An Online Agent-Based Search Approach in Automated
Computer Game Testing with Model Construction

Samira Shirzadehha- L. S. W. B. Prasetya
jimahmood Utrecht University
Utrecht University the Netherlands
the Netherlands S.W.B.Prasetya@uu.nl
S.shirzadehhajimahmood@uu.nl
ABSTRACT

The complexity of computer games is ever increasing. In this setup,
guiding an automated test algorithm to find a solution to solve a
testing task in a game’s huge interaction space is very challenging.
Having a model of a system to automatically generate test cases
would have a strong impact on the effectiveness and efficiency of
the algorithm. However, manually constructing a model turns out
to be expensive and time-consuming. In this study, we propose an
online agent-based search approach to solve common testing tasks
when testing computer games that also constructs a model of the
system on-the-fly based on the given task, which is then exploited
to solve the task. To demonstrate the efficiency of our approach, a
case study is conducted using a game called Lab Recruits.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Interactive games.

KEYWORDS

automated game testing, model-based game testing, agent-based
testing, agent-based game testing

ACM Reference Format:

Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, and Mehdi
Dastani. 2022. An Online Agent-Based Search Approach in Automated Com-
puter Game Testing with Model Construction. In Proceedings of the 13th
International Workshop on Automating Test Case Design, Selection and Evalu-
ation (A-TEST °22), November 17-18, 2022, Singapore, Singapore. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3548659.3561309

1 INTRODUCTION

Recently, the computer games industry has seen the emergence
of advanced 3D games. These are often complex software due to
their high level interactivity and realism. There is already a large
body of research in automated software testing, proposing various
methods to decrease the manual effort. However, game testing is
more complex in comparison to more traditional software testing.
In games, the search space is huge, with no obvious structure.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

A-TEST °22, November 17-18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9452-9/22/11...$15.00
https://doi.org/10.1145/3548659.3561309

Frank Dignum Mehdi Dastani
Umeéa University Utrecht University
Sweden the Netherlands
fpmdignum@uu.nl MM .Dastani@uu.nl

In automated game testing, computer controlled player-characters
(agents) are used to test various aspects of a game, e.g. to verify
that a certain objective in a given game level is achievable and is
in the correct state. It would benefit testers if testing tasks can be
formulated abstractly. We then rely on the agent to automatically
execute such a task by searching for a ’solution’: a right sequence
of interactions that would bring the agent to the task objective, to
subsequently verify the objective’s state. Shirzadehhajimahmood
et al. showed that such a test is also robust (can cope better with
development time changes) [20], because the solution is searched
dynamically, rather than manually prescribed. To make this works,
the searching part is crucial. However, it is also the harder part to
automate, due to the huge interaction space, navigability, various
game rules (e.g. limited vision, players cannot see nor walk through
a solid wall), and long and complex game scenarios.

In computer games, solving a testing task requires a specific
sequence of actions to be taken; just randomly or greedily trying
them out does not work. In addition, games typically have elements
that resist the player, e.g. obstacles and hazards. When trying to
solve a task, an agent must also deal with these elements, which is
non-trivial as it may involve searching certain game objects and
controlling them e.g. to unblock some obstacles. Solving this by
applying the usual search based testing algorithm, such as evo-
lutionary [24], directly on the game under test is not a workable
option due to excessive computation time. Having a behavioral
model of the system under test would help. Ferdous et al. applied
model-based testing to automate the generation and the execution
of test cases from an Extended Finite State Machine (EFSM) model
[5]. However, constructing a model has to be done manually, and
hence costly. A major challenge faced by the game industry is the
lack of automated approaches for generating a model of the system
under test (SUT).

In this paper, we propose an online agent-based search approach
to do automated testing on modern computer games. Being an
on-line search approach, it does not require a full pre-constructed
model of the game under the test. Rather, given a model (EFSM)
that is only partially specified to capture only general properties
of the game, the remaining part of the model is constructed on
the fly during the search and exploited to aid the search process.
The approach is implemented on top of the agent-based testing
framework iv4XR [19]. Using agents is an appropriate approach to
deal with the high-level interactivity of computer games [19, 20]
thanks to agents’ inherent reactive programming model. We also
benefit from other agents’ related features such as goal-oriented
behavior and the possibility to do autonomous planning to make
the programming of test automation more abstract.

https://orcid.org/0000-0002-3421-4635
https://orcid.org/0000-0002-5103-8127
https://orcid.org/0000-0002-5148-3685
https://doi.org/10.1145/3548659.3561309
https://doi.org/10.1145/3548659.3561309

A-TEST 22, November 17-18, 2022, Singapore, Singapore

Paper structure. This paper is organized as follows. Section 2
describes the setup of our approach. Section 3 discusses the kind of
models that our algorithm constructs. Section 4 presents our online
agent-based search approach. Section 5 describes how to construct
the aforementioned model. Section 6 discusses the agent-based
implementation that we used. Section 7 discusses experiments we
conducted to asses the effectiveness of our approach. Section 8 and
9 cover related and future work, respectively.

2 PROBLEM SETUP

We assume an agent-based setup, e.g. a la iv4XR [19], where a test
agent is available to take the role of the player to control the game.
We can abstractly treat a game as a structure:

Game = (Nav,O,L) (1)

where Nav is a structure describing the navigable terrain of the
game world [13], O is a set of game objects, and L is a set of actions
available to the test agent. Game objects have properties such as
their positions, and being interactable or hazardous. The agent also
has its own properties, such as its position, and what it currently
sees. Objects such as doors are called blockers; they can block access
to other objects. Objects that can change the state of blockers are
called enablers, for example switches and keys. The overall game
state, also called configuration, comprises of the properties of the
objects and the agent.

The test agent is bound by typical game physics: it can only
travel over navigable terrain (Nav), and it can only observe objects
and parts of Nav that it physically can see (e.g. it cannot see through
a wall). So, initially Nav usually contains only a part of the terrain
where the agent starts. Typically, primitive actions available to
the agent are: moving in any direction for a small distance, and
interacting with an object 0. From these we assume the following
high level actions can be constructed, which comprise the set L in
(1); the construction was described e.g. in [18].

o navigateTo(0), to travel to the position of 0€O. This can be
done by implementing a path finding algorithm such as A*
[7, 13], applied on Nav.

o explore() incrementally explores the game world. It stops
when new terrain is sighted (and added to Nav). A graph-
based exploration algorithm such as [18] can be used.

e interact(o), to interact with o as mentioned above.

To test something the agent must be given a ’testing task’. An
elementary type of tasks is to simply verify whether certain states
of a game object o, characterized by a predicate ¢, are reachable
from the game initial configuration c;n;r, and furthermore satisfy a
certain correctness assertion ¢. For example, ¢, can be "a treasure
chest becomes visible", and i asserts that the agent should by then
collect enough game-points. Abstractly, this can be formulated as:

o = v @
—_ —_—

situation required to be reachable assertion

Complex tasks can be built by composing elementary tasks.

The problem to solve is to automatically perform a testing task,
given only a description as above. Note that this is a search problem:
the executing test agent needs to find a right series of actions that
reaches a state satisfying @,, while respecting the game rules. This

Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

search is far from trivial. Checking the assertion part is usually easy.
Our automated approach will consist of these two key elements:

On-the-fly Model. The search would be more effective if we
have a model as in model-based testing. However, since we do not
actually have a model, our search algorithm builds one on-the-fly,
and exploits it to help the search. We use Extended Finite State
Machine (EFSM) as the model, with a twist so that the EFSM also
captures physical navigability over Nav.

Online search. The proposed search approach, presented in
Section 4, is an online search, where the agent directly explores the
game under test. The benefit is that the agent can access accurate
state information from the game. A key element of the approach
is dealing with obstacles, which can have a great impact towards
solving the reachability part (the ¢-part) of a testing task.

3 HYBRID MODELS OF GAMES

As mentioned, our search algorithm constructs a model as it goes.
More precisely, an Extended Finite State Machine (EFSM) model
will be constructed. EFSM is expressive and commonly used for
modelling software systems [2]. This model should capture not
only the logic of a game, but also relevant physical aspects of the
world. This poses an additional challenge. Consider a simple game
level’ shown in Fig. 1, taken from a maze-like 3D game called
Lab Recruits !. To interact with an in-game button, e.g. b4, the
player should be close enough to it, which means the button should
also be reachable. So, when modelling a transition between states,
in addition to considering what it does, the transition must be
physically possible in the game world as well. Since the standard
use of EFSM does not capture physical navigability, we define a
’hybrid’ variation of EFSM that also captures this. Also, games
often have a concept of "zone’, so we add this as well. A zone is an
’enclosed’ part of Nav where the player can travel freely. Traveling
to another zone has to pass through an open blocker, such as a door,
that connects zones, or unblock it first, if it is blocked.

Figure 1: A screenshot of a level in a game called Lab Recruits.
The level’s objective is to open the treasure door.

Deviating from [2], we will represent our EFSM by a tuple:

M=(ST % P , a, Co) 3)
S—— S~——
to be constructed given by developer

Uhttps://github.com/iv4XR-project/labrecruits

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction

The last two components should be provided by the game devel-
oper; the rest is learned/constructed on the fly. Sand T € SXL X S
describe the states and transitions of M, as known to the agent
so far. L is the set of available actions listed in Section 2. Mem-
bers of S are also members of O in (1). Being in the state 0€S is
to be interpreted as: the agent is currently at the game object 0’s
location. As mentioned, objects have their own properties; their
values define the EFSM’s extended state. Transitions in T represent
physical travel on Nav: when two different states are connected by
a transition, it means that there is a path in Nav between the two
game objects represented by the states, that does not go through a
blocker in between. M’s other components:

e ¥ is a set of aforementioned ’zones’ in the game.

e P C SxS;when (i,0) € Pit means that the agent has learned
that interacting with i affects the object o.

e ¢ is a function that models the effect of interact (i) on the
objects in O, given the knowledge in P.

® ¢ is the initial "configuration’ of the system when it starts.
A configuration describes a concrete state of M (as opposed
to “abstract’ states S). It is represented by a pair (s, D) where
s € S (describing the agent’s current physical location) and
D is a vector of all objects’ properties in S.

An example of as model is shown in Fig. ??. The search algorithm
in Section 4 does not need to do on-model execution; it relies only
on the knowledge built in the first four components of M. However,
we want to note that the constructed M can be given to an off-line
model based testing (MBT) algorithm such as in [5] for generating
test sequences. For this, on-model execution is needed. Off-line
approaches are however outside this paper’s scope.

)
72,
“9ase 70

M

n
bz (Ry)
interact 1

oJaipblevu |
=

d2(Rz, R3)

navigateTo navigateTo

interact — {dr} C

Figure 2: An EFSM model of the level shown in Fig.1 The no-
tation e.g. b1 (R;) in a state means that the state represents the
object b1, and furthermore b1 is in zone R;. The P-component
of the model is described by an extra annotation e.g. — {d;}
on interact transitions. E.g. on b; it means that (b3, d;) € P. So,
toggling b, affects d;.

4 ONLINE AGENT-BASED SEARCH

In this section, we provide the details of our automated online
search algorithm to solve testing tasks. The algorithm takes three
parameters shown in line 1 in Algorithm 1. The first, ¢, = ¢/, is a
testing task as in (2). The algorithm interacts with the game under
tests, searching for a sequence of interactions that brings the game
to a state satisfying ¢, and then it checks (line 17) if ¢ is satisfied. If
it is, the test succeeds, and else a violation is concluded. Because the
algorithm is implemented on an agent-based framework (Section 6),

A-TEST ’22, November 17-18, 2022, Singapore, Singapore

and in the agent terminology ¢, is treated as a goal, the algorithm
can also be thought as an algorithm for solving a goal.

The parameter M = (S, T, %, P, @, cp) is an EFSM with the struc-
ture as in Section 3, intended to model the game under test. The
last parameter Nav is the navigable terrain of the game world men-
tioned in Section 2. The (S, T, %, P) part of M is treated as a state-
graph describing the game world; it will be denoted by Mssaregraph-
The sets of interactables and blockers in S will be denoted by I and
B;so, U B C S. Note that M;ategraph @nd Nav are initially empty
As the algorithm proceeds; these components will be incrementally
built based on what the agent observes within its visibility range.

The algorithm actually performs a two levels search, though
here we will focus on its higher level part. The lower level is used
to find a path to guide the agent to physically travel over walkable
regions (Nav) of the game world. In the setup defined in Section 2,
this functionality is encapsulated within the procedure navigateTo.
The upper level of the search is used to abstractly search at the
game-objects level; Algorithm 1 is formulated at this level. It in-
corporates some heuristics/policy to guide the search, which are
outlined below.

Algorithm 1 Online Search

1: procedure ONLINESEARCH(¢po = ¥/, M, Nav)

2 while —¢ do

3 parallel

4 || update Mszategraph

5: || if new states observed then

6 o’ « selectNode()

7 mark(o”) > mark it as visited
8 navigateTo(o’) using Nav

9 if o’ =0 & —¢, then
10: dynamicGoal (o', ¢)
11: else if o’ is a blocker & o.isblocked then
12: dynamicGoal (o', o’. =0’ .isBlocked)
13: else if there is terrain unexplored then explore()
14: else abort()
15: end if
16: end parallel
17: assert |/

To move forward from the agent current position, if the agent
sees new states, the heuristic selectNode() is invoked to select a
state o’ for the agent to go to. Else, when there is no new observed
state, the agent will invoke explore() to find new states. If the final
goal 0 is now in S, it will be selected as o’. Else, an unmarked o’
from the set [U B is selected. The selected o’ is then marked to
avoid choosing it again and causing the agent to run in an infinite
loop. The agent then navigate from its current position to o’; using
pathfinding over Nav. Additionally, Mg;4tegraph is updated in par-
allel the whole time; it will be invoked regardless of which steps
is taken; we will explain this later in Section 6. Nav is updated by
explore() in line 13.

If o’ is the final goal o, and it does not satisfy ¢,, the heuristic
dynamicGoal(0’, ¢,) is invoked to try to change its state to ¢,. Else,
if o’ is a blocker and o’ .isBlocked is true, dynamicGoal is invoked
with (o’, —0’.isBlocked) as a goal, to unblock the blocker. Let us
explain the heuristics used in selectNode() and dynamicGoal().

A-TEST 22, November 17-18, 2022, Singapore, Singapore

selectNode(). To go from one location in the level to another, we
use the transition in Mg;4zeGraph- If we can go directly from our
starting state to our goal state o, then life is simple. Otherwise we
explore MsaseGraph to travel through its states. This is done by se-
lecting an intermediate state to go to. To decide which intermediate
state should be selected, we apply a policy.

We give a higher priority to newly observed states. Moreover,
states in B have higher priority than states in I. Then, the distance
to the approximate location of the goal, if given by developers,
and the distance to the current agent position are considered. The
candidate closest to the goal is preferred, and else the one closest
to the agent. If in the new observation, there is no new blocker but
there is a state in B which is in the agent visibility range, the state
from the B is selected.

dynamicGoal(o’,). This procedure can be thought to deploy a
goal to change o’ to a state satisfying 5. It would try different
interactables which has not been touched in this endeavour. So,
we keep track of interactables that have been tried for o’; this is
done by mark, (i). Also note that changes on a state of an in-game
object might not be immediately observable by the agent. That
makes thing more complicated.

Algorithm 2 Dynamic Goal

1: procedure pYNAMICGOAL (0, 17)
2 while o’ does not satisfy n do
3 A —{(i,0") | (i,0") € P}
4: if A =0 then
5: A—{j| (j,a0) €T, jelI} > interactables nearest to o’
6 if A =0 then
7 A« {i| i€l iunmarked} > find unmarked enablers
8: if A =0 then
9: if there is terrain unexplored then
10: explore()
11: else
12: abort()
13: else
14: choose i € A, which is closest to the agent
15: mark, (i) > mark i as touched for o’
16: reach(i)
17: interact (i)
18: reach(o”)

To minimize the effort spent to change o’ (to make it satisfies
n), firstly, the list of pairs in P will be checked to see if there is
an i that would affect o”. If not, i is selected from the list I, if it is
not empty. Interactables in I having edges (transitions in T) to o’
are closer to o', and are hence preferred over interactables with no
edge to o’. If the above give multiple candidates, the i closest to the
agent is chosen. To interact with i, the agent typically should be
close enough to i; reach(i) will try to guide the agent to i. Because
i is seen before, the agent believes that there is a path to reach
it. However, on the way to i it might discover that the path has
become blocked, due to some previous toggling of an interactable.
In this case unstuck(i) is called to unblock the path.

After interacting with i the agent needs to check if this actually
changes o’ to . However, note that o’ might be far from the agent.
To check its state the agent needs to travel to it using reach(o’).
The same situation as with reach(i) may happen which requires
invoking unstuck(o’).

Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

If all states in I have been touched (no more candidates to try),
explore() is invoked to find a new state. The dynamicGoal(0’,) is
aborted if none of the states in I can change the o’ state and there
is no more space/states to explore.

Unstuck(e). Recall that this is invoked to unblock the path to a
destination object e that the agent tries to reach. Note that as the
agent search and explore, it also builds up the model M. We use M
to see if it gives us a solution in the form of an interactable i that
would unblock the path. The agent then interacts with i. Section 5
will explain how this is employed to unstuck the agent.

Example. As an example, consider a simple ’level’ shown in Fig. 1
taken from the game Lab Recruits. There are four buttons and three
doors in this level. The player is shown at the bottom left.

Definition 4.1. Imagine a testing task Ty where an agent has to
verify that the treasure door dr is reachable and can be opened.

To verify this, the agent invokes onlineSearch(¢q, = ¥, M, Nav),
where ¢y, = —dr.isBlocking and just true for ¢. In the algorithm,
the agent first needs to find a way to reach the treasure door dr.
Since the agent has a limited visibility range, it can not see the entire
room. Imagine its visibility range is inside the red circle around the
agent. The agent starts from its starting state (co). If the agent sees
a state, Ms;qreGrapn Will be updated. In this example, the agent can
see by and by; so they are added to S. As the treasure door is not in
the current S yet, select Node() is invoked to choose a state to move
forward. The distance from the agent position to the both of new
states by, by is calculated; by is selected based on the distance. In
the next step, navigateTo(bz) is called to move the agent from the
current position to bz. Then, the agent again updates Mg;4teGraph
as it can see new states in the new position.

In the new observation, a blocker d; is seen. Based on the heuris-
tic in selectNode(), the next o’ to move forward is d;. Since d;
is in the blocking state/closed, dynamicGoal(dy, —d;.isBlocked) is
invoked. The agent now switches to solve this intermediate goal
which is opening d;. Firstly, P is checked to find a button i such
that (i,d;) € P. However P is still empty; so, T is checked and
by, which is the nearest interactable to dj, is selected and marked
by markg, (b2). After interacting with by, the agent checks the
state of di. Suppose d; is now open, the goal that was set by
dynamicGoal() is then successfully achieved. In the current po-
sition, the agent has entered a new room. It would see more states,
hence increasing the chance of reaching the treasure door. The next
state to move forward is da, chosen by selectedNode(). Similar to
dynamicGoal(dy, —d.isBlocked), the agent now tries to open dy.
For this, b3 would selected, because it is the closest to dy. The agent
moves to the next room after opening dy. In the new room, the
agent observes by and moves to it.

In the current position, there is no new state that the agent can
select to move. Therefore, it falls back to exploring the world. Imag-
ine that the previous interaction with b3 also closed d;; the agent
is then stuck in the rooms. The aforementioned unstuck will be in-
voked to open a path out; re-toggling b3 opens d; again. The agent
can now explore the level; eventually it will see the treasure door.
At that time, the treasure door would be in S. However, the testing
task Tp is not achieved yet. To verify that the treasure door can be

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction

opened, dynamicGoal(treasuredoor, —treasuredoor.isBlocked) is
invoked; similar to dynamicGoal(dy, —d;.isBlocked).

5 ON-THE-FLY MODEL CONSTRUCTION

Recall that the onlineSearch algorithm in Section 4 requires a model
M, in particular its state-graph component. In our implementation,
this state-graph is represented as Prolog facts. The implementation
in Prolog gives us the flexibility to have rules for reasoning which
is important in the unstuck procedure used in the search algorithm.

As it is mentioned before, MszateGrapn = (S, T,Z, P) will be
gradually constructed based on what the agent observes during the
search. The first three elements will be immediately updated, if new
states are observed. Firstly, newly observed/seen states N are added
in the set of S, and tagged if they are interactables or blockers. E.g. if
a state s is a button, we register it as an interactable, whereas a door
is registered as a blocker. The next step is to update the transition
set T. Let s; be the agent’s current state. As the agent can see N
from the current state, there is thus a straight line path to navigate
and reach them, with no blocker in between. So, transitions s, — ¢
and t — s, for every t € N, with the transition label ‘navigateTo’
are added to T. If a state s is interactable, a transition from s; to
itself with the transition label 'interact’ will be added as well.

To detect in which zone these states are located, or we are in
a new zone, some steps need to be done. The first step is to get
the current zone based on s.. To know that newly observed states
are in the current zone, one state located in the current zone is
randomly selected (s;). Then, pathfinding on Nav is invoked to
check if there is a path between s, and each one of these states
when all blockers are closed. This is done by temporarily removing
the nodes in Nav that are occupied by the blockers in S, before
invoking the pathfinder. They are put back after the zone-checking.
If there is a path, the zone of the newly observed state will be the
current zone. If not, a new zone R is added to ¥ with newly observed
states as a member of R.

Consider again the example in Fig 1. The first states that are
observable by the agent at the beginning of the game are by and b;.
So, they will be added to S. Because both of the observed states are

interactable, two transitions with the ’interact’ label from each of

interact
these state to themselves are added in T; e.g. by Interact, b1. The

next step is to check in which zone they are placed. Because so far
¥ is empty, a new zone with by and b, as its member is registered
R = {b], bz} to 2.

In the proposed approach in section 4, whenever dynamicGoal(o”)
is invoked, and solved by an interactable i, we record this knowl-
edge by adding the entry (i, 0”) to P. In addition, toggling i may
open another blocker b which is on the way to o’. So, the pair of
(i, b € B) is added to P as well.

As an example of a reasoning rule over the model, expressed in
Prolog, the following states that two rooms/zones are neighbors if
there is a blocker shared by them, and hence connecting them:

R1 # Ry,
isBlocker(b),
inZone(Ry,b), inZone(Ry, b)

neighbor(Ry, Rp) :—

From this rule, we can define roomReachability(K, Ry, Ry) rule
as a K-step transitive closure of the neighbor-rule to describe a

A-TEST ’22, November 17-18, 2022, Singapore, Singapore

condition that two non-neighboring rooms are reachable from each
other because of K—1 other rooms in between that connect them.
The unstuck procedure from Section 4 uses this rule. Imagine the
agent is in some zone Ry and toggles i to unblock o” which is several
rooms away from Ry. After toggling i, some blockers di and dy in
Ry become closed, causing the agent to become locked in Ry, and
hence unable to find a way back to o’ to check its state. Suppose
dq is connected to Ry which leads to o’, and ds is connected to Rs,
away from o’. Opening one of these blockers will unstuck the agent.
Using the roomReachability rule allows the agent to choose the
right door to open. Note that simply re-toggling i is not always
an efficient way to unlock the agent, e.g. if i is far from dj, while
there is an i’ next to d; which can open it. Also, if i is the only
interactable that can open o’, re-toggling it closes o’ again.

6 IMPLEMENTATION

We implement our game testing approach using iv4XR?, a Java
multi-agent programming framework for game testing. The frame-
work is inspired by the popular Belief-Desire-Intent concept of
agency [8], where agents have their belief which represents infor-
mation the agent has about its current environment and their own
goals representing their desire.

The framework allows tests to be programmed at a high level,
hiding underlying details such as 3D navigation and geometric
reasoning. A* path finding is applied to provide an ability to auto-
explore the environment/world and to auto-navigate to a game-
entity, given its id (rather than its concrete position in the world)
[18]. This ability of auto navigation and exploration in-game world
is used in navigationTo(o) and explore() mentioned in Section 2.

Recall the testing task Tp from Definition 4.1. To solve Ty the
agent needs to find a right sequence of actions to reach the treasure
door. Such a goal is very hard for an agent to achieve directly. It
needs to be broken into subgoals to help the agent to solve the
original goal, in a way such that each lowest subgoal is simple
enough to be solved automatically. In iv4XR, we can define a ’goal
structure’ expressing such a decomposition using goal-combinators
provided by the framework. More precisely, a goal structure is a
tree containing basic goals as leaves and goal-combinators as nodes.
Each goal at the leaves formulates certain SUT states that we want to
reach, along with a so-called tactic to solve the goal. A tactic is a way
to hierarchically combine basic actions using tactic-combinators.

In our approach, complicated testing tasks can be formulated
purely at the goal level, without having to specify the needed tactics.
The latter were implicitly provided by our implementation as part
of its automation.

7 EXPERIMENT

To evaluate our approach, we conducted a set of experiments. We
use the aforementioned Lab Recruits (LR) game as a case study. It
is a maze-like 3D game; a screenshot was shown in Fig. 1. We have
doors as blockers, and buttons as interactables. Toggling a button
toggles the state of doors that are associated to it. LR allows new
game ’levels’ to be defined, which makes it suitable for experiments.
In gaming, the term levels refers to worlds or mazes that are playable
in the same game.

Zhttps://github.com/iv4xr-project/aplib

A-TEST 22, November 17-18, 2022, Singapore, Singapore

Research Questions.
o RQ1: How effective is our online agent-based search algorithm
in solving the given testing tasks?
e RQ2: Can the algorithm construct an accurate model of the
game under test?

Toward answering the research questions, we use LR levels that
were used in the Student Competition in the Workshop on Automat-
ing Test case Design, Selection and Evaluation (A-TEST) in 20213,
Fig. 3 shows the map of one of these levels (R7_3_3).

Figure 3: The layout of the R7_3_3 level. Lines indicate con-
nections between buttons and doors.

We applied our online search algorithm with two different se-
tups. (1) The setup Search uses the algorithm as in Section 4. So, it
exploits the on-the-fly constructed model to help in dealing with
complicated situations. For example, an interaction in the past
might close a door, causing the agent to become locked in a zone.
Using the model might help the agent to find a way to unlock it-
self; by interacting with the corresponding button to unblock the
right blocker. Moreover, exploiting the model can decrease the time
spent to solve a testing task, as the test agent would then know
how to unblock a blocker when it faces it again. (2) In the setup
Searchpgsic, the agent runs the same search algorithm, but it does
not have access to the constructed model; it can not thus exploit
the model.

A Random test algorithm is also applied to serve as a baseline.
This Random repeatedly alternates between exploring a given level
to discover game objects, and randomly choosing a pair of button
and door; it then toggles the button to find out if it opens the door.
If so the connection is recorded. This is repeated until its budget
runs out; we set this budget to be 1.2T where T is the time used by
Search to solve the same testing task. For each level Random is run
ten times.

The testing tasks posed to all levels is to verify that a chosen
closed door o is reachable and can be opened. This chosen o is
always a door that is important for completing the level, and whose
reachability is non-trivial. This corresponds to the ¢-part in (2).
The assertion part / is less important for this study, so it is just
true. To reach o, a sequence of actions is required to be done by the
agent. This sequence is not known upfront; only the id of o is given

3https://github.com/ivéxr-project/JLabGym/blob/master/docs/contest/contest2021.md

Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

Table 1: Levels’ features. Each contributes to their complexity.
R, B, D indicate the number of rooms, buttons and doors
in each level; init specifies the number of doors which are
initially open. The last three columns will be explained later.

level R B D v p init | Search Searchpgse Random
R311H 3 6 4 1 1 0 1 0 0.3
R4 11 5 8 6 1 1 0 1 1 0.1
R411IM 4 8 6 1 1 0 1 0 0.7
R522M 5 7 4 2 2 0 1 0 0.1
R7.2.2 7 7 6 2 2 0 1 1 0.6
R4_2 2 5 8 6 2 2 >0 1 1 0.9
R4 22 M 5 7 4 2 2 >0 1 0 0.4
R7.33 7 7 6 3 4 0 1 1 0.9

by developers to the agent; the agent should find the solution (the
aforementioned sequence) by itself.

Levels. The A-TEST levels provide a range of size and complexity
to test the algorithm. For a blocker o € O, let u(0) be the number of
interactables that can toggle o (in LR, o would be a door and p(o)
is the number of buttons connected to this door). For a game level,
the p1 of this level is the greatest ;:(0) over all blockers in the level.
Similarly, for an interactable i € O, v(i) is the number of blockers
that i can toggle. The v of a game level is defined as the greatest
v(i). Setups with y and v higher than 1 are complicated to solve.
The left part of Table 1 shows the features of the LR levels used in
our experiments. These levels have different difficulty for the agent
toward solving the corresponding testing task. For example, some
have v, y>1. Some have doors which are initially open (the column
init), which makes searching for a solution even more complicated,
as during the search the agent needs to try different buttons, and
one of them might actually close a door that was initially open.

7.1 Results

7.1.1 Evaluating the Ability to Find Solutions.

RQ1: How effective is our online agent-based search algorithm
in solving the given testing tasks?

To evaluate this, all levels in Table 1 are tested by an agent.
A testing task to open a door called the treasure door is given
to the agent. As the ground truth, the tasks are solvable and the
corresponding test should pass. The strength of our algorithm in
solving non-trivial tasks is assessed by the number of tests that
pass.

The last three columns in Table 1 show the results for Search,
Searchpgge, and Random; 1 means the corresponding testing task
is passed and 0 means it fails. For Random, a value p means that it
gives a pass verdict with probability p, sampled over 10 runs. Search
successfully solves the testing tasks on all levels, including the more
complex levels such as R4_2_2_M. In contrast, Searchp,g, is not
always successful (Table 1), implying that exploiting the model is
essential for solving the testing tasks. After looking at the failure
cases, we conclude that not only the functional relation between
the objects, but also the physical layout of the level plays a role to
solve a testing task without model exploitation. Random solves the
testing tasks with about 0.5 probability. Note that this also means
that it has 0.5 probability to give a false positive (falsely reporting
a bug) which makes it unfit for actual use.

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction

7.1.2 Evaluating the Constructed Model.

RQ2: Can our online agent-based search algorithm construct an
accurate on-the-fly model of the game under test?

To verify if the constructed model is accurate, we compare the
model against the actual level definition. In the constructed model,
we have the information about the number of zones, interactables,
blockers, and the P component. Also, the information about the
existing objects in each room can be found in the generated model.
The S (states), = (zones), and P components of the model are checked
manually.

Table 2 shows the results of Search and the Random algorithms;
Searchpyg;e is not included as Table 1 already showed that it is
inferior to Search. We can see that all but one button-door connec-
tions that Search registered in the model are correct in all levels.
In contrast, Random is quite obviously more prone to incorrectly
registering connections. The results of Search indicate how reliable
the on-the-fly constructed table P is when the agent exploits the
model to solve testing tasks. Also note that despite the inaccuracy,
all testing tasks are still solved (Table 1). Some of the mistakes in P
are acceptable as the agent can not immediately observe the effect
of toggling an interactable if the corresponding blocker is not in
the agent visibility range.

Table 2 also shows that most, but indeed not all, objects in each
levels are recorded by Search in the model it constructs. Keep in
mind that these data are recorded only by giving one testing task
(reaching and opening the treasure door) to the agent. We can
also see that the number of connections registered by Search and
Random is often almost the same, while the latter is given 20% more
time budget. Finding all objects and connections is not necessary, as
long the task is solved. However, if desired, we can apply different
testing tasks to obtain a more complete model, e.g. to make sure
that all interesting objects are registered.

To evaluate the efficiency of our algorithm, we measure the total
time to solve each testing task. We also measure the time spent
for purely exploring the level (when the agent does explore()) and
the number of blockers the agent tried to open until it solves the
task. Table 3 shows that the run-time of Search ranges between
one to four minutes. Note that the agent needs to travel between
various locations, e.g. to check them. Such travel simply takes time.
Table 3 also shows that the time spent exploring the game world
ranges between about 15% - 30% of the total time. The remaining
time is basically spent on actually solving the testing task; the more
proportion of time spent for this is the better.

8 RELATED WORK

Recently, testing has become an increasingly important instrument
for improving the quality of computer games. Research has provided
various methods [10, 15] towards automated game testing, but
they still require substantial manual work, e.g. to prepare models
[10] or to redesign and re-record test sequences when the game
is changed. Hence, researchers have been investigating ways to
combine automated testing and the application of techniques from
machine learning [3, 25, 27] in the context of game testing. E.g. Pfau
etal. [17] developed ICARUS to test and detect bugs in an adventure
game. Using an artificial agents to create player personas and letting
them evolve through playing is another recent approach used in
automated game testing [3, 14]. To approximate different play styles,

A-TEST ’22, November 17-18, 2022, Singapore, Singapore

Table 2: The accuracy of the constructed model for each level.
The column B/B shows the number of registered buttons
versus the number of all available buttons in each level. Sim-
ilarly we have R/R and D/D for rooms and doors. C/C and
R(C/C) show the number of button-door connections reg-
istered in the P component by Search and Random respec-
tively. We and R(W,) are the number of these recorded con-
nections, by Search and Random respectively, which are wrong.
For R(C/C) and R(W,) the number is the average over ten runs.
W, and W, are the number of buttons and doors which are
registered, by Search, in wrong rooms.

level RR BB D/D C/IC R(C/IC) W¢ RW¢e) Wi Wy
R3.1.1.H 2/3 5/6 2/4 2/4 2.3/4 0 0 0 0
R4 11 4/5 8/8 5/6 5/6 4.8/6 0 0 0 0
R4 1.1 M 3/4 8/8 5/6 5/6 4.5/5 1 0 0 0
R522M 5/5 5/7 4/4 5/6 3.1/6 0 0.1 2 1
R7.2.2 5/7 4/7 6/6 7/11 8.3/11 0 1.9 0 0
R4 22 4/5 7/8 5/6 1/9 5.2/9 0 0 0 0
R4 22 M 5/5 5/7 4/4 5/7 4.3/7 0 0.5 0 0
R7.33 4/7 3/7 6/7 7/16 14.9/16 0 2.7 0 1

Table 3: The performance of the algorithm on experiment’s
levels; time and exporation show the total run time and the
time spent purely on exploration in Search algorithm.

level tried doors time (s) exploration (s)
LR3 1.1 H 3 68 14%
R4_1_1 5 84 22%
R411M 5 139 17%
R5 22 M 6 140 19%
R7 2.2 4 146 28%
R4 .22 1 60 33%
R4 22 M 4 144 28%
R7.3.3 6 254 22%

Mugrai et al. [14] developed different procedural personas through
the utility function for a Monte Carlo Tree Search (MCTS) agent.
Similarly, Holmgard et al. [9] described a method for generative
player modeling through procedural personas and its application
to the automatic game testing. Agents are used to help playtest
games as well [4, 21, 22]. Zhao et al. tried to build agents with
human-like behaviour, aiming to help with game evaluation and
balancing [26]. However, all such types of Al also require much
training, which could make them impractical to be deployed during
the development time where SUT would undergo frequent changes.

Model-based testing [23] is a well known automated testing ap-
proach which has been used in various studies [1, 16]. However, its
application in computer games has not been much studied. Some
that we can mention is e.g the work of Iftikhar et al. [10] that used a
UML-based model to support automated system-level game testing
of platform games. Ariyurek et al. [3] use a scenario graph, which
is essentially an FSM, for generating asbtract test sequences. A rein-
forcement learning (RL) and MCTS agent is used to find a concrete
sequence of actions that realizes each abstract test sequence. A
more recent study is done by Ferdous et al. [5] that proposed an
EFSM model for modelling game behaviour and combined it with
search-based testing for test generation. Generating and executing
tests are automated. However, models often have to be manually
constructed. which requires a lot of efforts.

A-TEST 22, November 17-18, 2022, Singapore, Singapore

There are techniques that enables a computer to construct mod-
els, e.g. by ’inferring’ them from execution traces as in [6, 11, 12].
In [11], Lo et.al use a two staged inference: first a set of simple tem-
poral properties are statistically mined from the trace, then they
are used to guide the construction of a generalizing FSM. Lorenzoli
et al. [12] present a dynamic analysis technique using Daikon to
automatically generate an EFSM model of the system under test
from the interaction traces that also contain data values. The mod-
els inferred by these approaches are only applicable to trace with
specific characteristic, and depends on the quality of execution
samples used to produced them.

Although these approaches are automated, they use data traces
to capture the EFSM that limit its effect on modeling modern games
with high-level interactivity. On-the-fly model construction, such
as used in our algorithm, is very different from trace-based model
inference. The latter requires multiple executions, whereas in an
on-the-fly construction we only have one execution, though on
the other hand the test agent has control on how the execution
proceeds.

9 CONCLUSION

This paper focused on the challenges of automated testing on mod-
ern computer games. We proposed an online search algorithm on
top of the agent-based testing framework with on-the-fly model
construction. Having an on-line search means a full pre-constructed
model of the game under test is not required. The online algorithm
can deal with dynamic obstacles that can block the agent access to
other objects. In this study we do not consider hazard and mobile
objects and we restrict ourselves to toggling switches; this is done
in a separate study outside the scope of this paper. Based on the
applied heuristics, an agent explores the 3D game world to solve the
given testing task and unblocks the obstacles in its way. To aid the
search, an EFSM model is defined to capture only general properties
of the game; the remaining part of the model is constructed on the
fly, which is then exploited to solve the testing task.

To evaluate our approach, we conducted a set of experiments.
We used benchmarking levels that have different difficulty. It was
observed that the agent can successfully solve the given testing
tasks at all levels using the online search algorithm and exploiting
the constructed model. The constructed model is also verified by
comparing the result of the data set registered in the constructed
model with the actual data defined in each level. The results show
that the generated model is mostly correct and almost complete.

In the future, we would like to study how to improve the accuracy
of the constructed model to have a full model of the game under
test. Also, we would like to investigate how to exploit the model in
a mixed online and offline search.

REFERENCES

[1] Pelin Akpinar, Mehmet S Aktas, Alper Bugra Keles, Yunus Balaman,

Zeynep Ozdemir Guler, and Oya Kalipsiz. 2020. Web application testing with

model based testing method: case study. In 2020 International Conference on

Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 1-6.

VS Alagar and K Periyasamy. 2011. Extended finite state machine. In Specification

of software systems. Springer, 105-128.

[3] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. 2019. Automated Video Game
Testing Using Synthetic and Human-Like Agents. IEEE Transactions on Games
(2019).

[2

=

Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

[4] Igor Borovikov, Jesse Harder, Michael Sadovsky, and Ahmad Beirami. 2019. To-
wards interactive training of non-player characters in video games. arXiv preprint
arXiv:1906.00535 (2019).

Raihana Ferdous, Fitsum Kifetew, Davide Prandi, ISWB Prasetya, Samira Shirzade-

hhajimahmood, and Angelo Susi. 2021. Search-Based Automated Play Testing

of Computer Games: A Model-Based Approach. In International Symposium on

Search Based Software Engineering. Springer, 56-71.

[6] Michael Foster, Achim D Brucker, Ramsay G Taylor, Siobhan North, and John

Derrick. 2019. Incorporating data into efsm inference. In International Conference
on Software Engineering and Formal Methods. Springer, 257-272.

[7] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems

Science and Cybernetics 4, 2 (1968), 100-107.

Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao Xiao. 2017.

BDI logics for BDI architectures: old problems, new perspectives. KI-Kiinstliche

Intelligenz 31, 1 (2017), 73-83.

Christoffer Holmgérd, Michael Cerny Green, Antonios Liapis, and Julian Togelius.

2018. Automated playtesting with procedural personas through MCTS with

evolved heuristics. IEEE Transactions on Games 11, 4 (2018), 352-362.

Sidra Iftikhar, Muhammad Zohaib Igbal, Muhammad Uzair Khan, and Wardah

Mahmood. 2015. An automated model based testing approach for platform games.

In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering

Languages and Systems (MODELS). IEEE, 426-435.

David Lo, Leonardo Mariani, and Mauro Pezze. 2009. Automatic steering of

behavioral model inference. In Proceedings of the 7th Joint Meeting Of The Euro-

pean Software Engineering Conference and the ACM SIGSOFT symposium on The

foundations of software engineering. 345-354.

Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzé. 2008. Automatic gen-

eration of software behavioral models. In Proceedings of the 30th international

conference on Software engineering. 501-510.

Tan Millington and John Funge. 2019. Artificial intelligence for games, 3rd edition.

CRC Press.

Luvneesh Mugrai, Fernando Silva, Christoffer Holmgard, and Julian Togelius.

2019. Automated playtesting of matching tile games. In 2019 IEEE Conference on

Games (CoG). IEEE, 1-7.

Michail Ostrowski and Samir Aroudj. 2013. Automated Regression Testing within

Video Game Development. GSTF Journal on Computing 3, 2 (2013).

[16] Laura Panizo, Almudena Diaz, and Bruno Garcia. 2020. Model-based testing

of apps in real network scenarios. International Journal on Software Tools for

Technology Transfer 22, 2 (2020), 105-114.

Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated game

testing with icarus: Intelligent completion of adventure riddles via unsupervised

solving. In Extended Abstracts Publication of the Annual Symposium on Computer-

Human Interaction in Play. 153-164.

[18] ISWB Prasetya, Maurin Voshol, Tom Tanis, Adam Smits, Bram Smit, Jacco van
Mourik, Menno Klunder, Frank Hoogmoed, Stijn Hinlopen, August van Casteren,
et al. 2020. Navigation and exploration in 3D-game automated play testing. In
Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation. 3-9.

[19] 1. S. W. B. Prasetya, Mehdi Dastani, Rui Prada, Tanja EJ Vos, Frank Dignum,

and Fitsum Kifetew. 2020. Aplib: Tactical agents for testing computer games. In

International Workshop on Engineering Multi-Agent Systems. Springer, 21-41.

Samira Shirzadehhajimahmood, ISWB Prasetya, Frank Dignum, Mehdi Dastani,

and Gabriele Keller. 2021. Using an agent-based approach for robust automated

testing of computer games. In Proceedings of the 12th International Workshop on

Automating TEST Case Design, Selection, and Evaluation. 1-8.

[21] Fernando De Mesentier Silva, Igor Borovikov, John Kolen, Navid Aghdaie, and

Kazi Zaman. 2018. Exploring gameplay with AI agents. In Fourteenth Artificial

Intelligence and Interactive Digital Entertainment Conference.

Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. 2019. Artificial play-

fulness: A tool for automated agent-based playtesting. In Extended Abstracts of

the 2019 CHI Conference on Human Factors in Computing Systems. 1-6.

Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

model-based testing approaches. Software testing, verification and reliability 22, 5

(2012), 297-312.

[24] Xinjie Yu and Mitsuo Gen. 2010. Introduction to evolutionary algorithms. Springer
Science & Business Media.

[25] Imants Zarembo. 2019. Analysis of Artificial Intelligence Applications for Auto-
mated Testing of Video Games. In Proceedings of the 12th International Scientific
and Practical Conference. Volume II, Vol. 170. 174.

[26] Yungi Zhao, Igor Borovikov, Fernando de Mesentier Silva, Ahmad Beirami, Jason

Rupert, Caedmon Somers, Jesse Harder, John Kolen, Jervis Pinto, Reza Pourabol-

ghasem, et al. 2020. Winning is not everything: Enhancing game development

with intelligent agents. IEEE Transactions on Games 12, 2 (2020), 199-212.

Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,

Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic online

combat game testing using evolutionary deep reinforcement learning. In 34th

International Conference on Automated Software Engineering (ASE). IEEE.

[5

8

[

[10

[11

[12

[13

(14

[15

=
=

[20

[22

I
3

[27

	Abstract
	1 Introduction
	2 Problem Setup
	3 Hybrid Models of Games
	4 Online Agent-based Search
	5 On-the-fly Model Construction
	6 Implementation
	7 Experiment
	7.1 Results

	8 Related work
	9 Conclusion
	References

