If field is left
blank current time will be used)

Flag indicating requirement for all
files for all days within virtual time
range

Number of entries (NE) in DAY, VERSION
and CYCLE arrays

UARS days for which specific values of
file version and cycle are to be used

Values of file version to be used for
each UARS day in DAY array

Values of file cycle to be used in
conjunction with values of version in
VERSION array and UARS day in DAY array

Status code returned
SS$_NORMAL - Normal return

5-13

ARGUMENT TYPE I/0 DEFINITION

PFA FVPARALRUSD - Specified LID
already in use

PFA FVPARALRSET - Parameters already
set for current or other LID

Other codes - Error (See Table F-1)

5.4.2 GET VERSION/CYCLE PARAMETERS (GETVERCY)

The GETVERCY service provides a means for querying an opened or
assigned file for its version and cycle information.

The calling sequence for GETVERCY is as follows:
CALL GETVERCY (LID, MAX NUM_ENTRIES, NUM_ENTRIES, DAY, VERSION, CYCLE,

STATUS)
ARGUMENT TYPE I/0 DEFINITION
LID C*16 I Logical file identifier of opened or
assigned file
MAX_ NUM_ENTRIES I%*4 I Maximum number of entries (NE) allowed
for in day, version, and cycle arrays
NUM_ENTRIES I*4 o Number of physical files accessible as
part of current file
DAY I*4 o UARS day associated with each
(NE) accessible physical file
VERSION I*2 o Version number associated with each
(NE) accessible physical file
CYCLE I*2 o Cycle number associated with each
(NE) accessible physical file
STATUS I*4 o Status code returned

SS$_NORMAL - Normal return

PFA_UNKNOWNLID - Specified LID not
associated with any files

Other codes - Error (See Table F-1)

APPENDIX A

UARS DATE AND TIME FORMAT

The UARS standard format for specifying a date and time (UDTF) is

a two-word array. The date
YYYDDD, specifying the year
January 1 = 001) requested.

(YEAR - 1900) * 1000 +

The time is the second word
milliseconds of day.

is in the first word in the form of
(e.g., 90) and the day of year (e.g.,

DAY OF YEAR.

of the array and indicates the time in

APPENDIX B

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

This appendix provides an example of the usage of the UCSS

services.

This example uses Level 0 MLS instrument and quality data

as input, generates a scratch file, and produces a Level 1 file.

PROGRAM LEVELO

.

BYTE MLS_EMAF (10304)
BYTE PARITY(8)

BYTE FILL(8)

BYTE QUAL_PARITY (256)
BYTE QUAL FILL(256)
BYTE OZREC(5000)

BYTE SCREC(512)

CHARACTER*3 LEVEL1/'1'/
CHARACTER*4 NEW_FILE/'NEW'/
CHARACTER*4 PASS_FAIL FLAG
CHARACTER*12 INST ID/'MLS'/
CHARACTER*12 QUALITY/'QUALITY'/
CHARACTER*12 OZONE_DATA/ 'OZONE'/
CHARACTER*16 MLID/'MLS LEVELO_LID'/
CHARACTER*16 QLID/'QUALITY LID'/
CHARACTER*16 OZLID/'L1l_OZONE_LID'/
CHARACTER*16 SCLID/'SCRATCH LID'/
CHARACTER*20 PARAMS (2,20)
CHARACTER*80 OZONE_ATTR(2,22)
CHARACTER*80 COMMENTS/' '/
CHARACTER*80 DUMMY ATTR/' '/

C

o
INTEGER*2
INTEGER*2
INTEGER*2

o
INTEGER*4
INTEGER*4
INTEGER*4

VERSION (2)
GAP_FLAG
TIME_FLAG

STRTIME (2)
STPTIME (2)
L1_START TIME(2)

IMLS LO EMAF

{SMAF parity flags
{SMAF fill flags
!SMIF parity flags

ISMIF fill flags
!1.1 ozone record
IScratch file record

1Level 1 indicator

INew file flag
!Pass/fail flag
!Instrument ID
f{Quality data type
!0zone data type
{MLS LO LID
!Quality LID

!L1 ozone LID
!Scratch file LID
!Program parameters
!0zone catalog attribute
!Program comments
!Dummy AAA

{Version and cycle
!Missing EMAFs flag
!Questionable time flag

|Proc. start time
!Proc. stop time
1L1 file start time

o NeNe

0o

e NoNe

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

L1_STOP_TIME(2)
MLS_REQ_TIME(2)
MLS_ACT TIME(2)
QUAL_REQ_TIME(2)
QUAL_ACT_TIME(2)
UARS_DAY
EMAF_RATE

0ZLUN, SCRLUN
OZONE_SIZE/14000/
SCRATCH_SIZE/1400/
COND_CODE

STATUS

IOERR
NUM_OZONE_ATTR

EXTERNAL SS$_NORMAL

!L1 file stop time
IMLS request time
IMLS record time
|QUAL request time
{QUAL record time

{UARS processing day

1 EMAF rate

!Logical unit numbers

lozone file size
IScratch file size

!Program condition code

!Service status
1I/0 error status

{No. ozone attributes

!Normal status code

INITIALIZE PASS/FAIL FLAG AND PROGRAM CONDITION CODE

COND_CODE = %LOC(SS$_NORMAL
PASS FAIL FLAG = 'PASS!

CALL UCSS PROGRAM INITIALIZATION SERVICE

CALL PGINIT(PARAMS, STRTIME, STPTIME, UARS_DAY)

OPEN MLS LEVEL 0 AND QUALITY FILES

CALL OPENLO (INST_ID, STRTIME, STPTIME, MLID, STATUS)

IF (STATUS .EQ. $LOC(SS$_NORMAL) THEN

.

CALL OPENLO(QUALITY, STRTIME, STPTIME, QLID, STATUS)

IF (STATUS .EQ. $LOC(SS$_NORMAL) THEN

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

C
Cc ASSIGN AND OPEN LEVEL 1 OUTPUT FILE FOR OZONE
C

CALL ASGCAT(UARS_DAY, INST ID, LEVEL1l, OZONE_DATA,

1l NEW FILE, OZONE _SIZE, OZLID, OZLUN, STATUS)

IF (STATUS .EQ. $LOC(SS$ NORMAL) THEN

OPEN (UNIT=0ZLUN, FILE=0ZLID,ACCESS='SEQUENTIAL', RECL=1250,

1l INITIALSIZE=0ZONE_ SIZE FORM='UNFORMATTED',

2 STATUS='NEW' IOSTAT—IOERR)
c .
c ASSIGN AND OPEN A SCRATCH FILE
c

CALL ASGSCR(SCRATCH_SIZE, NEW_FILE, SCLID, SCRLUN, STATUS)

IF (STATUS .EQ. %LOC(SSS NORMAL) THEN

OPEN (UNIT=SCRLUN, FILE=SCLID, ACCESS='SEQUENTIAL',

1l RECL=128, INITIALSIZE-SCRATCH _SIZE,

2 FORM—'UNFORMATTED' STATUS='NEW', IOSTAT=IOERR)
c
Cc SET INITIAL TIME TO START TIME OF PROCESSING
Cc

MLS_REQ_TIME = STRTIME

QUAL REQ_TIME STRTIME
Cc
c READ THE MLS LEVEL 0 EMAF FOR THE TIME
c SPECIFIED IN MLS REQ TIME
C

CALL READLO(MLID, MLS_REQ TIME, MLS_ACT_TIME, MLS_EMAF,

1 PARITY, FILL, GAP FLAG, “TIME _FLAG,

2 EMAF_RATE, VERSION, STATUS)
C
Cc READ THE QUALITY DATA FOR THE EMAF WITH THE
o TIME SPECIFIED IN QUAL_ REQ TIME
Cc

CALL QUALRD(QLID, QUAL REQ TIME, QUAL_ACT_ TIME,
1 QUAL_ PARITY, QUAL FILL, VERSION, STATUS)

B-3

ang
dolLs
(SINZWHOD ‘TA0D ANOD ‘OVId TIVd SSYL)WHILOd TIVO

ONISSIOO0Yd WWHO0Ud dN dV¥M OL WHILOd TIV¥O

.

(sNINIS ‘¥IIVY AWWNG ‘’,3IFd, ‘AITOS)AITISVA TIVD
(MYIOI=IVILSOI ‘' NNTHOS)IASOTID

dT1I4 HOLWYOS dSOIO

(SNIVIS ‘dIIV @NOZO ‘JIIV @NOZO WAN ', I¥O. ’‘QIT20)dITSVg TTIVD

_1000vT, = (€’2)IYLIV_INOZO
132IS q¥003¥, = (€£'T)YWII¥Y INOZO
_(sniv¥is T

‘(2'2)9IIV¥ ENOZO ‘IWIL dOLS IT)SHA 4Idn NOD T1IA TIVD
W IHIL doIs, = (2'T)d¥IIV 3ANOZO

_ _ (sni¥is _ - T
‘(T’2)¥LIV¥ ANOZO ‘JWIL IMVIS_TT)SWA 4IdN NOD 1inQ TIVO
VAHIL T¥VLS, = (T'T)YLIIV INOZO

£ = dLLVY INOZO HIN
(Y¥IOI=LVYLSOI’'NNTZ0)ISOTD

JdT1Id INOZO T TIAIT STH O0IVLVO ANV ISOIO

(SNIVIS ‘dIIV_AWWAQ ‘’,3J¥d, ‘QITO)JTASOTID TIVD
(snIv¥is ‘¥IIV AWWNG ‘‘,3I¥d, 'QITH)JTISOTO TIVD

SATIA ALITVND ANV ONIMIINIONT ‘0 TIATT STH ISOTO

0FY0S (YHIOI=LVISOI’'NNTIOS)TLIUM

03¥Z0 (WIOI=IVISOI’'NNTZ0)ILIUM

S3TId INdINO OL VILVA FALIYM

.
»

ATINYXT NVAIYOd FDIAYIS NOILONAOUd SSON

(SN NS

QOO

0OoOOo

000

(NSNS

-0

daI1 o1T3F yo3lexasi /. QIT HOLWYOS,./AITOS 9T+YILOVIVHO

ai1 o113 T T2A9T1i dIT INANI TT,/dITTT 9T+YTTLOVIVHO

adXaqns 113 T TaA91i /. ANON, /3dAL TIIATT ZT+YILOVIVHO

aI Juaunaysuri /. JOTIVH, /AT LSNI ZT+3ILOVIVHO

ber3 a1ty BurasTXd| /1Q10, /9¥1d_QT10 t»YILOVIVHO

ety o113 MON; / «MAN, /9YTId MAN b¥dIILOVIVHO

ety 1te3/ssedi OVId TIVd SSYd v»UILOVIVHO

I03ROTPUT T TOAIT| /v To/TTIATT ExYILOVIVHO
o)

pI023x Yo3eIoS| (002T)03¥Ds FLAM

pIooex T T9A9T; (ootv2)o3yTT ILRY

YTIAT WYYO0dd

‘unx burssesoad e

UTY3ITA I9yjoue o3 wexboaxd suo woxy ejep ssed 03 pasn aq ued KA3t1Tqedes

9173 yojeaos ay3z moy Jo pojuasaad st arduexs ue uOT3ITppe Ul °SISS

elep z [oA9T pue T To2A®T butubisse 103 sTTeo atdues yjta Jawuwexboad
9yl 03 OTqeITRAR S9D0TAJIdS SSON 9yl Jo sarduexa axe Hurmorrod

‘poTeae) 9yl UT ejep Hurjunoooe ayl sajzepdn

ariIsva ‘sorT3 peboreieo HuylasTxa Iod °OTTI oYy 103 Axjua borejed

ay3 sojexausb QIISYd ‘Poleaxdo sem alT3 poborejed mau e JI °3TTF a3yl

03 (3SOTO 2y3 I933e) O/I TTe 3Fo uorlzardwod uodn parred aq Isnm QITISVd

*3uswale3ls NIJO UeIzIod 9yl Uo XINOQVIY AFToeds 3snu xaumexboad

ay3 ‘eoT13 peboreazeo Hurasixa ue Hbutusdo usym °*STTI aYy3z uo O0/1I Tenloe

9yl waojaad 03 S90TAISS FSOTO pue ‘ILIUM ‘AYIY ‘NIAJO UeIIIOo] pIARPUR]S

asn ueo xoumexbhoxd ayz ‘soraxas ajeradoadde ayy bursn 9TTI 8yl 3o

jusuubrsse Hutmorrod ‘sweaboad uotrjzonpoad syl o3 si3es ejep ubrsse o3
SaUT3INOX TYDOSY PUe ‘YODOSY ‘YISHSY ‘IvIDHSY 9yl saptaoad sson oyl

*S90TAISS

93Tam pue peax a9yl burtAtddns x03 atqrsuodsax st asumexboad syg :enep
2 T9A9T pue T T2A97 2y3 butubrssesp pue butubrsse I0J ST003 3adevIIIJUT

otseq ayy sapraoad sson ayl °suexboad uotjzonpoad Aq ejep Z T9A9T pue
T 12A97 Jo bHbuysseooad ay3z Io3 saurreptTnd sepraoad xtpuadde sTyL

SANITIAIND ONISSIOOYd WIVA ¢ TIAIT ANV T TIAIT
O XIANddd¥

¢

(MIFOI=IVISOI 4
! VIVIININOIS s =SSTDOV /4 A LIYWIOJINN , =04 T
‘QIYYHS ‘XINOGYIY ‘AITTI=TTId ’‘NOTTTI=LINN)NIJO

! ya170,=SNIVLS

*GIIJIOIdS ¥ISN SI LVWHOd *JAAONW
QIJVHS NI SSIAOOV AVaAY ¥YOd TTIA LNINI T TIAIT FHL NIJO

NHHL (CIVWMON $SS)201% °*0d° SALvLsS) 41
(SNLVIS ‘NNATIOS ‘dITOS 'OWId MIN 'HZ2IS HOIWYIS)YISOHSY TIVD

dTId HOLWIOS ¥V NOISSY

NZHL ((TYWEON $SS)001%_°0d° SNIVLS) dI
(snmvms ‘NATTT ‘QITTT ‘‘SVId aT0 T
‘@RI TTIIAIT ‘TTIIATT ‘AI ISNI ‘AVA SuVN) IVDOSY TIVD

AVQ QI IJIDI4S YO ITIL LNINI T TIAIT NOISSY

(AYd S¥Y¥N ‘WILAIS ‘WIIMIS ‘SWYYVd)IINISd TIVD
SYILINVIVd RVIOOUd JAIIALIY OL LINIODd TIVO

(‘TYWRION $SS)001% =_d4d0O_aNOD
1SSYd, = 9VId TIVd SSYd

9pPOD UIN3}BI TRWION | IVIRION 4SS TVNNALXZ
AVd SYVN ?sdIOTLNI

(Z)WILALS v+¥IDTINI
(Z)WITILS vxUIOILNI

_ SNINLS v»dIOFTINI
/00ST/AZIS HOLVYOS vxUIOFTLNI
ONOFY ¥»UIDIINI

"NATHOS NATTT v¥IOIINI
WYIOI Y»UIDILINI

2000 ANOOD Y+HIDAINI

Aep bursseooad syvni
awr3y dojs bursseooadi
awT3 3xe3s bursssooad;
snje3ls 90TAISS|

92TS 91T YO3eIOS|
JaqunNU pI0O9X YO3IRIDS|
sIsqunu 3Tun TeoThoTi
snje3s I0a1a? 0O/Ii

9poo UOTITPUOD wexboadi

aanqralye Awung; /v /HIIY ARWNA 08¥dILOVIVHO

Jusumod wexboadi
sx9jsueaed wexboadi

SINZWWOO 08x3ILOVIVHO
(02'2) SHUVYd 0Z+dILOVIVYHO

SANITIAIND ONISSIOOUd WIVA ¢ TIAIT ANV T TIAI1

Qoo (SRS NSNS

(SRONS

QOO

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

nnon

(CHECK OPEN STATUS)

OPEN THE SCRATCH FILE (FORMAT IS USER SPECIFIED)
OPEN (UNIT=SCRLUN, FILE=SCLID, INITIALSIZE=SCRATCH SIZE,
1 ACCESS='DIRECT', FORM='UNFORMATTED', STATUS='NEW',
2 RECL=300, IOSTAT=IOERR)

0OnNon

READ RECORD FROM LEVEL 1 INPUT FILE

oMo Ne!

READ(L1LUN, IOSTAT=IOERR) L1REC

WRITE A RECORD TO THE SCRATCH FILE

(o NoNe

WRITE(SCRLUN,RECNO, IOSTAT=IOERR) SCREC

CLOSE THE LEVEL 1 INPUT FILE
CLOSE(L1LUN, IOSTAT=IOERR)
CLOSE THE SCRATCH FILE
CLOSE(SCRLUN, IOSTAT=IOERR)
DEASSIGN THE LEVEL 1 INPUT FILE
CALL DASLID(L1LID, ‘'FREE', , DUMMY_ATTR, STATUS)
DEASSIGN AND HOLD THE SCRATCH FILE
CALL DASLID(SCLID, 'HOLD',, DUMMY ATTR, STATUS)

CALL PGTERM TO WRAP UP PROGRAM PROCESSING

000 000 o000 000 000

CALL PGTERM('PASS', COND_CODE, COMMENTS)
STOP
END

¥=0

NHHL ("TYWNON $SS)D01% "OF° SNIVLS) dI
(SNIVIs’‘NNIZT ‘AITe ‘3ZIS 2TIATT ‘OVII_MAN T
'4dXL 2TIATT ‘2TIAIT ‘Al LSNI ‘AYA SYVYN)IVOOSY TIVD

A¥d QITIAIDIA4S ¥YOJd dT1Id INdLNO T TIAAT NOISSY

(A¥Q s¥V¥N ‘HILJLS ‘WILNIS ‘SHYNVd)LINIOd TIVD
SYILINVIVd WYHO0UYd JIAIIVLIY OL LINIDA TIVO

(TVWION $SS)201%

=_2d0D_aNod

1SS¥dy = OVIJd TIVd SSvVd
J00D NOILIGNOD WWY90¥d ANV OVId TIVd/SSYd FAZITVILINI

3poo UIN3IaI TRUWION; TYWION $SS TYNIIIXI
Kep bursssooad suvni AYA SYVN p+¥IOTINI
aury do3s Hursseooadi (Z)WILALS v+YADIILNI
amT3 3ae3s Pursseoo0adi (Z)HITYIS v+YIOAINI
snjejls 30TAISS| SOALVLS Y»dIDILNI

Jaqunu pIooaxX Yo3eIOS | HWONYOS ¥xdIDILNI
s93nqraize bHboreleo °‘ONj YLLY WON ?+»AdIOILNI
9218 3TTF T T9A91j /0082/321s TTIIATT ¥»YIOTINI
sIaqunu 3Tun Teotrbot; NATIOS ‘NNTZT v*»YIOAINI
swry do3s STTF 2Ti (2)IHIL dOIS_2T v+YIDAINI
swtly 3xe3s STTI 21i (2)ANIL TUVLIS 21 v»YIOIINI
sn3jeas xo0aa@ O/I; YHIOT v»ATDTLNI

9pod uoT3Tpuoo wexboad; 400 ANOD Y ¥IOITLNI

so3nqralae borezedi
Jusuwod wexboxd;
sa9j3ouwexed weaboadi

dIT 3TTJ yojeaodsj

alT 9TT3 2 T9A9T|
adAaqns a1TF z To2A9Ti
dal jusunalisul

betrz o113 bBurasTXT]
Petry a1TI MONi

ety Trez/ssed;
I03RDTPUT 2 T9A9Ti

pI0s9aI Yo3eIoS|
PI00ax Z T9A9T]

(0T'2)YIIV VIVA 08x¥ILOVIVHO
SINTWWOD 08xdTLOVAVHO

(02°'2) SHYIVYd 0Z»UIIOVHVYHO

/1QIT HOIWYOS, /AITOS 9T+UALOVIVHO
/,QIT I0dIN0 21,/aITz1 9T+dTLOVIVHO
/ +vANON, /3dAL ZTIATT ZT+JILOVIVHO
/ ZOTVH, /AT ISNI ZT+dILOVIVHO
/VQT3H, /OVId QTIH Y+3ILOVIVHO

[MAN, /9VId MAN v¥dILOVIVHO

9YId TIVd SSVd v+JILOVIVHO

/120 /213ATT C+IITOVIVHO

(oo02tT)0oa¥ds ALAg
(000T)oa¥2T ALAL

gTTAT WYYO0dd

SINITIAIND ONISSITOOUd VIVA T TIAIT ANV T TIAIT

oo

UL oOVoLO

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

c
c ASSIGN AN EXISTING SCRATCH FILE
c
CALL ASGSCR(, HELD_FLAG, SCLID, SCRLUN, STATUS)
IF (STATUS .EQ. $LOC(SS$_NORMAL)) THEN
c
c OPEN THE LEVEL 2 OUTPUT FILE (FORMAT IS USER
c SPECIFIED)
c
OPEN (UNIT=L2LUN, FILE=L2LID, FORM='UNFORMATTED',
1 ACCESS='DIRECT', STATUS='NEW', INITIALSIZE=LEVEL2 SIZE,
2 RECL=250, IOSTAT=IOERR)
c
c OPEN THE EXISTING SCRATCH FILE (FORMAT IS USER SPECIFIED)
c
OPEN (UNIT=SCRLUN, FILE=SCLID,ACCESS="'DIRECT',
o~ 1 FORM="'UNFORMATTED' , STATUS="'OLD"' , IOSTAT=IOERR)
c
c READ RECORD FROM SCRATCH FILE
c
READ (SCRLUN, SCRNUM, TOSTAT=IOERR) SCREC
c
c WRITE A RECORD TO THE LEVEL 2 FILE
c
WRITE (L2LUN, L2NUM, TOSTAT=IOERR) L2REC
c
c CLOSE THE LEVEL 2 OUTPUT FILE
c
CLOSE(L2LUN, IOSTAT=IOERR)
c
c CLOSE THE SCRATCH FILE
c

CLOSE(SCRLUN, IOSTAT=IOERR)

(s NeNeoNe)

000 000 000

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

SET UP LEVEL 2 CATALOG ATTRIBUTE ARRAY TO SPECIFY FILE
START TIME, FILE STOP TIME, AND RECORD SIZE

NUM_ATTR = 3

DATA_ATTR(1,1) = 'START_TIME' :

CALL UTL_CON_UDTF_VMS(LZ_START TIME, DATA_ATTR(2,1),
STATUS)

DATA_ATTR(1,2) = 'STOP_TIME'

CALL UTL_CON_UDTF_VMS (L2_STOP_TIME, DATA ATTR(2,2), STATUS)

DATA_ATTR(1,3) = TRECORD_SIZE'

DATA_ATTR(2,3) = '2800°

DEASSIGN THE LEVEL 2 OUTPUT FILE

CALL DASLID(L2LID, ‘'CAT ', NUM_ATTR, DATA_ATTR, STATUS)
DEASSIGN AND RELEASE THE SCRATCH FILE

CALL DASLID(SCLID, 'FREE',,DUMMY_ATTR, STATUS)
CALL PGTERM TO WRAP UP PROGRAM PROCESSING

CALL PGTERM(PASS_FAIL_FLAG, COND_CODE, COMMENTS)

STOP
END

e

APPENDIX D

LEVEL 0 FILE FORMATS

This appendix defines the formats for the Level 0 files.

D.1 SCIENCE TELEMETRY FORMATS AND DECOMMUTATION

The formats for the UARS science telemetry and the engineering
telemetry are being defined by the UARS spacecraft development and
integration contractor, General Electric (GE), Space Systems Division,
in conjunction with the UARS Project. The science telemetry formats
are defined by the GE Program Information Release (PIR) U-1K21-UARS-
700, Reference 8. A copy of the current science minor frame format is
shown in Table D-1.

LEVEL 0 FILE FORMATS

Table D-1. Science Minor Frame Format
WORD| FUNCTION WORD| FUNCTION WORD| FUNCTION WORD| FUNCTION
0 | syNc 'D7! 1 | syYNc '99! 2 | SYNC '07 3 | CDCUSTAT
4 | CDFRMCNT 5 | CDFRMCNT 6 | CDCMDCNT 7 | AAIAUXARY
8 | ENG DATA 9 | ENG DATA 10 | ENG_DATA 11 | ENG_DATA
12 | OBC 13 | OoBC 14 | OBC 15 | OBC
16 | OBC 17 | OBC 18 | oBC 19 | PWIIMLO
20 | PSIPULSEA 21 | PSIPULSEB 22 | SSPPAPOSA 23 | SSPPBPOS
24 | ES1PITCHF 25 | ES1ROLLF 26 | ES2PITCHF 27 | ES2ROLLF
28 | ACRIM II 29 | ACRIM II 30 | SC_SPARE 31 | PWIBAT1HI
32 | CLAES 33 | cLAES 34 | CLAES 35 | CLAES
36 | CLAES 37 | CLAES 38 | CLAES 39 | CLAES
40 | CLAES 41 | CLAES 42 | CLAES 43 | CLAES
44 | HALOE 44 | HALOE 44 | HALOE 44 | HALOE
48 | HALOE 49 | HALOE 50 | HALOE 51 | HALOE
52 | HALOE 53 | HALOE 54 | HALOE 55 | HALOE
56 | HALOE 57 | HALOE 58 | HALOE 59 | HALOE
60 | HRDI 61 | HRDI 62 | HRDI 63 | HRDI
64 | HRDI 65 | HRDI 66 | HRDI 67 | HRDI
68 | HRDI 69 | HRDI 70 | HRDI 71 | HRDI
72 | HRDI 73 | HRDI 74 | HRDI 75 | HRDI
76 | HRDI 77 | HRDI 78 | HRDI 79 | PWIBAT2HI
80 | ISAMS 81 | ISAMS 82 | ISAMS 83 | ISAMS
84 | MLS 85 | MLS 86 | MLS 87 | MLS
88 | MLS 89 | SSPPAPOS 90 | SSPPBPOS 91 | PWIACS
92 | PEM 93 | PEM 94 | PEM 95 | PEM
96 | PEM 97 | PEM 98 | PEM 99 | PEM
100 | PEM 101 | PEM 102 | PEM 103 | PEM
104 | PEM 105 | PEM 106 | SOLSTICE 107 | PWICDH
108 | SUSIM 109 | SUSIM 110 | SUSIM 111 | SUSIM
112 | SUSIM 113 | SUSIM 114 SUSIM 115 | SUSIM
116 | WINDIIX 117 | WINDII 118 | WINDII 119 | WINDII
120 | WINDII 121 | WINDII 122 | WINDII 123 | WINDII
124 | PWIBAT3HI | 125 | PWIScCCU 126 | PARITY 127 | PARITY

As described in PIR 700, there are two science formats.

format, referred to as SCI-1,

is the nominal format.

One

The second

format, SCI-2, is appropriate to periods of propulsion module

activity.

In both SCI-1 and SCI-2 formats, the Science Minor Frame

(SMIF) is 128 words in length, where a word in this context is 8 bits.
In both formats, the word allocations and assignments are constant.
The difference between the two formats is that the interpretation

changes for 6 of the 17 words of spacecraft telemetry.

LEVEL 0 FILE FORMATS

D.2 DECOMMUTATED FILE FORMATS
D.2.1 GENERAL COMMENTS

The UARS telemetry data is decommutated into 5 Level 0 files.
The first record of each Level 0 file is a file label record which
identifies the type of file and the file contents. The file label
yecord is followed by data records, where the number of data records
is dependent on the type of file and the time span of telemetry
contained by the file. Each data record contains a standard 64 byte
record header followed by the telemetry words. The record header
contains information describing the record contents.

There is one physical record per EMAF for files with less than
32 Kbytes of telemetry data per EMAF (i.e., 15 or fewer telemetry
words per SMIF). There are two physical records per EMAF for those
files with more than 32 Kbytes of telemetry data per EMAF (i.e., 16 or
more words per SMIF). For these files, the first record contains the
telemetry data for the first 32 SMAFs of the EMAF and the remaining
32 SMAFs are in the second data record.

Because the number of telemetry words varies by file type, the
record length is dependent on the type. If the data record length is
greater than the file header length, the file label record is filled
so that it is the same length. For data records smaller than file
label records, the data records are filled out to the length of the
label record, 2532 bytes.

The Level 0 files are stored on the CDHF as flat files without
any index structure.

This appendix describes the format of the Level 0 data files
stored on the CDHF, the quick-look files, and the "virtual" Level 0
files produced by the UCSS data transfer software. The format of the
virtual Level 0 files is discussed further in Section D.2.3.

D.2.2 FILE LABEL RECORD FORMAT

The file label record format is presented in Table D-2. All file
label record fields are ASCII fields.

Table D-2. Level 0 File Label Record

36 CCB version number assigned to file
37 - 40 file cycle (transferred files only)
10 * 41 - 44 spare

ITEM ™
NO. BYTES FIELD NAME COMMENTS
1 1 - 4 satellite id 'UARS!
2 5 - 8 data set # see Table D-3
3 9 - 12 data set id see Table D-3
4 13 - 16 format version # see Note 1
5 17 - 20 physical record count (=' 1) Rec. # in file
6 21 - 24 # phys. records/EMAF e.g., ! 1
7 25 - 28 # physical records in file see Note 2
8 -
9

11 45 - 48 ATC epoch year - begin. of first EMAF '1989"

12 49 - 64 ATC - .5 msec -~ " " first "

13 65 - 68 ATC epoch year - " " last "

14 69 - 84 ATC - .5 msec - " " last "

15 85 - 88 JATC:year - begin. of first EMAF year

16 89 - 92 JATC:day - " " first v day

17 93 ~100 JATC:msec - " " first v millisecond
18 101 -104 JATC:usec - " " first " microsecond
19 105 -108 JATC:year - " " last " year

20 109 -112 JATC:day - " " last " day

21 113 -120 JATC:msec - " " last " millisecond
22 121 -124 JATC:usec - " " last " microsecond
23 125 =132 # SMIFs expected ™
24 133 =140 # SMIFs in file (excluding f£ill)

25 141 -148 # SMIFs fill

26 149 -156 # SMIFs with CRC error

27 157 -162 # SMAFs expected

28 163 -168 # SMAFs in file (excluding all fill SMAFs)

29 169 -174 # SMAFs of total fill

30 175 -180 # SMAFs with partial fill or CRC errors

31 181 -184 # EMAFs expected

32 185 -188 # EMAFs present

33 189 -192 # EMAFs with fill or CRC errors

34 193 -196 # EMAFs missing from coverage

35 197 -200 # EMAF level gaps in coverage

36 201 -204 type of data time period see Note 3
37 205 -208 UARS day number " " 4

38 209 =212 spare

39 213 -220 decommutation program version

40 221 -236 decommutation run date/time

41 237 -260 merge file name

42 261 -264 merge rerun #

43 265 -272 merge program version

44 273 =288 merge run date/time

45 289 =292 # edit files <= 40

@W“

Table D-2. Level 0 File Label Record (Continued)

ITEM BYTES FIELD NAME COMMENTS

ITEMS 46 TO 50 REPEAT 40 TIMES. THE NUMBER OF REPS CONTAINING
NONFILL DATA IS GIVEN BY ITEM #45; THE REMAINING REPS ARE FILL.
THE ACTUAL BYTE OFFSET FROM THE BEGINNING OF THE RECORD OF AN ITEM
IN THE "NTH" REP IS DETERMINED BY ADDING 292+(N-1)*56 TO THE BYTE
VALUE LISTED BELOW FOR THE ITEM.

46 1 - 24 edit file N - filename

47 25 - 28 edit file N - edit rerun #

48 29 - 36 edit file N - edit program version

49 37 - 52 edit file N - edit run date/time

50 53 - 56 edit file N - data type "R/T" or “"pP/B"

51 2533 - X fill characters see Note 5
Length of nonrepeating fields (bytes) 292
Length of nonrepeating fields & 40 edit files (bytes) 2532

NOTES:

1. Identifies version number of the Level 0 format.

2. For virtual files (see Note 3) the number of physical records
in the file is contained in the continuation file label
record

3. Identifies which of the four time period types supported
under this format are contained by the files, as follows:

" QL" = quick look data, approximately 92 EMAFs
“"24HR" = 24 hours of data, approximately 1319 EMAFs
"WIRT" = data covering a virtual time range

"NRT" = near real-time data, approximately 15 EMAFs

4. Contains the UARS day number of the day in which the first
EMAF of the file occurs.

5. When fixed in a SOLSTICE or QUALITY file, the file label

record is not filled out at all. When fixed in any other
type of UARS Level 0 file, the file label record is filled
out to the length of the data record for that file type, as
specified in Tables D-6 to D-20.

LEVEL 0 FILE FORMATS

Table D-3. Level 0 Data Set Information ’mﬁ
FILE TYPE DATA SET ID DATA SET #

CLAES CLS 1

HALOE HAL 2

HRDI HRD 3

ISAMS ~ ISM 4

MLS MLS 5

PEM PEM 6

SOLSTICE SOL 7

SUSIM "“a" SMA 8

SUSIM “B" SMB 9

WINDII WIN 10

ACRIM ACR 11 ﬁwﬁ
ENGINEERING ENG 12

SPACECRAFT SCT 13

OBC OBC 14

QUALITY QAL 15

The file label record is intended to carry information that is of
interest to the operations personnel of the GTDM DCF and the CDHF.
The following paragraphs are provided to clarify the meaning of the
less obvious fields of the file label record.

o]

Item 4: format version number - Over the life of the UARS
mission, several Level 0 file formats may be necessary. This
document will define those formats and the format version
number field will distinguish between them.

Item 5,6 and 7: physical records - As described earlier, a
physical record is intended to correspond to one EMAF, but in
certain cases an EMAF may be split into two physical records. _
Item 5 identifies the file label record as the first physical/wﬁ
record of the file, Item 6 identifies the number of physical

D-6

LEVEL 0 FILE FORMATS

records per EMAF and Item 7 identifies the number of physical
records in the file.

Item 8: CCB version number - The configuration controlled
version number assigned to the Level 0 file when cataloged on
the CDHF.

Item 9: The cycle number associated with the cataloged file.
This field has meaning only for a file that has been created
via the UCSS data transfer services as described in the UCSsS
User's Guide (Reference 9).

Items 11 to 14: ATC - These fields correspond to the first
ATC value occurring in the first and last EMAF of the file.
The ATC will only be processed to remove obvious spike
errors. In the event that these values are not available in
the telemetry, the DCF will compute the value expected.

Items 15 to 22: JATC - These fields contain the Julian
format Absolute Time Code (JATC) values corresponding to the
smoothed ATC values of items 11 to 14. The values are
obtained by converting the ATC values to Greenwich Mean Time
(GMT) and reformatting to Julian format. These fields
correspond to the first value occurring in the first and last
EMAF of the file. 1In the event that these values are not
available in the telemetry, the DCF will compute the value
expected.

Item 36: type of data time period - The Level 0 files are
intended to contain 24 hours of telemetry, one quick-look or
near real-time pass, or a virtual time range of data. This
field distinguishes between the four possibilities.

Item 37: UARS day number - Each 24 hour time period

(0 to 400 hours GMT) will be numbered, beginning with 1 and
incremented by 1 where 1 is the time period (day) in which
the UARS launch occurs. This field will contain that value.
Time period ID values from 9000 to 9999 are reserved to
indicate test data sets.

Items 39 & 40: decommutation run description - These fields
contain information produced by the DCF for quality control
and traceability of the decommutation processing performed to
produce the associated file.

Items 41 to 44: merge run description - These fields contain
information produced by the DCF for quality control and
traceability of the merge processing performed to produce the
associated file.

Items 45 to 50: edit file description - These fields contain
information produced by the DCF for gquality control and
traceability of the edit files and the edit processing

D=7

LEVEL 0 FILE FORMATS

performed for each of the edit files for up to 40 edit files. "

D.2.3 LEVEL O VIRTUAL FILES

A Level 0 virtual file is a file containing Level 0 data covering
a user-specified time range. The virtual Level 0 data records are
copied from the Level 0 file(s) that contain data for the requested
time range. The virtual Level 0 data files are created by the UCSS
data transfer services as described in the UCSS User's Guide
(Reference 9). The following paragraphs describe how the Level 0
format defined in this appendix accommodates the virtual Level 0
files.

A virtual Level 0 file is distinguished from normal Level 0 files
by the value "VIRT" in item 35 of the file label record format (see
Table D-2). The following additional comments apply to the file label
record:

o Item 4: format version - Virtual Level 0 files can only be
constructed using Level 0 files with the same format version
number.

o Item 7: # of physical records in file - This field will be
blank and the corresponding information will be contained in
the continuation file label record (see Table D-4).

o Item 8: CCB version number - The value is the version number -
of the Level 0 file used as the source for the first data
record in the virtual Level 0 file.

o Item 9: cycle number - The value is the cycle number of the
Level 0 file used as the source for the first data record in
the virtual Level 0 file.

0o Items 11 to 14: ATC - These fields should be ignored for
virtual files.

o Items 15 to 2: JATC - These fields will contain the JATC
times corresponding to the first and last EMAFs in the
virtual file.

o Items 23 to 5 and 37 to 0: These fields should be ignored
for virtual Level 0 files.

LEVEL 0 FILE FORMATS

Table D-4. Level 0 Continuation File Label Record
ITEM
NO. BYTE FIELD NAME COMMENTS
1 1 -4 satellite id 'UARS'
2 5 - 8 data set # see Table D-3
3 9 - 12 data set id see Table D-3
4 13 - 16 physical record count
5 17 - 24 number of physical records in file
6 25 - 28 number of time/version entries.....see Note
7 29 + (I-1)*36 - JATC: year - start time for version
32 + (I-1)*36 entry
8 33 + (I-1)*36 - JATC: day - start time for version
36 + (I-1)*36 entry
9 37 + (I-1)*36 - JATC: milliseconds -~ start time of
44 + (I-1)*36 version entry
10 45 + (I-1)*36 - JATC: microseconds - start time of
48 + (I-1)*36 version entry
11 49 + (I-1)*36 - CCB version number for version
56 + (I-1)*36 entry
12 57 + (I-1)*36 - cycle number for version entry
64 + (I-1)*36

REPEAT ITEMS 7 - 12 FOR I

=

1 to number time/version entries (Item 6)

Note: If there are no changes in version/cycle for the virtual file,
this number will be zero and no time/version entries will follow.

D.2.3.1 Continuation File Label Record Format

A continuation file label record is present only when the type of
data time period field in the file label record (see Table D-2)

indicates that the file covers a virtual time period.
describes the format of the continuation file label record.

Table D-4
The UCSS

data transfer software creates this continuation record in order to
identify the CCB version and cycle numbers of the source files from

which the Level 0 file was generated.

The number of version entries

in the record is determined by the number of changes in the CCB

version and cycle numbers of the source files.
this record defines the version number for a specific time range.

Each version entry in
The

time in the version entry specifies the start time of the range and
the next version entry specifies the start time of the

the time of
next range.

LEVEL 0 FILE FORMATS

D.2.4 DATA RECORD HEADER INFORMATION

The data record header format is presented in Table D-5. This
information is contained in the first 64 bytes of the record. Of
these 64 bytes, 4 bytes are spare. The record header information
pertains to the EMAF from which the associated data words were
extracted.

D-10

’Wﬁ

LEVEL 0 FILE FORMATS

Table D-5. Level 0 Data Record Header

ITEM
NO. BYTES NAME TYPE COMMENTS
1 1 - 2 instrument data set # I see Table D-1
2 3 - 4 record type I see Note 1
3 5 - 8 physical record count I
4 9 - 10 16-bit SMIF Count - begin EMAF I
5 11 - 12 ATC - Epoch year I
6 13 - 20 ATC - 0.5 msec count I
7 21 - 22 JATC:year - begin EMAF I year
8 23 - 24 JATC:day - begin EMAF I day
9 25 - 28 JATC:msec - begin EMAF I millisecond
10 29 - 30 JATC:usec - begin EMAF I microsecond
11 31 - 32 # of SMIFs of fill I
12 33 - 34 # of SMIFs with bad sync 1
13 35 - 36 # of SMIFs with CRC error I
14 37 - 38 FLAG - EMAF gap I see Note 2
15 39 - 40 FLAG - abnormal ATC increment I see Note 3
16 41 - 44 EMAF rate (msec/EMAF) I
17 45 - 48 spare ’
18 49 - 56 SMAF fill flags bit see Note 4
19 57 - 64 SMAF parity flags bit see Note 5
NOTES:
1. 1Identifies record type as follows:
1 = data record, SMAFs 0 to 31
2 = data record, SMAFs 32 to 63
3 = data record, SMAFs 0 to 63
2. Interpret as follows:
0 = “no gap"
1 = Ycurrent EMAF follows a gap"
3. Interpret as follows:
0 = "normal ATC increment from last EMAF"
1 = "abnormal ATC increment"
4. 1 bit for each SMAF in the EMAF. Interpret as follows:
0 = "all SMIFs in SMAF contain data"
1 = "1 or more SMIFs contain fill"“
5. bit for each SMAF in the EMAF. Interpret as follows:

= "all SMIFs in SMAF have good CRC"
= "] or more SMIFs have CRC errors or contain fill"

B oK

D-11

ZT-d

(13 2} X4 : (s934q) yjzbusT paooay Telol
I€ OL 0 =: I ¥0d ANV
€9 OL 0 =: L Yod €T1-Z S:°ON WILI IvV3JIY
(0 26 +I) 20 + ¥9 + 11 T L=dVHS’'I=JIWS‘cv# QdoM €T
(0% 26 +I) = 2T + ¥9 + 0T T O=dVHS 'I=JINS'2Z¥# QUIOM 2T
(0 » 2€ + I) =« 20 + ¥9 + 6 T C=AVHS 'I=JdINS‘TP# QIOM TIT
(C » 26 + I) » 2T + v9 + 8 T r=JYWS ‘I=JINS’OV# oM 0T
(0 % 26 + I) » 2T + 9 + L T L=dVHS 'I=dINS ‘6E# QUOM 6
(0D + 2€ + I) » 2T + 9 + 9 T L=dVHS'I=IINS‘8C# QUOM 8
(P » 2€ + I) » 2T + vV9 + S T L=dVYNS ‘I=dIWS’'LE# QIOM L
(0 » 26 + I) » 2T + ¥9 + ¥ T C=IdYHS'I=dINS’9¢# QIOM 9
(C » 2€ + I) » 2T + %9 + € T L=JYNS ‘I=JINS‘GE# QUOM S
(0 » 26 + I) » 2T + ¥9 + T C=JVHS‘I=JINS’vE# QoM ¥
\w (Cx2c +I) » ST + 79 + 1T T p=dWNS'I=dIWNS'cc# QUOM ¢
(C % 2E +I) » 2T + v9 + 0 T P=dVYHS'I=JdIWS‘Zc# aquom ¢
0 v9 dIqvdH quoddd T
Iasddo HIONAT NOILAI¥DS3IA ‘ON
WALI

paooay eijed 0 T3A9T1 SIVIO °9-A 3TqeRL

‘0z-d 03 9-a °oTqel ut pojussaad sae sS9TTF JO sodXq @sayy 3O
yoes 103 Sjewliod pIooax elep PITTe3IdP SUL “JVWE duo 103 uoT3jRWIOIUT
K3ttTenb peotiTe3la®pP 9Yy3z 10 1 f1qawet93 3jeaosoeds sy ‘Axjswarsiy
2g0 ay3 ‘AxzswsTsl Hurassurbus pajzejznuuooqns Iyl ! sjuswunI3suTr aYyl
Jo 2uo wox3 Axjswalal oY3 SUTE3IUOD PIOOdX ejep 3yl Jo Kpoq ayL

AQod Qyood¥ ¥YIva ¢°2°d

*JYWE @Yl Jo JIWS 3ISIATI sY3 WoIg uaxel
ST I93unod JIKS 3Td 9T U3 {IVWE 9Y3 JO 3ISATI 9yl aae DIVL BUY} pue JL¥
syl ‘Jepesy pIooax eijep ay3z Jo 0 03 y swell o3 atqeorrdde axe OIVCL

%M’ pue ‘D5Iv ‘I93unod JIWS Y3} UO Z2°Z°Q UOTIO8S UT opeu S3UBWWOD YL

SLVYINOd ITId 0 TIATT

€T-a

w€9 OL 2€uw STWOOIL £ NO dOOT THIL A0 IONVY JTHI -
SINIWIUONI INNOD QH0D3Y TVYOISAHd FHL --
Z OL T WO¥d SIONVHD wIJAL QUOOIYw ¥Od ZNTVA --
!SMOTIOd SY STONVHO INAINOD ¥IAYAH QU00dY FHLI -
:SNOILJIOXT SONIMOTIOA THI HIIM
I# 3dAL QY0O3¥ FOIVH OL IVYOILNIAI SI Z2# dAdAL QI0DIY JOTIVH
2# IdXL qyodo3y FOTVH
8vv9T t (se3fq) yabua1 paoosy TeI0L
T€E OL 0 =: I ¥od aNY
I€ OL 0 =: L ¥0d LI-Z S, °ON WILI IVdA4IA w@y
(0 » 2€ + I) » 9T + ¥9 + ST T L=dVNS ' I=JINS’'6S# QIOM LT
(C » 26 + I) » 9T + %9 + ¥T T =JVHS ' I=dINS '8G# QUOM 91
(0 » 26 + I) » 9T + v9 + €T T L=dVHS’'I=JINS’LGS# QUOM ST
(0 » 2€ + I) » 9T + %9 + 2T T L=JdVWS'I=JINS’'9G# QUOM A
(0D % 28 + I) » 9T + v9 + 11 T L=JdVWS 'I=JINS’'GS# qUOM €1
(0 » 2€E + I) » 9T + ¥9 + OT T L=JVHS ‘I=JINS’bS# QYoM 2T
(0 » 2 + I) » 9T + %9 + 6 T L=JdVHNS'I=JINS’EG# QUOM TIT
(C » 2 + I) » 9T + ¥9 + 8 T L=3V¥HS'I=JINS‘2S# QUOM 0T
(0 » 2€ + I) » 9T + ¥9 + L T L=dVHS 'I=JINS‘TS# QUOM 6
(0 » 2 + I) » 9T + v9 + 9 T L=dVHS 'I=JINS'0G# QUOM 8
(0 » 2€ + I) » 9T + ¥9 + & T L=dVHS'I=JINS‘6V# QUOM L
(0 » 2€ + I) » 9T + 99 + ¥ T L=dVNS'I=JINS’'8v# QUOM 9
(0 » 2€ + I) » 9T + %9 + € T L=dVWS'’'I=4INS’LY# QUOM &
(C » 26 + I) » 9T + %9 + 2 T L=dVHS'’'I=dINS’'9Vv# QUOM 14
(0 » 26 + I) 9T + 9 + 1 T L=dYHS'’'I=JINS’'SV# QUOM €
(0 » 26 + I) » 9T + ¥v9 + O T C=dVHS 'I=dINS‘vv# QUOM ¢
0 v9 JIAVIH qy¥oo3d T
hc (- & (o) HISNIT NOII4IY¥OS3aA ‘ON
WILI

T# IJAL QI00dY FOTVH

PI0O3Y B3eq 0 T2A9T FOIVH °L-0 3TdeL

SLVWYOd JTId 0 TIAIT

LEVEL 0 FILE FORMATS
Table D-8. HRDI Level 0 Data Record

HRDI RECORD TYPE #1

DESCRIPTION LENGTH OFFSET
RECORD HEADER 64 0
WORD #60,SMIF=I,SMAF=J 1 0+ 64 + 19 * (I + 32 * J)
WORD #61,SMIF=I,SMAF=J 1 1 +64 + 19 * (I + 32 * J)
WORD #62,SMIF=I,SMAF=J 1 2 + 64 + 19 * (I + 32 * J)
WORD #63,SMIF=I,SMAF=J 1 3+ 64 + 19 * (I + 32 * J)
WORD #64,SMIF=I,SMAF=J 1 4 + 64 + 19 * (I + 32 * J)
WORD #65,SMIF=I,SMAF=J 1 5+ 64 + 19 * (I + 32 * J)
WORD #66,SMIF=I,SMAF=J 1 6 + 64 + 19 * (I + 32 * J)
WORD #67,SMIF=I,SMAF=J 1 7 + 64 + 19 * (I + 32 * J)
WORD #68,SMIF=I,SMAF=J 1l 8 + 64 + 19 * (I + 32 * J)
WORD #69,SMIF=I,SMAF=J 1 9 + 64 + 19 * (I + 32 * J)
WORD #70,SMIF=I,SMAF=J 1 10 + 64 + 19 * (I + 32 * J)
WORD #71,SMIF=I,SMAF=J 1 11 + 64 + 19 * (I + 32 * J)
WORD #72,SMIF=I,SMAF=J 1 12 + 64 + 19 * (I + 32 * J)
WORD #73,SMIF=I,SMAF=J 1 13 + 64 + 19 * (I + 32 * J)
WORD #74,SMIF=I,SMAF=J 1 14 + 64 + 19 * (I + 32 * J)
WORD #75,SMIF=I,SMAF=J 1 15 + 64 + 19 * (I + 32 * J)
WORD #76,SMIF=I,SMAF=J 1 16 + 64 + 19 * (I + 32 * J)
WORD #77,SMIF=I,SMAF=J 1 17 + 64 + 19 * (I + 32 * J)
WORD #78,SMIF=I,SMAF=J 1 18 + 64 + 19 * (I + 32 * J)
REPEAT ITEM NO.'S 2-20 FOR J := 0 TO 31
AND FOR I := 0 TO 31
Total Record Length (bytes): 19520

HRDI RECORD TYPE #2

HRDI RECORD TYPE #2 IS IDENTICAL TO HRDI RECORD TYPE #1
WITH THE FOLLOWING EXCEPTIONS:

= THE RECORD HEADER CONTENT CHANGES AS FOLLOWS:

== VALUE FOR "RECORD TYPE" CHANGES FROM 1 TO 2
== THE PHYSICAL RECORD COUNT INCREMENTS

- THE RANGE OF THE LOOP ON J BECOMES "32 TO 63"

D-14

Table D-9.

ITEM

LEVEL 0 FILE FORMATS

ISAMS Level 0 Data Record

NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #80,SMIF=I,SMAF=J 1 0 +64 + 4 *% (I + 32 * J)
3 WORD #81,SMIF=I,SMAF=J 1 1 +64+ 4 * (I + 32 % J)
4 WORD #82,SMIF=I,SMAF=J 1 2 + 64 + 4 * (I + 32 * J)
5 WORD #83,SMIF=I,SMAF=J 1 3+64+ 4 % (I + 32 *J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256
Table D-10. MLS Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #84,SMIF=I,SMAF=J 1 0O +64 + 5 % (I + 32 * J)
3 WORD #85,SMIF=I,SMAF=J 1 1 +64 + 5 % (I + 32 * J)
4 WORD #86,SMIF=I,SMAF=J 1 2 + 64 + 5 % (I + 32 % J)
5 WORD #87,SMIF=I,SMAF=J 1 3+64+ 5 % (I + 32 * J)
6 WORD #88,SMIF=I,SMAF=J 1 4 + 64 + 5 * (I + 32 * J)
REPEAT ITEM NO.'S 2-6 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 10304

D-15

91-a

SILVWYOd JdTId 0 TIAIT

N
zese : (se3hq) yabua1 paoosy TeI0L
AR 4 ozv TIId £
T€ OL 0 =: I ¥od ANV
€9 OL 0 = £ ¥Od ¢ °ON WIALI IVIdIY
(0 » 26 +I) T + %9+ 0 T L=dVHS ' I=dINS‘'90T# QUOM rA
0 v9 JAAYAH quoodyd T
13sdd0 HIONAT NOIXLdI¥OS3d *ON
: WALI
PI009Y ejeq 0 T9A9T FIDILSTIOS °*2T-d oTqel
\w 9€L82 : (s93hq) y3zbuaT paoosy TeIOL
T€E OL 0 =: I ¥0d ANV
€9 OL 0 = £ YOd G6T-2Z S, °'ON WALI IVIdIN
(0 » 26 + I) # vT + ¥9 + €T T L=dVNS ‘I=dINS'GOT# QIOM ST
(0 » 26 + I) » »T + ¥9 + 2T T L=dYHS’'I=dINS'vO0T# QUOM vt
(L » 2€ + I) » vT + ¥9 + 1T T L=dVNS'I=JINS'EO0T# QUOM ¢TI
(C » 2¢ + I) » ¥T + ¥9 + OT T L=dVNS'I=JINS'Z0T# QUOM 2T
(0 » 26 +I) » T + ¥9 + 6 T L=dYHS 'I=JINS‘'TOT# QuOM Tt
(0 » 26 +I) » vT + ¥9 + 8 T L=dVHS 'I=JINS'00T# QIOM 0T
(0 » 26 +I) » ¥T + %9 + L T L=dYHS'I=JINS'66# QUOM 6
(0 % 26 + I) » VT + 99 + 9 T L=dYHS’'I=dINS’86# QYOM 8
(0 » 26 +I) % vT + %9 + G T L=JYHS ‘I=JdINS‘L6# QUOM L
(0 » 26 +I) % vT + %9 + ¥ T L=dYHS 'I=JINS’'96# QUOM 9
(0 » 26 + I) » VT + ¥9 + € T L=dVHS 'I=JdINS’G6# QUOM &
(0 ¥ 26 + I) » VT + 99 + 2 T =JVHS ‘' I=dINS‘v6# QUOM v
(0 » 26 +I) % #T + v9 + T T L=dYNS‘I=JINS’‘'E6# QUOM ¢
(C » 26 +I) » ¥T + ¥9 + 0O T =IVHS ' I=dINS‘Z6# QyoMm 2
0 v9 dAAQVEH q¥oody T
LIASII0 HIONZT NOIILdI¥OS3a *ON
WILI
%My pIoosy ejed 0 T9A9T WId °TT-d atqel

LEVEL 0 FILE FORMATS

Table D-13. SUSIM "A" lLevel 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #108,SMIF=I, SMAF=J 1 0 + 64 + 4 % (I + 32 * J)
3 WORD #110,SMIF=I,SMAF=J 1 1 +64+ 4 * (I + 32 % J)
4 WORD #112,SMIF=I, SMAF=J 1 2 +64 + 4 % (I + 32 % J)
5 WORD #114,SMIF=I, SMAF=J 1 3+64 + 4 % (I + 32 * J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256
Table D-14. SUSIM "B" Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 4]
2 WORD #109,SMIF=I,SMAF=J 1 0+ 64 + 4 % (I + 32 % J)
3 WORD #111,SMIF=I,SMAF=J 1 1+ 64 4+ 4 % (I + 32 % J)
4 WORD #113,SMIF=I,SMAF=J 1l 2 + 64 + 4 * (I + 32 *J)
5 WORD #115,SMIF=I,SMAF=J 1 3+ 64+ 4 % (I + 32 % J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256

D-17

LEVEL 0 FILE FORMATS

Table D-15. WINDII Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #116,SMIF=I,SMAF=J 1 0+ 64 + 8 * (I + 32 % J)
3 WORD #117,SMIF=I,SMAF=J 1 1 +64 + 8 * (I + 32 * J)
4 WORD #118,SMIF=I,SMAF=J 1 2 + 64+ 8 * (I + 32 % J)
5 WORD #119,SMIF=I,SMAF=J 1 3+64 + 8 *% (I + 32 * J)
6 WORD #120,SMIF=I,SMAF=J 1 4 + 64 + 8 * (I + 32 * J)
7 WORD #121,SMIF=I,SMAF=J 1 5 + 64 + 8 % (I + 32 * J)
8 WORD #122,SMIF=I,SMAF=J 1 6 + 64 + 8 * (I + 32 * J)
9 WORD #123,SMIF=I,SMAF=J 1 7+ 64+ 8 % (I + 32 % J)
REPEAT ITEM NO.'S 2-9 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 16448
Table D-16. ACRIM Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #28,SMIF=I,SMAF=J 1 0 +64 + 2 * (I + 32 % J)
3 WORD #29,SMIF=I,SMAF=J 1 1 +64 + 2 * (I + 32 % J)
REPEAT ITEM NO.'S 2 & 3 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 4160

D-18

ITEM

LEVEL 0 FILE FORMATS

Table D-17. Engineering Level 0 Data Record

DESCRIPTION LENGTH

RECORD HEADER 6
WORD #8,SMIF=I, SMAF=J
WORD #9,SMIF=I, SMAF=J
WORD #10,SMIF=I,SMAF=J
WORD #11,SMIF=I, SMAF=J

e

REPEAT ITEM NO.'S 2-5 FOR J :
AND FOR I :

Total Record

D-19

OFFSET
0
O+ 64 + 4 % (I + 32
1+ 64 + 4 % (I + 32
2 + 64+ 4 % (I + 32
3+ 64+ 4 % (I + 32
0 TO 63
0 TO 31

Length (bytes):

8256

¢ OL T WOYd SIONVHO

0¢c-a

wE9 OL CEu STWODITL L NO dOOT FHL JO IONVY FHL -

SINIWIYONI INNOD QYOOTY IVOISAHd FHL --

wddAL QYOOd¥s YOJ INIVA --

*SMOTIOJd SV SIONVHO INIILNOD ¥YIAVIH QUO0D3IY FHL -

*SNOILJEIOXE ONIMOTIOL JHL HLIM T# IJAL Q¥003Y
LAVIOTOVdS OL TVOILNIAAI SI Z# IAJAL QY0Od¥ IJV¥OdOVdS

¢# FdAL QY0OIY¥ ILJIVYOIOVdS

I
£ 304 0¢Z-¢ S, 'ON WILI Ivadad

L=dYHS 'I=JdINS’'GZT#
L=dYNS ' I=JINS’ ¥ZT#
L=dVNS 'I=dINS’'LOT#

L=dVNS'’'I=dINS'T6#
L=JYHS 'I=JdINS'06#
L=dVHS’'I=JINS’'68#
L=dVHS'’'I=JINS'6L#

=JYNS ' I=JINS’'TE#
L=dYHS'I=dINS’'0C#
L=dVNS'I=dINS’'LZ#
L=dYNS ' I=dINS'92#
L=dYNS ' I=JINS’'G2#
L=dYWS ' I=JINS ' v2Z#
L=dYHS'I=dINS’'c2#
L=dVHS’'I=JdINS'2ZZ#
L=dYNS'I=dINS’'T2#
L=dYHS ' I=dINS ‘0Z#
L=dYNS'I=AINS'6T#

L=AYHS'I=dINS'L#

L=dYNS ‘' I=dINS’'9#

L=dYNS ' I=dINS’C#

QoM
QIOM
QoM
QAOM
QIOoM
QoM
ayom
QIOM
oM
qIOoM
QoM
qaom
QAOM
@IoM
QIOM
QoM
qyom
@IoM
IOM
@IoM
QIOM

JIAYIH QHO0oId

89612 : (se34d) yabue paooay Te30L
T€E OL 0 =: I ¥0d4d QNV
I€ 0L 0 =:
(0 » 2€ + I) » T2 + ¥9 + 02 T
(0 » 2€ + I) » T2 + ¥9 + 6T T
(0 » 26 + I) » T2 + ¥9 + 8T T
(0 » 2€ + I) » T2 + ¥9 + LT T
(0 » 2¢ + I) » TZ + ¥9 + 9T T
(0 » 26 + T) » T2 + ¥9 + ST T
(0 » 26 + I) » T2 + ¥9 + ¥1 T
(0 » 2€ + I) » T2 + v9 + €1 T
(L % 2€6 + I) » T2 + v9 + 21 T
(0 » 2€ + I) » T2 + ¥9 + 1T T
(0 » 2¢ + I) » T2 + ¥9 + 0T T
(0 » 2€ + I) » T2+ ¥9 + 6 T
(C » 2€ + I) » T2 + ¥v9 + 8 T
(0 » 2¢ +I) » T2 + ¥9 + L T
(0 » 26 +I) » T2 + ¥9 + 9 T
(0 » 26 +I) » T2+ V9 + 6 T
(0 » 2€E +I) » T2 +%9 + ¥ T
(0 » 2€ +I) » T2+ %9 + € T
(0 » 26 + I) » T2 + ¥v9 + 2 T
(0 226 +I) » T2+ v9 + T T
(0 2 +I) » T2 + 79 + 0 T
0 v
IISII0 HLONIT

pIoosy eied 0 ToA9T 3Jeaosoeds

NOILdI¥OSdA

*8T1~-d STqedL

SLVWIOJd dTId 0 TIAIT

T# IdAL QUODIY IINADIOVAS

A4
1 ¥4
14
6T
8T
LT
91
ST
| 48
€T
(AN
1T

Q0 O

HNMT O~

oovvt

® K K X & k &

e
ce
e
(4
cE
(4%
cE

+++++++

1¢-a

¢ (s934q) yzbusT paoosay TeIOL

* K K R K k &

T¢ OL 0 =: I Jyod ANV
€9 OL 0 =: £ ¥Y0d 8-2 S,°ON WILI IVadAA
L + V9 + 9 T L=dYWS ‘I=JINS’ST# QUOM 8
L + %9 + & T L=dVYNS ‘I=dINS‘LT# QUOM L
L + V9 + ¥ T L=dYHS 'I=JINS’9T# QUOM 9
L + V9 + € T L=dVHS'I=JINS‘'GT# Q4OM &
L + %9 + 2 T L=dVHS 'I=JdIHS’vT# QUOM 17
L + %9 + 1 T =JVHS ‘I=JINS‘€T# QiOM ¢
L + ¥v9 + 0 T =JYHS 'I=JINS‘2T# QUOM 2
0 v9 YIAVIH q¥oody T
LISII0 HIONIT NOILdI¥OS3a *ON
WILI

P1003y ejeq Q0 T9A9T D40 °*6T-Ad 3TdeL

SLVWHOd JTId 0 TIART

LEVEL 0 FILE FORMATS

Table D-20. Quality Level 0 Data Record M
ITEM
NO. DESCRIPTION : LENGTH OFFSET
1 RECORD HEADER 64 0
2 SMIF FILL SMAF=J,SMIF=0 TO 7 1l 0 + 64 + 4 * J
3 SMIF FILL SMAF=J,SMIF=8 TO 15 1 1 + 64 + 4 * J
4 SMIF FILL SMAF=J,SMIF=16 TO 23 1 2 + 64 + 4 ¥ J
5 SMIF FILL SMAF=J,SMIF=24 TO 31 1 J + 64 + 4 * J
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
6 SMIF CRC SMAF=J,SMIF=0 TO 7 1 0+ 64 + 256 + 4 * J
7 SMIF CRC SMAF=J,SMIF=8 TO 15 1 l1 + 64 + 256 + 4 * J
8 SMIF CRC SMAF=J,SMIF=16 TO 23 1 2 + 64 + 256 + 4 * J
9 SMIF CRC SMAF=J,SMIF=24 TQ 31 1 3 + 64 + 256 + 4 * J
REPEAT ITEM NO.'S 6-9 FOR J := 0 TO 63
10 FILL i 1956 576
Total Record Length (bytes): 2532
NOTE: AW\

- Each bit of a SMIF Fill byte corresponds to a SMIF as
described above and is interpreted as follows:
0 = "the corresponding SMIF contains data"
1l = "the corresponding SMIF is all fill data"

- Each bit of a SMIF CRC byte corresponds to a SMIF as
described above and is interpreted as follows:
0 "the corresponding SMIF has a good CRC"
1 "the corresponding SMIF has a bad CRC or is all fill
data"

The first item of the data record formats as shown in
Tables D-6 to D-20 is the 64 byte record header starting at byte 0 of
the record. Each subsequent item in the tables account for one of the
telemetry words assigned to that instrument, engineering, OBC,
quality, or spacecraft data. The location of the telemetry word in
the record is given in terms of an offset and a length.

For example, a given instrument may be assigned 12 words of
telemetry per SMIF. One of the words of telemetry contained in SMIF i
of SMAF j is stored in a one byte location in the record, with an
offset from the beginning of the record specified by the "offset" ™
field for the word. The offset value accounts for the number of words

D=-22

LEVEL 0 FILE FORMATS

preceding the desired word in the SMIF, the 64 byte record header, and
the product of the number of SMIFs preceding SMIF i of SMAF j with the
number of words per SMIF, 12 words in this case.

D.2.6 MULTIPART RECORDS

All logical records are intended to contain one EMAF of data,
each of a specific type. As mentioned above, certain logical recorad
types (HALOE, HRDI and Spacecraft) consist of two physical records.
These record types are indicated below as record type 1 or record
type 2, the first record type carrying the first 32 SMAFs of the EMAF,
and the second record type carrying the last 32. In these cases, the
type 1 and type 2 records are interleaved, record type 1 occurring
first followed by record type 2.

D.3 ABSOLUTE TIME CODE (ATC) JUMPS AND SPLIT EMAFS

The time that appears in the EMAF header is based on the Absolute
Time Code (ATC) that appears 16 times in each EMAF. It is corrected
such that the first bit of the EMAF has as its timetag the EMAF header
time.

The ATCs within the EMAF increment throughout the EMAF and,
nominally, there is a 65536 millisecond difference between two
successive EMAF header times. ATC drift management appears as an
occurrence of a difference of 65536.5 milliseconds rather than the
nominal difference of 65536 milliseconds between successive EMAF
header times. If the caller does not examine the microsecond of ATC
field in the EMAF header, then differences of 65537 are seen
interspersed within groups of the nominal 65536 differences. A clock
jump is an unanticipated change in the value of the ATC as it varies
through the EMAF

The DCF handles ATC (or clock) jumps as follows:

The EMAF in which the jump occurs is split into two EMAFs. The
first EMAF contains the timetag (the EMAF header time) associated with
the original ATC stream. The second EMAF contains a timetag
associated with the changed ATC stream. The former EMAF contains data
up to the point of the time jump. The latter contains data beginning
at that point until the end of the EMAF.

If the jump is forward; i.e., the ATC value increments more than
expected between two adjacently reported times, then the timetag of
the first EMAF has a value less than that of the second EMAF. If the
jump is backward, then the timetag of the first EMAF is greater than
the timetag of the second EMAF. Reading sequentially, the EMAF times
are out of order in this 'backward jump' condition.

D-23

APPENDIX E

LEVEL 3 FILE FORMATS

It is intended that all UARS scientific instrument data be stored
in one or more of the common file formats at Level 3. These Level 3
file formats are referred to as 3AT (time referenced), 3AL (latitude
referenced), or 3AS/3BS (solar data). The access to files in these
common formats is achieved by use of certain of the UCSS services.

E.1 GENERAL COMMENTS

As with all UARS scientific instrument data, Level 3 data is
maintained in files containing data from one instrument for one UARS
day. In addition, at Level 3, a file contains data for only one
parameter or species.

E.1.1 LEVEL 3AT DATA

A Level 3AT file consists of a time-ordered collection of data
records. Each record contains a single array of data values of one
parameter or species type for a specific time. The data array is
organized according to the rules of the UARS standard data array (see
Section E.2). The reference time values at which Level 3AT records
are created are common across all Level 3AT files from all
instruments. The Level 3AT data record time is the time associated
with SMIF 0 of SMAF 32 of the EMAF at Level 0.

The Level 3AT files are stored as flat files without any index
structure. All records of a given file are of the same length.

The actual record length is dependent upon the maximum number of
data points that can be stored in the data records.

If the file is a virtual file, the label record may be followed
by one or more continuation file label records. The remaining records
in the file are data records.

LEVEL 3 FILE FORMATS

Level 3AT files are generated by the HALOE, MLS, ISAMS, CLAES, "ﬁ
HRDI, PEM, and WINDII instrument investigations.

E.1.2 LEVEL 3AL DATA

A Level 3AL data file consists of a collection of profiles of
atmospheric data that have been indexed by the latitude and time
values associated with the profiles. Each record of the Level 3AL
file contains a single array of data values for one parameter or
species type for a specific time. The data array is organized
according to the rules of the UARS standard data array (see
Section E.2). The index key for the record is based on the
concatenation of the latitude and time values associated with the
profile. The standard latitude values at which Level 3AL records may
be written are from -88.0 degrees to +88.0 degrees latitude in
4.0 degree increments. There is no standard time rule that applies to
the Level 3AL profiles.

All records of a given file are of the same length. The actual
record length is dependent upon the maximum number of data points that
can be stored in the data records.

If the file is a virtual file, the label record may be followed
by one or more continuation file label records. The remaining records -
in the file are data records. ‘

Level 3AL files are generated by the MLS, ISAMS, CLAES, HRDI,
PEM, and WINDII instrument investigations.

E.1.3 LEVEL 3AS/3BS DATA

A Level 3AS/3BS file contains a single data record for each UARS
day. Each data record contains a single array representing a daily
mean solar spectrum.

Additional information will also be stored in the record via a
parameter array. Included in this information will be the irradiance
values for 4 coronal lines, Lyman Alpha, a magnesium line, a calcium
line, and the mean solar distance.

The Level 3S/3BS files are stored as flat files without any index
structure. All records of a given file are of the same length. The
actual record length is dependent upon the maximum number of data
points that can be stored in the data record.

Level 3AS/3BS files are generated by the SUSIM and SOLSTICE
instrument investigations.

LEVEL 3 FILE FORMATS

E.1.4 LEVEL 3A PARAMETER FILES

A Level 3A Parameter File provides a means.of associating
parameters with Level 3 data. The parameters are defined by each
Principal Investigator (PI) for his/her own Level 3 data. Level 3
Parameter Files will contain information describing the context of the
Level 3 data with each Level 3 data record associated with a
corresponding parameter file record.

Level 3A Parameter Files are identified by their own distinct
level. The levels used to identify Level 3A parameter files are
Level 3TP which refers to time ordered parameter files, and Level 3LP
which refers to parameter files indexed by both latitude and time
value. Level 3TP files have the same organization as the Level 3AT
files (see Section E.1.1). Level 3LP files have the same organization
as the Level 3AL file (see Section E.1.2).

E.2 UARS STANDARD DATA ARRAY

The UARS standard data array is the common data structure used
for storing UARS data so that it can be accessed and interpreted
properly by the entire UARS community. Since the UARS instruments are
not all performing the same type of measurements, the interpretation
of this standard data array is instrument dependent. The position of
a data value within the standard array for a given instrument has a
fixed meaning.

It should be noted that when a Level 3AT, 3TP, 3AL, 3LP, 3AS, or
3BS file is created, the full size of the UARS standard data array may
not be required. 1In this case, only the values required are stored
and the starting index for the first stored data point relative to the
full UARS standard data array is stored with it.

E.2.1 PRESSURE REFERENCED ARRAY

The index into the data array may correspond to standard pressure
levels. These standard pressure level values in millibars are given
by:

P(i) = 1000.0 * (10**(-if6)) , i=o0,1, ... 35.

The CLAES, HRDI, ISAMS, MLS, HALOE and WINDII instrument
investigations are expected to use pressure referenced data arrays.

LEVEL 3 FILE FORMATS

E.2.2 ALTITUDE REFERENCED ARRAY M

The index into the data array may correspond to standard altitude
levels. These standard altitude level values in kilometers are given
by:

Z(i) =656 * i, i<=12
Z(i) = 60 + (1 - 12) * 3 , 13 <= 1 <= 32
Z(i) = 120 + (i - 32) * 5 , 33 <= i <= B88.

The HRDI, PEM, and WINDII instrument investigations are expected to
use altitude referenced data arrays. The HRDI and WINDII instrument
investigations are expected to produce both pressure and altitude
referenced data arrays for both Level 3AT and 3AL data. To
distinguish between the pressure referenced and altitude referenced
data for the same species at the same data level, it will be necessary
to include additional descriptive information with the SUBTYPE name
for the data file. For example, a pressure referenced temperature
profile may have the SUBTYPE name of "TEMP_P", and an altitude
referenced wind component profile may have the SUBTYPE name of
"ZONWIN1_2".

E.2.3 WAVELENGTH REFERENCED ARRAY

The index into the standard data array may correspond to standard
wavelength values. Each element of the array is associated with a
1.0 nanometer (nm) interval centered on the half nm from 115 nm to
425 nm. Each element of the data array contains the averaged set of
observations for the wavelength bin associated with it.

The SUSIM and SOLSTICE instrument investigations use the
wavelength referenced data array.

E.3 LEVEL 3 FILE FORMAT

The following sections provide a description of the file format
for the Level 3 files.

E.3.1 SFDU STANDARD INFORMATION

The Level 3AT, 3TP, 3AS, and 3BS files are constructed so as to
adhere to the Standard Formatted Data Unit (SFDU) structure and
construction rules (Reference 10). Level 3AT/3TP and 3AS/3BS data are
stored in this format at the level of a single file. That is, the
descriptor records that make these files consistent with the SFDU Ly
standard are analogous to an envelope; the "letter" contained within ™
the envelope is a file. Other SFDU construction schemes are possible,

E-4

LEVEL 3 FILE FORMATS

but this is the approach selected by the UARS Science Tean.

The following paragraphs define the descriptor record
("envelope") that is required by the SFDU construction rules. This is
followed by the definition of the UARS specific records ("letter")
that make up the Level 3AT, 3TP, 3AS, or 3BS files.

The SFDU standards for UARS Level 3 data specify that the first
40 bytes of the file should contain header information that identifies
the file as an SFDU-formatted file and that "points" to detailed file
and record structure documentation. For Level 3AT, 3TP, 3AS, and 3BS
files this information appears as the first 40 bytes in the first
record of the file. However, for Level 3AL or 3TP files, because the
files are indexed, the required 40 bytes of SFDU information will
appear in one record with 20 bytes of record index data preceding it.

It should be noted that as long as the UCSS Level 3AT, 3AL, 3TP,
3LP, 3AS, or 3BS read and write routines are used, either in
production processing or using simulated services at the RAC, the user
need not concern himself with the SFDU header information.

E.3.2 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AT/3TP AND 3AS/3BS FILES

The SFDU construction rules require that at least two Type,
Length, Value (TLV) objects be used to construct a file. In general,
the Type or T field contains information that can be used to properly
interpret the contents of the V field; the L field is the length of
the V field in bytes. The first TLV is referred to as a type 2
object, the T[2] field identifying the file as SFDU compliant; L[Z2] is
the length of V(2] in bytes. 1In the case of Level 3 data, the V(Z)
field is the second TLV object and is referred to as a type I TLV
object. The T[I) field identifies the file as a product of the UARS
Program; L[I]) is the length of V(I] in bytes. The V[I] field is the
"letter" containing the UARS specific Level 3 file information.

The first record in a Level 3AT, 3TP, 3AS, or 3BS file contains
20 bytes of T{Z]) and L[2Z2] information followed by 20 bytes of T[I] and
L[I] information. The format of these fields is described in
Tables E-1 and Table E-2.

LEVEL 3 FILE FORMATS

Table E-1. SFDU T{Z] and L[Z]) Format for Level 3AT/3TP or

Level 3AS/3BS Files

ITEM FIELD

NO. NAME BYTE SUBFIELD NAME COMMENTS
1 TYPE 0-3 control authority identifier wcesp

2 TYPE 4 version identifier wiw

3 TYPE 5 class identifier ngn

4 TYPE 6-7 spare “oo"

5 TYPE 8-11 | data descriptive record identifier | "o0001"

6 LENGTH (12-19 length see Note
Note: The length field will contain a number in ASCII format binary

number specifying the length in bytes of the corresponding VALUE

field.

as the V[I] field which is the UARS Level 3 file.

The VALUE fields includes the T[I] and L[I] fields as well

LEVEL 3 FILE FORMATS

Table E-2. SFDU T[I] and L[{I] Format for Level 3AT/3TP or
Level 3AS/3BS Files

ITEM FIELD

NO. NAME BYTE SUBFIELD NAME COMMENTS
1 TYPE 0-3 control authority identifier see Note 1
2 TYPE 4 version identifier e

3 TYPE 5 class identifier nyw

4 TYPE 6-7 spare "oo"

5 TYPE 8-11| data descriptive record identifier see Note 2
6 LENGTH (12-19| length see Note 3
Notes:

1 The control authority for the UARS data is 'ZURS'.
2 The data description record for UARS is TBD.

3 The length field will contain a number in ASCII format
specifying the length of the V[I)field, which is the
UARS Level 3 file.

E.3.3 FILE LABEL RECORD FOR LEVEL 3AT/3TP FILES

The file label record format for Level 3AT and 3TP files is
presented in Table E-3., All file label record fields are ASCII
fields. The file label record is padded with zero fill when the data
record size exceeds the file label record size.

Table E-3 Label Record Format for Level 3AT/3TP Files (1 of 2)

ITEM|BYTE

NO. | OFFSET FIELD NAME COMMENTS
1 0 satellite identifier 'UARS'
2 4 record type L
3 6 instrument identifier

4 18 data subtype or species

5 30 format version number ' 1!

6 34 physical record count ' 1!
7 42 number of continuation records for file label

8 46 number of physical records in file

9 54 file creation time in VAX VMS ASCII format

10 77 year (3 digits) for first data record
11 80 day of year for first data record

12 83 milliseconds of day for first data record ™
13 91 year (3 digits) for last data record

14 94 day of year for last data record

15 97 milliseconds of day for last data record
16 105 data level

17 108 UARS day number

18 112 number of data points per record (3AT)
number of 32-bit words (3TP)

19 116 base index of data point values see Note 1
20 120 record length in bytes ‘ see Note 2
21 125 CCB version number

22 134 file cycle number see Note 3
23 139 virtual file flag see Note 4
24 140 total number of time/version entries in file see Note 5

Table E-3 Label Record Format for Level 3AT/3TP Files (Cont.)

ﬁwm_ ITEM OFFSET FIELD NAME COMMENTS
25 144 number of time/version entries in record
26 148 year for first version entry
27 151 day of year for first version entry
28 | 154 milliseconds of day for first version entry
29 162 version number of first version entry
30 171 cycle number of first version entry
B year for nth veréion entry
B+3 day of year for nth version entry
B+6 milliseconds of day for nth version entry
B+14 version number of nth version entry
B+23 cycle number of nth version entry
Wi B+28 .
Legend: B = 148 + 28%(n - 1) n=1, 2, 3, ...
Notes:

1 Not applicable for Level 3TP records.
2 Minimum record size is 148 bytes.
3 Supplied only during file creation via RAC data transfer.

4 ' ' = physical file
tY' = virtual file created via RAC data transfer

5 There is a time/version entry for each consecutive change in the
version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

LEVEL 3 FILE FORMATS

E.3.4 CONTINUATION LABEL RECORD FOR LEVEL 3AT/3TP AND 3AS/3BS FILES

The continuation label record format is presented in Table E-4.
All fields in this record are in ASCII format. This record is present
only when the file label record indicates that the file is a virtual
file created via the RAC transfer services and there is insufficient

space in the file label record for all the time/version entries
needed.

E-10

LEVEL 3 FILE FORMATS

6@& Table E-4. Continuation Label Record Format for Level 3AT/3TP or
Level 3AS/3BS Files
ITEM BYTE
NO. |OFFSET FIELD NAME COMMENTS
1 0 satellite identifier 'UARS*
2 4 record type v 2
3 6 instrument identifier
4 18 data subtype or species
5 30 format version number ! 1!
6 34 physical record count ' 1
7 42 number of time/version entries in record
8 46 spare
9 48 start year for first version entry
-~ 10 51 start day of year for first version entry
| 11 54 start msec of day for first version entry
12 62 version number of first version entry
13 71 .cycle number of first version entry
B start year for néh version entry
B+3 start day of year for nth version entry
B+6 start msec of day for nth version entry
B+14 version number of nth version
B+23 cycle number of nth version
Legend: B = 48 + 28*(n -1) n=1, 2, ...

E.3.5 DATA RECORD FOR LEVEL 3AT FILES
The data record format for a Level 3AT file is presented in
ﬁ@« Table E-5. The data record contains data values in the UARS standard
data array (see Section E.2) for the time range specified in the

E-11

LEVEL 3 FILE FORMATS

file's label record. A fill value is used to indicate missing data
points within a record. This fill value, X'00008000', is a reserved
value that is not a valid floating point number. The data record is
padded when the file label record size exceeds the data record size.

E-12

gw“

(

LEVEL 3 FILE FORMATS

Table E-5. Data Record Format for Level 3AT or Level 3AS/3BS Files

ITEM| BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
1 0 satellite identifier C 'UARS'
2 4 record type c ' 3¢
3 6 instrument identifier c
4 18 physical record count c
5 26 spare c
6 28 total number of points in the record I
7 32 number of actual points (np) I
8 36 starting index of first actual point I
9 40 record time in UDTF format T see Note 1
10 48 latitude R see Note 2
11 52 longitude R see Note 2
12 56 local solar time (LST) R see Note 2
13 60 solar zenith angle (SZA) R see Note 2
14 64 data value for first point in record R
data value for 1;st point in record R
B quality for first point in record R
quality for 1ast.point in record R
Legend: character I integer R = real

Notes:

T

time in UDTF format B = 64 + 4*total number of points

1 For solar instruments (Level 3AS/3BS file) the milliseconds
portion of the UDTF time is 0.

2 Not applicable for solar instruments (Level 3AS/3BS file)

E-13

LEVEL 3 FILE FORMATS

E.3.6 DATA RECORD FOR LEVEL 3TP FILES

The data record format for a Level 3TP file is presented in
Table E-6. The data record contains parameter values associated with
the corresponding Level 3AT record of the appropriate Level 3AT data
file, for the time specified in the Level 3AT record's header.

Table E-6. Data Record Format for a Level 3TP File

ITEM|{ BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
1 0 satellite identifier C 'UARS'
2 4 record type c '3
3 6 instrument identifier C
4 18 physical record count c
5 26 spare c
6 28 maximum number of 32-bit words I
in the record
7 32 not used
8 36 not used
9 40 record time in UDTF format T
10 48 latitude R
11 52 longitude R
12 56 spare c
13 64 number of 32-bit parameter words I
‘14 68 first parameter word o]
B last parameter word Cc
Legend: C = character integer R = real

I =
time in UDTF format B = 64 + 4*number of parameter words

T

E-14

”WN

LEVEL 3 FILE FORMATS

E.3.7 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AL/3LP FILES

The SFDU descriptor records for Level 3AL or 3LP are constructed
in the same manner as for Level 3AT, 3TP, 3AS, or 3BS files with the
exception that the SFDU information in the records is preceded by the
record index key field.

The first record in a Level 3AL/3LP file contains the record
20 byte key followed by 20 bytes of T[Z] and L[2] information and
20 bytes of T(I] and L[I) information. The format of these fields is
described in Table E7 and Table ES8.

Table E-7. SFDU T(2) and L(2] Format for Level 3AL/3LP Files

ITEM| FIELD
NO.| NAME BYTE SUBFIELD NAME COMMENTS
1 KEY 0-19 record key see Note 1
2 TYPE 20-23 control’ authority identifier wCcesp”
3 TYPE 24 version identifier wiw
4 TYPE 25 class identifier ngw
5 TYPE 26-27 spare "oo"
6 TYPE 28-31 | data descriptive record identifier woo01"
7 LENGTH 32-39 length see Note 2
Notes:

1 The record key has the following structure:
chars 1-4 "“1001"
5-10 blank
11-12 "O:"
13-19 blank
20 lloll

2 The length field will contain a number in ASCII format specifying
the length in bytes of the corresponding VALUE field. The VALUE
field includes the T[I] and L{I]) fields as well as the V[I]
field which is the UARS Level 3AL or 3LP file.

E-15

LEVEL 3 FILE FORMATS

Table E-8. SFDU T[I) and L[I] Format for Level 3AL/3LP Files Awﬁ

ITEM FIELD

NO. NAME BYTE SUBFIELD NAME COMMENTS

1 TYPE |[40-43 control authority identifier see Note 1

2 TYPE 44 version identifier nwan

3 TYPE 45 class identifier wgv

4 TYPE 46-47 spare "oo"

5 TYPE |48-51 data descriptive record identifier | see Note 2

6 LENGTH |52-59 length see Note 3
Notes:

1 The control authority for the UARS data is 'ZURS'.
2 The data description record for UARS is TBD.
3 The length field will contain a binary number specifying the

length of the V[I) field, which is the UARS Level 3AL or 3LP ™
file.

E.3.8 FILE LABEL RECORD FOR LEVEL 3AL/3LP FILES

The file label record format is presented in Table E-9. All file
label record fields are ASCII fields. The file label record is padded
with zero fill when the data record size exceeds the file label record
size.

E-16

Table E-9.

Label Record Format for Level 3AL/3LP Files (1 of 2)

ITEM| BYTE
NO. |OFFSET FIELD NAME COMMENTS
1 0 record key see Note 1
2 20 satellite identifier 'UARS'
3 24 record type 't
4 26 instrument identifier
5 38 data subtype or species
6 50 format version number
7 54 physical record count ' 1
8 62 number of continuation records for file label
9 66 number of physical records in file
10 74 file creation time in VAX VMS ASCII format
11 97 year (3 digits) for earliest data record
12 100 day of year for earliest data record
13 103 milliseconds of day for earliest data record
14 111 year (3 digits) for latest data record
15 114 day of year for latest data record
16 117 milliseconds of day for latest data record
17 125 data level
18 128 UARS day number
19 132 max. number of data points per record (3AL)
max. number of 32-bit words per record (3LP)
20 136 base index of data point values see Note 2
21 140 record length in bytes see Note 3
22 145 minimum latitude for records in file
23 148 maximum latitude for records in file
24 151 CCB version number

E-17

Table E-9. Label Record Format for Level 3AL/3LP Files (Cont.)

ITEM OFFSET FIELD NAME COMMENTS "
25 160 file cycle number see Note 4
26 165 virtual file flag see Note 5
27 166 total number of time/version entries in file see Note 6
28 170 number of time/version entries in record
29 174 year for first version entry
30 177 day of year for first version entry
31 180 milliseconds of day for first version entry
32 188 version number of first version entry
33 197 cycle number of first version entry
B year for nth veréion entry
B+3 day of year for nth version entry
B+6 milliseconds of day for nth version entry ,w%
B+14 version number of nth version entry
B+23 cycle number of nth version entry
B+28 .
Legend: B = 174 + 28%(n - 1) n=1, 2, 3, ...

E-18

Table E-9. Label Record Format for Level 3AL/3LP Files (Cont.)

ﬁwh Notes:

1 The record key has the following structure:
chars 1-4 '1002'

5-10 blank
11-12 ‘03!
13-19 blank
20 ot

2 Not applicable for Level 3LP files
3 Minimum record size is 174 bytes

4 Supplied only during file creation via RAC data transfer.

5 t
lVl

physical file
virtual file created via RAC data transfer

6 There is a time/version entry for each consecutive change in the
version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

E-19

LEVEL 3 FILE FORMATS

E.3.9 CONTINUATION LABEL RECORD FOR LEVEL 3AL/3LP FILES

The continuation label record format is presented in Table E-10.
All fields in this record are in ASCII format. This record is present
only when the file label record indicates that the file is a virtual
file and there is insufficient space in the file label record for all
the time/version entries needed.

E-20

LEVEL 3 FILE FORMATS

@g* Table E-10. Continuation Label Record Format for Level 3AL/3LP Files

Note:

chars 1-4

The record key has the following structure:

(1000 + record number) in ASCII

5-10 blank

11-12

et
L]

13-19 blank

20

101

E-21

ITEM|OFFSET FIELD NAME COMMENTS
1l 0 record key see Note
2 20 satellite identifier 'UARS'
3 24 record type ' 2t
4 26 instrument identifier
5 38 data subtype or species
6 50 format version number
7 54 physical record count
8 62 number of time/version entries in record
9 66 spare
10 68 start year for first version entry
A 11 71 start day of year for first version entry
| 12 74 start msec of day for first version entry
13 82 version number of first version entry
14 91 cycle number of first version entry
B start year for néh version entry
B+3 start day of year for nth version entry
B+6 start msec of day for nth version entry
B+14 version number of nth version
B+23 cycle number of nth version
Legend: B 68 + 28%(n - 1) n=1, 2, .

LEVEL 3 FILE FORMATS

E.3.10 DATA RECORD FOR LEVEL 3AL FILES

The data record format is presented in Table E-~11. The data
record contains data values in the UARS standard data array (see
Section E.2) for the latitude and time ranges specified in the file's
label record. A fill value is used to indicate missing data points
within a record. This fill value, X'00008000', is a reserved value
that is not a valid floating point number. The data record is padded
when the file label record size exceeds the data record size.

E-22

Table E-11.

Data Record Format for a Level 3AL File

ITEM BYTE
NO. JOFFSET FIELD NAME FORMAT| COMMENTS
1 0 record key c see Note
2 20 satellite identifier c 'UARS'
3 24 record type c ' 30
4 26 instrument identifier c
5 38 physical record count c
6 46 spare c
7 48 total number of points in the record I
8 52 number of actual points (np) I
9 56 starting index of first actual point I
10 60 record time in UDTF format T
11 68 latitude R
12 72 longitude R
13 76 local solar time (LST) R
14 80 solar zenith angle (SZA) R
15 84 data value for first point in record R
data value for lést peint in record R
B quality for first point in record R
quality for 1ast.point in record R
Legend: C = character T = time in UDTF format
I = integer B = 84 + 4*(total number of points)
R = real
Note: The record key has the following structure:

chars 1-4

5

(1000 + 90 + latitude + 1 + number of records in label)

in ASCII
blank

6-11 date portion of UDTF record-time in ASCII

12

13-20 millisecond portion of UDTF record-time in ASCII

E-23

LEVEL 3 FILE FORMATS

E.3.11 DATA RECORD FOR LEVEL 3LP FILES

The data record format for a Level 3LP file is presented in
Table E-12. The data record contains parameter values associated with
the corresponding Level 3AL record of the appropriate Level 3AL data
file, for the time specified in the file label record. A fill value
of '0' is used where there are no parameter values.

E-24

LEVEL 3 FILE FORMATS

Table E-12. Data Record Format for a Level 3LP File

ITEM BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
1 0 record key c see Note
2 20 satellite id c 'UARS'
3 24 record type c ' 3¢
4 26 instrument identifier o
5 38 physical record count c
6 46 spare c
7 48 maximum number of 32-bit words I
8 52 not used
9 56 not used
10 60 record time in UDTF format T
11 68 latitude R
12 72 longitude R
13 76 spare C
14 84 number of 32-bit parameter words I
15 88 first parameter word C
B last parameter word
Legend: C character I integer R = real

T = time in UDTF format B 84 + 4*number of parameter words

Note: The record key has the following structure:
chars 1-4 (1000 + 90 + latitude + 1 + number of records in label)

in ASCII
5 blank
6-11 date portion of UDTF record-time in ASCII
12 1et

13-20 millisecond portion of UDTF record-time in ASCII

E-25

LEVEL 3 FILE FORMATS

E.3.12 FILE LABEL RECORD FOR LEVEL 3AS/3BS FILES

The file label record format for a Level 3AS or 3BS file is
presented in Table E-13. All file label record fields are ASCII
fields the file label record is padded with zero fill when the data
record size exceeds the file label record size.

E-26

~

\

Table E-13 Label Record Format for Level 3AS/3BS File (1 of 2)

ITEM|BYTE

NO. | OFFSET FIELD NAME COMMENTS

1 0 satellite identifier -'UARS!

2 4 record type ' g

3 6 instrument identifier

4 18 data subtype or species

5 30 format version number

6 34 physical record count ! 1!

(7 blanks)

7 42 number of continuation records for file label

8 46 number of physical records in file

9 54 file creation time in VAX VMS ASCII format

10 77 year (3 digits) for first data record

11 80 day of year for first data record

12 83 milliseconds of day for first data record

13 91 year (3 digits) for last data record

14 94 day of year for last data record

15 97 milliseconds of day for last data record

16 105 data level

17 108 UARS day number

18 112 number of data points per record

19 116 base wavelength of data point values

20 122 record length in bytes see Note 1
21 127 CCB version number

22 136 file cycle number see Note 2
23 141 virtual file flag see Note 3
24 142 total number of time/version entries in file see Note 4

E-27

Table E-13. Label Record Format for Level 3AS/3BS File (Cont.)
ITEM OFFSET FIELD NAME COMMENTS
25 146 number of time/version entries in record
26 150 year for first version entry
27 153 day of year for first version entry
28 156 milliseconds of day for first version entry
29 164 version number of first version entry
30 173 cycle number of first version entry
B year for nth veréion entry
B+3 day of year for nth version entry
B+6 milliseconds of day for nth version entry
B+14 version number of nth version entry
B+23 cycle number of nth version entry
B+28
Legend: B = 150 + 28*%(n - 1) n=11, 2, 3, ...
Notes: '
1 Minimum record size is 150 bytes.
2 Supplied only during file creation via RAC data transfer.
3 ' ' = physical file
'V'! = virtual file created via RAC data transfer
4 There is a time/version entry for each consecutive change in the

version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

E-28

AW%

LEVEL 3 FILE FORMATS

& E.3.13 CONTINUATION LABEL RECORD FOR LEVEL 3AS/3BS FILES

The continuation label record format for Level 3AS and 3BS files
is as described in Section E.3.4

E.3.14 DATA RECORD FOR LEVEL 3AS/3BS FILES

The data record format for a Level 3AS or 3BS file is presented
in Table E-14. The data record contains data values in the UARS
standard data array (see Section E.2) for a specific UARS day. It
also contains a parameter array consisting of pairs of parameter names
and their corresponding values. The Mean Solar Distance (MSD)
parameter MUST be presented in the parameter array for each record. A
£fill value is used to indicate missing data points within a record.
This fill values, X'00008000', is a reserved value that is not a valid
floating point number.

E-29

Table E-14.

Data Record Format for a 3AS/3BS File (1 of 2)

ITEM BYTE
NO. |OFFSET FIELD NAME FORMAT | COMMENTS
1 0 satellite identifier C 'UARS'
2 4 record type Cc ' 3!
3 6 instrument identifier c
4 18 physical record count (o
5 26 spare C
6 28 total number of points in the record I
7 32 number of actual points (np) I
8 36 starting wavelength of first actual R
point
9 40 record time in UDTF format T see Note
10 48 spare C
11 52 spare c
12 56 spare c
13 64 data value for first point in record R
data value for l;st point in record R
B quality for first point in record
quality for last.point in record R
N Number of parameter pairs I
P First parameter name C
P+20 First parameter value c
P;1560 Last parameter néme c
P+1580(Last parameter value c

E-30

Table E-14. Data Record Format for a 3AS/3BS File (Continued)

ﬁ'“ Legend: C = character T = time in UDTF format
I = integer B = 64 + 4*total number of points
R = real N = B + 4% total number of points
P=N+ 4

Note: For solar instruments (Level 3AS file) the milliseconds portion
of the UDTF time is 0.

E-31

APPENDIX F

ERROR HANDLING

F.1 STATUS CODES

A 32-bit status code is returned to the user's program to
indicate the completion status for each of the UCSS software support
services. These status codes are defined to the system using the VAX
Message Utility. The Message Utility defines a symbolic name for each
of the conditions and the user's program can use the symbolic name to
check for a particular status.

In the RAC simulated and production environments, the UCSS
software support services only return nonfatal status to the user's
program. The standard SS$_NORMAL condition code is used to indicate a
normal status for all of these services. The status codes applicable
to each interface are identified in Section 3. In the analysis
environment, all status codes are returned to the user.

The user's program should check the status code after calling a
UcSS service. These status codes are normally warning indicators, but
they may have a significant meaning to the program. For example, a
status code from a read service might indicate an end of data
condition and the user's program should not attempt reads beyond the
requested time. The symbolic name for the status condition is used to
check for a specific condition. Figure F-1 provides an example of
status checking. Note that the user's program must specify all status
symbolic names that are explicitly tested as external references.

sonTeA PITRAULI -
9zTs xo adA3 buoam 3jo sT jJusunbay -
jusunbie paarnbex burssTH -

: tapnyourt
pPa30939p SUOT3TPUo) ‘*sjusunbae aosusnbes Hurireo ur swatqoad o3
93e[9X S9OTAIIS SSOf 9aY3 Aq Pa30a3vep SUOTITPUOD TeleI oyl JO ISOW

*sjusuwod I0xa® a3ertadoadde Aue yztm 3xodsx Axewuns

wexboad ay3 uo saeadde uoT3TPUOO I0aI® Te3RI BYJL °PIITRI Se payIew

sT wexboad ayjz pue pejeuTwWID] ST Hurssaooad ‘UOTITPUOD Te3RI B 30939P

S90TAISS SSON ¥yl usyM -bpurssaocoad asyjzang jusasad eyl SUOTITPUOD
210139 30939p osTe Aew sootAI9s Jxoddns aaem3ljos ssSOnN 9yl

SNOILIAGNOD IVWIVd <2°d

anNd
(SINIWWOD ‘SALYLS ‘TIVd SSYd)WIIOd TIVO
JIONd

cEpic |
«NZIdO 0 TIAAT ISYIA QITIVA, = SINIWWOD
_ WIIV¥d, = TIVd ssvd

NZHI ((ITIJATOON VJId)D0T% °0F° SNLVLS) 4AI

NOILIANOOD VYI¥d ON ¥Od SNLVLS NIJO MNOJIHO

VOO

(snIvis ‘arl ’'dWIIdLS ‘FHILYLS ‘dI ISNI)OINILO TTI¥D

(A¥Q SYVN ‘IHILALS ‘FHIINIS ‘SHVNVd)IINIOd_TIVD
\SS¥d, = TIVd SSVd

ATIJATOON Ydd TYNIIIXI

0TIATT WUO0Ad
srdwexy HuTYOayDd snjels 9o0TAxes 3xoddng @xem3zjos sson *T-4 3anbTd

ONITANVH doud

ﬁW\

ERROR HANDLING

- Inconsistent arguments

In addition, the services detect problems in the ordering of some
calls (e.g. calling READLO before OPENLO) or missing required calls
(e.g. no PGINIT call). Table F-1 provides a list of the fatal error
conditions detected by the UCSS services. Some fatal conditions are
detected within VMS services and the user should refer to the
appropriate VMS documentation.

Table F-1.

SYMBOLIC NAME

UCSS Software Support Services Fatal Errors

DESCRIPTION

POSSIBLE CAUSES

PFA_ATTRCNTNEG

PFA_ATTROMITTED

PFA_BADEPOCHYR

PFA_DBRECERR

PFA_DUPVIRDAY

PFA_EARLYEOF

PFA_FILALRDDEASG

PFA_FILALRDYCLS

PFA_FILENOTOPEN

PFA_FILSTOPEN

PFA_GENUNREC

PFA_ILUDTF

PFA_ILVMSTI

Attribute count is
negative

Reguired user supplied
attribute not provided

'No valid ASC09 base epoch

year found

Unable to record
processing error in data
base

Duplicate virtual UARS
day specified

Unexpected end of file
encountered when
positioning to or reading
a data record

File already deassigned

File already closed

File has not been opened

Deassigned file is still
open

General unrecoverable
error

Invalid UDTF time provided

Invalid VMS time provided

Bad number of attributes
supplied as an argument
in CLOSELF or DASLID

Required user supplied
attribute not provided
to DASLID(see Table 3-4)

Probable telemetry data
error

Data base access error.

Error in FILE_PARAMS

Probable error in data
file format

Two calls to DASLID to
deassign the same LID
without corresponding
assign call

Two calls to CLOSELF to
close the same LID
without corresponding
open call

Called DASLID before
closing file

UCSS software error.
Should not be reported
to user.

Possible error in UDTF
time specification in
PROGRAM_PARAMS namelist

Possible error in VMS
time specification in
PROGRAM_PARAMS namelist

Table F-1.

SYMBOLIC NAME

PFA_INAPSOLRDAY

PFA_INCFILUSE

PFA_INCOMPEMAF

PFA_INCONNUMREC

PFA_INCONRECLEN

PFA_INCONRECTYP

PFA_INCORNUMARG

PFA_INVACCESSMD

PFA_INVALDOY

PFA_INVALIDMSD

DESCRIPTION

Requested date does not
match UARS day of the file

Inconsistent file usage
specified by OLD_NEW

Incomplete Level 0 EMAF

File record count does
not exceed number of label
records

Inconsistent record
length

Level 0 record type field
is invalid

Service called with
incorrect number of
arguments

Invalid access mode for
file type
Invalid day of year

Invalid mean solar
distance

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Inconsistency between
UARS day specified in
FILE PARAMS and day in
file.

Attempted to open or
assign a held file as
new or old.

Missing one of the two
part EMAF records.
Problem in data file
format

Data error in file label
record

Data problem. Record
length for the file in
catalog does not match
actual record length of
file.

Level 0 data problem.
Record type for one
record EMAFs is not 3.
Record type for

two record EMAFs is not
1 or 2.

Missing or extra
arguments in subroutine
call

Attempted to write to a
read only file by
calling a Level 3A write
service for a cataloged
file.

Day of year not within
range of 1 to 366

Data problem. Mean
solar distance value
retrieved from solar
data record by READL3S
is negative or zero.

Table F-1.

SYMBOLIC NAME

PFA_INVALMO

PFA_INVARGDATTP

PFA_INVARGSUB

PFA_INVARGTYP

PFA_INVBASNDX

PFA_INVBASWVLEN

PFA_INVCALDAY

PFA_INVCALMAT

PFA_INVCMATCHV

PFA_INVCONVDAY

PFA_INVCYCARG

PFA_INVDATALEV

DESCRIPTION
Invalid month

Invalid argument data type

Internal error in
arguments subtype

Internal error in argument
type

Invalid base index in
Level 3A file label record

Invalid base wavelength
in level 3 solar file
label record

Invalid day of month

Invalid CALIBRATION_MATCH
namelist parameter

Invalid calibration match
rule specified

Invalid UARS_DAY obtained
by conversion from a UDTF
time

File cycle argument is not
between 1 and 31 inclusive

Wrong UCSS service called
for the data level

Month not within range

of

Error in subroutine call

UCSS software problem.
Contact UCSS software

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

1l to 12

maintenance.

UCSS software problem.
Contact UCSS software

maintenance.

Base index is not
between 0 and 100

Base wavelength is not
between 115.5 and 425.5

nm.

Day of month not within

range of 1 to 31

CALIBRATION MATCH must

be

'PREV', 'NEXT',

'EXCT', or 'NEAR'

Invalid DMATCH argument

to ASGCAL

Inappropriate launch
date used for conversion

Error in call to
SETVERCY

Called the wrong

service for the data
level associated with
Examples:
Called CLOSELF for a
file that is not a
3AT, 3AL,
3AS, or 3BS file
instead of calling

the LID.

1.

Level 0,

DASLID
Called Level O

service to access
Level 3A data or vice

versa

M%§

/W%

™

Table F-1.

SYMBOLIC NAME

PFA_INVDATARNG

PFA_INVDAYARG

PFA_INVDEFCMATCH

PFA_INVDEFNDLEV

PFA_INVDEFODLEV

PFA_INVDEFOLDNEW

PFA_INVDISTARG

PFA_INVDLEARG

PFA_INVESIZEARG

PFA_INVFDISP

PFA_INVFDISPARG

PFA_INVFILETYP

DESCRIPTION

Requested data range does
not overlap virtual file
data range

Invalid UARS day argument
Invalid CALIBRATION_MATCH
in DEFAULT_PARAMS namelist

Invalid NEW_DATA_LEVEL in
DEFAULT_PARAMS namelist

Invalid OLD_DATA_LEVEL in
DEFAULT_PARAMS namelist

Invalid OLD_NEW parameter
in DEFAULT_PARAMS namelist

Invalid distance argument

Invalid data level
argument

Invalid estimated file
size argument

File disposition with type
with type of file accessed

Invalid file disposition
argument

Invalid file type
specified for usage of
file

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Problem with START_INDEX
START_WVLNGTH or
NUM_POINTS in read

UARS_DAY is negative

CALIBRATION MATCH must
be 'PREV', 'NEXT','EXCT',
or 'NEAR'

First character of
NEW_DATA_LEVEL must be
1117, 1217 131, or field
must be blank

First character of
OLD_DATA_LEVEL must be
|0|’ lll’ l2|’ l3|’ or
field must be blank

OLD_NEW parameter must
be 'OLD' or 'NEW!'

Distance flag is not
'I=AU' or 'UNCORRECTED®
in call to READL3S

Data level argument is
not one of the defined
data levels

SIZE argument is zero

FDISP parameter is not
valid for the type of
file accessed and the
UCSS is unable to
determine requested
position. Called DASLID
with 'CAT' dispositions
for a scratch file.

Invalid FDISP in CLOSELF
or DASLID call (not
'CAT', 'FREE', or
'HOLD')

UCSS software problem
Contact UCSS software
maintenance.

Table F-1.
SYMBOLIC NAME

PFA_INVFILUTIN

PFA_INVFLXUARG

PFA_INVHDRDASET

PFA_INVHDRDATLV

PFA_INVHDRDATTP

PFA_INVHDRDAY

PFA_INVHDRLAT

PFA_INVHDRSUBTP

PFA_INVHDRTMRNG
PFA_INVINDEXARG

PFA_INVLATGRID

PFA_INVLATLONG

PFA_INVLSTSZA

DESCRIPTION

Invalid file utilization
indicator in UCSS internal
table

Invalid flux unit argument

Data set in LO file label
does not match expected
value

Invalid data level in
Level 3A file label

Instrument id in file
label does not match
expected value

UARS day in file label
does not match expected
value

Invalid latitude range
field in label record of
Level 3AL data file

Data subtype in file label
does not match expected
value

Invalid time range in file
label record

Invalid index argument

Invalid latitude grid
value

Invalid latitude or
longitude

Invalid local solar time
and/or solar angle
calculated

UCSS software problem.
Contact UCSS software

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

maintenance.

Flux unit specified in

call to READL3S is
invalid

Data-type is not

consistent with data set
Wrong Level 0 file
specified or bad data in

id.

file

Data problem

Wrong Level 3 file

specified or bad data in

file

Wrong file specified or

bad data in file

Data problem

Wrong Level 3 file

specified or bad data in

file

Data problem

Index argument is not

between 0 and 100

Invalid latitude value
in WRITEL3AL, READL3AL,
WRITEL3LP, or READL3LP

Invalid latitude or

longitude value in

WRITEL3AT,
WRITEL3TP,

UCSS software problem.
Contact UCSS software

maintenance

OPENL3AL,
or OPENL3LP

f‘w%\

i

SYMBOLIC NAME

PFA_INVMAXPMS

PFA_INVMAXPTS

PFA_INVNEGDYARG

PFA_INVNMLDLEV

PFA_INVNMLPARM

PFA_INVNUMPRMS

PFA_INVNUMPTS

DESCRIPTION

Specified number of params
is greater than max params

in file

Invalid maximum number of
data points

Correlative UARS day arg.
is not between -99999 and
9999

Invalid DATA_LEVEL
parameter in FILE_PARMS
namelist

Invalid combination of
parameters in FILE_PARMS
namelist

Invalid number of
parameters specified for
a parameter file

Invalid number of points
arguments

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Used a number of
parameters value greater
than number of
parameters returned from
the open in reading a
parameter file

1. Invalid MAX_ POINTS
argument to OPENL3AT
or OPENL3AL when
creating a new file

2. Invalid maximum
points field in
Level 3A file
label record

Invalid UARS day in call
to ASGCOR

First character of
DATA_LEVEL must be '0',
110,712, 131 or field
must be blank

Wrong combination of
parameters. specified for
file

The number of parameters
specified for file in
READL3TP and READL3LP
exceeds the maximum
value allowed for the
file

1. Invalid NUM_POINTS
argument to READL3AT
or READL3AL.
Inconsistent with
START_ INDEX and
OPENL3AT or OPEN3AL
MAX POINTS value.

2. Invalid NUM_POINTS
argument to WRITEL3AT
or WRITEL3AL.
Inconsistent with
START_INDEX and
MAX_POINTS supplied
to OPENL3AT or
OPENL3AL.

Table F-1. UCSS

SYMBOLIC NAME

PFA_INVNUMRECS

PFA_INVODNWHLD

PFA_INVOLDNWARG

PFA_INVPGCSARG

PFA_INVPRGPMSIZ

PFA_INVPSEUD

PFA_INVQLCODARG

PFA_INVRECPEMAF

PFA_INVRECRNG

PFA_INVRECSARG

PFA_INVRECTYP

Software Support Services Fatal Errors (Continued)

DESCRIPTION

Physical record count in
file label record is
invalid

Invalid OLD_NEW namelist
parameters

Invalid OLD_NEW argument
Invalid program completion
status argument

Invaild program parameter
table size argument

Invalid use of
pseudo-virtual file

Quicklook code
is not between

argument
=100 and 30

of records
in file

Invalid number
per EMAF field
label record

Invalid record
specification

time range

Number of records argument
does not exceed zero

Unexpected record type
value

F-10

’W%

POSSIBLE CAUSES

Data problem

OLD_NEW must be 'OLD',
'NEW!, or 'HELD'
OLD_NEW argument to
open or assign call
is not 'OLD', ‘'NEW’,
or 'HELD'

PASS_FAIL argument to
PGTERM is not 'PASS!
'FAIL'

or

PARAM_TBL_SIZE argument
to PGINIT is not between
1 and 50

Pseudo-virtual file
specified as held or in
multi-file virtual input ™
file

Bad Quicklook pass code
specified in call to
OPENQL for Analysis
Services

Level 0 data problem

STRT_DATTIM exceeds
STOP _DATTIM in READL3AT,
READL3AL, READL3TP, or
READL3LP

Bad value of MAX DIM or
MAX_DAYS specified in
READLBAL, READL3AT,
READL3S, READL3LP, or
READL3TP

Data problem. Level 0
data record type is not

1, 2, or 3. ,w\

Table F-1.

SYMBOLIC NAME

PFA_INVRULEARG

PFA_INVSTRINDX

PFA_INVSTRLEN

PFA_INVSTRWVLN

PFA_INVSVC

PFA_INVTIMPRD

DESCRIPTION

Version/cycle rule
argument is not between 0
and 9

Start index less than base
index of Level 3A file

Incorrect character string
length

Start wavelength is
outside allowed range

Wrong service called for
given file type

Invalid time period type
in file label record

o]
!

11

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Bad version or cycle
specified in call to
SETVERCY for Analysis
Services

START_INDEX in READL3AT
is less than the
BASE_INDEX in OPENL3AT.
START_INDEX in READL3AL
less than the BASE_INDEX
in OPENL3AL.

Character string
improperly sized

1. START_WVLNGTH in
READL3S is less than
BASE_WVLNGTH in
OPENL3S.

2. START_WVLNGTH exceeds
BASE_WVLNGTH
+ MAX_NUM_VALUES
- NUM_VALUES.
START_WVLNGTH and
NUM_VALUES are
supplied in the call
to READL3S.
BASE_WVLNGTH and
MAX NUM_VALUES are
supplied in the call
to OPENL3S.

Used QUALRD or QUALQL to
read non-QUALITY data or
used OPENL3AT to read

Level 3AS/BS solar data

Data problem. The type
of data time period
field in the Level 0
file header is invalid
(not ' QL', '24HR',
'VIRT' or 'NEAR')

Table F-1. UCSS Software Support Services Fatal Errors (Continued)

SYMBOLIC NAME

PFA_INVTMERNG

PFA_INVTMVERS

PFA_INVUDAYRNGE

PFA_INVUDTFARG

PFA_INVUDTFDAY

PFA_INVUDTFMSEC

PFA_INVUDTFYR

PFA_INVVERSARG

PFA_INVVERTIM

PFA_INVVIRSPEC

PFA_INVVFLAG

DESCRIPTION

Invalid time range
parameters

Inconsistent time fields
in version entries of the
Level 3A label record

Invalid UARS day range

Invalid UDTF time
Invalid day of year in
UDTF time

Invalid milliseconds of
day in UDTF time
Invalid UDTF year

CCB version argument is
not between 0 and 9999

inclusive

Inconsistent time in time/
version entries

Invalid virtual file
specification

Invalid virtual flag in
Level 3A file label record

F-12

POSSIBLE CAUSES

1. STRT_DATTIM exceeds
STOP_DATTIM in
PGINIT. In simulated
environment, a
problem in the
PROGRAM PARAMS
namelist.

2. STRT_DATTIM exceeds
STOP_DATTIM in
OPENLO, OPENL3AT, or
OPENL3AL

Data problem

UCSS Software erxrror.
Contact UCSS Software
maintenance

UDTF time argument not a
valid time

UDTF day of year not
between 1 and 366

UDTF milliseconds of day
not between 0 and
86399999

No year on UDTF time

Bad version specified in
call to SETVERCY for
Analysis Services

Data problem. Times in
the time version entries
in the label record(s)
are not increasing.

More than one physical
file specified for a
non-virtual input file

Data problem

Table F-1.

SYMBOLIC NAME

PFA_INVWVLUARG

PFA_JOBALRDYRUN

PFA_LIDINUSE

PFA_LIDNOREUSE

PFA_LIDNOTOPEN

PFA_LIDOTHERUSE

PFA_MISINITPARM

PFA_MISSARG

PFA_MISSMSD

PFA_MSDCONVERR

PFA_NOCLSNEW

PFA_NODASGNEW

DESCRIPTION

Invalid wavelength unit
argument

Current job has already
been run

Specified LID in use

Attempted to reuse the LID
that is assigned held file
or a newly cataloged file

File corresponding to LID
is not open

Specified LID is reserved
for other use

Missing required parameter
in FILE_PARAMS namelist
Missing a required

argument

Missing mean solar
distance

Mean solar distance
conversion error from
OTSSCVTTD

Failed to close a new
Level 3A file

Failed to deassign an new
Level 1 or 2 file

F-13

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Wavelength unit
specified in OPENL3S or
READL3S is not 'NM',
'STANDARD', 'A’',
'MICRON', or 'CM'

UCSS Software error.
Contact UCSS software
maintenance

Reused LID without
calling DASLID or
CLOSELF

Called ASGCAT, OPENL3AT,
OPENL3AL, OPENL3LP,
OPENL3TP, or OPENL3S
with a LID associated
with a file that was
held or cataloged

Called read or write
service without calling
the open service first

Attempted to reuse LID
assigned to newly
cataloged file

Missing namelist
parameter

UCSS service called
without all required
arguments

Mean solar distance not
supplied as parameter in
call to WRITEL3S

Mean solar distance
specified as a solar
parameter is negative or
zero

Missing CLOSELF call
for a new Level 3A file

Missing DASLID call for
a new Level 1 or 2 file

Table F-1.

SYMBOLIC NAME

PFA_NOFILE

PFA_NOFILECRE

PFA_NOFIPARENT

PFA_NOFSTAVAIL

PFA_NOHELDFILE

PFA_NOMATVIRPMS

PFA_NOMORLUNS

PFA_NOOVRLAPTM

PFA_NOPGINTCAL

PFA_NOPGTRMCAL

PFA_NOREQDATA

DESCRIPTION

File does not exist

New file was not created

No matching entry in file
parameter table for
requested file

Exceeded number of entries
in file status table

Held file not found

VIRTUAL_UARS DAY and
DATA_FILE_NAME list sizes
not equal

No more logical unit
numbers available

File time range and
requested time range do
not overlap

PGINIT was not called

PGTERM was not called

Required data not
available

F-14

Ucss Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Possibly specified
nonexistent file name in
FILE_PARAMS namelist

Assigned file was not
opened before call to
DASLID

No FILE_PARAMS namelist
corresponding to the
requested file in the
runstream

Contact UCSS software
maintenance

1. Failed to specify
WHOLD" on call
to DASLID or CLOSELF
2. Did not specify same
LID

Error in FILE_PARAMS
namelist

Attempting to access too
many files at one time

The time range specified
in the open call does
not overlap the file
time range. 1In the
simulated environment,
probable inconsistency
between the processing
time range and the file
time range.

Missing PGINIT call
before calling UCSS
services

Program terminated
without calling PGTERM

File specified as
required input by the
scheduler is not
available

-~

Table F-1.

SYMBOLIC NAME

PFA_NOREQRECS

PFA_NOUSFREQT

PFA_NOVERTIMRNG

PFA_NOVIRFILID

PFA_NOVIRTAVAIL

PFA_PGINTPREV

PFA_RECLENERR

PFA_REQATTNOSUP

PFA_REQFILMISS

PFA_SEQTIMERR

PFA_TOMANYFILE

DESCRIPTION

Virtual file contains no
data records

Attempted to assign user
status file when no user
status files are defined
for the job

Version time range not
found in time version
array

No virtual file table
entry for the logical file
identifier

No room in virtual file
table

PGINIT already called

Expected record length
does not match actual
record length

Required catalog attribute
not provided

Missing one or more
required physical files
for a virtual read

Current record time is not
later than previous record
time

Exceeded maximum number of

FILE_PARAMS namelists
supported by UCSS

F-15

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

All physical files have
no data

Scheduler does not know
of the use of user
status files in this job

UCSS software error.
Contact UCSS software
maintenance.

UCSS software error.
Contact UCSS software
maintenance.

Contact UCSS software
maintenance

Two calls to PGINIT in
same program

Data error. Data record
length is incorrect.

Required catalog
attribute(s) not
provided to DASLID
(see Table 3-4)

One or more Level 0 or
3A files needed for a
virtual file are
indicated as required by
the scheduler, but are
unavailable

Data times are not
increasing

User provided more
FILE_PARAMS namelists
than supported by the
Ucss software. Contact
UCcss software
maintenance.

Table F-1. UCSS Software Support Services Fatal Errors (Continued)

SYMBOLIC NAME DESCRIPTION POSSIBLE CAUSES

PFA UNEXBLKARG Unexpected blank argument | 1. Logical file id is
- ‘ blank in call to any
of the services

2. Old-new-flag is blank
in call to OPENL3AT,
OPENL3AL, OPENL3S, or
ASGCAT

3. Flux units,
wavelength units, or
distance flag is
blank in call to

READL3S
PFA_UNKNOWNLID Attempt to close or 1. Called CLOSELF or
deassign an unknown LID DASLID with incorrect
LID

2. Called CLOSELF or
DASLID without
corresponding open or

assign
PFA_UNKREQSFDU Required description id All portions of the
is not available for current file are ™
current file required and: :

1. UARS SFDU file
nissing or
unassigned, or, :

2. Error in reading UARS
SFDU file, or,

3. SFDU descriptor id
with attributes that
are subset of current
file's attributes is
not present in UARS

SFDU file
PFA_USFNUMGTMAX | User status file number The use of this user
greater than maximum status file number has
defined for job not been defined to the
scheduler

F-16

APPENDIX G
LEVEL 0 SFDU FILE DESCRIPTION

The information used to build the SFDU record for Level 3A data
is obtained from the SFDU file, an example of which is shown in
Figure G-1. Note that the file is known to the UCSS Software Services
by its logical name, UARS_SFDU_FILE, which must therefore be linked to
the actual file's name before a job that is to generate a new Level 3A

file with the desired SFDU record is run.

LEVEL 0 SFDU FILE DESCRIPTION
Figure G-1. Sample UCSS SFDU File

$SFDU GEN PARAMS

CONTROL_AUTHORITY_ID = 'ZURS'
DEFAULT DESCRIPTION_ID = 'ZERO'
SEND

$DESCRIPTION_ID PARAMS

DESCRIPTION ID = 'HR75'
ATTRIBUTE NAMES = 'TYPE', ‘'SUBTYPE', 'LEVEL'
ATTRIBUTE VALUES = 'HRDI', 'Z_WIND', ‘'3AL'
SEND
$DESCRIPTION_ID_PARAMS
DESCRIPTION ID = 'HR12'
ATTRIBUTE NAMES = 'TYPE', 'SUBTYPE', 'LEVEL'
ATTRIBUTE VALUES = 'HRDI', 'WINDS', '2!
$END
SDESCRIPTION_ID_PARAMS
DESCRIPTION_ID 'HRO6 *

ATTRIBUTE NAMES
ATTRIBUTE VALUES
$END

'‘TYPE', 'LEVEL'
'HRDI' '3AL'

SDESCRIPTION ID PARAMS

DESCRIPTION ID = 'HRO1'
ATTRIBUTE NAMES = 'TYPE'
ATTRIBUTE VALUES = 'HRDI'

SEND

The file is composed of two different types of namelists whose
structures are described in Tables G-1 and G-2. The first namelist
contains general parameters required for constructing the SFDU record
and occurs only once in the file. The other namelist contains a
specific data descriptive record identifier (DDRI) and the attributes
of the data for which it is defined. It occurs once for each defined
DDRI supported by the UCSS.

LEVEL 0 SFDU FILE DESCRIPTION
Table G-1. Structure of SFDU_GEN_PARAMS Namelist

NAMELIST PARAMETER DESCRIPTION FORMAT VALUES

CONTROL_AUTHORITY_ID control authority identifier| c*4 "ZURS"
for UARS data as described
in Tables E-2 and E-7

DEFAULT_DESCRIPTION_ID | data descriptive record C*4 “ZERO"
identifier to be used if
attribute matching is
unsuccessful

Table G-2. Structure of DESCRIPTION_ID_ PARAMS Namelist

NAMELIST PARAMETER DESCRIPTION FORMAT VALUES

DESCRIPTOR_ID data descriptive record C*4 Note 1
identifier for UARS data at a
particular documentation level

ATTRIBUTE_NAMES array of attribute names C*20 Note 2
(up to 20 allowed)

ATTRIBUTE_VALUES array of attribute values C*20 Note 3
(up to 20 allowed)

Notes:

1 The first two characters are associated with the instrument
identifier and the last two are numeric digits (See Reference 1).

2 The attribute names must belong to the set described in
Table G-3.

3 The allowed values for the specified attributes are the same as
those with which the pertinent files can be cataloged.

The attributes that can be used to define the sets of data
associated with a particular DDRI are those that normally characterize
a science data file in the UCSS environment. Their names and possible
values are shown in Table G-3. One or more of these attributes can be
used in the definition. See Reference 1 for a more detailed
description of the manner in which DDRIs are defined and maintained.
Note however that because of the way attribute matching is done in the
UCSS Software Services, if different DDRIs are to be assigned to

G-3

LEVEL O SFDU FILE DESCRIPTION

different levels in the document hierarchy, e.g. 'TYPE' at one level /w§
and 'TYPE' and 'SUBTYPE' at another level, then the DDRI assigned to

the lower level, e.g. the latter in the current example, should

precede the one assigned at the higher level, e.g. the former, in the
SFDU file. Otherwise, matching will complete before the desired DDRI

is found. Moreover, if no DDRIs with matching attributes are found at
any level of documentation, the default value in the GEN_SFDU_ PARMS
namelist will be used instead, or, if that value is missing, the

default value assumed by Software Services when the SFDU file is not
accessible or nonexistent, namely 'ZNON'.

Table G-3. Allowed attributes for DESCRIPTION_ID_PARAMS Namelist

ATTRIBUTE NAME DESCRIPTION POSSIBLE VALUES

TYPE instrument identifier See Note 1

SUBTYPE data species or measurement type See Note 2

LEVEL processing level of data '3AL', '3AS', '3AT',
‘3LP!','3TP', '3BS'

DAY UARS day number 11' to '9999! -

Notes | |

1 TIdentifier for one of the UARS instruments, namely °‘CLAES',
'HALOE', 'HRDI', 'ISAMS', 'MLS', 'PEM', 'SOLSTICE', 'SUSIM' and
'"WINDII'.

See Reference 1, Item 4 for the range of data descriptive record
identifiers presently allocated to each UARS instrument.

2 Dependent on UARS instrument.

APPENDIX H

LEVEL 0 OBC REPORT NAMES

H.1 OBC REPORT NAMES AND NUMBERS

Table H-1 shows the OBC report names and numbers that are decoded
by the OBCDECODE routine.

REPORT NBR VARIABLE

ACS%01 01

ACS%04 04

ACS%09 09

GYR%01 12

EPH%01 13

Table H-1.

IRSLEW
IYSLEW
ICAL
MODE
EYSLEW3

EX
EY
EZ

TF

TFYEAR
TUPDATE

CNGX

CNGY

CNG2

CNGX1
CNGY1
CNGZ1
CNGX2
CNGY2
CNGZ2
CNGX3
CNGY3
CNGZ3
CNGX4
CNGY4
CNGZ4
CNGX5
CNGY5
CNGZ5
CNGX6
CNGY6
CNGZ6
CNGX7
CNGY?7
CNGZ7

EOGBRF1
EOGBRF2
EOGBRF3

OBC Report Names Decoded by OBCDECODE

OFFSET

00.6
00.7
03.3
03.5
08.0

00.0
02.0
04.0

00.0

05.0
17.0

DECODE

Bit
Bit
Bits
Bits
Bytes

WWN =

Bytes
Bytes
Bytes

NN

5 Bytes

1 Byte
5 Bytes

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

BRERRREREBBRREHEBREEERBEBREREBRERRPREREBREE

4 Bytes
4 Bytes
4 Bytes

SUBSCRIPT

OBC_BYTE
OBC_BYTE
OBC_INTEGER
OBC_INTEGER
OBC_REAL

OBC_REAL
OBC_REAL
OBC_REAL

OBC_INTEGER

OBC_INTEGER
OBC_INTEGER

OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE

OBC_REAL
OBC_REAL
OBC_REAL

PR N R

W=

WN =

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
EOGBVF1 12.0 4 Bytes OBC_REAL 4
EOGBVF2 16.0 4 Bytes OBC_REAL 5
EOGBVF3 20.0 4 Bytes OBC_REAL 6
EPH%02 15
EOGVFAL 08.0 2 Bytes OBC_INTEGER 1
HGA%01 21
HGTAFLGA 00.0 1 BIT OBC_BYTE 1
HGTAFLGB 00.1 1 BIT OBC_BYTE 2
HGLRFLGA 00.2 1l BIT OBC_BYTE 3
HGLRFLGB 00.3 1 BIT OBC_BYTE 4
HGMODCUR 01.0 3 BIT OBC_INTEGER 1l
HGTRGCUR 02.3 1 BIT OBC_BYTE 5
HGGIMCA 07.0 1l BYTE OBC_REAL 1
HGGIMCB 08.0 1 BYTE OBC_REAL 2
UFL%01 24
S1 00.0 2 Byte OBC_REAL 1l
S2 02.0 ° 2 Byte OBC_REAL 2
Ss3 04.0 2 Byte OBC_REAL 3
PM111 12.0 4 Byte OBC_REAL 4
PM112 16.0 4 Byte OBC_REAL 5
PM113 20.0 4 Byte OBC_REAL 6
SCP11 24.0 1 Byte OBC_REAL 7
SCP12 25.0 1 Byte OBC_REAL 8
SCp22 26.0 1 Byte OBC_REAL 9
UFL%02 25
PM115 00.0 4 Byte OBC_REAL 1l
PM116 04.0 4 Byte OBC_REAL 2
PM119 08.0 4 Byte OBC_REAL 3
UFL%09 32
TUS 14.0 5 Bytes (RETURNED IN RET_ DATTIM)
SEP%01 43
BETAl 22.0 2 Bytes OBC_REAL 1
PMO%01 53
TDAY 20.0 1Byte OBC_INTEGER 1
SPP$01 54
PFTRGFLG 00.0 1 Bit OBC_BYTE 1
PFRATEFL 00.1 1 Bit OBC_BYTE 2
PFOFSETF 00.2 1 Bit OBC_BYTE 3
PFOCFLAG 00.3 1 Bit OBC_BYTE 4
PFPRFLAG 00.4 1 Bit OBC_BYTE 5
PFEPFLAG 00.5 1 Bit OBC_BYTE 6
PFAUTOFL 00.6 1 Bit OBC_BYTE 7
PFSTATS 01.3 1 Bit OBC_BYTE 8
PFSTAT4 01.4 1 Bit OBC_BYTE 9

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
PFSTAT3 01.5 Bit OBC_BYTE 10
PFSTAT2 01.6 Bit OBC_BYTE 11
PFSTAT1 01.7 Bit OBC_BYTE 12

Byte OBC_INTEGER 1
Bit OBC_BYTE 13
Bit OBC_BYTE 14
Bit OBC_BYTE 15
Bit OBC_BYTE 16
Bit OBC_BYTE 17
Bit OBC_BYTE 18
Bit OBC_BYTE 19
Bit OBC_BYTE 20
Bit OBC_BYTE 21
Bit OBC_BYTE 22
Bit OBC_BYTE 23
Bit OBC_BYTE 24

PFMODCUR 02

PFACQSTS 03.0
PFACQST?7 03.1
PFACQSTé6 03.2
PFACQSTS 03.3
PFACQST4 03.4
PFACQST3 03.5
PFACQST2 03.6
PFACQST1 03.7
PFFDCSTS8 04.0
PFFDCST7 04.1
PFFDCSTé 04.2
PFFDCSTS 04.3

PFFDCST4 04.4 Bit OBC_BYTE 25
PFFDCST3 04.5 Bit OBC_BYTE 26
PFFDCST2 04.6 Bit OBC_BYTE 27

PFFDCST1 04.7
PFGOLSTS8 05.0
PFGOLST?7 05.1
PFGOLST®6 05.2
PFGOLSTS5 05.3
PFGOLST4 05.4
PFGOLST3 05.5
PFGOLST2 05.6
PFGOLST1 05.7
PFTRGSTS8 06.0
PFTRGST?7 06.1
PFTRGST6 06.2

Bit OBC_BYTE 28
Bit OBC_BYTE 29
Bit OBC_BYTE 30
Bit OBC_BYTE 31
Bit OBC_BYTE 32
Bit OBC_BYTE a3
Bit OBC_BYTE 34
Bit OBC_BYTE 35
Bit OBC_BYTE 36
Bit OBC_BYTE 37
Bit OBC_BYTE 38
Bit OBC_BYTE 39

PFTRGSTS5 06.3 Bit OBC:BYTE 40
PFTRGST4 06.4 Bit OBC_BYTE 41
PFTRGST3 06.5 Bit OBC_BYTE 42

Bit OBC_BYTE 43
Bit OBC_BYTE 44
Bit OBC_BYTE 45
Bit OBC_BYTE 46
Bit OBC_BYTE 47
Bit OBC_BYTE 48

PFTRGST2 06.6
PFTRGST1 06.7
PFSUNSTS8 07.0
PFSUNST?7 07.1
PFSUNST6 07.2
PFSUNSTS 07.3

PFSUNST4 07.4 Bit OBC:BYTE 49
PFSUNST3 07.5 Bit OBC_BYTE 50
PFSUNST?2 07.6 Bit OBC_BYTE 51

Bit OBC_BYTE 52
Byte OBC_INTEGER
Byte OBC_INTEGER
Byte OBC_INTEGER
Byte OBC_INTEGER
Byte OBC_INTEGER
Byte OBC_INTEGER
Bytes OBC_INTEGER
Bytes OBC_INTEGER

PFSUNST1 07.7
PFTRGCUR o8
PFTRGPRM 09
PFTRGSEC 10
PFACQCNT 11
PFACQTHR 12
PFOCSWCT 13
PFTIMER 14
PFTIMESL 16

Y) O P P T iy Sy O O e S = ST SO S g Sy Sy

vwodouLIA~WN

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

ﬁW“ REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
PFGIMCUA 18 3 Bytes OBC_REAL 1
PFGIMCUB 21 3 Bytes OBC_REAL 2
PFGMCMDA 24 1 Byte OBC_INTEGER 10
PFGMCMDB 25 1 Byte OBC_INTEGER 11
SPP%02 55
PFTARGA 00 3 Bytes OBC_REAL 1
PFTARGB 03 3 Bytes OBC_REAL 2
PFT1MAX 06 2 Bytes OBC_REAL 3
PFT1MIN 08 2 Bytes OBC_REAL 4
PFT2MAX 10 2 Bytes OBC_REAL 5
PFT2MIN 12 2 Bytes OBC_REAL 6
PFGOALA 14 3 Bytes OBC_REAL 7
PFGOALB 17 3 Bytes OBC_REAL 8
PFOFSETA 20 2 Bytes OBC_REAL 9
PFOFSETB 22 2 Bytes OBC_REAL 10
PFRTMAXA 24 1 Byte OBC_INTEGER 1
PFRTMAXB 25 1 Byte OBC_INTEGER 2
SPP%03 56
PFPSCMDA 00 2 Bytes OBC_REAL 1
PFPSCMDB 02 2 Bytes OBC_REAL 2
fmm PFSLRATA 04 2 Bytes OBC_REAL 3
PFSLRATB 06 2 Bytes OBC_REAL 4
PFSSERRA 08 2 Bytes OBC_REAL 5
PFSSERRB 10 2 Bytes OBC_REAL 6
PFSTCUAl 12 2 Bytes OBC_REAL 7
PFSTCUA2 14 2 Bytes OBC_REAL 8
PFSTCUA3 16 2 Bytes OBC_REAL 9
PFSTCUB1 18 2 Bytes OBC_REAL 10
PFSTCUB2 20 2 Bytes OBC_REAL 11
PFSTCUB3 22 2 Bytes " OBC_REAL 12

LEVEL 0 OBC REPORT NAMES

H.2 OBC REPORT MNEMONICS)
The following sample code shows how to use the mnemonic;s defined
in UcsS_INCDIR:OBC_REP_PARMS.INC to refer to OBC report variables.
INCLUDE/LIST 'UCSS_INCDIR:OBC_REP_PARMS.INC'
INTEGER*4 ACS04, OBC_EX, OBC_EY, OBC_EZ
PARAMETER (ACS04 =04)
PARAMETER (OBC_EX =1) ! OBC_REAL = 02D
PARAMETER (OBC_EY =2) ! OBC_REAL s= 02 D
PARAMETER (OBC_E2 =3) ! OBC_REAL s= 02 D
C
C END OF INCLUDE FILE
CALL READLO (LID, REQ_TIME, RET_TIME, OBC_FRM,
1 PARITY, FILL, GAP_FLAG, TIME_ FLAG, EMAF_RATE,
1 VERSION, STATUS)
CALL OBCDECODE(OBC_FRM,ACSO4,REQ_TIME,RET_TIME,QUALITY,
1 OBC_REAL, INT_VAR,BYTE_VAR, OBC_REC,
2 STATUS)
C
C USE THE MNEMONICS CONTAINED IN THE INCLUDE FILE TO REFERENCE THE
C VALUES FOR EX, EY, AND EZ
C
EX = OBC_REAL (OBC_EX)
EY = OBC_REAL(OBC_EY)
EZ = OBC_REAL(OBC_EZ)
END ~ \\

APPENDIX I

GLOSSARY
ATC absolute time code
CCB Configuration Control Board
CDHF Central Data Handling Facility
CPU central processing unit
CRC cyclical redundancy check
DCF Data Capture Facility
DCL Digital Command Language
DEC Digital Equipment Corporation
EMAF engineering major frame
GE General Electric
GMT Greenwich Mean Time
GSFC Goddard Space Flight Center
I/0 input/output
JATC Julian format ATC
LID logical file identifier
NASA National Aeronautics and Space Administration
OBC onboard computer
PI Principal Investigator
RAC Remote Analysis Computer
SFDU standard formatted data unit
SMAF science major frame
SMIF science minor frame
UARS Upper Atmosphere Research Satellite
ucss UARS CDHF Software System
UDTF UARS date and time format
VAX Virtual Address Extension
VMS Virtual Memory System

APPENDIX J
REFERENCES

1. Goddard Space Flight Center (GSFC), Contractual Specification for
the UARS CDHF Software System (UCSS), NAS 5-29250.

2. ==, Statement of Work (SOW) for the UARS CDHF Software System
(UCSS), October 10, 1985, attached to GSFC Contract NAS 5-29250,.

3. ==, UARS Ground Data Processing Capability and Requirements
Document, GSFC Document No. 430-1401-00, February 1985.

4. =-, UARS Programmer's Guide to Orbit and Attitude Services, Augqust
1987 (preliminary).

5. Computer Sciences Corporation, CSC/SD-86/6705, Upper Atmosphere
Research Satellite (UARS) Central Data Handling Facility (CDHF)
Software System (UCSS) Requirements Analysis Document, July 1986.

6. =--, CSC/SD-87/6724, Upper Atmosphere Research Satellite (UARS)
Central Data Handling Facility (CDHF) Software System (UCSS) Critical
Design Specification, October 1987.

7. ==, CSC/SD-87/6729, Interface Control Document Between the Upper
Atmosphere Research Satellite (UARS) Central Data Handling Facility
(CDHF) and the Generic Time Division Multiplexed (GTDM) Data Capture
Facility (DCF), June 1987.

8. General Electric Astro Space Division, Program Information Release
(PIR) U-1K21-UARS~-7000, Preliminary Science Format Definition -
Including S/C Contribution, February 8, 1987.

9. Computer Sciences Corporation, CSC/SD-87/6725, Upper Atmosphere
Research Satellite (UARS) Central Data Handling Facility (CDHF)
Software System (UCSS) User's Guide, October 1987.

10. Consultative Committee for Space Data Systems, CCSDS 620.0-B-1,
Standard Formatted Data Units =-- Structure and Construction Rules

(draft), November 1987.

