Step By Step Instructions

This guide explains step-by-step how to compile and evaluate our mechanised proof.
Our proof artifacts consist of the following parts:

e The cdot/ directory contains sources of the mechanization of the cDOT calculus. The
proof is an extension of pDOT soundness proof.

e The lambda2Gmu/ directory contains sources of the mechanization of the Lambda2Gmu
calculus and lambda2Gmu_annotated/ contains sources of the variant with additional type
annotations, as described in the paper.

e The translation/ directory contains lemmas related to the translation: the typing of the
1ib term and an example showing inversion of tuple equality using our added inversion
rules.

Compiling the Proof

Our proof artifacts contain Coq proof scripts of the calculi in our paper. It compiles with Coq
8.13.0 and the TLC library. We assume that you have followed the instructions of our getting-
started guide to set up all requirements for compilation.

The translation proof depends on both cdot and lambda2Gmu_annotated , and
lambda2Gmu_annotated itself depends on lambda2Gmu . The following commands will compile
the proof in a proper order:

make -C cdot/

make —C lambda2Gmu/

make —C lambda2Gmu_annotated/
make —-C translation/

If each of the make command exits without error, all the proof artifacts are compiled
successfully.

Paper-to-Artifact Correspondence

Now we explain the correspondence between important definitions and lemmas in the paper
and their mechanised versions.

cDOT Calculus

https://github.com/amaurremi/dot-calculus/tree/master/src/extensions/paths

The mechanization of cDOT is in the cdot/ directory. Based on the soundness proof of pDOT,

the soundness proof uses the locally nameless representation with cofinite quantification to

represent terms. The Sequences library by Xavier Leroy is also included in our proof to ease the

reasoning about the reflexive, transitive closure of binary relations.

Definitions

Definition

Abstract syntax

Term typing
rules

Definition typing
rules

Subtyping rules

Invertible
subtyping rules

Reduction

Lookup

Theorems

Artifact File

cdot/Definitions.v

cdot/Definitions.v

cdot/Definitions.v

cdot/Definitions.v

cdot/SemanticSubtyping.v

cdot/Reduction.v

cdot/Lookup.v

Name of
Formalization

typ, trm

ty_trm

ty_def,
ty_defs

subtyp

subtyp_s

red

lookup_step

Proof Notation

X; bs; G-d : D,
X; bs; G+ ds :: T

G+—T<:U

(VI t) — (V', tl)

vIip~tl,vIp
~% T]

https://github.com/amaurremi/dot-calculus/tree/master/src/extensions/paths

Theorem Artifact File Name

Theorem 4.1 (Type Safety) cdot/Safety.v safety

Theorem 4.2 (Preservation) cdot/Safety.v preservation
Theorem 4.3 (Progress) cdot/Safety.v progress

Lemma 4.1 (Tag Resolution) cdot/CanonicalForms.v tag_resolution
Lemma 4.2 (Field Inversion) cdot/GADTRules.v invert_subtyp_fld_t
Lemma 4.3 (Type Member .

Tt cdot/GADTRules.v invert_subtyp_rcd_t
Lemma 4.4 (<:# to <:##) cdot/SemanticSubtyping.v tight_to_semantic
Lemma 4.5 (<:## to <:#) cdot/SemanticSubtyping.v semantic_to_tight
Lemma 4.6 (Field Inversion in cdot/GADTRules.v invert_subtyp_trm_s

<:##)

A2, Calculus

The lambda2Gmu/ and lambda2Gmu_annotated/ directories contain the mechanization of the
>\2,Gu calculus we encode into cDOT in the paper. The proof also employs the locally nameless
representation with cofinite quantification.

Definition
N . . Name of Proof
Definition Artifact File L. .
Formalization Notation

Abstract syntax lambda2Gmu_annotated/Definitions.v term

Operational o el ——>
) lambda2Gmu_annotated/Definitions.v red

semantics e2

Theorems

Theorem Artifact File Name

Theorem 5.1 . .
) lambda2Gmu_annotated/Preservation.v preservation_thm
(Preservation)
Theorem 5.2 (Progress) lambda2Gmu_annotated/Progress.v progress_thm
Translation

The translation/ directory contains the formalization of our encoding. It contains the typing
of the 1lib term and an example showing inversion of tuple equality using the inversion rules in
cDOT.

Definition/Theorem Artifact File Name
The 1ib term translation/Library.v libTrm
Lemma A.2 translation/Library.v libTypes

Tuple inversion example translation/DestructTupleLemma.v destruct_tuple_lemma

