Source code for kai.reduce.sky

from astropy.io import fits
from astropy.table import Table
from astropy import stats
import os, sys, shutil
from kai.reduce import util
#import util
import numpy as np
from pyraf import iraf as ir
from kai import instruments
from datetime import datetime
import pdb
import astropy
from pkg_resources import parse_version

[docs]def makesky(files, nite, wave, skyscale=True, raw_dir=None, instrument=instruments.default_inst): """ Make short wavelength (not L-band or longer) skies. Parameters ---------- files : list of int Integer list of the files. Does not require padded zeros. nite : str Name for night of observation (e.g.: "nite1"), used as suffix inside the reduce sub-directories. wave : str Name for the observation passband (e.g.: "kp") skyscale : bool, default=True Whether or not to scale the sky files to the common median. Turn on for scaling skies before subtraction. raw_dir : str, optional Directory where raw files are stored. By default, assumes that raw files are stored in '../raw' instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ # Make new directory for the current passband and switch into it util.mkdir(wave) os.chdir(wave) # Determine directory locatons waveDir = os.getcwd() + '/' redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/') rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/') skyDir = waveDir + 'sky_' + nite + '/' # Set location of raw data rawDir = rootDir + 'raw/' # Check if user has specified a specific raw directory if raw_dir is not None: rawDir = util.trimdir(os.path.abspath(raw_dir) + '/') util.mkdir(skyDir) print('sky dir: ',skyDir) print('wave dir: ',waveDir) skylist = skyDir + 'skies_to_combine.lis' output = skyDir + 'sky_' + wave + '.fits' util.rmall([skylist, output]) nn = instrument.make_filenames(files, rootDir=skyDir) nsc = instrument.make_filenames(files, rootDir=skyDir, prefix='scale') skies = instrument.make_filenames(files, rootDir=rawDir) for ii in range(len(nn)): if os.path.exists(nn[ii]): os.remove(nn[ii]) if os.path.exists(nsc[ii]): os.remove(nsc[ii]) shutil.copy(skies[ii], nn[ii]) # Write out the sources of the sky files data_sources_file = open(redDir + 'data_sources.txt', 'a') data_sources_file.write('---\n# Sky Files ({0})\n'.format(wave)) for cur_file in skies: out_line = '{0} ({1})\n'.format(cur_file, datetime.now()) data_sources_file.write(out_line) data_sources_file.close() # scale skies to common median if skyscale: _skylog = skyDir + 'sky_scale.log' util.rmall([_skylog]) f_skylog = open(_skylog, 'w') sky_mean = np.zeros([len(skies)], dtype=float) for i in range(len(skies)): # Get the sigma-clipped mean and stddev on the dark img_sky = fits.getdata(nn[i], ignore_missing_end=True) if parse_version(astropy.__version__) < parse_version('3.0'): sky_stats = stats.sigma_clipped_stats(img_sky, sigma=3, iters=4) else: sky_stats = stats.sigma_clipped_stats(img_sky, sigma=10, maxiters=4) sky_mean[i] = sky_stats[0] sky_all = sky_mean.mean() sky_scale = sky_all/sky_mean for i in range(len(skies)): _nn = fits.open(nn[i], ignore_missing_end=True) _nn[0].data = _nn[0].data * sky_scale[i] _nn[0].writeto(nsc[i]) skyf = nn[i].split('/') print(('%s skymean=%10.2f skyscale=%10.2f' % (skyf[len(skyf)-1], sky_mean[i],sky_scale[i]))) f_skylog.write('%s %10.2f %10.2f\n' % (nn[i], sky_mean[i], sky_scale[i])) # Make list for combinng f_on = open(skylist, 'w') f_on.write('\n'.join(nsc) + '\n') f_on.close() #skylist = skyDir + 'scale????.fits' f_skylog.close() else: # Make list for combinng f_on = open(skylist, 'w') f_on.write('\n'.join(nn) + '\n') f_on.close() #skylist = skyDir + 'n????.fits' if os.path.exists(output): os.remove(output) ir.unlearn('imcombine') ir.imcombine.combine = 'median' ir.imcombine.reject = 'none' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 ir.imcombine('@' + skylist, output) # Change back to original directory os.chdir('../')
[docs]def makesky_lp(files, nite, wave, number=3, rejectHsigma=None, raw_dir=None, instrument=instruments.default_inst): """ Make L' skies by carefully treating the ROTPPOSN angle of the K-mirror. Uses 3 skies combined (set by number keyword). Parameters ---------- files : list of int Integer list of the files. Does not require padded zeros. nite : str Name for night of observation (e.g.: "nite1"), used as suffix inside the reduce sub-directories. wave : str Name for the observation passband (e.g.: "lp") number : int, default=3 Number of skies to be combined rejectHsigma : int, default:None Flag to pass for rejectHsigma for IRAF imcombine By default, no flags are passed raw_dir : str, optional Directory where raw files are stored. By default, assumes that raw files are stored in '../raw' instrument : instruments object, optional Instrument of data. Default is `instruments.default_inst` """ # Make new directory for the current passband and switch into it util.mkdir(wave) os.chdir(wave) # Determine directory locatons waveDir = os.getcwd() + '/' redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/') rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/') skyDir = waveDir + 'sky_' + nite + '/' rawDir = rootDir + 'raw/' # Check if user has specified a specific raw directory if raw_dir is not None: rawDir = util.trimdir(os.path.abspath(raw_dir) + '/') util.mkdir(skyDir) print('sky dir: ',skyDir) print('wave dir: ',waveDir) raw = instrument.make_filenames(files, rootDir=rawDir) skies = instrument.make_filenames(files, rootDir=skyDir) # Write out the sources of the sky files data_sources_file = open(redDir + 'data_sources.txt', 'a') data_sources_file.write('---\n# Sky Files ({0})\n'.format(wave)) for cur_file in skies: out_line = '{0} ({1})\n'.format(cur_file, datetime.now()) data_sources_file.write(out_line) data_sources_file.close() _rawlis = skyDir + 'raw.lis' _nlis = skyDir + 'n.lis' _skyRot = skyDir + 'skyRot.txt' _txt = skyDir + 'rotpposn.txt' _out = skyDir + 'sky' _log = _out + '.log' util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log]) util.rmall([sky + '.fits' for sky in skies]) open(_rawlis, 'w').write('\n'.join(raw)+'\n') open(_nlis, 'w').write('\n'.join(skies)+'\n') print('makesky_lp: Getting raw files') ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no') ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) # Read in the list of files and rotation angles files, angles = read_sky_rot_file(_skyRot) # Fix angles to be between -180 and 180 angles[angles > 180] -= 360.0 angles[angles < -180] += 360.0 sidx = np.argsort(angles) # Make sorted numarrays angles = angles[sidx] files = files[sidx] f_log = open(_log, 'w') f_txt = open(_txt, 'w') # Skip the first and last since we are going to # average every NN files. print('makesky_lp: Combining to make skies.') startIdx = number / 2 stopIdx = len(sidx) - (number / 2) for i in range(startIdx, stopIdx): sky = 'sky%.1f' % (angles[i]) skyFits = skyDir + sky + '.fits' util.rmall([skyFits]) # Take NN images start = i - (number/2) stop = start + number list = [file for file in files[start:stop]] short = [file for file in files[start:stop]] angleTmp = angles[start:stop] # Make short names for j in range(len(list)): tmp = (short[j]).rsplit('/', 1) short[j] = tmp[len(tmp)-1] print('%s: %s' % (sky, " ".join(short))) f_log.write('%s:' % sky) for j in range(len(short)): f_log.write(' %s' % short[j]) for j in range(len(angleTmp)): f_log.write(' %6.1f' % angleTmp[j]) f_log.write('\n') ir.unlearn('imcombine') ir.imcombine.combine = 'median' if (rejectHsigma == None): ir.imcombine.reject = 'none' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 else: ir.imcombine.reject = 'sigclip' ir.imcombine.lsigma = 100 ir.imcombine.hsigma = rejectHsigma ir.imcombine.zero = 'median' ir.imcombine.logfile = '' ir.imcombine(','.join(list), skyFits) ir.hedit(skyFits, 'SKYCOMB', '%s: %s' % (sky, ' '.join(short)), add='yes', show='no', verify='no') f_txt.write('%13s %8.3f\n' % (sky, angles[i])) f_txt.close() f_log.close() # Change back to original directory os.chdir('../')
[docs]def makesky_lp2(files, nite, wave): """Make L' skies by carefully treating the ROTPPOSN angle of the K-mirror. Uses only 2 skies combined.""" # Start out in something like '06maylgs1/reduce/kp/' waveDir = os.getcwd() + '/' redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/') rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/') skyDir = waveDir + 'sky_' + nite + '/' rawDir = rootDir + 'raw/' util.mkdir(skyDir) raw = instrument.make_filenames(files, rootDir=rawDir) skies = instrument.make_filenames(files, rootDir=skyDir) _rawlis = skyDir + 'raw.lis' _nlis = skyDir + 'n.lis' _skyRot = skyDir + 'skyRot.txt' _txt = skyDir + 'rotpposn.txt' _out = skyDir + 'sky' _log = _out + '.log' util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log]) util.rmall([sky + '.fits' for sky in skies]) open(_rawlis, 'w').write('\n'.join(raw)+'\n') open(_nlis, 'w').write('\n'.join(skies)+'\n') print('makesky_lp: Getting raw files') ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no') ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) # Read in the list of files and rotation angles files, angles = read_sky_rot_file(_skyRot) # Fix angles to be between -180 and 180 angles[angles > 180] -= 360.0 angles[angles < -180] += 360.0 sidx = np.argsort(angles) # Make sorted numarrays angles = angles[sidx] files = files[sidx] f_log = open(_log, 'w') f_txt = open(_txt, 'w') # Skip the first and last since we are going to # average every 3 files. print('makesky_lp: Combining to make skies.') for i in range(1, len(sidx)): angav = (angles[i] + angles[i-1])/2. sky = 'sky%.1f' % (angav) skyFits = skyDir + sky + '.fits' util.rmall([skyFits]) # Average 2 images list = [file for file in files[i-1:i+1]] short = [file for file in files[i-1:i+1]] # Make short names for j in range(len(list)): tmp = (short[j]).rsplit('/', 1) short[j] = tmp[len(tmp)-1] print('%s: %s %s' % (sky, short[0], short[1])) f_log.write('%s: %s %s %6.1f %6.1f\n' % (sky, short[0], short[1], angles[i-1], angles[i])) ir.unlearn('imcombine') ir.imcombine.combine = 'average' ir.imcombine.reject = 'none' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 ir.imcombine.logfile = '' ir.imcombine(list[1]+','+list[0], skyFits) ir.hedit(skyFits, 'SKYCOMB', '%s: %s %s' % (sky, short[0], short[1]), add='yes', show='no', verify='no') f_txt.write('%13s %8.3f\n' % (sky, angav)) f_txt.close() f_log.close()
#ir.imdelete('@' + _nlis)
[docs]def makesky_fromsci(files, nite, wave): """Make short wavelength (not L-band or longer) skies.""" # Start out in something like '06maylgs1/reduce/kp/' waveDir = os.getcwd() + '/' redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/') rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/') skyDir = waveDir + 'sky_' + nite + '/' rawDir = rootDir + 'raw/' util.mkdir(skyDir) print('sky dir: ',skyDir) print('wave dir: ',waveDir) skylist = skyDir + 'skies_to_combine.lis' output = skyDir + 'sky_' + wave + '.fits' util.rmall([skylist, output]) nn = instrument.make_filenames(files, rootDir=skyDir) nsc = instrument.make_filenames(files, rootDir=skyDir, prefix='scale') skies = instrument.make_filenames(files, rootDir=rawDir) for ii in range(len(nn)): ir.imdelete(nn[ii]) ir.imdelete(nsc[ii]) ir.imcopy(skies[ii], nn[ii], verbose="no") # Make list for combinng. Reset the skyDir to an IRAF variable. ir.set(skydir=skyDir) f_on = open(skylist, 'w') for ii in range(len(nn)): nn_new = nn[ii].replace(skyDir, "skydir$") f_on.write(nn_new + '\n') f_on.close() # Calculate some sky statistics, but reject high (star-like) pixels sky_mean = np.zeros([len(skies)], dtype=float) sky_std = np.zeros([len(skies)], dtype=float) for ii in range(len(nn)): img_sky = fits.getdata(nn[i], ignore_missing_end=True) if parse_version(astropy.__version__) < parse_version('3.0'): sky_stats = stats.sigma_clipped_stats(img_sky, sigma_lower=10, sigma_upper=3, iters=10) else: sky_stats = stats.sigma_clipped_stats(img_sky, sigma_lower=10, sigma_upper=3, maxiters=10) sky_mean[ii] = sky_stats[0] sky_std[ii] = sky_stats[2] sky_mean_all = sky_mean.mean() sky_std_all = sky_std.mean() # Upper threshold above which we will ignore pixels when combining. hthreshold = sky_mean_all + 3.0 * sky_std_all ir.imdelete(output) ir.unlearn('imcombine') ir.imcombine.combine = 'median' ir.imcombine.reject = 'sigclip' ir.imcombine.mclip = 'yes' ir.imcombine.hsigma = 2 ir.imcombine.lsigma = 10 ir.imcombine.hthreshold = hthreshold ir.imcombine('@' + skylist, output)
[docs]def makesky_lp_fromsci(files, nite, wave, number=3, rejectHsigma=None): """Make L' skies by carefully treating the ROTPPOSN angle of the K-mirror. Uses 3 skies combined (set by number keyword).""" # Start out in something like '06maylgs1/reduce/kp/' waveDir = os.getcwd() + '/' redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/') rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/') skyDir = waveDir + 'sky_' + nite + '/' rawDir = rootDir + 'raw/' util.mkdir(skyDir) raw = instrument.make_filenames(files, rootDir=rawDir) skies = instrument.make_filenames(files, rootDir=skyDir) flatDir = redDir + 'calib/flats/' flat = flatDir + 'flat_' + wave + '.fits' if not os.access(flat, os.F_OK): flat = flatDir + 'flat.fits' _rawlis = skyDir + 'raw.lis' _nlis = skyDir + 'n.lis' _skyRot = skyDir + 'skyRot.txt' _txt = skyDir + 'rotpposn.txt' _out = skyDir + 'sky' _log = _out + '.log' util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log]) util.rmall([sky + '.fits' for sky in skies]) open(_rawlis, 'w').write('\n'.join(raw)+'\n') open(_nlis, 'w').write('\n'.join(skies)+'\n') print('makesky_lp: Getting raw files') ir.imarith('@'+_rawlis, '/', flat, '@'+_nlis) #ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no') ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) # Read in the list of files and rotation angles files, angles = read_sky_rot_file(_skyRot) # Fix angles to be between -180 and 180 angles[angles > 180] -= 360.0 angles[angles < -180] += 360.0 sidx = np.argsort(angles) # Make sorted numarrays angles = angles[sidx] files = files[sidx] f_log = open(_log, 'w') f_txt = open(_txt, 'w') # Skip the first and last since we are going to # average every NN files. print('makesky_lp: Combining to make skies.') startIdx = number / 2 stopIdx = len(sidx) - (number / 2) for i in range(startIdx, stopIdx): sky = 'sky%.1f' % (angles[i]) skyFitsTmp = skyDir + sky + '_tmp.fits' skyFits = skyDir + sky + '.fits' util.rmall([skyFitsTmp, skyFits]) # Take NN images start = i - (number/2) stop = start + number list = [file for file in files[start:stop]] short = [file for file in files[start:stop]] angleTmp = angles[start:stop] # Make short names for j in range(len(list)): tmp = (short[j]).rsplit('/', 1) short[j] = tmp[len(tmp)-1] print('%s: %s' % (sky, " ".join(short))) f_log.write('%s:' % sky) for j in range(len(short)): f_log.write(' %s' % short[j]) for j in range(len(angleTmp)): f_log.write(' %6.1f' % angleTmp[j]) f_log.write('\n') ir.unlearn('imcombine') ir.imcombine.combine = 'median' if (rejectHsigma == None): ir.imcombine.reject = 'none' ir.imcombine.nlow = 1 ir.imcombine.nhigh = 1 else: ir.imcombine.reject = 'sigclip' ir.imcombine.lsigma = 100 ir.imcombine.hsigma = rejectHsigma ir.imcombine.zero = 'median' ir.imcombine.logfile = '' ir.imcombine(','.join(list), skyFitsTmp) ir.imarith(skyFitsTmp, '*', flat, skyFits) ir.hedit(skyFits, 'SKYCOMB', '%s: %s' % (sky, ' '.join(short)), add='yes', show='no', verify='no') f_txt.write('%13s %8.3f\n' % (sky, angles[i])) f_txt.close() f_log.close()
[docs]def read_sky_rot_file(sky_rot_file): """Read in the list of files and rotation angles.""" rotTab = Table.read(sky_rot_file, format='ascii', header_start=None) cols = list(rotTab.columns.keys()) files = rotTab[cols[0]] angles = rotTab[cols[1]] return files, angles