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Who am I?
Presentation

10-4 eV 1 TeV1 GeV100 MeV1 keV

Some papers to read further:

* TeV Instrumentation: current and future, J. Sitarek 2022, https://arxiv.org/pdf/

2201.08611.pdf

* Ground-based detectors in very-high-energy gamma-ray astronomy, M. de 

Naurois & D. Mazin, https://arxiv.org/pdf/1511.00463.pdf

* The future of gamma-ray astronomy, J. Knodlseder, https://arxiv.org/pdf/

1602.02728.pdf

* Ground- and Space-Based Gamma-Ray Astronomy, S. Funk, https://

www.annualreviews.org/doi/abs/10.1146/annurev-nucl-102014-022036


https://arxiv.org/pdf/1602.02728.pdf
https://arxiv.org/pdf/1602.02728.pdf
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1. What type of radiation do we want to observe? 
=> Spectral characteristics 
=> Morphological characteristics


     => Time domain 

2. How can we detect cosmic-rays/gamma-rays? 
=> Instrumental techniques 

3. What type of instruments we currently have?  
=> Satellites 
=> Imaging Array Cherenkov Telescopes (IACTs) 
=> Surface Arrays (SA) and Water Cherenkov Detectors (WCD) 
=> Cosmic-ray detectors*  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4. How can we improve them?  
 
=> Planned detectors: SWGO and CTA 
=> Other ideas ?


5. Multi-wavelength support 

6. Brainstorming
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High energy astrophysics 

• For electrons, the rest energy is: 
 




• For protons: 
 

    

E = mec2 ≃ 5 × 105 eV

E = mpc2 ≃ 109 eV

High-energy particles/cosmic rays:  
particles with energies much higher than the rest energy.  
 

1

Let’s calculate the temperature necessary to reach this energies in a black body



Black-body Spectrum 1	eV

X

105 eV 109 eV

gamma

Sun	surface

(photosphere)

EM	radiation	from	the	

Sun	and	the	stars is	

mainly	thermal

Blackbody	spectrum	

cannot	reach	g-ray	
energies	unless	T~108 K

Additionally,	very	high	T	

may	imply	high	opacity

(photons	would	not	

escape)	Example:	solar	

core	@	1.57×107 K,	

ρ≈150	g/cm3 ;		vs.	

surface	@	6×103 K

• For a thermal spectrum : < E > ∼
3
2

kBT
(kB = 8.62 × 10−5eV K−1)

T ∼
mec2

kB
∼ 0.6 × 1010K

• Need 109 K to produce MeV gamma-rays  
(1012 K for GeV gamma-rays)


• Such objects do exist (inside stars or in SNR explosions), but often screened or red-shifted  
=> Non thermal processes dominate MeV - TeV gamma-ray

T ∼
mpc2

kB
∼ 1013K
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Cosmic ray Spectrum

GeV TeV PeV

• Statistics! the observed flux is low

• Mainly protons (+electrons and heavier nuclei) coming 

from beyond the Solar system and extending >10 
decades in energy

1



Cosmic ray Spectrum

GeV TeV PeV

• Statistics! the observed flux is low

• Mainly protons (+electrons and heavier nuclei) coming 

from beyond the Solar system and extending >10 
decades in energy

1



Cosmic ray Spectrum

GeV TeV PeV

• Statistics! the observed flux is low

• Mainly protons (+electrons and heavier nuclei) coming 

from beyond the Solar system and extending >10 
decades in energy

1



Cosmic ray Spectrum

GeV TeV PeV

• Statistics! the observed flux is low

• Mainly protons (+electrons and heavier nuclei) coming 

from beyond the Solar system and extending >10 
decades in energy

1



Cosmic ray Spectrum

GeV TeV PeV

• Statistics! the observed flux is low

• Mainly protons (+electrons and heavier nuclei) coming 

from beyond the Solar system and extending >10 
decades in energy

• CRs are charged particles => deflected by magnetic 
fields

1



Cosmic ray Spectrum

Cronin, 2004

For high energy astrophysics 
we need neutral messengers

1



Gamma-ray radiation 
What type of radiation do we want to observe
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Hot	plasma

Excited	nucleus

particle		annihilation CR-ISM	collisions

curvature	
radiation

synchrotron inverse	
Compton

Nucleus	

bremmstrahlung

Relevant	beyond	Eg >	few	MeV
Production	of	high-energy	photons1
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=> Spectral characteristics

Synchrotron-Curvature

e± + B ⇒ Υ + e±lowerE  

1Gamma-ray radiation 

NAIMA
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What type of radiation do we want to observe?
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=> Spectral characteristics

Radio X-rays GeV 
(Satellites)

TeV (Ground-
based indirect 

detectors)
• Detection of photons from ~MeV up 

to ~PeV

• >> PeV => too low photon rate + 

CMB absorption 

• We need:

• Excellent energy reconstruction 

• Large collection areas 

1Gamma-ray radiation 

NAIMA



13

MUST: Good energy resolution (<20%) to resolve spectral features

H.E.S.S. Energy Resolution Energy Resolution 60%

What type of radiation do we want to observe?
=> Spectral characteristics

1Gamma-ray radiation 

GAMMAPY
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MUST: Good energy resolution (<20%) to resolve spectral features
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What type of radiation do we want to observe?
=> Morphological characteristics

Page 16

CRs Origin & Propagation: Connecting Galactic Structures

Proton-Proton

Synchrotron

B = 100uG

B = 10 uG

B = 3uG

Synchrotron

Inverse Compton

Proton-Proton
n= 5e3 cm-3

Studying CRs through their radiation imprints
R= 2√(! ")

| Galactic Factories of CRs | Emma de Oña Wilhelmi, Dec 2019

1Gamma-ray radiation 
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CRs Origin & Propagation: Connecting Galactic Structures

Proton-Proton

Synchrotron

B = 100uG

B = 10 uG

B = 3uG

Synchrotron

Inverse Compton

Proton-Proton
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What type of radiation do we want to observe?
=> Morphological characteristics

Page 16

CRs Origin & Propagation: Connecting Galactic Structures

Proton-Proton

Synchrotron

B = 100uG

B = 10 uG

B = 3uG

Synchrotron

Inverse Compton

Proton-Proton
n= 5e3 cm-3

Studying CRs through their radiation imprints
R= 2√(! ")

| Galactic Factories of CRs | Emma de Oña Wilhelmi, Dec 2019 Page 18

CRs Origin & Propagation: Connecting Galactic Structures

Proton-Proton

Synchrotron

Large Structures in Gamma-rays

Accelerators?

Studying CRs through their radiation imprints

300 pc

| Galactic Factories of CRs | Emma de Oña Wilhelmi, Dec 2019

HESS (TeV) in black
XMM (keV)  in blue
LAT ( skymap)

1Gamma-ray radiation 
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Large number of (extended) sources in the Galaxy 
Diffuse emission steaming from active regions

maximise the sky coverage & minimising 
the acceptance variations

What type of radiation do we want to observe?
=> Morphological characteristics

1Gamma-ray radiation 
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Cherenkov Radiation

 
Large number of (extended) sources in the Galaxy 
Diffuse emission steaming from active regions

maximise the sky coverage & minimising 
the acceptance variations

What type of radiation do we want to observe?
=> Morphological characteristics

1Gamma-ray radiation 



What type of radiation do we want to observe?
=> Morphological characteristics

MUST: Good angular resolution to resolve source confusion, multiple components and 
acceleration sites 

1Gamma-ray radiation 

GAMMAPY



What type of radiation do we want to observe?
=> Morphological characteristics

MUST: Good angular resolution to resolve source confusion, multiple components and 
acceleration sites 

Simulation: shell-like source with radius=0.7o and width=0.1o

H.E.S.S. Angular Resolution σ = 0.2o σ = 0.3o

1Gamma-ray radiation 

GAMMAPY



What type of radiation do we want to observe?
=> Morphological characteristics

MUST: Good angular resolution to resolve source confusion, multiple components and 
acceleration sites 

1Gamma-ray radiation 

Simulation: two nearby (0.7o) sources (size=0.2o)

H.E.S.S. Angular Resolution σ = 0.2o σ = 0.3o

GAMMAPY



What type of radiation do we want to observe?
=> Time imprints 

1Gamma-ray radiation 

Active Galaxy Nuclei 

Extragalactic Extended

Ti
m

es
ca

le

Distance

second

minute

hour

day

month

year+

pc kpc 10 kpc 100 kpc 1 Mpc 10 Mpc 100 Mpc 1 Gpc

Pulsars

Galactic 
Center

Galactic Binaries

GRBs

Novae

Adapted from J. Hinton



Instrumental techniques

19

2Gamma-ray detection 
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• Only photons in a very 
narrow window (radio 
and optical - look at the 
blue line!) are not 
absorbed in the 
atmosphere
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2Gamma-ray detection 

• Only photons in a very 
narrow window (radio 
and optical - look at the 
blue line!) are not 
absorbed in the 
atmosphere

• HE and VHE: Either put a 
detector above the 
atmosphere or look at 
the indirect radiation



Instrumental techniques
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2Gamma-ray detection 







Compton scattering detector.

pair-production telescope



Instrumental techniques
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2Gamma-ray detection 





Satellites (E > 100 MeV)
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3Gamma-ray detection 

Based on Pair-Conversion mechanism



Satellites (E > 100 MeV)
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3Gamma-ray detection 



https://www.youtube.com/watch?v=ESkHDCEAqZk


https://www.youtube.com/watch?v=ESkHDCEAqZk


Satellites (E > 100 MeV)
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3Gamma-ray detection 



Satellites (E > 100 MeV)
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3Gamma-ray detection 
NASA, 2022



Satellites (E > 100 MeV)
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3Gamma-ray detection 
Fermi Collaboration
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3Gamma-ray detection 
Fermi Collaboration



Gamma-ray detection 
Satellites (E > 100 MeV)3

Fermi Collaboration



Satellites (E > 100 MeV)

34

3Gamma-ray detection 

• Main background => Gamma-ray diffuse emission from the CR sea

• Small effective area results in extremely low
detection rates at E > 100 GeV, even for strong sources :  
FCrab Nebula,E>100GeV  @ 100 photons/m2/year 
That means: 1 gamma-ray / 3 hours above 30 GeV 

• Calorimeter depth ≤ 10 radiation lengths, which corresponds to ~1 ton per m2 
(which is hard to put into orbit) => VHE showers leak out of the calorimeter



Satellites (E > 100 MeV)
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3Gamma-ray detection 

• Current satellites are too small to “stop” VHE g-rays, and also fail to collect 
enough of them


• Fortunately, for the same reason, the Earth’s atmosphere is too thin to avoid 
the effects of the absorption of a VHE g-ray to be detectable from the ground


=> Solution: a “pair conversion telescope” in which the atmosphere is part of 
the detector
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Gamma-ray detection 
Ground-based detectors (E > 50 GeV)3
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Gamma-ray detection 
Extensive Air Showers (EAS)3

• Discovered	in	1938	by	Pierre	Auger

Most	frequent	processes	in	showers:
• Electromagnetic	showers:

– g ¾¾® e+ e- (pair	production)
– e± ¾¾® g (bremsstrahlung)

• Hadronic	showers:
– CR	+	atm.	nucleus¾®p°,	p± +	N*

– p± ¾¾¾¾¾® µ± +		n

– p° ¾® g g ¾® e.m.	showers



38

Gamma-ray detection 
Extensive Air Showers (EAS)3

Electromagnetic Hadronic
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Gamma-ray detection 
Extensive Air Showers (EAS)3

Electromagnetic Hadronic
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Gamma-ray detection 
Extensive Air Showers (EAS)3

Simulated	gamma
50	GeV

Fabian	Schmidt,	Leeds	university
http://www.ast.leeds.ac.uk/~fs/showerimages.html

Simulated	proton
100	GeV

Fabian	Schmidt,	Leeds	university
http://www.ast.leeds.ac.uk/~fs/showerimages.html

muons
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Gamma-ray detection 
Extensive Air Showers (EAS)3

Simulated	gamma
1	TeV

Fabian	Schmidt,	Leeds	university
http://www.ast.leeds.ac.uk/~fs/showerimages.html

Rough	
dimensions

~10	km	above	
sea	level

~	
5	
km

1	TeV		gamma

~20	m

(note	that	x-axis	scale	is	always	
exaggerated	for	viewing	purposes)



42

Gamma-ray detection 
Extensive Air Showers (EAS)3
• The altitude of the detector helps on detecting showers at different energies

• How to detect these particles? Cherenkov radiation
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Gamma-ray detection 
Cherenkov radiation3
• Emitted whenever a charged particle traverses a medium at a speed larger than that of 

light in the medium 

• The radiation results from the reorientation of electric dipoles induced by the charge in the 
medium. When v > c/n  the contributions from different points of the trajectory arrive in 
phase at the observer as a narrow light pulse
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Gamma-ray detection 
Cherenkov radiation3

If	e± shower	extinguishes	before	reaching	
observation	level	(E<	a	few	TeV)	:	Plateau	up	to	
the	hump,	then	fast		drop

Else,	C-light	density	is	maximum	
at	shower	core	and	drops	
exponentially	with	R	

Note	above:	for	a	given	E0,	a	g-
ray produces	far	less	light	than	
a	hadron!

100	GeV

50	GeV

20	GeV

10	GeV

5	GeV

D.	Sobczynska,	 CORSIKA	simulations
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Gamma-ray detection 
Cherenkov radiation3
Arrival of Cherenkov light on the ground

Gamma 100 GeV Proton 200 GeV

CORSIKA simulation, A. Moralejo

• Good news: the effects of the interaction of a 
VHE g-ray in the atmosphere are spread over 
a large area on the ground  
=> very large effective areas are achievable 
=> VHE g-ray astronomy is feasible despite 
the low fluxes

• Problem: CR showers are more numerous and represent an isotropic background
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Gamma-ray detection 
Cherenkov radiation3
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Gamma-ray detection 
Arrays of particle detectors3
• Detectors sample the tail of atmospheric shower that reaches the ground.

• Available information: particle density and arrival time at each detector position.
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Gamma-ray detection 
Arrays of particle detectors3
• Detectors sample the tail of atmospheric shower that reaches the ground.

• Available information: particle density and arrival time at each detector position.

• Angular and energy resolutions are 
limited: we are only sampling the 
tail.


• g-hadron separation possible 
through density inhomogeneities in 
CR showers, specially “muon 
tagging.”


• Duty cycle 100%: operate day and 
night.


• Large FOV: several srad.



47

Gamma-ray detection 
Arrays of particle detectors3
• Particle detectors can be scintillators or water tanks (or both) 

• Threshold (CASA-MIA/1600 m) ~ 0.1 PeV

• Threshold (ASg / 4300 m) ~ 10 TeV

Muon detectors

Cherenkov telescopes
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Gamma-ray detection 
Arrays of particle detectors3
• Particle detectors can be scintillators or water tanks (or both): HAWC
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Gamma-ray detection 
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Gamma-ray detection 
Arrays of particle detectors3
• Particle detectors can be scintillators or water tanks (or both) : LHAASO

• Threshold (LHAASO/4410 m) ~ 30 TeV

•

~5000 scintillator counters

~1200 muon detectors

• + 80,000 m2 water Cherenkov

• + Cher/fluorescence telescopes

Cao et al 2022
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Gamma-ray detection 
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Gamma-ray detection 
Arrays of particle detectors3
• Particle detectors can be scintillators or water tanks (or both) : LHAASO

Cao et al 2022



• Even on top of the highest mountains, the number of 
particles reaching the ground for showers initiated by g�s
of E < a few hundred GeV is very small Þ a different 
technique is needed for g astronomy, other than the 
direct detection of shower particles

• The atmospheric Cherenkov light from EAS can be used 
for this purpose

• Large photon collection areas are desirable (fainter 
showers Þ lower energy threshold)

• Caveat: low duty cycle ≈ 10% (clear, dark nights)
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Gamma-ray detection 
The Cherenkov Technique3
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Gamma-ray detection 
The Cherenkov Technique3



The IACT Technique
Detecting high energy photons
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Cherenkov Radiation

Electromagnetic Hadronic

• From the shape => gamma/hadron separation
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• From the axis    => arrival direction / angular resolution



The IACT Technique
Detecting high energy photons

57

Cherenkov Radiation

Electromagnetic Hadronic

• From the shape => gamma/hadron separation
• From the axis    => arrival direction / angular resolution
• From the ‘size'  => light / energy resolution 
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Gamma-ray detection 
The Cherenkov Technique3
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Gamma-ray detection 
The Cherenkov Technique3



59

Gamma-ray detection 
The Cherenkov Technique3

Moralejo 2018
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• Improve analysis for large FoV 

Ring Background Field of view Background 

→ uses the whole FoV 

→ tabulated using extragalactic FoVs, for different zenith angles 

→ applied for each run separately 

→ assume radial symmetry

Gamma-ray detection 
The Cherenkov Technique3
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Gamma-ray detection 
The Cherenkov Technique3

Moralejo 2018

• Improved reconstruction techniques (3D)
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Gamma-ray detection 
The Cherenkov Technique3
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Pros and Cons
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Gamma-ray detection 3
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E=[100MeV - >100 GeV] 

PSF ~0.1-3o


Aperture > survey

Duty Cycle ~95%
Sa

te
lli

te
s

Gamma-ray detection 3
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E=[10 - >1000] TeV

PSF ~0.2-0.7o

Aperture > 2 sr


Duty Cycle ~90%


Particle Detectors

E=[100MeV - >100 GeV] 

PSF ~0.1-3o


Aperture > survey

Duty Cycle ~95%
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Gamma-ray detection 3
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E=[10 - >1000] TeV

PSF ~0.2-0.7o

Aperture > 2 sr


Duty Cycle ~90%


Particle Detectors

E=[0.02 - 100] TeV

PSF ~0.05o


Aperture ~0.003 sr

Duty Cycle ~10%


IACTs

E=[100MeV - >100 GeV] 

PSF ~0.1-3o


Aperture > survey

Duty Cycle ~95%
Sa

te
lli

te
s

Gamma-ray detection 3
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Gamma-ray detection 3

0.1o correlation radius

RingBgHESS & HAWC Coll. 2021

Ring Background 



Pros and Cons
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Gamma-ray detection 3

HESS & HAWC Coll. 2021

Field of view Background 

0.4o correlation radius

FoVBgHESS & HAWC Coll. 2021
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Future facilities 
Planned instruments4
• What kind of instruments we need?

100 MeV 100 GeV 1 TeV 100 TeV

Satellites

IACTs

EAS arrays

?

=> What kind of science goals we want to achieve?  
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Understanding particle acceleration in our Galaxy 
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Future facilities 
Planned instruments4
Understanding particle acceleration in our Galaxy 

Sensitivity x 10

Arcminutes Angular 
 Resolution

10% Energy  
Resolution

Wide Energy  
Range

Full Sky 
Coverage
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Future facilities 
Planned instruments4
A Census of Cosmic Particle Accelerators, at all scales

Sensitivity x 10

Arcminutes Angular 
 Resolution

10% Energy  
Resolution

Wide Energy  
Range

Full Sky 
Coverage

Low energies
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Future facilities 
Planned instruments4
Large scale gamma-ray emission

Sensitivity x 10

Arcminutes Angular 
 Resolution

10% Energy  
Resolution

Wide Energy  
Range

Full Sky 
Coverage

Low energies

Large Field  
of View
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Future facilities 
Planned instruments4
Understanding jets and relativistic outflows such GRBs

Sensitivity x 10

Arcminutes Angular 
 Resolution

10% Energy  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Wide Energy  
Range
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Coverage

Low energies

Large Field  
of View
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PeV MeV - GeV GeV - > 100 TeV

eASTROGAM

DAMPE

AdePT

HERD

….

Future facilities 
Planned instruments4
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Future facilities 
The Cherenkov Telescope Array4

One observatory with two sites 

Full Sky 
Coverage
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Boosting:
- Increase sensitivity by up to a factor ~6 at 1 TeV 
- Increase the detection area for transients and at the 
highest energies 
- Increase the angular resolution/maintaining a large FoV
New:
- Energy coverage: tens of GeV => >100 TeV (~300 TeV) 
- 2 Sites, flexibility of operation, allowing for sub-arrays 
and multi-mode  
- Operate as an observatory
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Future facilities 
The Cherenkov Telescope Array4

Large Collection Area 
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The Cherenkov Telescope Array4

Sensitivity to transient events
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Future facilities 
The Cherenkov Telescope Array4

Sensitivity to transient events Angular resolution
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Future facilities 
Southern Wide-Field Gamma-ray Observatory4
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Future facilities 
More ideas?4
• A GeV telescope much bigger than LAT to increase the effective detection area would soon hit 

the maximum capacities of existing (and also planned) launch vehicles. 
=> Improve angular resolution 
   => decrease the density of  the material in the tracker / space the tracking element apart

• The TPC (gaseous time projection chamber ) serves 
as three-dimensional imager of electron-positron 
pair tracks arising from pair conversion of incoming 
photons in the detector volume.


• Silicon tracker, a 3D-imaging scintillator calorimeter, 
and a plastic scintillator anti-coincidence shield
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Future facilities 
More ideas?4
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The Multi-Wavelength Picture5 de Almeida 2019
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What do we expect in the next years? 
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1. Choose your fav science case(s)


2. Think what do you need to prove your hypothesis 

1. which energy range?

2. what do you expect to see in terms of spectrum/

morphology/time-domain?


3. How precise does your measurement has to be?


4. Do you need MWL support? 


5. What type of instrument you need in the gamma-ray?


6. If you would have an infinity amount of money, what 
type of instrument could we build? how can you 
improve the current and planned instruments? 
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Source Confusion



CTA Simulation based on GPS Pulsars ATNF

Source Confusion
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