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ABSTRACT

This paper aims to provide a deep neural network (DNN)
considering the statistical properties of data for robust one-
class classification. To achieve that, we take advantage of the
properties of Wavelet Scattering Transform (WST) to guide
the DNN. WST is a translation-invariant image representa-
tion that retains high-frequency information for classification
while being stable to rotation. The resulting stable and low-
variance features make the clustering of data easier for DNN.
The importance of WST in guiding the DNN for the classifi-
cation of highly textured images is evaluated in terms of accu-
racy gain and robustness to outlier pollution. Superior robust-
ness to both translation and rotation is also demonstrated. The
method is not only evaluated in a standard computer vision
dataset (CIFAR10), but the use of largely invariant features
allows for coping with the more challenging case of satellite
imagery (EuroSAT).

Index Terms— One-class classification, Deep learning,
Wavelet scattering transform, Remote sensing, Sentinel-2 im-

agery.
1. INTRODUCTION

Deep learning has shown its huge potential in the field of im-
age classification. However, most of the deep learning mod-
els heavily depend on the quantity of available training sam-
ples [1]. In this article, we propose a wavelet-guided deep
neural network (DNN) to alleviate this issue by taking advan-
tage of the properties of Wavelet Scattering Transform (WST)
to extract invariant features for robust clustering. In the pro-
posed method, the network is trained on samples from only
one class in the training set and is evaluated on the test set
including all classes. This strategy has the benefit of not re-
quiring labeling for every class in the dataset.

In the first section, we focus on the one-class classification
task and discuss the challenges and benefits of some methods
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Fig. 1: For specified class of dataset, WST provides stable
scattered features to aid the DNN in minimizing the volume
of the hyper-sphere in latent space.

used in recent studies. One-class classification methods aim
to directly learn a decision boundary with a low error when
applied to unseen data [2]. Authors in [3] proposed a novel
method, called one-class transfer learning. They took into
account that in the field of computer vision, one can access
labeled data from different domains that are not related to
one-class classification datasets and benefit from using data
from a different domain. Similarly, in [4], authors utilize
the objective function inspired by information theory, which
maximizes the distance between normal and anomalous data
in terms of the joint distribution of images and their rep-
resentation. In [5], authors proposed a novel self-learning
technique, called GOAD, for classification-based anomaly
detection, which unifies current methods that use only normal
training data.

A prominent challenge of this task is the unsupervised na-
ture of the problem. Therefore, unlike supervised deep learn-
ing, it is unclear what useful representation learning objec-
tives for deep AD are. On the other hand, a Wavelet Scatter-
ing Transform (WST) network has been demonstrated being
useful for image classification. This network computes im-
age representations which are stable to rotation and preserves
high-frequency information for classification [6]. There are
many studies that exploited WST to improve the performance
of the model [7]. For instance, in [8] a WST is used to ex-
tract reliable features that are stable to small deformation and
rotation. The extracted features are used by a deep neural
network (DNN) model to predict the location. In addition,



authors in [9] proposed a 3D wavelet-domain convolutional
neural network for change detection in hyper-spectral images.

In this paper, we exploit a WST network to guide the DNN
for one-class classification. WST provides the invariant repre-
sentation which are informative because of keeping high fre-
quency of data. Using these properties, can cluster the normal
samples and distinguish outliers. At first, WST extracts scat-
tering coefficients from given images and then the network is
applied to them (Fig. 1). This leads to obtaining more robust
and accurate results. Furthermore, to address the problem of
the insufficient amount of training set for DNN, an adequate
initial feature extraction to ease the training task is essential.
A thorough evaluation confirmed superior performance and
robustness both to outliers (not normal samples) in the train-
ing set and to translation and rotation of test set. Furthermore,
we investigate the relationship between the entropy of images
and the guidance of WST for highly textured images. The
methodology is explained in the next section. The third sec-
tion presents the experiments. The results are discussed in
section 4 and conclusions are drawn in section 5.

2. METHODOLOGY

The study aims to find the similar samples to the normal
class and distinguish them apart from all other classes in the
dataset. Typically, this is treated as an unsupervised learn-
ing problem where the anomalous samples are not known a
priory. To achieve this, we exploit the WST as implemented
by [10] to aid deep SVDD [11]. The WST network cascades
wavelet transform convolutions with nonlinear modulus and
averaging operators [6]. In the first step, we extract the
scattering coefficients from data. For a given image X, the
zeroth-order scattering coefficient is the local average given
by S[0]x = | X * ¢os| where ¢y is a low-pass filter and the
integer J > 0 specifies the averaging scale 27 of the filter.
The first-order scattering coefficient is calculated by:

Shlx =X = x| * o 6]

where * is convolution and 1)y, is the first order wavelet filter
bank. More informative structures are captured by decom-
posing | X 1)y, | using the second-order filter bank )),. The
second order scattering coefficient is defined by:

S A]x = [|X % hx, [ % ha, | * oy @)

According to [6], the energy of scattering wavelet transform
is mainly concentrated on the less than third-order. There-
fore, we do not use higher order of scattering transform. In
order to obtain a locally translation-invariant scattering repre-
sentation for a given image X, we concatenate the scattering
coefficients as a vector:

Sx =[(S10]x) ", (Slx) T, (S A x) T 3)

In the second step, this scattering coefficients are used as
the input of a DNN. The DNN aims to minimize the volume
of the point cloud by finding a data-enclosing hyper-sphere of
the smallest size and learns useful feature representations of
the normal class samples. The network’s objective is to op-
timize the network weights W by minimizing the mean dis-
tance of normal samples from the center of the hyper-sphere
c. The loss function is defined by the following equation:

1 n K ,
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where Sk, is the vector of scattering coefficients for i*" sam-
ple of normal class, ¢(.; W) is feature representation in the
latent space of the network ¢ with K hidden layers, and TW*
are the weights of layer k. The second term is a weight decay
regularizer on the network parameters W with hyperparame-

ter A, where ||.||r denotes the Frobenius norm.

We must set a value for ¢ during the initialization pro-
cess. To achieve that, an auto-encoder is trained by max-
imizing reconstruction likelihood. Then the weights of the
pre-trained encoder are transferred to the DNN. The center
of hyper-sphere is obtained by feeding normal samples to the
pre-trained DNN and then calculating the mean values of the
network’s output, as formulated in the following equation:

1 n
c=- ; d(Sx,: W) )

To find the most relevant and most ambiguous samples, an
similarity score D has been defined. For a given test sample
X and the vector of scattering coefficients Sx, D is given by:

D(X) =||¢(Sx; W) — |3 (6)

The distance of each test sample from c in latent space can
be used as a measure for the network to make a decision. The
lowest score represents the most relevant (normal) sample and
the highest score the most ambiguous (anomalous).

3. EXPERIMENTS

3.1. Datasets

We study the performance of the approach on the well-known
CIFARI10 [12] dataset. We argue that the inclusion of the
WST step is even more crucial for more challenging tasks
like satellite scene classification. There are some reasons why
satellite scene classification is more challenging: (1) big intra-
class diversity, (2) high interclass similarity, (3) large variance
of object/scene scales, and (4) coexistence of multiple ground
objects [13]. To demonstrate this, we apply the method on a
benchmarked remotely sensed dataset, called EuroSAT [14].
It has been collected by the Sentinel-2A satellite and is com-
prised of ten classes with a total of 27000 labeled and geo-
referenced images. Fig. 2 shows one sample of each class,
chosen to describe the dataset visually.



Fig. 2: A sample of each class of EuroSAT dataset. First row
from left to right: Annual Crop (A.C.), Forest, Herbaceous
Vegetation (H.V.), Highway, Industrial. Second row: Pasture,
Permanent Crop (P.C.), Residential, River, Sea/Lake.

3.2. Scattering transform parameters

There are three parameters in WST network that play an im-
portant role on performance of classification. One parameter
is the number of layers of scattering network, M. We used
the second order (two layers) of the scattering (M = 2), as
suggested in [6]; higher order transforms are not useful be-
cause the resulting scattering coefficients have negligible en-
ergy [15]. Another parameter is the number of orientations,
L that plays an important role to extract a rotation-invariant
representation. The maximum scale order, J, is used in the
averaging filter. An analysis of the effect of these parameters
on the overall performance is provided in the next section.

3.3. Evaluation

For both datasets, we have 10 one-class classification setups.
In each setup, one of the classes is chosen as a normal class.
Therefore, the network is separately trained using the normal
class of each setup. We then evaluate performance on an inde-
pendent test set, which contains samples from all classes, in-
cluding normal and anomalous data. The model performance
is then quantified using the area under the Receiver Operat-
ing Characteristic (ROC) curve metric (AUROC). In order to
fairly compare results of each one-class classification setup, a
random seed is fixed (set to 1) for all setups.

4. RESULTS

The results are presented in three experimental evaluations.
The first one is a detailed performance evaluation in the ab-
sence of pollution. The second evaluates the robustness of
the method to translations and rotations, while the third one
explores the effect of outlier pollution on the performance.

4.1. Detailed evaluation in absence of pollution

The results of the first experimental evaluation on CIFAR10
and EuroSAT datasets are shown in Table 1 and Table 2, re-
spectively. Each row represents AUROC values in % for a

Normal L=6 L=8 No
Class J=2 J=3 J=4 J=2 J=3 J=4 WST
Airplanes | 68.31 50.41 40.12 | 69.01 57.19  54.69 58.08

Cars 66.78 5851 5298 | 6623 5957 56.68 | 62.85
Birds 571  58.64 5427 | 5261 5916 52.81 | 48.96
Cats 5579 5642 5326 | 5793 5353 573 | 57.19
Deer 6475 51.85  46.1 68.1 6404 467 | 57.58
Dogs 60.56 56.17 5873 | 58.68 4049 4421 | 63.83
Frogs 7751 6642 6027 | 7652 61.11 6138 | 58.73
Horses 6547 6256 5733 | 6428 6173 58.02 | 6143
Ships 7925 7269 6233 | 81.81 73.63 5835 | 76.88
Trucks 75.94 58.57 66.37 73.16 61.83 60.08 67.8
Average 67.146 59.224 55.176 | 66.833 59.228 55.022 | 61.333
Table 1: AUROC values in % on test set of CIFARI10.

Columns 2-7 show results using WST with different param-
eter settings. The best and second-best results are bold and
underlined, respectively.

Avg.  Normal L=6 L=8 No

Ent.  Class J=2 J=3 J=4 J=2 J=3 J=4 WST
5781 A.C 4345 3481 59.96 | 4426 5878 56.33 | 60.42
3.698 Forest 92.1 95.9 95.61 | 92.38 9384 9371 | 90.13
5.655 H.V 42.53 653 63.89 | 4457 66.95 63.54 | 40.14
5.942 Highway 4377 5971  60.19 | 46.06 61.34 60.59 | 46.28

6.836  Industrial 87.4 8426 7832 | 84.04 84.65 79.83  49.22

4.907  Pasture 7282 7523 7456 | 7327 7576 71.64 ‘ 72.08
6.189 PC 5349 63.05 72.61 | 63.88 72.82 69.63 38.46
6.126  Residential | 79.99 85 8536 | 86.87 77.52 7481 38.9
5391 River 5825 6778 62091 56.36  70.53 69.44 | 60.73
2.384 Sea/Lake 9537 8677 67.18 | 9352 9159 2431 96.13
Average 66917 71.781 72.059 | 68.521 75.38 66.383 | 59.249

Table 2: AUROC values in % for a each normal class of Eu-
roSAT. The first column compares average entropy of each
class. The columns 3-8 show results using WST with dif-
ferent parameter settings. The results for the classes with the
high entropy have been highlighted. The best and second-best
results are bold and underlined, respectively.

specific normal class and the best and second-best results are
bolded and underlined, respectively. The first column of Ta-
ble 1 provides the normal classes of CIFAR10 dataset. The
next six columns show results of the model using WST with
different maximum order of scale: J =2, J = 3,and J =4
when the number of orientation is fixed at L = 6 and L = 8,
respectively. The last column compares the results of the orig-
inal Deep SVDD [11]. Looking at the last row, it is clear that
the performance improves when a WST stage is added. When
we examine the values for each class more closely, we can see
that the majority of the best and second-best values are pre-
sented in columns of J = 2. This means that increasing the
maximum order of scale reduces the AUROC values for this
dataset. To better understand the method’s behavior, it is nec-
essary to evaluate its performance on another dataset too.
Since EuroSAT dataset has a high diversity of classes and
multiple ground objects in each sample (see Fig.1), we calcu-
late Shannon’s entropy [16] of classes. In information theory,
Shannon’s entropy quantifies the amount of information in a
variable and it used for the study of the theoretical foundation
of deep learning [17]. The first column in Table 2 compares
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Fig. 3: Average of AUROC in % using WST with different parameters and without WST versus percentage of pollution.

Normal Rotation Translation Rot. & Tran. Normal Rotation Translation Rot. & Tran.

Class SVDD WST | SVDD WST | SVDD WST Class SVDD WST | SVDD WST | SVDD WST
Airplanes | 48.09  59.44 57.15 66.88 | 47.21 57.55 A.C. 5372 5342 | 5559 53.85 | 5328 5344
Cars 55.67 60.24 57.88 62.4 5452  59.44 Forest 90.18 94.76 | 90.24 94.6 90.28 94.7

Birds 4724 4587 47.89 50.01 | 4935 4594 H.V. 39.17 60.65 | 40.25 6249 | 39.51 61.84
Cats 57.43 54.81 56.2 54.15 | 5574 53.14 Highway 44.8 61.27 | 43.63 5991 | 43.86 59.87
Deer 57.15 57.39 57.65 5696 | 58.23 56.8 Industrial 44.04 79.93 | 59.06 84.16 54.5 80.55
Dogs 58.97 56.41 59.35 56.66 | 58.09 54.29 Pasture 71.3 7876 | 71.18 78.03 | 71.51 79.41
Frogs 58.56 61.6 59.71 6477 | 58.05 62.18 PC. 36.33 6699 | 36.56 68.34 | 37.79 67.03
Horses 51.43 55.52 60.08 59.65 | 50.87 53.77 Residential | 35.35 7826 | 37.74 77.89 | 37.81 79.39
Ships 67.74  68.33 74.04 7537 63.7 62.72 River 60.17 67.59 60.2  70.57 | 60.68 69.37
Trucks 52.63 63.97 64.12 72.83 53.7 62.83 Sea/LLake 95.09 9228 | 95.69 92.02 | 96.01 92.2
Average 5549 58358 | 59.41 6197 | 5495 56.87 Average 57.02 7339 | 59.01 74.19 | 58.523 73.78

Table 3: AUROC values (in %) of CIFAR10 test set corrupted
by rotation, translation, and combined them.

the average entropy of the samples of each class. The last row
displays the average of all classes” AUROC values for each
method. The fact that the all values in last row are higher
than last column demonstrates the importance of WST. WST
compensates for DNN’s shortcomings on classes with a larger
average entropy. Classes with a high entropy such as Indus-
trial, Permanent Crop (P.C.), and Residential got more than
30% improvement.

4.2. Evaluation of the robustness to transformation

In order to evaluate the robustness to transformations, we
employ rotation, translation, and combination of them. The
trained models have been tested on transformed images of
the test set. The performance of the method (AUROC in % )
on CIFAR10 and EuroSAT is described in Table 3 and Table
4, respectively. In both cases WST demonstrates the high-
est robustness against all transformations. As EuroSAT has
not enough training samples (about 1800 each normal class),
WST aids the SVDD to learn more invariant features. The
higher differences of average AUROC for SVDD and WST
demonstrate it. Similar to Table 2, highly-textured classes
take more advantage of WST because of stable features.

Table 4: AUROC values (in %) of EuroSAT test set corrupted
by rotation, translation, and combined them.

4.3. Evaluation of the effect of pollution

Fig.3a and Fig.3b describe the results of the third experimen-
tal evaluation on CIFAR10 and EuroSAT datasets, respec-
tively. The error bar shows average and standard deviation
of AUROC values of all classes in % versus different ratios of
pollution. The results demonstrate the benefit of WST while
the training set is polluted by anomalies. Increasing the ra-
tio of pollution reduces the AUROC values of each method.
However, models using WST with appropriate parameters are
more robust compared to the original Deep SVDD (No WST).
This improvement is seen especially for the more complex
EuroSAT dataset. Fig. 3c shows the results of AUROC only
for Industrial class (highest entropy) versus the ratio of pol-
Iution. All models using WST outperform the original Deep
SVDD. We also witness small degradation of performance for
J = 3 and J = 4 while increasing the ratio of pollution.

5. CONCLUSIONS

In this paper we have proposed guiding DNNs for image one-
class classification with a wavelet scattering stage. The results
demonstrate the improvement brought by WST, especially on



more complex image data such as EuroSAT. The proposed
method alleviates the need for a large training set for the DNN
because it leverages WST to achieve more stable features (see
Table 4). The robustness to pollution in normal training set
and also robustness to transformation were discussed. In ad-
dition, it was observed that WST compensates for the limited
performance of the DNN for classes with high entropy (see
Fig.3c and the highlighted row in Table 2).
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