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APPENDIX A
EFFECT OF MMD WITH DIFFERENT PERCENTAGES
OF TARGET DATA FOR THE SELECTION OF SOURCE

An important question is how much target project data is re-
quired to select source for MMD-based source data selection
algorithm [1]. To evaluate the effect of MMD with different
percentages of target data for the selection of source data,
we compare the prediction performance of the selected
sources by using MMD with different percentages of target
data. Specifically, the used percentage of target data ranges
from 10 to 90 percent with step length 10 percent. For this
propose, we use DPP to conduct cross-project experiments
and the Scott-Knott effect size difference (ESD) test [2], [3]
to statistically compare the results.

Fig. 1 shows the Scott-Knott ESD test of MMD with
different percentages of target data for selecting the source
across the 22 projects. As shown in the figure, we make the
following observations:

1© There are two different groups in terms of MCC
according to the test results. The MMD with 10%, 30% and
40% of target data are in the first group, while MMD with
the other percentages of target data are in the second group.

2© For AUC, MMD with 10%, 20%, 60%, 70%, and
80% of target data rank the first and MMD with the other
percentages of target data are in the last group.

Based on the above observations, MMD can use a small
amount of target data (e.g., 10% data) to select source
data, since it is able to produce better prediction results
among MMD with other percentages of target data in our
experimental settings. It does not need all the target data to
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Fig. 1. Comparison of MMD with different percentages of target data
for selecting the source across 22 projects in terms of MCC and AUC.
Different colors represents different groups with statistical significance
(black < red).

be used for selecting the source. This demonstrates that it
is feasible for MMD to select source data for projects with
limited historical defect data. Hence, we use MMD with
10% of target data to select source data in the following
experiments.

APPENDIX B
DETAILED SOURCE DATA SELECTION RESULTS

In this section, we report the detailed selection results of
project-level based source data selection algorithms includ-
ing Bellwether [4], DCNNS [5], VC [6], CORR [7], [8], and
MMD. The latter four algorithms can select multiple sources
for CPDP. We call DCNNS, VC, CORR, and MMD that with
the selection of multiple source projects as mDCNNS, mVC,
mCORR, and mMMD, respectively.

B.1 Selection Results of Single-source Scenario
Table 1 shows the selected single source project of each
data selection algorithm from the studied 22 projects. As
shown in the table, we can observe that different source
data selection algorithms have different selection results
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TABLE 1
The selected single source of each data selection algorithm from the

given 22 projects.

Dataset Target Bell
wether DCNNS VC CORR MMD

NASA

CM1 PC1 MC2 KC3 PC3 KC3
JM1 PC1 PC1 PC3 KC3 PC1
KC3 PC1 MC2 MW1 PC1 MW1
MC1 PC1 CM1 KC3 MW1 PC1
MC2 PC1 MW1 PC4 KC3 MW1
MW1 PC1 MC2 KC3 MC1 KC3
PC1 PC3 MC2 MC2 KC3 CM1
PC2 PC1 MC2 KC3 PC3 CM1
PC3 PC1 KC3 MC2 PC1 PC4
PC4 PC1 KC3 MC2 PC1 MC2
PC5 PC1 CM1 MC2 CM1 PC3

AEEEM

EQ LC LC ML ML PDE
JDT LC EQ PDE PDE EQ
LC EQ EQ ML PDE PDE
ML LC EQ EQ LC JDT
PDE LC EQ EQ LC EQ

ReLink
Apache ZXing Safe Safe Safe Safe
Safe ZXing Apache Apache ZXing Apache

ZXing Apache Safe Safe Safe Safe

Eclipse
R-2.0 R-3.0 R-2.1 R-2.1 R-2.1 R-2.1
R-2.1 R-2.0 R-2.0 R-3.0 R-2.0 R-2.0
R-3.0 R-2.0 R-2.0 R-2.1 R-2.0 R-2.1

for a given target project. Taking the PC1 target in NASA
dataset as an example, the Bellwether algorithm selects PC3
as the source, both DCNNS and VC select the MC2 project as
the source, CORR selects KC3 while MMD selects the CM1
project. This is because their algorithm ideas are different to
make them get different selection results.

B.2 Selection Results of Multi-source Scenario

Table 2 shows the selected multiple sources of each data
selection algorithms from the used 22 projects. From this
table, we can see that each data selection algorithm can find
one or multiple similar sources for a given target project.
It demonstrates that the distribution of distance values
based automatic selection scheme is effective. Taking the
mMMD algorithm as an example, according to the given
thresholds, there are 13 out of 22 targets with the selection
of two source projects at least. The other algorithms can also
select similar sources for the given target project. Hence,
it is feasible to find appropriate thresholds by observing
the distribution of generated distance values of each source
selection algorithm.

APPENDIX C
COMPARISON WITH DIFFERENT CLASSIFIERS

Domain programming predictor (DPP) is the main part of
DSSDPP, which can be viewed as a transfer classifier [9].
DPP is non-parametric and discriminative. To evaluate the
prediction performance of DPP on CPDP, we compare the
results of DPP with five well-established classifiers [3],
[10], [11] including logistic regression (LR), k-nearest neigh-
bor (KNN), support vector machine (SVM), naive Bayes
(NB), and random forest (RF). These classifiers for CPDP
are referred to as CPDP LR, CPDP KNN, CPDP SVM,
CPDP NB, and CPDP RF, respectively.
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Fig. 2. Comparison of studied classifiers against each other with Scott-
Knott ESD test in terms of MCC and AUC. Different colors denote
different groups with statistical significance (black < red < green < blue
< cyan).

Recent work [3], [12] points out that classifiers with de-
fault parameter settings have a great effect on the prediction
performance, which usually leads to suboptimal results.
Thus, the parameter settings of the classifiers should be
carefully optimized. In our experimental settings, the source
data is used to train the model and the target data is used for
prediction. In order to conduct parameter optimization for
the used classifiers, we assume that there is a small amount
of data in the target project. Specifically, we use the source
data as the training set and randomly select 10% of target
data as the validation set to tune the classifier’s parameters.
We repeat the above process 30 times. According to the
overall best performance measure value (e.g., MCC) across
all 22 projects from 30 random trials, we can get the optimal
parameter values.

For these five used classifiers, only LR does not require
parameter settings according to the study [3]. Hence, we
refer to the candidate parameter settings of the above work
as the examined parameters of the other four classifiers,
which are shown in Table 3. Since we use multiple different
classifiers, we carry out the Scott-Knott ESD test to rank and
compare them.

Fig. 2 shows the results of studied classifiers with Scott-
Knott ESD test in terms of MCC and AUC across 22 target
projects with 30 repetition times. In this test, different colors
denote different groups with statistical significance. The
lower the average rank is, the better the classifier is. As
shown in the figure, we have the following observations:

1© In terms of MCC, there are five groups {CPDP KNN},
{CPDP RF}, {CPDP SVM}, {CPDP LR, CPDP NB}, and
{DPP}. The transfer DPP predictor leads to the best perfor-
mance among all classifiers with statistical significance since
it ranks the first.

2© Similarly, DPP performs better AUC values than the
other used classifiers with statistical significance since it lies
in the top rank group.

The above observations indicate the superiority of DPP
in comparison with the used classifiers for CPDP. The reason
of DPP achieving better results is that it learns discrimina-
tive transferable knowledge from the labeled source data to
the unlabeled target data by exploring their intra structures.
While the other studied classifiers only use the source data
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TABLE 2
The selected multiple sources of each data selection algorithm from the given 22 projects.

Dataset Target mDCNNS mVC mCORR mMMD

NASA

CM1 MC2 MW1 KC3 KC3 MW1 MC2 PC2 PC3 PC3 PC1 KC3 MC1 KC3 MC2 MW1

JM1 PC1 PC2 CM1 PC3 PC4
MC1 PC3 KC3 PC1 PC4 MC1 PC3

MW1
PC1 MC1 PC3 PC2 PC4
CM1

KC3 MC2 MW1 CM1 MW1 MC2 MC1 PC3 CM1
PC1 PC2 PC1 MW1 MC2

MC1 CM1 KC3 MW1 MC2 PC1 KC3 PC3 MW1 MC2 MW1 PC3 JM1 PC4 PC1
PC2 KC3

PC1 CM1 PC4 MC2 KC3
PC3

MC2 MW1 KC3 CM1 PC4 KC3 MW1 PC5 PC1 KC3 MW1

MW1 MC2 KC3 CM1 KC3 PC3 MC2 PC4 PC2
PC5 MC1 PC3 KC3

PC1 MC2 MW1 KC3 CM1 MC2 MW1 KC3 PC3 PC2 CM1 KC3 MC2 PC4 MW1
PC2 MC2 MW1 KC3 CM1 PC1 KC3 MC2 MW1 PC3 PC1 KC3 CM1 PC4 PC1 MC2 KC3

PC3 KC3 MW1 MC2 CM1 PC1 MC2 KC3 PC1 KC3 JM1 MW1 PC2
PC4 PC4 PC1 CM1

PC4 KC3 MW1 MC2 CM1 PC1 MC2 KC3 MW1 CM1 PC1 KC3 PC3 MC1 CM1
MW1 MC2 KC3 CM1 MW1 PC1

PC5 CM1 KC3 MW1 MC2 PC1
PC2 MC2 CM1 PC4 MC1 KC3 PC1 PC3 PC2 JM1 PC4 PC1

MC1

AEEEM

EQ LC ML ML PDE
JDT EQ LC PDE EQ ML PDE ML EQ
LC EQ JDT ML PDE PDE
ML EQ LC JDT EQ JDT LC EQ JDT LC PDE EQ
PDE EQ LC JDT ML EQ ML JDT LC EQ EQ JDT ML LC

ReLink
Apache Safe Safe Safe Zxing Safe
Safe Apache Apache Zxing Apache Apache

ZXing Safe Apache Safe Safe Safe Apache

Eclipse
R-2.0 R-2.1 R-2.1 R-2.1 R-2.1
R-2.1 R-2.0 R-3.0 R-2.0 R-2.0
R-3.0 R-2.0 R-2.1 R-2.1 R-2.0 R-2.1 R-2.0

TABLE 3
Parameters of the used classifiers.

Classifier Parameter
name

Parameter
description

Candidate
parameter values

KNN n neighbors the number of
neighbors {1, 5, 9, 13, 17}

SVM σ
the width of

Gaussian kernels
{0.1, 0.3, 0.5, 0.7,

0.9}

NB distribution
type

the type of prior
distribution {‘normal’, ‘kernel’ }

RF n trees the number of
trees {10, 20, 30, 40, 50}

to build models and predict the target data, these models
do not reduce the distribution difference between the source
and target data. As a conclusion, DPP leads to the best pre-
diction performance against the studied five classifiers with
statistical significance on two evaluation measures in our
experimental settings. This demonstrates the effectiveness
of DPP for CPDP.

APPENDIX D
DETAILED COMPARISON RESULTS OF SOURCE SE-
LECTION ALGORITHMS

To empirically compare the prediction performance of the
project-level based source data selection algorithms, we use
DPP to conduct cross-project prediction experiments since
it leads to better prediction performance than the other
well-established classifiers (see Appendix C). ALL [13] and
UM [14], [15] are two methods that use all available projects
in the same dataset as the source. Tables 4 and 5 show the
median MCC and AUC values of each source data selection

algorithm on 22 target projects with 30 repetition times,
respectively. The overall median results (i.e., median of
those 22 × 30 = 660 CPDP values) are also reported in the
second to the last row of the table (denoted as “Median”).
The average rank of each algorithm with Scott-Knott ESD
test is listed as the last row of the table (denoted as “AR”,
the numbers in brackets indicate the ranking of algorithms
based on this test). The lower the AR value, the better the
algorithm.

From these tables, we have the following observations:
1© In terms of the overall results across 22 target projects

from “Median”, CORR, Bellwether, and mVC achieve better
MCC results, UM and Bellwether achieve better AUC results
among all the algorithms.

2© In terms of the AR values, CORR, Bellwether, and
mCORR rank in the first place among all the algorithms,
which demonstrates that they achieve better performance
with statistic significance according to MCC. Similarly,
mMMD, CORR, mCORR, and UM achieve better prediction
performance with statistic significance according to AUC.

3© In the single-source scenario, according to the AR val-
ues, CORR overall achieves the best performance, followed
by Bellwether and MMD. All of them outperform DCNNS
and VC with statistic significance.

4© In the multi-source scenario, according to the AR
values, mCORR achieve the best MCC performance, mMMD
and mCORR and the best AUC performance with statistic
significance.

5© Compared to the selection algorithms with single
source, according to the AR values, only DCNNS that selects
multiple sources gets improvement in MCC, while MMD,
DCNNS and VC get improvement in AUC. Hence, not
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TABLE 4
The median MCC values of each source data selection algorithm with DPP on 22 target projects.

Target ALL UM Bellwether DCNNS VC CORR MMD mDCNNS mVC mCORR mMMD
CM1 0.201 0.203 0.211 0.212 0.196 0.211 0.196 0.178 0.203 0.185 0.178
JM1 0.220 0.213 0.241 0.241 0.231 0.233 0.241 0.230 0.231 0.238 0.230
KC3 0.208 0.165 0.258 0.198 0.216 0.258 0.216 0.222 0.241 0.258 0.230
MC1 0.120 0.092 0.147 0.132 0.132 0.126 0.147 0.133 0.119 0.121 0.122
MC2 0.328 0.303 0.260 0.248 0.240 0.280 0.248 0.278 0.328 0.280 0.248
MW1 0.222 0.216 0.275 0.218 0.231 0.272 0.231 0.235 0.222 0.244 0.231
PC1 0.173 0.159 0.184 0.170 0.170 0.189 0.176 0.175 0.170 0.187 0.182
PC2 0.138 0.150 0.167 0.130 0.165 0.141 0.162 0.161 0.159 0.150 0.164
PC3 0.184 0.240 0.175 0.170 0.187 0.175 0.245 0.177 0.173 0.176 0.230
PC4 0.146 0.178 0.144 0.182 0.148 0.144 0.148 0.131 0.129 0.154 0.131
PC5 0.255 0.289 0.229 0.247 0.295 0.247 0.281 0.215 0.295 0.256 0.254
EQ 0.379 0.389 0.382 0.382 0.371 0.371 0.371 0.382 0.371 0.371 0.371
JDT 0.492 0.391 0.488 0.473 0.510 0.510 0.473 0.502 0.490 0.493 0.473
LC 0.291 0.293 0.282 0.282 0.296 0.303 0.303 0.308 0.296 0.303 0.303
ML 0.258 0.204 0.271 0.201 0.201 0.271 0.260 0.264 0.255 0.261 0.258
PDE 0.271 0.252 0.273 0.267 0.267 0.273 0.267 0.271 0.275 0.270 0.271

Apache 0.361 0.459 0.355 0.359 0.359 0.359 0.359 0.359 0.359 0.361 0.359
Safe 0.412 0.446 0.414 0.394 0.394 0.394 0.394 0.394 0.412 0.394 0.394

ZXing 0.190 0.159 0.188 0.179 0.179 0.179 0.179 0.190 0.179 0.179 0.190
R-2.0 0.411 0.410 0.399 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423
R-2.1 0.310 0.303 0.325 0.325 0.303 0.325 0.325 0.325 0.303 0.325 0.325
R-3.0 0.381 0.397 0.371 0.371 0.379 0.371 0.379 0.381 0.379 0.371 0.381

Median 0.257 0.246 0.265 0.243 0.243 0.267 0.259 0.256 0.267 0.262 0.254
AR 3.364(3) 3.682(4) 2.545(1) 3.682(4) 3.227(3) 2.545(1) 2.909(2) 3.091(3) 3.227(3) 2.682(1) 3.364(3)

TABLE 5
The median AUC values of each source data selection algorithm with DPP on 22 target projects.

Target ALL UM Bellwether DCNNS VC CORR MMD mDCNNS mVC mCORR mMMD
CM1 0.678 0.706 0.691 0.683 0.651 0.715 0.651 0.671 0.710 0.705 0.671
JM1 0.660 0.661 0.665 0.665 0.667 0.663 0.665 0.667 0.667 0.667 0.667
KC3 0.673 0.673 0.710 0.670 0.665 0.710 0.665 0.668 0.691 0.710 0.679
MC1 0.720 0.699 0.744 0.715 0.747 0.719 0.744 0.725 0.745 0.715 0.755
MC2 0.673 0.687 0.639 0.651 0.603 0.637 0.651 0.669 0.657 0.637 0.651
MW1 0.698 0.727 0.730 0.679 0.710 0.724 0.710 0.699 0.681 0.727 0.710
PC1 0.693 0.742 0.747 0.694 0.694 0.723 0.728 0.697 0.693 0.731 0.719
PC2 0.786 0.787 0.785 0.790 0.789 0.806 0.792 0.790 0.788 0.796 0.793
PC3 0.712 0.738 0.736 0.723 0.714 0.736 0.746 0.726 0.716 0.718 0.742
PC4 0.632 0.665 0.664 0.671 0.637 0.664 0.637 0.644 0.626 0.665 0.644
PC5 0.665 0.712 0.654 0.667 0.685 0.667 0.689 0.656 0.685 0.668 0.665
EQ 0.819 0.818 0.826 0.826 0.798 0.798 0.820 0.826 0.798 0.798 0.820
JDT 0.811 0.799 0.815 0.819 0.819 0.819 0.819 0.814 0.812 0.812 0.819
LC 0.792 0.789 0.790 0.790 0.794 0.798 0.798 0.796 0.794 0.798 0.798
ML 0.674 0.665 0.660 0.651 0.651 0.660 0.669 0.675 0.680 0.678 0.674
PDE 0.738 0.732 0.733 0.726 0.726 0.733 0.726 0.738 0.738 0.739 0.738

Apache 0.684 0.752 0.684 0.710 0.710 0.710 0.710 0.710 0.710 0.684 0.710
Safe 0.784 0.801 0.780 0.806 0.806 0.806 0.806 0.806 0.784 0.806 0.806

ZXing 0.635 0.650 0.640 0.626 0.626 0.626 0.626 0.636 0.626 0.626 0.636
R-2.0 0.774 0.794 0.772 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777
R-2.1 0.718 0.732 0.719 0.719 0.716 0.719 0.719 0.719 0.716 0.719 0.719
R-3.0 0.752 0.774 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752

Median 0.708 0.732 0.730 0.711 0.713 0.723 0.724 0.716 0.714 0.720 0.725
AR 4.182(4) 2.773(1) 3.136(2) 3.636(3) 3.995(4) 2.773(1) 3.045(2) 3.273(2) 3.364(2) 2.773(1) 2.727(1)

all data selection algorithms with multiple sources can be
improved in these two performance measures.

6© With respect to ALL and UM that use all the non-
target projects in the same dataset, they did not produce
superior prediction performance as compared to the source
data selection algorithms. On the contrary, their perfor-
mance is inferior to some of the source data selection
algorithms with statistical significance, especially for ALL.
It demonstrates that the prediction results of simply using
more source projects are not as good as the well-chosen
sources in our experimental settings. This further shows the

necessity of source data selection.

Based on the above observations, on the whole, CORR
achieves better MCC and AUC results with statistical signif-
icance among all the source data selection algorithms both in
the single and multiple scenarios. It is effective for CORR to
conduct the source data selection at the project level. Hence,
future CPDP research can use CORR to select suitable source
data for target project to further improve prediction perfor-
mance. In terms of the proposed MMD-based source data
selection algorithm, it is a simple and unsupervised method
with comparable prediction performance to the state-of-the-
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art. Hence, it is feasible for MMD to select source data from
a practical perspective, which can be used as an alternative
option to the state-of-the-art. In the following experiments,
we will use CORR to select single or multiple projects as the
source for the target data.

APPENDIX E
DETAILED COMPARISON RESULTS OF DATA SAM-
PLING ALGORITHMS

To examine the effectiveness of the proposed MPOS al-
gorithm on the prediction performance of DSSDPP, we
compare the results of DSSDPP with MPOS and other three
widely used data sampling algorithms including random
under-sampling (RUS), random over-sampling (ROS) and
synthetic minority oversampling technique (SMOTE) [16].
Besides, we also compare the prediction results of DSSDPP
without sampling that only uses DPP.

Table 6 and 7 show the median MCC and AUC values
of DSSDPP with NO, RUS, ROS, SMOTE, and MPOS on 22
projects with 30 repeats, respectively. The overall median
values, the N/S/M/L results with Cliff’s δ effect size test [17],
and the average rank (AR) with Scott-Knott ESD test of each
data sampling algorithm are also reported in these tables.
From these tables, we have the following observations:

1© In term of the overall median values across 22
projects, there are no apparent differences among these data
samplings according to MCC and AUC.

2© With respect to the N/S/M/L results, DSSDPP with
sampling algorithms lead to better performance in less
than half of the projects with statistical difference when
compared to DPP.

3© Considering that the AR results of each sample al-
gorithm with the Scott-Knott ESD test (the numbers in
brackets indicate the ranking of algorithms based on this
test), DSSDPP with MPOS yields the best performance than
DSSDPP with RUS, ROS, SMOTE and no sampling with
statistical significance in terms of MCC. With respect to the
AUC values, DSSDPP with MPOS, RUS, ROS, and SMOTE
achieve similar prediction performance with statistical sig-
nificance since they are in the same group. All of them
outperform DPP that is without sampling.

Based on the above observations, DSSDPP with MPOS
algorithm produces better or comparable prediction results
with statistical significance among all the algorithms in
terms of MCC and AUC two performance measures. This
demonstrates that the MPOS sampling algorithm should
be used in DSSDPP for cross-project prediction. Compared
to DPP, the results of DSSDPP with data sampling did
not produce superior performance in our experimental set-
tings, which implies that it is a challenge task to handle
the class imbalance problem in the context of CPDP. This
is because there exists large data distribution difference
between source and target projects, and the algorithm is
sampled over source projects might not generalize well
over target projects. The prediction performance of learned
model based on the source projects cannot be significantly
improved. Hence, future CPDP research should pay more
attention to this problem for further improvement of perfor-
mance of the methods.

TABLE 6
The median MCC results of DSSDPP with each sampling algorithm on

22 target projects.

Target DPP DSSDPP
RUS

DSSDPP
ROS

DSSDPP
SMOTE

DSSDPP
MPOS

CM1 0.216 0.187(N) 0.191(N) 0.192(N) 0.206(N)
JM1 0.194 0.214(L) 0.225(L) 0.218(L) 0.226(L)
KC3 0.273 0.211(N) 0.108(N) 0.180(N) 0.190(N)
MC1 0.120 0.095(N) 0.130(L) 0.134(L) 0.123(S)
MC2 0.231 0.291(L) 0.294(L) 0.254(S) 0.239(N)
MW1 0.236 0.086(N) 0.199(N) 0.216(N) 0.212(N)
PC1 0.192 0.208(L) 0.184(N) 0.201(S) 0.203(M)
PC2 0.167 0.198(L) 0.201(L) 0.165(N) 0.188(L)
PC3 0.293 0.348(L) 0.322(L) 0.329(L) 0.318(L)
PC4 0.188 0.269(L) 0.173(N) 0.247(L) 0.223(L)
PC5 0.246 0.258(L) 0.268(L) 0.265(L) 0.251(S)
EQ 0.353 0.423(L) 0.427(L) 0.391(L) 0.403(L)
JDT 0.500 0.42(N) 0.445(N) 0.432(N) 0.434(N)
LC 0.307 0.282(N) 0.269(N) 0.196(N) 0.269(N)
ML 0.269 0.169(N) 0.125(N) 0.190(N) 0.185(N)
PDE 0.272 0.264(N) 0.266(N) 0.260(N) 0.275(N)

Apache 0.386 0.382(N) 0.404(M) 0.399(M) 0.404(M)
Safe 0.439 0.439(N) 0.439(N) 0.439(N) 0.439(N)

ZXing 0.170 0.201(L) 0.179(S) 0.188(M) 0.179(S)
R-2.0 0.456 0.441(N) 0.448(N) 0.456(N) 0.478(L)
R-2.1 0.326 0.326(N) 0.326(N) 0.326(N) 0.326(N)
R-3.0 0.376 0.376(N) 0.376(N) 0.376(N) 0.376(N)

Median 0.267 0.264 0.260 0.247 0.249
N/S/M/L - 13/0/0/9 13/1/1/7 12/2/2/6 11/3/2/6

AR 2.636(2) 2.500(2) 2.455(2) 2.500(2) 2.318(1)

TABLE 7
The median AUC results of DSSDPP with each sampling algorithm on

22 target projects.

Target DPP DSSDPP
RUS

DSSDPP
ROS

DSSDPP
SMOTE

DSSDPP
MPOS

CM1 0.680 0.709(L) 0.694(L) 0.731(L) 0.701(L)
JM1 0.611 0.656(L) 0.663(L) 0.659(L) 0.671(L)
KC3 0.768 0.748(N) 0.689(N) 0.738(N) 0.714(N)
MC1 0.717 0.633(N) 0.710(N) 0.716(N) 0.693(N)
MC2 0.597 0.608(S) 0.647(L) 0.600(N) 0.644(L)
MW1 0.693 0.561(N) 0.747(L) 0.696(S) 0.742(L)
PC1 0.674 0.728(L) 0.736(L) 0.740(L) 0.766(L)
PC2 0.834 0.856(L) 0.832(N) 0.830(N) 0.833(N)
PC3 0.796 0.810(L) 0.800(M) 0.794(N) 0.783(N)
PC4 0.723 0.739(L) 0.685(N) 0.736(L) 0.712(N)
PC5 0.661 0.713(L) 0.700(L) 0.704(L) 0.703(L)
EQ 0.730 0.795(L) 0.753(L) 0.787(L) 0.777(L)
JDT 0.818 0.801(N) 0.815(N) 0.795(N) 0.812(N)
LC 0.801 0.791(N) 0.790(N) 0.750(N) 0.794(N)
ML 0.623 0.636(L) 0.607(N) 0.651(L) 0.636(L)
PDE 0.739 0.747(L) 0.744(M) 0.721(N) 0.740(N)

Apache 0.775 0.750(N) 0.773(N) 0.769(N) 0.774(N)
Safe 0.852 0.852(N) 0.852(N) 0.852(N) 0.852(N)

ZXing 0.664 0.653(N) 0.665(N) 0.662(N) 0.666(S)
R-2.0 0.793 0.794(S) 0.788(N) 0.797(S) 0.794(N)
R-2.1 0.712 0.712(N) 0.712(N) 0.712(N) 0.712(N)
R-3.0 0.744 0.744(N) 0.744(N) 0.744(N) 0.744(N)

Median 0.728 0.738 0.736 0.735 0.738
N/S/M/L - 10/2/0/10 13/0/2/7 13/2/0/7 13/1/0/8

AR 2.682(2) 2.227(1) 2.455(1) 2.364(1) 2.273(1)

APPENDIX F
EXTENSIBILITY OF DSSDPP IN MULTI-SOURCE
SCENARIO

To check the extensibility of DSSDPP to existing CPDP
methods in multi-source scenario, we combine these meth-
ods by replacing their classifiers with DSSDPP for CPDP.
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Fig. 3. Comparison of related CPDP methods with and without DPP on
all 22 projects in terms of MCC and AUC. The blue color denotes win,
black color denotes tie, and red color denotes lose.

TABLE 8
The Cliff’s δ values between the original and extended CPDP methods

across 22 projects in terms of MCC and AUC.

Methods MCC AUC
mCPDP-LR versus mCPDP-LR* 0.274 0.288
mNN-filter versus mNN-filter* 0.264 0.225

mTCA+ versus mTCA+* -0.100 -0.073
mSSTCA+ISDA versus mSSTCA+ISDA* 0.181 0.267

mBDA versus mBDA* 0.103 -0.056

Specifically, CPDP-LR [18], NN-filter [13], TCA+ [19],
SSTCA+ISDA [20], and BDA [21] using multiple sources
are referred to as mCPDP-LR, mNN-filter, mTCA+,
mSSTCA+ISDA, and mBDA respectively. And these CPDP
methods incorporating the domain programming predic-
tor are referred to as mCPDP-LR*, mNN-filter*, mTCA+*,
mSSTCA+ISDA*, and mBDA*, respectively.

Fig. 3 shows the prediction results of mCPDP-LR, mNN-
filter, mTCA+, mSSTCA+ISDA, and mBDA and their ex-
tended methods on 22 projects with 30 repetition times in
terms of MCC and AUC. The boxes of the original CPDP
methods are in black color, and there are three colors of
boxes within the extended CPDP methods, which denote
the significant difference between the original and extended
CPDP methods.
• The blue color denotes that the extended method blue

performs better than (win) the original one with statistical
difference, according to the magnitude of the difference
between these two methods is not trivial based on Cliff’s
δ (|δ| ≥ 0.147). The detailed results are shown in Table 8.

• The black color denotes that the extended method does

not perform better than (tie) the original one with statis-
tical difference, according to the magnitude of the differ-
ence between these two methods is trivial (|δ| < 0.147).

• The red color denotes that the extended method per-
forms worse than (lose) the original one with statistical
difference, according to the magnitude of the difference
between these two methods is not trivial.

From this figure, we have the following observations:
1© In terms of the MCC measure, the prediction perfor-

mance of mCPDP-LR*, mNN-filter*, and mSSTCA+ISDA*
outperform their original counterparts since all the Cliff’s δ
values are larger than 0.147. This demonstrates mCPDP-
LR, mNN-filter, and mSSTCA+ISDA obtain performance
improvement by incorporating them with DSSDPP. For
mTCA+* and mBDA*, their Cliff’s δ values are separately
−0.100 and 0.103, which are lower than 0.147. This means
that combining mTCA+, mBDA with DSSDPP do not im-
prove their performance significantly. But their MCC results
still slightly increase in comparison with their original coun-
terparts.

2© With respect to the AUC measure, only mCPDP-
LR*, mNN-filter*, and mSSTCA+ISDA* perform better than
their original counterparts since all the Cliff’s δ values are
larger than 0.147. On the contrary, mTCA+* and mBDA* do
not produce better results than their original counterparts
with statistical difference based on the Cliff’s δ values from
Table 8. Actually, they seem to have similar prediction
performance with their original counterparts in terms of the
AUC results.

Based on the above observations, combining DSSDPP
is beneficial to the prediction performance of mCPDP-LR,
mNN-filter, and mSSTCA+ISDA for both MCC and AUC.
For mTCA+ and mBDA, it has little effect on their predic-
tion performance. In summary, most of the studied CPDP
methods can improve (i.e., mCPDP-LR, mNN-filter, and
mSSTCA+ISDA) or maintain (i.e., mTCA+ and mBDA) their
prediction performance by incorporating DSSDPP, which
shows the extensibility and effectiveness of DSSDPP in the
multi-source scenario.
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