Scalable and Resilient Network Traffic Engineering
Using Erlang-based Path Computation Element

Sébastien Merle*, Juan-Pedro Ferndndez-Palacios,
Oscar Gonzdlez-de-Dios', Llufs Gifret, Ricard Vilalta*, Peer Stritzinger*

*Peer Stritzinger GmbH, Germany
TTelefénica [+D, Madrid, Spain
ICentre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain

Abstract—Scalability and resiliency are two significant re-
quirements for upcoming beyond 5G networks. As network
resource usage is expected to increase, scalability of the control
plane handling the required amount of network resources is
also necessary. Moreover, resiliency of cloudified control plane
software mechanisms is also a requirement. This demonstration
presents an Erlang-based Path Computation Element (PCE) able
to perform traffic engineering for Segment Routing. Specific
scalability and resiliency properties are provided in order to
support transport connectivity in beyond 5G networks.

I. INTRODUCTION

Current cloudified beyond 5G networks will support cloud-
scale number of connectivity requests, including high variabil-
ity of network requirements to be supported on top of the same
infrastructure. To this end, network control and management
plane software is also proposed to be deployed using cloud
infrastructure to cope with these stringent requirements.

As one of the objectives of the TeraFlow OS, a transport
SDN controller [1], is scaling to support the large number
of concurrent flows required in a beyond 5G world, using
a language designed for telecommunications and offering
native tools for scalability and resilience is a big advantage.
Resilience mechanisms are also necessary in terms of allowing
the deployed control and management plane services to survive
to unknown states due to the inclusion of whiteboxes and
network disaggregation.

Erlang is a general-purpose functional language initially
developed by Ericsson to build high-performance telecom
switch systems. These systems are expected to scale hori-
zontally, handle a heavy load with very low latency, and run
practically forever without service interruption [2]. These spe-
cific requirements guided the design of the language: a) First-
class processes with strong isolation; b) Integrated support for
transparent distribution; ¢) High-level distributed coordination
mechanisms; d) Sophisticated fault tolerance abstractions; e)
Automatic memory management; f) Soft real-time support; and
g) Hot-loading software updates.

To summarise, Erlang and the Open Telecom Platform
(OTP) [3] are the pinnacles of thirty years of correct design
choices that directly apply to modern networking applications.
It takes direct advantage of the improvements in hardware
parallelism of the last decades. This makes Erlang an ideal
choice for the TeraFlow OS, and therefore adding native

support for Path Computation Element Protocol (PCEP) is a
natural step toward supporting scalable Traffic Engineering.

The objective of this demonstration is to present the current
state of our scalable and resilient Traffic Engineering PCE
implementation in Erlang, and how it can already be used for
steering traffic in a simulated network.

II. DEMONSTRATION AND RELEVANCE

The Erlang PCE spawns two processes per PCEP connec-
tion. The first one is handling the TCP/IP connection and the
encoding and decoding of the PCEP protocol into internal data
structures. The decoded PCEP messages are sent to the second
process that manages the protocol state machine and the cached
context data. This second process presents a high-level API to
the rest of the service that is mostly PCEP-independent. The
PCE itself is formed by a pool of processes each ones owning
a shard of the flow space. The PCE processes are aware of the
session processes with flows defined in their managed space.

With the Erlang virtual machine, more than a million
processes can be spawned on modern hardware, the main
limitation being the memory and the 10, offering good vertical
scaling. In addition, Erlang provides transparent distribution
and inter-process communication, making it possible for all
these processes to run on different physical machines, and
therefore scaling the system horizontally.

Erlang is a functional language where all the processes are
isolated and communicate between each other with messages,
there is no shared memory. This makes Erlang applications
reliable and fault-tolerant, as no state corruption is ever prop-
agated to the rest of the system. In addition, the native tools
for process monitoring and supervision allow the system to
heal itself automatically by restarting any failing process from
a known working state.

For this demonstration, we will simulate a network com-
posed of 6 interconnected routers, where both head-ends
routers are connected to a PCE through PCEP. The routers
are instances of Free Range Routing (FRR) daemons running
on a single desktop machine and the network is virtualized
using Linux namespaces (see Fig. 1). The Erlang PCE service
is responsible for creating packet flows between the head-
ends routers of the network, and modify them dynamically
for Traffic Engineering purposes.



eth-rt1 PCE eth-rt6é
9.9.9.9

RT2

1.1.1.1

RT4

eth-rt4-2 eth-rt2-2

eth-rt6é

4444

16020
eth-swi1

eth-pce

RT1
1411
16010

SRC
9.9.9.1

eth-rt1 eth-swi

eth-sw1

16040
eth-rt5

eth-pce

Fig. 1: Demonstration topology

By being a native Erlang application, the PCE can take
advantage of the concurrency and resiliency offered by the
language and can use native process communication with the
rest of the TeraFlow OS services implemented in Erlang. The
result is a scalable PCE with really low latency that might
integrate perfectly in an micro-service based SDN controller.

The PCE node is selected and the Erlang PCE is started in
console mode. Both headend routers can be seen connecting
to the PCE and receiving the default route for their requested
path. From the source node, the destination node is reachable,
meaning that a bidirectional packet flow has been established
between them. Using tcpdump on router 4’s second interface,
both the ICMP request and reply packets can be seen, confirm-
ing the path of the flow in the network has been established.

Going back on the PCE node, the Erlang console is used
to manually update the flow from router 1 to router 6 to pass
through router 5 (see Fig. 2). Inspecting the packets on router
5 shows the ICMP response has been steered through the new
path. For completeness, the Erlang console on the PCE node
is used to update the second flow from router 6 to router 1 to
pass through router 5 too (see Fig. 3). It can finally be seen
on router 5 that both ICMP requests and replies are following
the new established path.

III. CONCLUSION

This demonstration has presented a native Erlang applica-
tion performing Traffic engineering in a virtualized network,
allowing the TeraFlow OS to take full advantage of the
scalability and resiliency offered by the Erlang programming
language and the OTP framework.

ACKNOWLEDGMENT

Work partially supported by the EC H2020 TeraFlow
(101015857) and Spanish AURORAS (RTI2018-099178-100).

(1]

[2]

root@ubuntu20: ftmpinetgen
Received computation request for route from 6.6.6.6 to 1.1.1.1

. Computed route from 6.6.6.6 to 1.1.1.1: [16040,16020,16010]

info: . New delegated route from 6.6.6.6 to 1.1.1.1 status: going_up

info: .1] Starting PCEP session

info: [1.1.1.1:3] Received computation request for route from 1.1.1.1 to 6.6.6.6

info: [1.1. Computed route from 1.1.1.1 to 6.6.6.6: [16020,16040,16060]

info: [1.1.1. New delegated route from 1.1.1.1 to 6.6.6.6 status: going_up

:3] Delegated route from 1.1.1.1 to 6.6.6.6 status: active

18.176531-07:00 info: :2] Delegated route from 6.6.6.6 to 1.1.1.1 status: active

pcep_server_database: show_routes() .

6.6.6.6 : 16020, 16040, 16060
1.

: 16040, 16020, 16010
(epce@ubuntu20)2> pcep_server_database:update_route({1,1,1,1}, {6,6,6,6}, [16630,16050,16060]).
2021-87-22T04:38:42,020303-07:00 info: [1.1.1.1:3] Updating route from 1.1.1.1 to 6.6.6.6 with [16030,16050,16060]
ok
(epce@ubuntu20)3> 2021-87-22T04:38:42.272057-07:00 info: [1.1.1.1:3] Delegated route from 1.1.1.1 to 6.6.6.6 statu

38:42.272211-07:00 info: [1.1.1.1:3] Delegated route from 1.
38:45.029031-07:00 info: [1.1.1.1:3] Delegated route from 1.

1.1.1 to 6.6.6.6 status: going_up
1.1.1 to 6.6.6.6 status: active

EEE

Fig. 2: Update packet flow from router 1 to router 6

eee root@ubuntu20: ftmpnotgen

(epce@ubuntu20)1> pcep_server_database: show_routes().
1.1 6.6.6.6 : 16020, 16040, 16060
6.6.6.6 —> 1.1.1 : 16040, 16020, 16010
ok
(epce@ubuntu20)2> pcep_server_database:update_route({1,1,1,1}, {6,6,6,6}, [16030,16050,16060]).
2021-87-22T04:38:42,020303-07:00 info: [1.1.1.1:3] Updating route from 1.1.1.1 to 6.6.6.6 with [16030,16050,16060]

ok

(epce@ubuntu20)3> 2021-07-22T4:38:42.272057-07:00 info: [1.1.1.1:3] Delegated route from 1.1.1.1 to 6.6.6.6 statu
s: down

2021-07-22T 42.272211-07:00 info: [1.1.1.1:3] Delegated route from 1.1.1.
2021-07-22T04:38:45.029031-07:00 info: [1.1.1.1:3] Delegated route from 1.1.1.

1 to 6.6.6.6 status: going_up

1 to 6.6.6.6 status: active
(epce@ubuntu20)3> pcep_server_database:update_route({6,6,6,6}, {1,1,1,1}, [16650,16030,16010]).
2021-07-22T04:42:53.388849-07:00 info: [6.6.6.6:2] Updating route from 6.6.6.6 to 1.1.1.1 with [16050,16030,16010]

ok
(epce@ubuntu20)4> 2021-07-22T@4:42:53.640646-07:00 info: [6.6.6.6:2] Delegated route from 6.6.6.6 to 1.1.1.1 statu

640793-07:00 info: [6.6.
606922-07:00 info: [6.6.

:2] Delegated route from 6.
:2] Delegated route from 6.

1.1.1 status: going_up

6.6.6 to
6.6.6 to 1.1,1.1 status: active

Fig. 3: Update packet flow from router 6 to router 1

REFERENCES

R. Vilalta et al., “Teraflow: Secured autonomic traffic management for a
tera of sdn flows,” in EUCNC, 2021.

A. Lindberg, S. Merle, and P. Stritzinger, “Scaling erlang distribution:
going beyond the fully connected mesh,” in Proceedings of the 18th ACM
SIGPLAN International Workshop on Erlang, 2019, pp. 48-55.

“Erlang and otp,” accessed: 2021-07-22. [Online]. Available:
http://erlang.org/doc/system_architecture_intro/sys_arch_intro.html



