
Step By Step Instructions
This guide explains step-by-step how to compile and evaluate our mechanised proof.

Our proof artifacts consist of the following parts:

The cdot/ directory contains sources of the mechanization of the cDOT calculus.
The
proof is an extension of pDOT soundness proof.
The lambda2Gmu/ directory contains sources of the mechanization of the Lambda2Gmu
calculus and lambda2Gmu_annotated/ contains sources of the variant with additional type
annotations, as described in the paper.
The translation/ directory contains lemmas related to the translation: the typing of the
lib term and an example showing inversion of tuple equality using our added inversion

rules.

Compiling the Proof

Our proof artifacts contain Coq proof scripts of the calculi in our paper. It compiles with Coq
8.13.0 and the TLC library. We assume that you have followed the instructions of our getting-
started guide to set up all requirements for compilation.

The translation proof depends on both cdot and lambda2Gmu_annotated , and
lambda2Gmu_annotated itself depends on lambda2Gmu . The following commands will compile

the proof in a proper order:

make -C cdot/

make -C lambda2Gmu/

make -C lambda2Gmu_annotated/

make -C translation/

If each of the make command exits without error, all the proof artifacts are compiled
successfully.

Paper-to-Artifact Correspondence

Now we explain the correspondence between important definitions and lemmas in the paper
and their mechanised versions.

cDOT Calculus

https://github.com/amaurremi/dot-calculus/tree/master/src/extensions/paths

The mechanization of cDOT is in the cdot/ directory. Based on the soundness proof of pDOT,
the soundness proof uses the locally nameless representation with cofinite quantification to
represent terms. The Sequences library by Xavier Leroy is also included in our proof to ease the
reasoning about the reflexive, transitive closure of binary relations.

Definitions

Definition Artifact File
Name of

Formalization
Proof Notation

Abstract syntax cdot/Definitions.v typ , trm

Term typing
rules

cdot/Definitions.v ty_trm G ⊢ t : T

Definition typing
rules

cdot/Definitions.v
ty_def ,
ty_defs

x; bs; G ⊢ d : D ,
x; bs; G ⊢ ds :: T

Subtyping rules cdot/Definitions.v subtyp G ⊢ T <: U

Invertible
subtyping rules

cdot/SemanticSubtyping.v subtyp_s

Reduction cdot/Reduction.v red (γ, t) ⟼ (γ', t')

Lookup cdot/Lookup.v lookup_step
γ ⟦ p ⤳ t ⟧ , γ ⟦ p
⤳* t ⟧

Theorems

https://github.com/amaurremi/dot-calculus/tree/master/src/extensions/paths

Theorem Artifact File Name

Theorem 4.1 (Type Safety) cdot/Safety.v safety

Theorem 4.2 (Preservation) cdot/Safety.v preservation

Theorem 4.3 (Progress) cdot/Safety.v progress

Lemma 4.1 (Tag Resolution) cdot/CanonicalForms.v tag_resolution

Lemma 4.2 (Field Inversion) cdot/GADTRules.v invert_subtyp_fld_t

Lemma 4.3 (Type Member
Inversion)

cdot/GADTRules.v invert_subtyp_rcd_t

Lemma 4.4 (<:# to <:##) cdot/SemanticSubtyping.v tight_to_semantic

Lemma 4.5 (<:## to <:#) cdot/SemanticSubtyping.v semantic_to_tight

Lemma 4.6 (Field Inversion in
<:##)

cdot/GADTRules.v invert_subtyp_trm_s

 Calculus

The lambda2Gmu/ and lambda2Gmu_annotated/ directories contain the mechanization of the
 calculus we encode into cDOT in the paper. The proof also employs the locally nameless

representation with cofinite quantification.

Definition

Definition Artifact File
Name of

Formalization
Proof

Notation

Abstract syntax lambda2Gmu_annotated/Definitions.v term

Operational
semantics

lambda2Gmu_annotated/Definitions.v red
e1 -->

e2

Theorems

λ ​2,Gμ

λ ​2,Gμ

Theorem Artifact File Name

Theorem 5.1
(Preservation)

lambda2Gmu_annotated/Preservation.v preservation_thm

Theorem 5.2 (Progress) lambda2Gmu_annotated/Progress.v progress_thm

Translation

The translation/ directory contains the formalization of our encoding. It contains the typing
of the lib term and an example showing inversion of tuple equality using the inversion rules in
cDOT.

Definition/Theorem Artifact File Name

The lib term translation/Library.v libTrm

Lemma A.2 translation/Library.v libTypes

Tuple inversion example translation/DestructTupleLemma.v destruct_tuple_lemma

