Materials and methods
Breeding locations
We obtained breeding ground locations for genetically-confirmed bohaii individuals by satellite tracking (Zhu et al. 2021b), considering stationary locations recorded during June–August as breeding ground locations (Fig. 1). Stationary locations were identified when a transmitter recorded a speed of ≈ 0 km/h and a local elevation of ≈ 0 m. Breeding ground locations of melanuroides were obtained from our previous genetic work (Zhu et al. 2021a). We used known genetic differences between the subspecies to confirm that the individuals breeding in locations identified through satellite tracking versus those breeding in locations identified through published records did indeed belong to the two subspecies (see Zhu et al. 2021a). This yielded 60 known breeding ground locations for bohaii (2015-2018) and 41 for melanuroides (1993-2016) to parameterize our species distribution models (SDMs).

Environmental variables
To capture the current breeding habitat in our species distribution models, we obtained (a) 19 bioclimatic variables and (b) surface elevation data from WorldClim (www.worldclim.org, v 2.1, 1970-2000), along with (c) six breeding habitat features variables (e.g. vegetation type, snow cover) from Earthenv (http://www.earthenv.org//landcover), (d) the average normalized difference vegetation index (NDVI) for May–July during 2014–2018 from NOAA (https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/), and (e) the Global Human Footprint and Influence indexes which summarize data on human population density, land use, infrastructure and access (https://sedac.ciesin.columbia.edu/data/collection/wildareas-v2). See Table S1 for a complete overview and detailed information on all variables. As the distributional record of the bohaii subspecies was collected more recently than the 1970-2000 bioclimatic data, we verified that the variable that contributed the most to predicting its distribution (Table S2), i.e., temperature seasonality (Bio4), from 1970-2000 to 2010-2018 increased by 1% only.
To predict the breeding range for both subspecies in 2070, we obtained data from the Intergovernmental Panel on Climate Change (IPCC) AR5 from the Global Climate Model (GCM) downscaled data portal (http://www.ccafs-climate.org/data_spatial_downscaling/). We selected two different emissions scenarios to take the uncertainty of the future into account: (1) the Representative Concentration Pathway 4.5 (RCP), a moderate scenario in which greenhouse gas emissions peak around 2040 and then decline, and (2) the more pessimistic RCP 8.5, in which emissions are predicted to continue to grow throughout the 21st century (https://ar5-syr.ipcc.ch/index.php). For each of the two emissions scenarios, we selected two different Global Climate Models (GCMs), GFDL-CM3 and MIROC-ESM (Wauchope et al. 2017), that predict future bioclimatic conditions, resulting in two sets of predicted bioclimatic conditions for each subspecies (Table S1).  
In considering potential godwit breeding habitats, we constrained the range of all environmental variables to above 40°N on the Eurasian continent (Birdlife International 2018). Though there may also be suitable breeding habitats in Alaska or northern Canada, ca. 3000 km to the east of our easternmost records, the likelihood that these areas will become occupied by godwits within the next five decades appears low due to the lack of suitable steppingstone habitats between the current breeding locations and North America. In Qgis 3.8, all environmental variables were resampled to 2.5 arc-min spatial resolution (ca. 4.5 km at the equator) using the nearest neighbour interpolation. Any missing values were filled with the mean values within five pixels of the missing pixel using the maximum distance method, followed by repeating the smoothing iterations five times after each interpolation. The mean NDVI for a given pixel was calculated using the raster calculator.
 
Species Distribution Modelling
We constructed current and future SDMs for these two subspecies using maximum entropy modelling (Maxent, version 3.3.4). Maxent is a machine-learning algorithm that uses presence-only data to determine the predicted suitability of local conditions for a given species (Phillips et al. 2006; Phillips & Dudik, 2008). Several studies have suggested that Maxent has good predictive power for birds (Hu & Liu, 2014, Wauchope et al. 2017). We used occurrence records only when the subspecies present was genetically confirmed, and the breeding status was known because this approach to predicting subspecies distribution has proven more accurate than traditional methods that rely solely on occurrence records (Ikeda et al. 2017). 
To model the current breeding habitats of the two subspecies, we first tested Pearson’s correlations on all 29 environmental variables. Each highly correlated variable pair (|r| ≥ 80%) that gave higher values when testing the correlations against the remaining ones were retained. Next, we determined the final selection of the variables by their contributions and jackknife tests. Those variables that contributed less than 1% to the model were removed (Table S2). As a result, 14 variables were selected for the final analyses: annual mean temperature (ºC), mean diurnal temperature range (ºC), temperature seasonality (SD * 100), mean temperature of the wettest quarter (ºC), mean temperature of the driest quarter (ºC), mean temperature of the coldest quarter (ºC), annual precipitation (mm), precipitation seasonality (variation coefficient), precipitation of the driest quarter (mm), human footprint (range: 1–100, a higher value indicates higher anthropogenic impacts), herbaceous plants coverage (%), shrub coverage (%), elevation (m) and NDVI (see correlation matrix in Table S3). To test the robustness of our models in predicting the current range, we used a model that contained only the western occurrence records of bohaii to see whether the model would correctly predict the eastern range more than 1000 km away (Fig 1). We were unable to do the same for melanuroides because the subspecies did not have such widely dispersed breeding occurrence records.
The godwit breeding habitat in 2070 was estimated by changing the current climatic conditions as predicted in two IPCC greenhouse gas emissions scenarios (RCP 4.5 & 8.5). Since there were no non-climatic variables available in the future scenarios, e.g., landcover, anthropogenic impacts or NDVI, we only used the 19 bioclimatic variables and elevation data for these models. Therefore, the predictions only estimate the future change in climatically suitable breeding habitat ranges and do not deal with other global changes. Consequently, the predictions are relatively conservative. 
In all models, 70% of the occurrence records were randomly assigned to the training dataset and 30% to the testing dataset. The “Remove duplicate presence records” option was used to avoid the inclusion of duplicated records in a grid cell. The model performance was evaluated using the mean AUC score (area under the receiving operating curve, mean ± SD) and threshold-based evaluation methods (Phillips et al. 2006). The model output was summarized into a logistic suitability value ranging from 0: unsuitable to 1: suitable. In our case, we defined three suitability levels: low: 0–0.29, medium: 0.3–0.59 and high: 0.6–1. We ran twenty bootstrap replicates for all models and selected the point-wise mean of the 20 output grids to draw the predicted breeding habitat ranges. Results from the two Global Climate Models (GCMs) in each emissions scenario were averaged, yielding two consensus grids for each subspecies. Lastly, we overlaid the predicted current breeding habitat ranges and the predicted climatically suitable breeding habitat for both subspecies in 2070 onto maps in Qgis 3.18 (Fig. 2).

Spatial analysis
The values of the 14 variables that best explained the current range of the breeding distribution were extracted at the occurrence locations using the function “sample raster values” in Qgis 3.18. We used Student t-tests to explore differences between the subspecies for these environmental and climatic variables. To assess the predicted shift in breeding habitat range in 2070, we used Student t-tests to compare mean breeding latitude and elevation in 2020 with those predicted for each subspecies in 2070. Since the highest logistic suitability in 2070 differed between subspecies (see Results), we constructed the polygons with values greater than 0.15 (for bohaii) and 0.3 (melanuroides) in Qgis 3.18. We randomly extracted 200 latitude and elevation datums from each modelled habitat range. We calculated the sizes of the breeding habitats with low, medium and high suitability in current and future scenarios using the “r.report” function. Statistics were performed in R v 3.6.0 (R Core Team 2018) then visualized in the package ggplot2.

