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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

https://dx.doi.org/10.5281/zenodo.6569898
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.02991
https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.07240
https://doi.org/10.48550/arXiv.2203.05606
https://doi.org/10.48550/arXiv.2203.06899
https://dx.doi.org/10.5281/zenodo.6541230
https://doi.org/10.48550/arXiv.2109.09985
https://doi.org/10.48550/arXiv.2109.12244
https://doi.org/10.48550/arXiv.2110.13885
https://doi.org/10.48550/arXiv.2201.12665
https://doi.org/10.48550/arXiv.2110.05784
https://doi.org/10.48550/arXiv.2202.04054
https://doi.org/10.48550/arXiv.2110.03126
https://doi.org/10.48550/arXiv.2110.09676
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Overview

 Some fundamentals of dark matter research
 Basic concepts in hydrodynamic turbulence
 Dark matter flow (SG-CFD) vs. hydrodynamic turbulence

 Theory of dark matter flow
 Structural (halo-based) approach
 Statistical (correlation-based) approach

 Applications of dark matter flow
 Predicting dark matter particle properties
 Understanding the origin of MOND
 The baryonic-halo mass ratio and total baron faction
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Some fundamentals of dark 
matter research
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Overview of dark matter research

 Observational evidences (Does it exist? Where is it? How much is it?) 
 Motion of galaxies in galaxy clusters
 Rotation curves of spiral galaxies
 Gravitational lensing
 Bullet clusters
 Cosmic microwave background (CMB)
 ……

 The nature of dark matter (What is it?)
 Massive astrophysical compact halo object (MACHO)
 Primordial black holes
 Axions
 sterile neutrino
 WIMPs (Weakly Interacting Massive Particles)
 Superheavy dark matter
 ……

 Key questions: Does it exist? Where is it? How much is it? and What is it? 

Most popular
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Zwicky (1937): 
Coma cluster is much larger 
than expected!

Coma cluster:
~1000 galaxies
~20Mpc in diameter
~100Mpc from Earth (320Mlys)

NASA

Dark matter in galaxy clusters

Fritz Zwicky

 Measuring speed of galaxies moving in Coma
 Enormous speed found ~1000km/s 
 Fast enough to rip the cluster apart
 Unseen matter that holds all galaxies together

Coma cluster

1Mpc = 3.086e+19 KM = 3Mlys
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Dark matter in galaxy
Rubin (1970s):
Rotation of M31 
Andromeda Nebula

Vera Rubin

Andromeda

Triangulum

 Solar system 
rotation curve 

 From Newtonian 
mechanics

 Galaxy flat
rotation curve

 Unseen matter 
that holds galaxy 



Effect of Dark matter on galaxy rotation curve
Without dark matter With dark matter

https://en.w
ikipedia.org/w

iki/G
alaxy_rotation_curve



Dark matter in our galaxy

Halo

Luminous 
Disk

Solar 
system

Dark matter halo harbors 
our galaxy

400kpc

Source: CERN

Source: medium.com



Dark matter from gravitational lensing

 Gravitational lensing by galaxy cluster
 Gravity from mass of matter bends light
 Effect of bending is stronger than 

expected from visible matter only

Gravity bends light (General Relativity)



Composite image of X-ray (pink) and weak 
gravitational lensing (blue) of the famous 
Bullet Cluster of galaxies (colliding)

Red: gas and dust (baryonic matter) 
Moving slower because of viscosity 
(collisional due to electromagnetic 
interactions)

Blue: dark matter 
Moving faster than baryonic matter 
because of collisionless nature

Dark matter from bullet cluster (2000s)

Source: NASA/ESA
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Planck results of CMB temperature anisotropy 
(4-year survey from 2009-2013) 

Baby universe: 400,000 years after Big Bang
cold (blue) and hot (red)

Dark matter from  cosmic microwave background

Cosmic Spheres of Time 
http://new-universe.org/

46 Billion 
Light Years

Source: ESA/NASA
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Quantifying amount of dark matter from CMB

Power spectrum of the CMB temperature anisotropy 
in terms of the angular scale. Also shown is a 

theoretical (double-dark ΛCDM) model (solid line)

Today’s universe matter-energy content
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Brief timeline for dark matter research (~100 years)

1930s

Discovery of 
galaxy cluster 

velocity
~1000km/s

1970s

Discovery of flat 
galaxy rotation 

curves

1980s

Cold Dark Matter 
(CDM) model 

proposed;
MOND theory;

1992 1998

CMB fluctuations 
from COBE

Confirms CDM 
prediction 

Evidence for Dark 
Energy and 

accelerating expansion: 
Type Ia supernova

2000 2003-
2008

2013-
2018COBE: COsmic Background Explorer (NASA)

WMAP: Wilkinson Microwave Anisotropy Probe (NASA)
LSS: Large Scale Structure (LSS) of the universe
CMB: Cosmic Microwave Background
ΛCDM: dark energy + cold dark matter (double dark)
Planck: European Space Agency (ESA)

ΛCDM as the 
standard 

cosmological 
model

WMAP and LSS 
data Confirm ΛCDM 

predictions

Planck data of 
CMB anisotropies 

Confirm ΛCDM 
predictions

1960s

Discovery of 
the CMB

2030s

Discovery of 
dark matter 
particles??

2022

James Webb 
Space 

Telescope
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What is dark matter?

What it should not be?
 No electric charge
 No color charge (strong interactions)
 No strong self-interaction
 No fast decay: stable and long-lived
 Not any particles in standard model 

of particle physics

What it should be?
 Non-baryonic
 Cold (non-relativistic)
 Collisionless
 Dissipationless (optically dark)
 Sufficiently smooth with a fluid-like 

behavior (justifies a fluid dynamics 
approach)

What is the nature of dark matter flow (DMF)?
Dark matter flow can be described by a non-relativistic, self-gravitating, collisionless fluid dynamics (SG-CFD). 

No definite answer.

Then why dark matter flow? understanding dark matter flow behavior on entire spectrum.
Large scale structure 
formation & evolution

100Mpc~1024m

Halo scale structure 
property & evolution

Kpc~Mpc ~1020m

Dark matter particle 
mass & properties? 

10-10m
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Cosmological N-body simulations

 Extremely expensive simulations
 Particle number in simulations doubles 

every 16.5 months

of publication

Millennium
Run

Springel et al. 2005

cosmic web

Dehnen and J. I. ReadThe European Physical Journal Plus, 126, 55

Used by 
this work 
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N-body simulations and dark matter flow

The Millennium Simulation

Z=6

Z=2

Z=0t

 More than 10 billion "particles“

 Each with a billion Solar mass

 The large-scale structure of the
universe ("the cosmic web")

 The largest simulation of dark 
matter structure at the time

The Millennium Simulation:

Use N-body simulation:

 Self-gravitating collisionless 
fluid-like behavior

 Dark matter flow forms and 
evolves structures on both 
large and small scales

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
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N-body simulations in this comparative study

 The numerical data are public available and generated from N-body simulations carried out by the 
Virgo consortium. https://wwwmpa.mpa-garching.mpg.de/Virgo/data_download.html

 As the first step, current study focus on the standard CDM power spectrum (SCDM) with matter-
dominant gravitational flow. 

 Similar analysis can be extended to other models with different assumptions and parameters. 

 The same set of data has been widely used in many studies from clustering statistics to formation 
of halos in large scale environment, and test of models for halo abundances and mass functions. 

https://wwwmpa.mpa-garching.mpg.de/Virgo/data_download.html
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Comparison of two non-
equilibrium systems:

Dark matter flow (DMF or SG-CFD) 
vs. 

Hydrodynamic turbulence

SG-CFD: Self-Gravitating Collisionless Fluid Dynamics
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da Vinci’s sketch of turbulence (~1500 AD) 

da Vinci sketch of turbulence: plunging water jet 
 “turbolenza”: the origin of modern word “turbulence”
 The pattern of flow with vortexes in fluid
 The random chaotic nature

“. . . the smallest eddies are almost 
numberless, and large things are 
rotated only by large eddies and not 
by small ones, and small things are 
turned by small eddies and large.”
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Richardson’s direct cascade (1922)
“Big whorls have little whorls, That feed on their velocity;
And little whorls have lesser whorls, And so on to viscosity.”

Key attributes:
 Disorganized, chaotic, random;
 Nonrepeatability (sensitivity to 

initial conditions); 

 Multiscale: large range of length 
and time scales; 

 Dissipation mediated by viscosity;

 Three dimensionality; 
 Time dependence; 
 Rotationality (incompressible);
 Intermittency in space and time; 

 Cascade: energy is injected at 
large scale, propagating, and 
dissipated at the smallest scale.

[1] "Weather Prediction by Numerical Process“, Richardson, L.F. 1922
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Existing approaches for turbulence
Statistic approach:  (correlations etc.)
 Focusing on means and various 

averages
 Celebrated problem of closure
 Structureless without power of 

conceptualization

Structural approach: (vortex ect.)
 Existence of coherent structures
 Detecting and analyzing coherent 

structures in turbulent flows 

Deterministic: (should be explored in DMF?)  
 Chaotic behavior in simple deterministic 

systems
 Deterministic chaotic behavior can occur 

after just a few bifurcations
 Bifurcation theory, strange attractors, 

fractals, and renormalization group
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Direct energy cascade in turbulence

Length scale

Wavenumber

 Freely decaying vs. forced stationary
 Integral scale: energy injection
 Inertial range: inertial >> viscous force
 Dissipation range: viscous dominant
 Dissipation scale: determined by viscosity 

(m2/s) and rate of cascade (m2/s3)

ε

or η

ε: dissipated 
by viscosity 
into heat

ε

 Is there energy cascade in dark matter flow?
If yes, how it initiates, propagates, and dies ??

Energy 
contained 

scale
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Inertial range, scaling laws, and intermittence
 There exist an inertial range with a scale-independent rate of 

energy cascade (ε does not depend on eddy size l) for eddy size 
η< l <L. L is the integral length scale where energy is injected. 

 In this range, inertial force is dominant over viscous force. For 
eddies with a characteristic velocity u and size l , the lifetime 
(turnaround time) of eddy is l/u. The rate ε can be computed as 
the kinetic energy passed per lifetime.

 In this range, a general scaling for velocity structure functions for 
pairwise velocity can be identified (the most important results in 
turbulence)

( )
2 3u u

l u l
ε ≈ ≈ 3u l∝

Dissipation (Kolmogorov) scale:

( )2 3 2 3
2 uS rε∝ −

( ) ( ) ( )',
mm

m L L LS r a u u u= ∆ = − ( ) ( ) 3 3m m
m uS r rε∝

m=2

two-thirds law in 
hydrodynamic turbulence

 Intermittence of cascade in space 
and time can be identified from the 
deviation from ideal scaling law

 What is the dissipation scale η in DMF?
 Is there any simple expression for ε?
 What are the scaling laws in DMF?
 What about the intermittence in DMF?

 Touched here but need to be 
further studied.

( ) '
2 ,R r a = ⋅u uVelocity 

correlation

turnaround time
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Large scale dynamics of freely decaying turbulence 
 Freely decaying turbulence is free from any external 

force to maintain the turbulence (Coffee example). 

 There is no energy injection on large scale and total 
energy is continuously decaying with time. 

 Both integral scale l (energy-contained scale) and 
energy dissipation rate ε vary with time. 

 What is the large-scale dynamics of freely decaying 
turbulence? How does energy evolve with time?

Due to the formation and virilization 
of halos, the kinetic energy in dark 
matter flow continuously increases 
with time. In this regard, dark matter 
flow is a freely growing turbulence. 

( )
2 3u uA A

l u l
ε ≡ = 2 10 7u t−

2 7l tLoitsyansky integral invariant 
(integral of velocity correlation):

' 2 2 5d u l const⋅ ≈ =∫ u u r r
17 7tε −



 What is the large-scale dynamics in DMF?

 How energy and momentum (both radial and 
angular) evolve on large scale?

 Loitsyansky integral invariant is related to the 
conservation of angular momentum

 Do we have similar integral “constants” of 
motion in dark matter flow? Are they still 
constant or varying with time?



27

Vortex Stretching mechanism for energy cascade

1 1 2 2I Iω ω=

ω1

Moment of 
inertial: I1

Moment of 
inertial: I2

ω2

Conservation of angular momentum:

Ratio of rotational kinetic energy:

Volume 
conserved

decreasing 
diameter  
(scale)

2
2 2 1

2
1 1 2

I I
I I
ω
ω

=

I1 > I2

2 2
2 2 1 1I Iω ω>

2 1ω ω>

Rotational kinetic energy is passing 
down the scales (direct energy cascade) !

 Does similar mechanism hold for halos in dark 
matter flow?

 What is the major mechanism for energy cascade 
in dark matter flow? (facilitated by mass cascade)
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Reynolds stress for energy transfer between 
mean flow and random fluctuation

 Reynolds stress facilitates the one-way energy 
exchange from coherent (mean) flow to random 
fluctuation and enhances system entropy.

 Eddy viscosity models the Reynolds stress 
using the rate of strain of mean flow

Reynolds decomposition:

Navier–Stokes equation (self-closed):

Jeans’ equation (not self-closed):

i i i
j

j i j j

u u upu
t x x x x

ρ µ
   ∂ ∂ ∂∂ ∂

+ = − +     ∂ ∂ ∂ ∂ ∂    

0∇⋅ =u

Reynolds 
stress 

Reynolds Averaged Navier–Stokes
(RANS, not closed):

2
iji i

j
j j i

u u
u

t x x x
ρσ

ρ ρ
∂ ∂ ∂ ∂Φ

+ = − − 
∂ ∂ ∂ ∂  

2 ' '
ij i j i j i ju u u u u uσ = − =

Mean flow 
Pressure from 

Fluctuation

 Is it possible to obtain a self-closed equation for 
dark matter flow? (closure problem)
 Any similar concept as eddy viscosity in 

dark matter flow?

 How energy/momentum exchanges between 
mean flow and random fluctuation in dark 
matter flow?

Potential
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1500s 1925 1930s 1940s 1963 19671894

Reynolds number
for transition from 

laminar to turbulence;
Reynolds’s 

decomposition (RANS)
v = <v> + v’

Reynolds stress;

Earliest 
recognition of 
turbulence as 

a physical 
phenomenon

Brief timeline for turbulence research (~500 years)

Lorenz propose 
possible links 

between 
“deterministic chaos” 

and turbulence

Boussinesq’s
concept of “eddy 

viscosity” replacing 
molecular viscosity

Taylor’s statistical 
methods involving 
correlations power 

spectra;
Karman and Howarth 

Kolmogorov: 
the “K41 theory”
Two-thirds law

-5/3 law

Kraichnan’s inverse 
cascade in 2-
dimensional 
turbulence

RANS: Reynolds-averaged Navier-Stokes Equation;

1877

Prandtl “mixing-
length theory” 
predicts the 

eddy viscosity

For all concepts listed here, we 
can identify their counterparts 

in dark matter flow!
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Hydrodynamic turbulence vs. dark matter flow
Key attributes of hydrodynamic turbulence:
 Disorganized, chaotic, random;
 Nonrepeatability (sensitivity to initial conditions); 
 Multiscale in length and time scales;  
 Intermittency in space and time;
 Dissipative and collisional
 Short-range interaction
 Velocity fluctuation
 Vortex as fundamental building block
 Maximum entropy distribution (Gaussian)
 Incompressible on all scales

 Divergence-free
 Constant density

 Energy cascade from large to small length scales
 Vortex stretching responsible for energy cascade

 Volume conserving
 Shape changing
 Uniform density

 Reynolds decomposition
 Reynolds stress for energy transfer between mean 

flow and random motion (turbulence) 
 Closure problem, eddy viscosity, etc… 
 Statistical theory: correlation/structure functions 

scaling laws in inertial range

Key attributes of dark matter flow:
 Disorganized, chaotic, random;
 Nonrepeatability; 
 Multiscale in mass/length/time scales;  
 Intermittency in space and time;
 Dissipationless and collisionless
 Long-range gravity
 Velocity & acceleration fluctuation
 Halos as fundamental building block
 Maximum entropy distribution?? (X dist.)
 Flow behavior is scale-dependent  (peculiar velocity)

 Small scale: constant divergence
 Large scale: irrotational (curl-free)

 Mass/energy cascade from small to large mass scales
 Role of halos for energy cascade??

 Halos are growing, rotating, with nonuniform density
 Is halo shape changing important?
 Mass cascade facilitates energy cascade?

 Velocity/acceleration decomposition?
 What facilitates the energy transfer between mean flow and 

random motion??
 Self-closed model (analogue of NS) ?? Closure problem?
 Statistical theory: Kinematic and dynamic relations? 

Scaling laws?  

Critical MOND 
acceleration a0?

0∇⋅ =v
θ∇ ⋅ =v
0∇× =v

Deep MOND?

Common 
features



31

Theory and applications of dark matter flow
Theory of dark matter flow
 Structural (halo-based) approach

 Inverse mass cascade in dark matter flow
 Impact on halo mass functions
 Impact on halo energy and density profiles

 Energy cascade in dark matter flow
 Properties of spherical, axisymmetric, rotating, and growing halos (from mass accretion)
 Maximum entropy distributions in dark matter flow
 Halo mass function from maximum entropy distribution
 Two-body collapse model (TBCM): an elementary step of mass cascade 
 Energy and momentum evolution and integral constants

 Statistical (correlation-based) approach
 One-point statistics: velocity, density, acceleration distributions in dark matter flow
 Two-point statistics: 

 Kinematic relations for second order statistics (correlation, structure, spectrum functions)
 Kinematic and dynamic relations for high order statistics

Applications
 Predicting dark matter mass and properties
 Origin of MOND acceleration 
 Baryonic-to-halo mass relation and total 

baryons in halos
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Structural (halo-based) 
approach for dark matter flow
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Inverse mass cascade in 
dark matter flow and effects 

on halo mass functions
Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2109.12244

https://doi.org/10.48550/arXiv.2109.12244
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Introduction

The dark matter flow, a self-gravitating 
collisionless flow, involves a continuous mass 
transfer from small to large mass scales with 
a scale-independent rate of mass cascade εm.

 Goal 1: Identify and formulate mass cascade

 Goal 2: Explore the random walk of halos in 
mass space

 Goal 3: Derive the halo mass function based 
on the theory of mass cascade

Review: In hydrodynamic turbulence, “energy 
cascade” involves the energy transfer from 
large eddies to small eddies with a scale-
independent rate of energy cascade.

Mass 
flow

 Identify all halos of different sizes 
 Group halos according to the halo size np
 Mass flow across halo groups from small to large mass scale 

(inverse) through the merging with “single merger”
 Cascade leads to random-walk of halos in mass space
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Mass redistribution among halo groups

Backward mass 
redistribution function

Forward mass 
redistribution function

Backward mass redistribution function  
-- Forward mass redistribution function

=   Net mass redistribution function

Minus sign

Backward function: fraction of mass 
inherited from all other halo groups at 
an earlier time

Forward function: fraction of mass 
passed to all other halo groups at a 
later time
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Properties/features of mass cascade

Forward mass redistribution function Backward mass redistribution function

 Local: cascade is local in mass space
Halos inherit/pass their mass mostly from/to halos of the same or similar size.
(energy cascade in turbulence is also local in wavenumber space)
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Properties of mass cascade

Net mass redistribution function

 Asymmetric: cascade is two-way in 
mass space but not symmetric 

 Inverse: from small to large mass scales

(energy cascade in turbulence is a direct 
cascade from large to small scales)

Net mass redistribution function DNM:
<0: inherit more mass than pass mass
>0: pass more mass than inherit mass
Sum of DNM =0

Net effect: halos transfers mass from 
below to above.
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Time and mass scales in inverse mass cascade
( ),h hm aτAverage waiting time of a merging event with a single 

merger in a given halo group of halo mass mh

m h hmε τ−The rate at which mass is passed up from this group:

Average waiting time (halo lifespan) of a merging event 
for a given halo in halo group with nh halos of mass mh

( ), gh h
g h h h

m m

mm nm a nτ τ
ε ε

= = − = −

( ) ( ) ( )M h ma M a a tτ ε= − Time required to cascade entire mass Mh in all halos: 

( ),f h g p g h pm a n m mτ τ τ= =Average time required to form halo of mass mh via a 
sequence of merging events (np times):

( ) ( ) ( ) ( ), , ,M f h g h h ha m a m a m aτ τ τ τ≥ ≥ ≥

Time required to form halo of a characteristic mass mh* 
should be on the order of the current physical time t: ( )* ,f hm a tτ 

( ) ( )*
* * * *

h p m
h

h h h p

M a m a
m

n m Hn n
ε

− 
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Chain reaction description of mass cascade
 Mass cascade is Local, Asymmetric, 

Inverse;

 Justifies a chain reaction description of 
mass cascade;

 The initial stage: initiation/generation of 
the chain carriers (free radicals) 

 The propagation stage: a sequence of 
accretion of single mergers to propagate 
the mass along the reaction chain

 The termination stage: the deposition of 
the mass cascaded from the scales 
below to grow halos

Chain reactions provide non-equilibrium systems a 
potential mechanism to continuously release energy 

and increase the system entropy.

“Little halos have big halos, That feed on their mass; And 
big halos have greater halos, And so on to growth”
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Formulating mass cascade

( ) ( ) ( )*, ,
h

m h h M hm
m a M a f m m dm

t
∞∂  Π = −   ∂ ∫

( ) ( ) ( ) ( ) ( )*, ,,
,

h M h h g hm h
m h

h p

M a f m m m m am a
T m a

m t m t

 ∂ ∂∂Π  = = =
∂ ∂ ∂

( ),m hm aΠMass flux function:

( )hM aTotal mass of all halos:

( ),M hf m aHalo mass function:

In mass propagation range:
 Rate of mass cascade is 

Mass-scale independent;

 Halo group mass is time-
independent (steady-state);

( ) ( ),
, 0g h

m h
p

m m a
T m a

m t
∂

= =
∂

Halo group mass:

( ) ( ),g h g hm m m m a≡

( ) ( ),m m ha m aε = Π

*
h hm m

Mass flux function (kg/s): 
total mass flux from all 
halos below mh

Mass transfer function (1/s): rate of mass transfer for halos of mass mh

( ),g hm m a

Halo mass: hm
Particle mass: pm

mh

Пm

Tm

Mass flow across
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Halo group mass and mass flux function

Halo group mass mg(mh, a)
(time-independent in mass propagation range)  

Mass flux function Пm(mh, a) (normalized by 
Nmp/t0) varying with halo size

(scale-independent in mass propagation range)

)
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( ) ( ) ( )0, h
m m h

M a
a m a

t
ε

∂
= Π = = −

∂

( ) ( ),m h h ha m f m aε = −

( ) ( ) ( ) ( )( )*
0

1 2

, , p h
h h h M h h

h p

m mf m a f a M a f m m a
m m

λ
 

=   
 





Merging frequency 
for halo group: ( ),h hf m a

Term 1: proportional to the 
number of halos in group;

Halo geometry 
parameter: λ

2 3λ ≈

Term 2: proportional surface 
area of halo in group; 

Fundamental 
frequency for merging 
of two single mergers:

Formulating mass cascade

( ) 0
0f a a τ−∝

In mass propagation range: *
h hm m

λ 0τ
hm a

pm

Independent variables:

Free parameters:
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Formulating mass cascade

( ) ( ) 1* *
0,M h h h hf m m m m

λλβ
−−=

In mass propagation range: *
h hm m

Dimensional analysis 
requires mass function:

The halo mass for type II halos 
(the dominant type for large 

halos, Fig. 2 in ref. [1]) exhibits 
a power law scaling 
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Dependence on halo mass mh and mass resolution mp

Fundamental frequency f0 for merging 
between two single mergers depends 
on particle mass (same as cosmological 
redshift for photon frequency f~a-1):

1 1 3
0 pf a m− −∝

Can we detect f0
from any experiment 

or observation?
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Random walk of halos and halo mass function
Merging frequency
for halo group: ( ),h hf m a

Characteristic 
merging time for 
halo group:

( ), 1h h hm a fτ =

Characteristic 
merging time
(lifetime) for a 
given halo: 
waiting time to 
merge

( ),g h h hm a nτ τ=

# of halos in group

( ) 1 exp gr
gr

g g

P
τ

τ
τ τ

 
= −  

 

The exponential 
distribution of 
waiting time to 
merge:

( ) ( )
( ) ( ) ( )2ph

p h
g h

m tm t
D m t

t m
ξ

ς
τ

∂
= =

∂

( ) ( )0
h

p p h p h h h
h h h h

P D D P D m m P
t m m m m

λ λ   ∂ ∂ ∂ ∂ ∂
= =   ∂ ∂ ∂ ∂ ∂   

Fokker-Planck equation for distribution function:

( ) ( ) 2 2*

* *
00

1 1 1, exp
4

h h
M h

h h h

m mf m a
m m m

λ λ
λ

ηπη

− −    
 = −   
     

1D Random walk equation in mass space:

mh

Halo mass function:

Reduce to Press-Schechter (PS) mass function if λ=2/3 !
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Double-λ mass function from mass cascade

( ) ( ) 1 22 2*

* *
00

1 1 1, exp
4

h h
M h

h h h

m mf m a
m m m

λ λ
λ

ηπη

− −    
 = −   
     

( )
( )

( )
0 2 1

0

2
exp

2 4

q

q
Df qλ

η νν ν
η

−

−  
= − Γ  

λ: halo geometry parameter; naturally, we 
can have different λ for different range.
λ1 for mass propagation range (small halos);
λ2 for mass deposition range (large halos);

Comparison between different mass 
functions and simulation

 PS mass function
 ST model (modified PS) from ellipsoid collapse
 JK mass function by data fitting
 More generally, λ1 can be a function of halo mass mh

Double-λ mass function:
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Summary and key words

 Strong connections between dark matter flow and hydrodynamic turbulence
 The mass cascade is local, two-way, and asymmetric in mass space
 Scale-independent rate of mass cascade and time-independent halo group mass 
 Chain reaction description for mass cascade to release energy and maximize entropy 
 Random-walk of halos in mass space with an exponential distribution of waiting time
 Press-Schechter mass function is a special solution from halo random-walk
 New Double-λ halo mass function (based on the mass cascade)
 Extend double-λ halo mass function to consider λ as some function of halo size.

Hydrodynamic turbulence Dark matter flow
Direct energy cascade from 
large to small length scales 

Inverse mass cascade from 
small to large mass scales 

“inertial range” & 
“dissipation range”

propagation range & 
deposition range 

Mass redistribution
Random walk

Heterogeneous diffusion
Waiting time

Chain-reaction
Halo mass function
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Effect of mass cascade on halo 
energy, size, and density profile

Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2109.12244

https://doi.org/10.48550/arXiv.2109.12244
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Introduction

“Eddy” is not a well-defined object in turbulence literature. However, “halo” are well-defined dynamical 
objects, whose abundance and internal structure have been extensively studied over several decades. 

 Goal 1: Explore effects of inverse mass cascade on halo energy, 
momentum, halo size and internal structure (density) evolution.

 Goal 2: Explore the dynamic evolution of halo size (geometric 
Brownian motion)

 Goal 3: Explore the random walk of particle in halos with a randomly 
evolution size. This leads to a universal halo density profile.

Review: In hydrodynamic turbulence, “Energy cascade” involves the energy transfer from large 
eddies to small eddies with a scale-independent rate of energy cascade. No mass cascade!

“Little halos have big halos, That feed on their mass; And big halos have greater halos, And so on to growth”
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Halo mass accretion, deformation, and radial flow

Schematic plot of halo mass 
accretion and deformation

 Halo grows with a new layer of particles of thickness rp
formed due to halo mass accretion (mass cascade)

 Original halo (dash line) deforms in size (shrinks to 
green) by rp

’ due to gravity of new layer 

 The net change in halo size is rp - rp
’

 Halo deformation at halo surface induces a non-zero 
inward radial flow ur

 What about the radial flow at halo center??
 Must be outwards if no blackhole considered

'1h p pr rα = −Halo deformation 
parameter

1hα =Isothermal profile (vanishing radial flow, no time to 
relax or deform due to extremely fast mass accretion):
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Effect of radial flow on halo density profile
Reduced spatial/ 

temporal coordinate: 
( ) ( ) ( )

,
s h

r crx r a
r a r a

= =

( ) ( ) ( )
( )

,r h

F x
m r a m a

F c
=Function F(x) for 

enclosed mass at given r: 

( ) ( ) ( ) ( )
( )

3 '

2 3 2

,1,
4 4

r h
h

h

m r a m a c F x
r a

r r r x F c
ρ

π π
∂

= =
∂

Halo 
density: 

F(x) Radial flow uh(x)Density ρh

 Outward flow in core and inward flow in outer region

 Radial flow creates a new length scale for any halo 
density: the scale radius rs

 Vanishing radial flow for isothermal: extremely fast 
mass accretion and no time for halo to deform

( ) ( ) ( )2

2

, ,, 1 0h rh r r a u r ar a
t r r

ρρ  ∂∂  + =
∂ ∂

Radial 
continuity 
equation:

( ) ( )
( )'

ln
ln

h
h

F x ru x x
F x t

  ∂
= −  ∂ 

Radial flow 
equation:

Mass 
cascade

( ) ( ) ( )ln 1 1F x x x x= + − +NFW:
( ) ( ) ( )3 3 ,2F x xαα α α= Γ −ΓEinasto: ( )F x x c=

Isothermal:
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Radial flow and angle of incidence 

( )'lnln 2 2
ln ln 1

h h

h

F x u x
x x u x
ρ ∂∂ ∂ ∂

= − = −
∂ ∂ −

ln 2
ln

h

x
ρ∂

= −
∂

0hu
x

∂
=

∂

Logarithmic slope of density: 

and ( ) 1 1 1cot
2 3

p
vr

cir h

u
v

θ
π α
 

= = − 
 

At r=rs

Radial flow is at 
its maximum at 
scale radius rs

 Single mergers merging with halo at an angle: angle of incidence
 Neither perpendicular nor tangential
 Angle of incidence determined by peculiar radial flow up and 

circular velocity vcir

1hα =Deformation parameter 
for Isothermal profile: 

( ) 1 2cot
3vr

c

θ
π

= =
∆

 Determine critical halo density Δc , 
(two-body collapse model)

 Determine the rate of energy cascade
 No energy cascade if tangential
 Maximum cascade if perpendicular

 Understand the critical MOND 
acceleration a0

( )
2

2

2 18
cotc

vr

π
θ

∆ = =

and 



53Klypin A. etc.., 2016, Mon. Not. R. Astron. Soc., 457, 4340

Radial flow from simulation Einasto profile is better than NFW for 
massive halos (high peak height ν), why?

Radial flow from simulation
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Radial flow ur and pressure around halo center
Radial flow at halo center:

 Term 1 from mass cascade usually neglected

 The radial flow should vanish for virialized 
small halos with extremely slow mass 
accretion (late stage); gravity exactly balances 
pressure; stable clustering hypothesis (SCH)

 The radial flow should be the Hubble flow for 
large halos with extremely fast mass accretion 
(early stage).

 In spherical collapse model, the initial velocity 
of mass shells is simply the Hubble flow 

( ) ( ) ( )2

2

1

, ,1 h r h rr r
r

h

r a Gm r au uu
t r r r r

ρ σ φ
ρ

∂ ∂∂ ∂
+ + = − = −

∂ ∂ ∂ ∂


( )


2 2
2 2

2
3

1 2

ln ln ln1
ln ln ln

h r s h s s
r h h c

r u r rx x u u v
x t x t t

ρ σ
σ

∂ ∂ ∂ ∂    = − + − −    ∂ ∂ ∂ ∂    




Jeans’ equation: 

1: from pressure; 2: from radial flow; 3: from gravity 

( ) ( ) ( ) ( ) ( )
( )

2 2
2 2

2

0
0

2
h cir

h h r h
h

x v
p x x x p x x

a c
ρ

ρ σ
ρ

=
≡ = = −

Parabolic pressure around halo center:

( )
( )

( )2 0
0

h r
c

h cir

a c
x

v
ρ σ
ρ

=( ) 0h cp x =
Define a halo core size xc :

0h h x
u xγ

=
= ∂ ∂

Define a halo 
deformation rate:

xc

ph
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Double power-law for halo density 

( ) ( ) ( )3 2 1h h
h sr r r γ γρ − −< ∝

( )
( )

0

1
2hc

c x
h sr r r

α

ρ
−

−
−> ∝

( )'lnln 2 2
ln ln 1

h h

h

F x u x
x x u x
ρ ∂∂ ∂ ∂

= − = −
∂ ∂ −

F(x) Radial flow uh(x)Density ρh

Density 
profiles

Concentration c Deformation 
parameter αh

Deformation rate 
parameter γh

𝜌𝜌ℎ 𝑟𝑟 < 𝑟𝑟𝑠𝑠

Isothermal 3.5 1 0 r-2

NFW 3.5 0.8329 1/2 r-1

Einasto (α=0.2) 3.5 0.8371 2/3 r0

3/4 r1

( ) ( ) ( )
( )

''

'2
hu x F x F x
x F x

∂
=

∂

( )
( )

'

h

F c
c

F c
α =

 Double power-law is a natural result due to radial flow 
in outer and inner regions

 Halo deformation parameter from mass cascade controls 
density in outer region

 Halo deformation parameter controls density in inner 
region

 The larger deformation rate at center, the larger 
logarithmic slope 
(baryonic feedback for core-cusp?)

0h h x
u xγ

=
= ∂ ∂

Double power-law: 



56

The limiting concentration c for large halos 
and radial momentum and kinetic energy 

( ) ( ) ( ) ( ) ( ) ( )( )2

0 0
, 4 , 2

2
hr ch cir

hr r h
m vL a u r a r r a dr cF c F x dx
cF c

π ρ
π

= = −∫ ∫

( ) ( )
0

2
c

cF c F x dx= ∫ 3.5c =

Vanishing radial Linear momentum (halos at turn-around):

Zhao etc.., 2009, Astrophys. J., 707, 354

for NFW 
profile

Limiting 
concentration 
for large halos

Limiting c~4 
from 

simulation
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Effect of radial flow on velocity dispersion

 Radial flow usually neglected for
virialized halos;

 Effect of radial flow can be significant
for halos in their early life before fully
virialized (high peak height v);

 The radial flow tends to enhance the
radial random motion and is only
significant in the halo outer region.
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Mass cascade induced halo surface energy

( ) ( ) ( ) ( )2 2 2

2 2

,1 0h r h rh r r
h

r uu Gm r a
t r r r r

ρ ρ σρ
ρ

∂ ∂∂
+ + + =

∂ ∂ ∂

6 2h h u uK I K S Sσ σ+Φ = − + +

Jeans’ equation for isotropic growing halos 
with non-zero radial flow:  

Integrating Jeans’ Equation leads to a 
generalized virial theorem for growing
halos with fast mass accretion:

6 0hK nσ − Φ =

Standard virial theorem for static halos with a 
vanishing radial flow (Kσ is 1D kinetic energy):

( )eh uS S Sσ= +

6 0e hK nσ − Φ =

1n = −Potential 
exponent

Rewrite to introduce effective exponent ne:

and

Halo surface energy:

Halo surface tension:

( )2th eh hS S A= 24h hA rπ=
Young–Laplace equation relates the pressure jump 
across halo surface to halo radius or curvature; 

22 0.1th eh
h h cir

h h h

S SP v
r A r

ρ∆ = = ≈

2 1
th st sur h hS G r rα ρ −= ∝

1 1.3 1eh
e

Sn ≈ − + ≈ − ≠ −
Φ

,

Surface area:

Halo surface mass 
density: ρsur ~rh

-1

Mass cascade (fast mass accretion) leads to finite 
halo surface energy, surface tension, surface mass 
density, and an effective potential exponent ne~-1.3, 
confirmed by N-body simulation.

21 h u u
e

I K S Sn σ− + +
= − +

Φ

mean 
flow
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Halo size evolution from theory of mass cascade

( ) ( )
( ) ( ) ( )2ph

p h
g h

m tm t
D m t

t m
ξ

ς
τ

∂
= =

∂

1D Random walk of halos in mass space:

( ) ( ) ( ) ( )3
2

h
h h rh

dr t
Hr t Hr t t

dt
ξ= +

1D Random walk of halos in size space 
(Geometric Brownian motion):

( ) ( ) ( )' '2rh rh rht t D t t Hξ ξ δ= −

( )
( )

( ) ( ) ( )( )
( )

2
0ln 1 2 3 ln1, exp
8 ln 38 ln 3

h h rh i
rh h

rh ih rh i

r r D t t
P r t

D t tr D t tπ

 − − = − 
  

ti t Solution leads to a lognormal probability distribution of halo size:rh0

Covariance:
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Particle distribution in halos: a review of Brownian motion

( ) ( ) ( )* 2t
h t h t B

dr u x u x D t
dt

ξ = + + 

( ) ( ) ( )* *2t
h t h t B

dr u x u x D t
dt

ξ = − + 

( )1 1
6 6

B BB B B
h

B B B B B B

k TFu
a a x x

ρµ
πη πη ρ ρ

∂∂Π
= = − ⋅ = −

∂ ∂

* ln B
h Bu D

x
ρ∂

=
∂

Osmotic velocity 
from diffusion flux:

Quick review of standard Brownian motion in viscous liquid:

Current velocity from stokes law:

( ) ( ) ( )( )
2

*
2

,r r
h h r B

P x t Pu x u x P D
t x x

∂ ∂∂  = − + + ∂ ∂ ∂

( ) ( ) ( )( )
2

*
2

,r r
h h r B

P x t Pu x u x P D
t x x

∂ ∂∂  = − − − ∂ ∂ ∂

*
h hu u= − B B BD k Tµ=

The Einstein relation:A simple closure: 

( ) 2

2

,r r
B

P x t PD
t x

∂ ∂
=

∂ ∂

Stochastic equations for Brownian 
motion (forward and backward):

Diffusion equation for 
density distribution:

Fokker-Planck equations  
(forward and backward):

* ln r
h h B

Pu u D
x

∂
= − =

∂
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Particle distribution in halos: formulation
Brownian motion of particle in halos with stochastically (lognormal) growing size:

 Due to long-range interaction, 

Stochastic equations for Brownian motion (forward and backward):

Fokker-Planck equations  (forward and backward):

( ) ( ) ( ) ( ) ( ) ( )*

2
1

st
h t h t t s rh

r tdr u x u x x r t H t
dt t

σ ξ = + + 




( ) ( ) ( ) ( ) ( ) ( )* *st
h t h t t s rh

r tdr u x u x x r t H t
dt t

σ ξ = − + 

( ) ( ) ( ) ( )( ) ( ) ( )( )
2

* 2 2
2

,r s
h h r s rh r

P r t r t
u x u x P r t HD x P

t t r r
σ

∂ ∂ ∂ = − + + ∂ ∂ ∂

( ) ( ) ( ) ( )( ) ( ) ( )( )
2

* 2 2
2

,r s
h h r s rh r

P r t r t
u x u x P r t HD x P

t t r r
σ

∂ ∂ ∂ = − − − ∂ ∂ ∂

( )r
h r

Px u x P
x x

∂ ∂
=   ∂ ∂

( ) ( ) ( ) ( )* 2 2lnh r ru x d x x P x
x

σ σ∂  =  ∂

Multiplicative noise 
(dependent on rt itself) 
due to random varying 

halo size!! 

 Key is to find a simple closure to close 
equation! (an example in ref.)

( ) ( )
( )

( )2 2
* r h
h r

h

d x xuu x d
x u x x x
σ σ∂∂

= +
− ∂ ∂

Exact relation between current 
and osmotic velocities:

*
h hu u≠ −Radial 

flow
Osmotic 

flow

( )t tx xσ With expected

https://arxiv.org/abs/2109.12244
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To derive halo density, adopting a 
simple model of osmotic velocity :

( ) 1* r
h r ru x x x αγ β += −

Particle distribution in halos: halo density profile

( ) ( )( )

1

exp
rr

r r r r

ba
a b a br

r r
r r r

bP x b x x
a a b

− −
 

= −  Γ −  

( ) ( ) 3 21

3 2 exp
4

r r

r r r r r

b a
h r b a b a b

h s r
s

m P x
x e b x x

r x
ρ ρ

π

−
− −

 
= = −  

 

( ) 2 22 2exp exph s s
s

rr e x e
r

α

α α αρ ρ ρ
α α

     = − = −        

Two-parameter particle distribution function:

Three-parameter halo density profile:

Two-parameter Einasto:

3 2r ra b =

( )
( )( )

( )

( )( )
( )

1 1

0

, ,
1

r r r ra b a b
x r r r rr

r r
s h r r

a b x a b xmrF x P y dy
r m a a

γ− −Γ 
= = = = − =  Γ Γ 

∫

Two-parameter cumulative distribution function:

Density of 
composite halos of 

different mass
has a central core 

and universe 
density profile!!

( ) ( )
2

1 r
h

F x
x

x x
ρ

∂
∝

∂
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Particle distribution in halos and halo density profile
Constructing composite halo for a halo group 
including all halos of the same mass:

Halo #1

Halo #2

Halo #3

……

Composite 
Halo

 Composite halo reflects complete statistics of 
particle distribution resulting from particle random-
walk in dynamic halos;

 All composite halos have a central core (no cusp)
 The density profile of composition halo (α=[1.2 

0.7]) can be different from individual halo (α≈0.2);

 Fitted ar/br=3/2 for all size of halo groups 
(implies an Einasto profile) 
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Equation of state for relative pressure and density

( ) ( )
2

0 1 rb
h h rx b xρ ρ

 
≈ −  

 

( )
2

2 exp rb
h s rr e b xαρ ρ

 
= −  

 
2rb α=

( ) ( ) ( ) ( ) ( )2 2
2 2

2

010
2

h cir
h h r h

h

v
p x x x p x x

c
ρ

ρ σ
ρ

= = = −

( ) ( )
( )
( )

( ) ( )
2 2

2

0
0 0

2

r

r

r

b
bh cir

h h h hb
r h

v
p p x x

b c

ρ
ρ ρ

ρ

−
  − = −      

( ) rb
h s hp K ρ∆ = ∆

Equation of state (EoS) for relative pressure and 
relative density (relative to the center of halo):

with

For small x (halo center)

Cancel x in both Equations:

 EoS is good for entire range of relative P and ρ
 Why? might because of halo grows from center

Parabolic pressure at halo center:
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Summary and key words

 Mass cascade induced nonzero radial flow (outwards and inwards).
 Self-similar solution to relate halo density profile with radial flow.
 Radial flow leads to an extra length scale (the scale radius rs).
 Limiting halo concentration c=3.5 for fast growing halos at their early stage, with a Hubble flow 

at halo center leading to a central core.
 Composite halos from N-body simulation always have a central core.
 Radial flow enhances velocity dispersion in outer region. 
 Radial flow leads to a nonzero halo surface energy/tension.
 Random walk of halo size is a geometric Brownian process with log-normal distribution
 Random walk of particles in halo with varying size leads to analytical particle probability 

distribution (i.e. the halo density profile).
 Equation of state for relative pressure and relative density (relative to halo center)

Radial flow & scale 
radius

Halo surface 
energy/tension

Current velocity Mean flow& 
random motion

Deformation 
parameter αh

Deformation rate 
parameter γh

Osmotic velocity Limiting 
concentration

Angle of incidence Random walk Fokker-Planck Equation of state
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Energy cascade in dark 
matter flow

Xu Z., 2021, arXiv:2110.13885v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2110.13885

https://doi.org/10.48550/arXiv.2110.13885
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Introduction

“Eddy” is not a well-defined object in turbulence literature. However, 
“halo” are well-defined dynamically growing and rotating objects 
with nonuniform density, whose abundance and internal structure 
have been extensively studied over several decades. 

Review: In hydrodynamic turbulence, “Energy cascade” involves the energy 
transfer from large eddies to small eddies with a scale-independent rate of 
energy cascade (direct cascade). No mass cascade!
Vortex stretching is a major mechanism for energy cascade in turbulence. 

“Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth”

“Big whorls have little whorls, That feed on their velocity; 
And little whorls have lesser whorls, And so on to viscosity.”

 Goal 1: Identify and formulate kinetic/potential energy cascade
 Goal 2: Identify a constant scale-independent rate of energy cascade
 Goal 3: Explore the effect of halo shape on energy cascade

Eddy
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Decomposition of kinetic energy

2 2 2
h vσ σ σ= +

'
p h p= +v v v

Decompose particle velocity into halo 
velocity and velocity fluctuation 
(“Reynolds decomposition”)

Similarly, decompose velocity 
dispersion into halo velocity dispersion 
and halo virial dispersion

Halo group 
temperature

Halo
temperature

Halo group temperature is 
independent of halo size

( )2 ' 2 3varv p hmσ = ∝v

( )2 varhσ = hv

Variation with halo size for redshifts z 
= 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0

( )2 2
0h ha au aσσ β≈ ∝

( ) ( )2 32 1 2 1 2 3
0,v h v h p hm a a u m m a mσσ β − −≈ ∝
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(Kinetic) energy flux functions

( ) ( ) ( ) ( )
0

, , ,h

h

m

m h h M mm
m a M a f m a dm T m a dm

t
∞∂  Π = − =  ∂ ∫ ∫ ( ) ( ) ( ),,

, g hm h
m h

h p

m m am a
T m a

m m t
∂∂Π

= =
∂ ∂

( )hM a

Equipartition 
requires:

Mass flux function:
total mass flux from 
all halos below mh

Mass transfer function: rate of 
mass transfer for halos of mass mh

Halo mass: hm

Energy flux function for halo kinetic energy σh
2:

Energy flux function for virial kinetic energy σv
2:

( ) ( ) ( ) ( )2 2, , , ,
h

kv h m v m h vm
m a T m a m a dm m aσ σ

∞
Π = − ≠ Π∫

( ) ( ) ( ) ( )2 2, , , ,
h

kh h m h m h hm
m a T m a m a dm m aσ σ

∞
Π = − ≈ Π∫

mh

Пu

Tm

Halo mass function: ( ),Mf m a

 Direct energy cascade 
in hydrodynamic 
turbulence through the 
change of vortex shape

( ) ( )2 * 2

0
, ,h M h h h h hf m m m a dm aσ σ

∞
= ∝∫

Mean (specific) halo kinetic energy:

( ) ( )2 * 2

0
, ,v M h h v h hf m m m a dm aσ σ

∞
= ∝∫

Mean (specific) virial kinetic energy:

 In dark matter flow, inverse
energy cascade is facilitated by 
the inverse mass cascade through 
mass transfer function Tm

2 2 21
2h vσ σ σ≈ =

Total mass of all halos:

Dispersion of all particles: 2u

Energy flow across
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(Kinetic) energy flux functions πkh and πkv

The variation of energy flux function πkv with 
the size of halo groups. 

The variation of energy flux function πkh with 
the size of halo groups. 
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(Potential) energy flux functions
Decompose particle potential into inter-halo 
potential (due to interaction with particles from 
other halos) and intra-halo potential (due to 
interaction with particles in the same halo):

h vφ φ φ= +

Intra-halo 
potential

Inter-halo potential is relatively 
independent of halo size

Inter-halo 
potential

Variation with halo size for redshifts z 
= 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0

The virial ratios:
23v v vγ σ φ= −
23h h hγ σ φ= −Inter-halo: 

Intra-halo: 

1.3vγ ≈For large halos:
due to halo surface energy
Direct cascade for potential 
energy from large to small
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Redshift evolution of halo mass and virial ratio

The variation of total halo mass Mh, out-of-halo 
mass Mo and virial ratios with scale factor a. 

 Mass flux from out-of-halo to halos sustains the total 
halo mass growing as Mh(a)~a1/2, as predicted from 
mass cascade.

 ~ 60% of total mass are in halos and ~40% in out-of-
halo (single merges)

 For the motion of halos, virial ratio (yellow) takes 
longer time to reach equilibrium due to weak gravity 
between halos.

 For motion in halos, virial equilibrium is established 
much faster with virial ratio ≈1.3 (yellow). 

 Virial ratio≈2 (green) for out-of-halo particles(single 
mergers). The out-of-halo sub-system is energy 
conserved (no virilization), i.e. KE+PE = 0.
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Variation of three kinetic energies for halo and out-
of-halo particles with scale factor a

Redshift evolution of kinetic energies
 Total total kinetic energy of entire N-body 

system (green line: 1+2+3) grows ∝ t. 

 Total kinetic energy in out-of-halo sub-
system (magenta: 3) is time-invariant. 

 The total kinetic energy of halo sub-system 
(red: 1+2) becomes dominant over out-of-
halo sub-system grows ∝ t. 

 A cross-over can be found at around a=0.5. 

 A constant and scale-independent rate of 
energy cascade can be identified: 

2 2 21
2h vσ σ σ≈ =

22 2
2 70

0 0 3
0

3 3 9 4.6 10
2 2 4u

uu mH u
t t s

ε −= − = − = − ≈ − ×
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Rate of mass and kinetic energy cascade

( ) ( ) 2 050,
2kv kv h h vm a M a H aε σ= Π → = − ∝

( ) ( )2 2 010,
2kh kh h m h h hm a M a H aε ε σ σ= Π → = = − ∝

( ) ( ) 110,
2m m h hm a M a H aε −= Π → = − ∝

2 2 2 11
2h v aσ σ σ≈ = ∝

( )
( )

( ) ( ) 2
23 9 3

2 4 2
kh kv h h

u
h tot tot

M a M a uH
M a M M t
ε ε

ε σ
+

= = − ≈

The rate of mass cascade:

The rate of cascade of halo kinetic energy σh
2:

The rate of cascade of virial kinetic energy σv
2 :

The rate of cascade of total kinetic energy:

 Total mass in N-body system: Mtot
 Total halo mass in all halos: Mh
 Total mass in out-of-halo: Moh
 One-dimensional velocity 

dispersion in N-body system: u2

 One-dimensional velocity 
dispersion in all halos: <σ2>

 One-dimensional halo velocity 
dispersion in all halos: <σh

2>
 One-dimensional halo virial 

dispersion in all halos: <σv
2>

 Hubble parameter: H
 Physical time: t
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Inverse cascade of halo radial and rotational 
kinetic energy

Variation with halo size for different redshifts 
z = 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0. 

( ) 1 2
hp G h gG f m a Hr−≈ −

( ) 0.5 2
h H h gf m a Hr≈H

2'

1

pn

g p p
p

r n
=

= ∑ x

'
p h p= +x x x

( )' '

1

1 pn

hp p p
ip

G
n =

= ⋅∑ x u( )' '

1

1 pn

h p p
ipn =

= ×∑H x u

'
p h p= +u u u

( )
( )

( )
( )

3 2,
,

hp h G h
G

H hh h

G m a a f m
f mm a

γ
−

= =
H

Decompose halo particle position and velocity

xh
X’p

Define the mean square radius rg: 

(peculiar) virial quantity 
(radial momentum):Angular momentum:

(Next slides)
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Modeling halo angular and radial momentum
1 3

2
0

2 h
g g h g

c

Gmr r a
H

γ γ
 

= =  ∆ 

1 3

130.28
2.27 10

g hr ma
Mpc h M h

 
≈  × 

The variation of two coefficients fG, fH and ratio γGThe variation of mean square radius rg



( ) 1
02 2

3 3
2 2

h h
h H h

rg g

f m H a
r r

ω −= = =
H H
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Halo angular velocity and kinetic energy from 
coherent motion (mean flow)

( ) ( )
2 3

2 22 3 021 1
2 2

h
rp hp g g G h

c

Gm HK G r a f mγ −  
= =      ∆ 

( ) ( )
2 3

2 22 021 3 3
2 4 4

h
a h h h g g H h

c

Gm HK r f mω γ
 

= = =      ∆ 
H H

The variation of halo angular velocity, rotational 
kinetic energy and radial kinetic energy

ω=2H
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The effect of halo shape on energy cascade

' '
, ,

1

pn

ij p i p j
p

I x x
=

=∑
Assuming ellipsoid shape, 3x3 inertia tensor for every halo:

1 2 3r r rλ λ λ≤ ≤

Vortex Stretching (shape changing) responsible for energy cascade in turbulence. 
What about the shape change of halo?

2 2 2 2
1 2 3gr r r rλ λ λ= + +

Three eigenvalues
(length of 

semimajor axis)

Mean square radius:

2 1
1

3 2
r

r r
r r
λ λ

λ λ

λ −
=

− ( )

2 2
3 2

2 2 3
1 2 32r

r r
r r r
λ λ

λ λ λ

λ +
=

Define two critical ratios: 

2 1rλ =

Moment of inertia 
for ellipsoid

Moment of inertia 
for sphere

1 0.5rλ ≈ [ ]2 1.55,2rλ =

Same 
volume

for small halos, a 
unique path of shape 
evolution (green);

for sphere;
Simulated halos:

0.5

Change of halo shape 
should not play a significant 

role in energy cascade. 
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Various halo shape parameters

( )
3 1

1 2 32e
r rh

r r r
λ λ

λ λ λ

−
=

+ +

( )
3 2 1

1 2 3

2
2p
r r rh

r r r
λ λ λ

λ λ λ

− +
=

+ +

2 2
3 2
2 2
3 1

t
r rh
r r
λ λ

λ λ

−
=

−

Prolate:Oblate:

1th =

0th =

oblatep eh h= −

p eh h= prolate

1 2 3r r rλ λ λ< =
1 2 3r r rλ λ λ= <

From wiki

oblate

prolate
Triaxiality parameter:

Ellipticity & prolateness parameters: 

The variation of halo shape 
parameters with halo size at z=0
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Two-dimension he-hp mapping of halo shape 
 All three-body halos have planar structure (blue 

line) with mean values of 1/8 and 3/8.

 The mean shape parameters for all halo groups 
(black circles). Green circles highlight the halos 
in range of np=[3 200]. Halos are more prolate. 

 With increasing size, the shape of halos evolves 
consistently toward sphere along a unique path 
(green line) before a “V” turn. Path required 
λr1=0.5. 

 Red line with arrow pointing to low peak height 
indicates the evolution path of simulated halo 
shape from early stage (ν=5) to late stage (ν=0.5).

100.098log 0.094eh ν= +

100.079log 0.025ph ν= +

( ),cr hm zν δ σ=Peak height: [5 to 0.5]

Vortex 
stretching
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Summary and keywords

 Establish connections of energy cascade in turbulence and dark matter flow 
 Direct energy cascade in hydrodynamic turbulence is facilitated by the vortex stretching 

(shape changing) along its axis of rotation 
 Inverse cascade of kinetic energy from small to large mass scales in dark matter flow 
 Direct cascade of potential energy from large to small mass scales
 A constant scale-independent rate of energy cascade εu~a0 and a is scale factor
 Energy cascade in dark matter flow is mostly facilitated by the mass cascade of halos
 The shape change of halos does not play the major role.
 A unique evolution path of halo shape that gradually approaches spherical shape with 

increasing halo size

Inverse energy cascade Direct energy cascade Halo inertia tensor 
Energy flux function Energy transfer function Halo mean square radius

Prolate & oblate Ellipticity & prolateness Halo moment of inertia
Halo virial/velocity 

dispersion
Intra- and inter-halo 

potential
Halo radial & angular 

momentum
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The mean flow, velocity dispersion, 
energy transfer and evolution of 

rotating & growing dark matter halos
Xu Z., 2022, arXiv:2201.12665 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2201.12665

https://doi.org/10.48550/arXiv.2201.12665
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Introduction

Existing study of halos mostly focus on the spherical non-rotating non-growing halos with a 
vanishing radial flow (fully virialized halos with slow mass accretion in their late stage). 

 Goal 1: Explore solutions of mean flow and dispersions for spherical,
axisymmetric, growing and rotating halos (fast mass accretion in their 
early stage) with an effective angular velocity ωh(t) and varying size rh(t)

 Goal 2: Explore the transition of halos from early to late stage
 Goal 3: Explore the role of halos in energy transfer between mean flow 

and random fluctuation.

Review: In hydrodynamic turbulence, “Reynolds stress” facilitates the one-way energy exchange 
from coherent (mean) flow to random fluctuation (turbulence) and enhances system entropy.

Axisymmetric 
means no φ
dependence.

The polar flow 
(meridional flow) : ( ), ,u u r tθ θ θ=

azimuthal flow 
(zonal flow): ( ), ,u u r tϕ ϕ θ=

( ),r ru u r t=Radial flow: ( )2 2 , ,rr rr r tσ σ θ=

( )2 2 , ,r tθθ θθσ σ θ=

( )2 2 , ,r tϕϕ ϕϕσ σ θ=

( ),h h r tρ ρ= ( ),r r r tφ φ=Density: Potential:
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Reduced equations and anisotropic parameter 

( )2 2 2 2
2

2

1

1 2 1 0
2

h rrr r r
r rr

h rr

uu uu
t r r r r

θθ ϕϕ ϕρ σ σ σ φσ
ρ σ

∂  + +∂ ∂ ∂
+ + + − + =  ∂ ∂ ∂ ∂ 



2
2 2 2 sin

cos
u θθ
ϕ θθ ϕϕ

σθσ σ
θ θ
∂

= − +
∂

0r
r

u u u u
u

t r r
ϕ ϕ ϕ∂ ∂
+ + =

∂ ∂

The full momentum equations (Jeans’ equation) reduces to  

( )2

2

1 0h rh
r u

t r r
ρρ ∂∂

+ =
∂ ∂

( )
2

,rr Gm r t
r r
φ∂

=
∂

( )
2

,1
4

r
h

m r t
r r

ρ
π

∂
=

∂

2 2 2

1 21
2h

rr

uθθ ϕϕ ϕσ σ
β

σ
+ +

= −
2 2

21
2h

rr

θθ ϕϕσ σ
β

σ
+

= −

The continuity equation reduces to:  

2 2 2 0r rθ ϕ ϕθσ σ σ= = =

Observations of flow on rotating sphere strongly suggest 
that as the rotation rate increases, the azimuthal flow 
becomes dominant and the polar flow may be neglected.

0uθ ≈With and

Six equations and 8 
Variables; need extra 

closures to solve;

Anisotropic parameter should include effect of uφ or 
centripetal force:

Circle: uφ ; Square: radial flow urp ; Diamond: uθ

Old New

Polar flow can be neglected

Simulation

For θ:

For φ:
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Evolution of halo angular momentum

( ) ( ) ( )
2

2

1 0h rh r
h

u u ru u u
t r r r

ϕϕ
ϕ

ρρ
ρ

 ∂∂  + + =
∂ ∂

( ) ( ) ( )3 2

0
2 , sinh h

h h h h r h
H rr r u r d u r
t t

π

ϕπ ρ θ θ θ∂ ∂ = − ∂ ∂ ∫

( )( )3 2

0 0
2 sinhr

h hH r r u d dr
π

ϕπ ρ θ θ= ∫ ∫

The halo angular 
momentum is 
conserved only if 

( )h
r h

r u r
t

∂
=

∂

However, for 
growing halos 

0hr t∂ ∂ >
( ) 0r hu r ≤

From continuity and momentum equations:

The halo angular momentum is: 

Time evolution of angular momentum:

0hH
t

∂
>

∂

 In hydrodynamic turbulence, angular momentum 
is conserved during vortex stretching.

 In dark matter flow, halo angular momentum is 
not conserved and always increasing with time.

 The Tidal Torque Theory (TTT) relates the 
angular momentum to the misalignment between 
the tidal shear field and halo shape.

 TTT predicts a linear increase with time t for halo 
with a fixed given mass 

 A growing halo may obtain its momentum 
through continuous mass acquisition and 2

hH t

hH t
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Evolution of halo rotational kinetic energy

( ) ( )2 22
2

2

1 2 0
h rh r

h

productionderivative advection

u u ru uu
t r r r

ϕϕ
ϕ

ρρ
ρ

 ∂∂  + + =
∂ ∂

 

From continuity and momentum equations:

( )2 2

0 0

1 2 sin
2

hr

a hK r u d dr
π

ϕπ ρ θ θ= ∫ ∫

The halo rotational kinetic energy is 
obtained by integration: 

Time evolution of rotational kinetic energy:

( ) ( ) ( ) ( )2 2 2 2

0 0 0

21

, sin 2 sinhra h r
h h h h r h h

K r ur r u r d u r r u d dr
t t r

π π

ϕ ϕπ ρ θ θ θ π ρ θ θ∂ ∂ = − − ∂ ∂ ∫ ∫ ∫




 In hydrodynamic turbulence, the “Reynolds” stress 
facilitates the one-way energy exchange from coherent 
(mean) flow to random fluctuation and enhances entropy.

 In dark matter flow, the production term describes the 
fictitious stress acting on the gradient of mean radial flow 
to facilitate the energy transfer between mean azimuthal 
flow and random fluctuation.

 Since ur is positive in core region and negative in outer 
region, the energy transfer is two-way, i.e. energy is drawn 
from random motion to mean flow in outer region and from 
mean flow to random motion in core region.

 However, for entire halo, there is a net transfer from mean 
flow to random flow to enhance the halo entropy.

Fictitious 
stress

gradient

1: surface contribution from 
mass cascade
2: bulk cont. from energy transfer 



General solutions for rotating, and growing halos

( ) ( ) ( ) ( )2 2 2
0

1 2

, , , , , ,rr t r t r t u r tθθ ϕ ϕσ θ σ α θ= +




( ) ( ) ( ) ( )2 2 2
0, , , , , ,rr t r t r t u r tϕϕ ϕ ϕσ θ σ β θ= +

( ) ( ) ( ) ( )2 2 2
0, , , , , ,rr rr t r t r t u r tϕ ϕσ θ σ γ θ= +

2
2 2 2 sin

cos
u θθ
ϕ θθ ϕϕ

σθσ σ
θ θ
∂

= − +
∂

0r
r

u u u u
u

t r r
ϕ ϕ ϕ∂ ∂
+ + =

∂ ∂

( ) ( ) ( ) ( ) ( ), , h su r t t r t F x Kϕ ϕ ϕθ ω θ=

( )

( )

ln ln
ln ln ln

lnln
ln

h s
h

s
h

ru x xF t t
rx x u x
t

ϕ

ω∂ ∂ + + ∂ ∂ ∂ =
∂∂ −
∂

Introduce reduced 
spatial/temporal coordinate: 

( ) ( ) ( )
,

s h

r crx r t
r t r t

= =

( ) ( )sinK θα
ϕ θ θ=

1
2
ϕ ϕ

θ
ϕ

β α
α

α
+ −

=

Key: decomposition of velocity dispersion:
Separation of 

variables: 

 Spin causes velocity anisotropy; Velocity dispersions can 
be expressed as a function of azimuthal flow uφ. 

 Velocity dispersion is expected to be isotropic for non-
rotating halos with a spherical symmetry. 

 For spherical halos with a finite spin, velocity dispersions 
are only isotropic along the axis of rotation (θ=0)

( ) ( ) ( ) ( )2 2 2 2
0, 0, , 0, , 0, ,rr rr t r t r t r tθθ ϕϕσ θ σ θ σ θ σ= = = = = =

with an 
angular 

exponent

Momentum 
equation for θ:

Momentum 
equation for φ:

Mass 
cascade

Halo spin

Radial flow

1: Axial-dispersion 2: Spin-dispersion
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( ) ( )
2
01 , 0h rr r r

r a
h

u uu F r t
t r r r

ρ σ φ
ρ

∂∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂

( ) ( )2

2

ln ,ln 2 2
ln ln

ah
a

u rF r t
x x u
ϕ ϕ

ϕ ϕ

γ ρ α
γ

∂ ∂
+ + − =

∂ ∂

( )2 2 2 2
2

2

1 2 1 0
2

h rrr r r
r rr

h rr

uu uu
t r r r r

θθ ϕϕ ϕρ σ σ σ φσ
ρ σ

∂  + +∂ ∂ ∂
+ + + − + =  ∂ ∂ ∂ ∂ 

( )1
2a

ϕ ϕ

ϕ

α β
α

γ
+ +

=

Momentum 
equation for r:

General solutions for rotating, and growing halos

and

Two anisotropy 
parameters are related: 

The coupling function reflects the coupling between axial-dispersion and spin-dispersion

( )1 2 2
0

1
1

a
h

r uϕ ϕ

αβ
σ γ
−

=
+

For virialized “small” halos with slow mass accretion (late 
stage), the axial- and spin-dispersions are decoupled.
Axial-dispersion is dominant to balance gravity.

Equation for axial-dispersion: Equation for spin-dispersion:

( ), 0aF r t =

For “large” halos with fast mass accretion (early stage), 
the axial- and spin-dispersions are decoupled. 
Spin-dispersion is dominant to balance gravity.

2 2
0r uϕ ϕσ γand 1 0hβ ≈

2 2
0r uϕ ϕσ γ 1 1h aβ α≈ −( ), r

aF r t
r
φ∂

≈ −
∂

and
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Two limiting situations: “small” and “large” halos

( )
( )

( )
( )

1 ,r s
F

h

F m r t
C

F c m t
= =

The ratio of core mass to halo mass: 

( ) ( ) ( )
( )

'

3 2,
4

h
h

s

m t F x
r t

r x F c
ρ

π
=( ) ( ) ( )

( )
,r h

F x
m r t m t

F c
=

( ),cr hm zν δ σ= 1.68crδ ≈

σ is (root mean square) fluctuation of 
the smoothed density

We still require a clear definition of “small” and “large” halos.
Enclose mass within radius r Halo density 

Properties of “large” halos: 
 Early stage of halo life with high peak height ν
 Extremely fast mass accretion
 A growing core with scale radius rs~t
 Growing halo size rh~t and halo mass mh~t
 Constant halo concentration c≈3.5 (limiting c)

Peak height: From spherical 
collapse model

At same redshift z, large halos has higher ν

Properties of “small” halos: 
 Late stage of halo life with low peak height ν
 Extremely slow mass accretion
 A stable core, constant scale radius rs, and 

constant core-to-halo mass ratio CF
 Increasing concentration c~t2/3~a and mh~F(c)
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Solutions for “small” halos at late stage

Properties of “small” halos (continued): 
 Virialized and bound with vanishing radial flow
 Incompressible (proper velocity) with
 More spherical and isotropic  
 Axial-dispersion dominant over spin-dispersion
 Azimuthal flow uφ strongly dependent on polar angle θ
 Negligible surface energy 

0∇⋅ =v

The variation of mean flow and velocity dispersions 
from N-body simulation

1aα = 1 0hβ =

2 2 2 2
rr uϕϕ θθ φσ σ σ= = +

1 ϕ ϕ ϕα β γ+ = =

1θα =

0ru uθ= =( ), 0aF r t =

Anisotropy parameters : 

Angular exponent : 

1ϕα = 2ϕ ϕβ γ= =

Mean flow: 
Coupling 
function: Velocity dispersions: 
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Energy equipartition along three directions

 Due to finite spin, kinetic energy is not 
equipartitioned along each direction with the 
greatest energy along the azimuthal direction and 
the smallest along the polar direction. 

 Different from usual objects, halos are hotter with 
faster spin due to energy transfer between mean 
flow and random motion. The variation of dispersion parameters 

αφ, βφ, and γφ

rϕθ 2 2 2
0 2rr r uϕσ σ= +2 2 2
0 2r uϕϕ ϕσ σ= +2 2 2
0r uθθ ϕσ σ= +2uϕ

2 2 2
0rr r rσ σ σ= =2 2

0rϕϕσ σ=2 2
0rθθσ σ=
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Solutions for “large” halos at early stage

Properties of “large” halos (continued): 
 Non-virialized with non-zero self-similar radial flow
 Spin-dispersion dominant over axial-dispersion
 Azimuthal flow uφ is less dependent on polar angle θ
 Non-zero surface energy The variation of mean flow and velocity dispersions 

from N-body simulation

1h hβ β≈

2 2 2 2
rr uϕϕ θθ φσ σ σ= = +

1θα 

0uθ =

Anisotropy parameters : 

Angular exponent : 

1ϕα 1ϕ ϕβ α= +

Mean flow: 
Coupling 
function: Velocity dispersions: 

( ), r
aF r t

r
φ∂

≈ −
∂

10ϕ ϕγ α≈ +
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Solutions for “large” halos at early stage

( ) ( ) ( ) ( ) ( ), , , f h s

F x
u r t u x t r t

xϕ ϕθ θ α ω= =

( ) ( ) ( )
( )
( )'h r

s

F xtu x u r x
r t F x

= = −

( )
2

216
3f g

c
F c

α γ
π

=( )
2

13 1
2 2h

h f

c H t
F c

ω
α α

− 
= − ∝ 
 

( ) ( ) ( )
( ) ( ) ( ) ( )2 ' '4

2 ' 5 418 fx x

F y F y F y F yxx dy dy
F x F x y yϕγ λ

∞ ∞ 
= + 

 
∫ ∫

( )
( )( )

2

2

9

3 2 1 2
f

h

F c

c

π
λ

α
=

−

( )1 2 2
0

1
1

a
h

r uϕ ϕ

αβ
σ γ
−

=
+

( )1
2a

ϕ ϕ

ϕ

α β
α

γ
+ +

=

Radial flow: 

Azimuthal  
flow: 

Angular 
velocity: and

Dispersion 
parameter: 

( ) ( )
( )
( )

( ) ( )
( )

2 22 2
2
0 2 2 ' 2 ' 2 ' 3

2 2
4

cir
r x

x

F x F x F xv xx dx
c F x x F x x F x x

σ
π

∞
∞   = − −  
   

∫
Axial-

dispersion: 

The variation of azimuthal flow from 
N-body simulation and comparisonAnisotropic 

parameters: 

1ϕ ϕβ α= + 10ϕ ϕγ α≈ +

hα

Deformation 
parameter: 

and
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Angular exponent and anisotropic parameters
The variation of angular exponent αθ and 
anisotropic parameter αa

Variation of new (βh1) and traditional 
anisotropic parameter (βh) and comparison
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Halo momentum and energy in terms of F(x)

( ) ( ) ( )2 2 2 2 2 2
20 0

1 24 1hr c

g h h g h
h

r r r r dr r xF x dx r
m c F c

π ρ γ
 

= = − = 
 

∫ ∫
22

3 h gI m rω = 22
3h h gH rω=

3 2 0
1 2 3 0

0 0 3

hp h

p h h hpV
h

hp

G H
dV H G

m
G

ρ
 −
 ⊗ =  
  

∫ x u
( ) ( )2

0 0

1 3 24 1
2

hr c

h h r h
h

L r u dr F x dx Hr
m cF c

π ρ
 

= = −  
 

∫ ∫

( ) ( )2

0 0

1 1 44 1
2

hr c

hp h rp h
h

L r u dr F x dx Hr
m cF c

π ρ
 

= = −  
 

∫ ∫

( ) ( )3 2
20 0

1 3 34 1
2

hr c

h h r h
h

G r u dr xF x dx Hr
m c F c

π ρ
 

= = − 
 

∫ ∫

( ) ( )3 2
20 0

1 1 54 1
2

hr c

hp h rp h
h

G r u dr xF x dx Hr
m c F c

π ρ
 

= = − 
 

∫ ∫

( ) ( ) ( )
2 2

21 1 1 1
3 3h h hp g

h f h f

c cH G G Hr
F c F cα α α α

   
= − − = −   
   

( ) ( )2 2

0

1 , 4 ,
2

hr

r r h
h

K u r a r r a dr
m

π ρ= ∫

( )2 2

0

1 4 ,
2

hr

rp rp h
h

K u r r a dr
m

π ρ= ∫

( )3 2

0 0

1 12 sin
2

hr

a h
h

K r r u d dr
m

π

ϕπ ρ θ θ =  
 ∫ ∫

Mean square radius: Moment of inertia: Angular momentum: 

(physical) 
radial linear 
momentum:
(peculiar) 

radial linear 
momentum:

(physical) 
virial quantity:

(peculiar) 
virial quantity:

Angular 
momentum:

(physical) 
radial kinetic 

energy:

(peculiar) 
radial kinetic 

energy:

Rotational 
kinetic 
energy:

Specific momentum tensor:
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Halo spin parameters in terms of F(x)
1 2

h h
p

h

H E
Gm

λ =
'

2
h

p
cir h

H
v r

λ =

h h hE K= Φ +

( )2 2 2

0

1 14 ,
2

hrh r
h h c h

h h

Gm Gmr r a dr H r
r m r

γ π ρ γΦ ΦΦ = − = − = − ∆∫

( )23 2 2h v e hK nσ= = Φ

( )
1 3

2 32 1
0

1
3 3 2

v c
v h v hGm H aγσ γ γ −

Φ

∆ = −Φ =  
 

1 3

2
0

2 h
g g h g

c

Gmr r a
H

γ γ
 

= =  ∆ 

( )21 3
2 4a h h h gK rω≈ =H H

2

4 21 1
3 2 3 2

e a v a
p g g v

h v

n K Kγλ γ γ γ γ γ
σΦ Φ

   = + = −   Φ   

'
2

2 1 2
3 3

a a
p g g v

h v

K Kγλ γ γ γ γ
σ

Φ
Φ= =

Φ

1 0.031
3 2

eH
p

nγλ γ
π Φ

 = + ≈ 
 

' 0.038
3 2

H
p

γλ
π

= ≈

Two definitions of spin parameters: 

( )
( ) ( )'

2 0
1

c F x F xc dx
xF c

γΦ
 

= ≈ 
 
 

∫

2 3cir c h hv Hr Hrπ= ∆ =

2
h H hH Hrγ=

and

Halo (specific) energy and angular momentum: 

and

and

Halo (specific) potential energy: 

Halo (specific) kinetic energy and rotational kinetic energy: 

Mean square 
radius: 

Virial 
dispersion: 

and

Circular 
velocity: 

Spin parameters 
reflects the ratio 

between rotational and 
virial kinetic energy
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Energy, momentum and spin parameter for NFW 
and isothermal halos
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The energy transfer between mean flow and 
random flow in “large” high v halos

( ) ( )

2 1

2 0

1 1 21
ch h h

h h

S S

L m r F x dx
t t cF cα α

 
   ∂  = − + −    ∂     
  

∫




Two contributions for change of halo momentum 
/energy: 
S1: Bulk contribution from internal exchange 
between mean flow and random flow
S2: Surface contribution from mass cascade

 For angular momentum, all contributions from S2, 
i.e. mass cascade.

 For radial kinetic energy, two contributions are 
comparable.

 For rotational kinetic energy, contribution from S2 
is dominant, i.e. mass cascade. 

 In addition, local energy transfer can be two-way. 
S1<0 for entire halo, one-way net kinetic energy 
is transferred from mean flow to random motion to 
enhance halo entropy.

Example:
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Halo relaxation (stretching) from early to late stages
 Two-parameter Einasto profile for relaxation
 The path of evolution in c-α space (shape 

parameter vs. concentration)

 Contour for constant core/halo mass ratio CF

 Evolution path from N-body simulation (green)

 Simplified path for analytical calculation (blue)
Blue segment 1 (BS1): constant c≈3.5
Blue segment 2 (BS2): constant α≈0.2

 Path to composite halos with α≈0.7 (red)
follows a constant CF = 0.27; Adiabatic process

 Goal: explore the continuous variation of halo 
shape, density profile, mean flow, momentum, 
and energies during halo relaxation. 

( )
( )

( ) ( )1,
,

r s
F

h

F m r
C t

F c m
α
α

= =
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Decomposition of radial flow
Extend key function F(x) to two-parameter function F(x,α), where α is a shape parameter:

( ) ( ) ( )
( )

,
,

,r h

F x
m r t m t

F c
α
α

=( ) ( ) ( ) ( )
( )

'

2 3 2

, ,1,
4 4 ,

r h
h

s

m r a m t F x
r t

r r r x F c
α

ρ
π π α

∂
= =

∂

( ) ( )2

2

, ,1
4

h rr a m r a
t r r t

ρ
π

∂ ∂
=

∂ ∂ ∂
( ) ( ) ( )2,

4 , ,r
r h

m r a
r u r a r a

t
π ρ

∂
= −

∂

( )
( )'

,ln ln
ln , ln

s h
hm

F xr mu x
t F x t

α
α

∂ ∂
= −

∂ ∂

( )
( )

( )
'

, ln ,ln
ln , lnhc

F x F ccu
t F x c

α α
α

∂∂
=
∂ ∂

( )
( )

( ) ( )
'

, ln , ln ,ln
ln , ln lnh

F x F c F x
u

t F xα

α α αα
α α α

∂ ∂ ∂
= − ∂ ∂ ∂ 

h hm hc hu u u u α= + +

(From continuity equation)

Enclosed mass:

From mass 
cascade:

From conc. 
change:

From shape 
change:

 Early stage “large” halos: uhc=0 and uhα=0
radial flow from cascade uhm is dominant;

 Late stage “small” halos: all three radial 
flows vanishes and uh=0;

 For halo “relaxation” from early to 
late stage (BS2), we expect a 
constant rs, constant α,mh~F(c,α), 
uhα=0, and uhm+uhc=0
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Density profile from early to late stages
 During BS1 with constant c≈3.5 and constant 

CF, decreasing α involves significant change of 
density in halo core, i.e. steeper density slope 
and increasing core mass.

 During BS2 with constant α≈0.2, increasing c
involves a stable core (constant scale radius rs
, constant core mass, and core density ρc) and 
extending halo skirt (“halo stretching” vs. 
“vortex stretching” in turbulence).

Variation of halo density normalized by the 
average core density ρc (with r<rs)

 Vortex stretching: anisotropic, volume 
conserving, constant density, and 
decreasing momentum of inertia.

 Halo stretching: isotropic, increasing 
volume, varying density, and increasing 
momentum of inertia.
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Moment of inertia from early to late stage

( )2 22 2 ,
3 3h g h sI m r m r F cω ω α= =

( ) ( )g sr c r F cω=

Variation of moment of inertia 
with concentration c

Moment of 
inertia:

( )
( ) ( )
( ) ( )

2
5 5 ,2

,
2 3 3 ,2

c
F c

c

α
α

ω α

α α ααα
α α α

Γ −Γ =   Γ −Γ 

Mean square 
radius:

 Red path is adiabatic with constant halo mass, with 
both angular momentum and rotational energy 
conserved. 

 Green path from simulation shows significant 
increase in moment of inertia from halo “stretching”.

 Simplified blue path with constant rs and core mass 
shows the increase in moment of inertia that 
plateaus at large c.
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Variation of mass, moment, energy during relaxation

 Halo “relaxation” (via BS2): with constant α≈0.2, 
increasing c, constant rs , core mass, and core density

 Specific rotational kinetic energy is relatively conserved

 Spin-dispersion dominant to axial-dispersion dominant

22
3h h grω=H

( )21 3
2 4a h h h gK rω= =H HSpecific rotational 

kinetic energy:

Specific angular 
momentum:

0
h tΦ ∝

hm t∝

gr t∝
t∝hH

0.27FC =

0
aK t∝

1
h tω −∝

0.031pλ ≈
For early stage “large” halos:

For late stage “small” halos:
0

hm t∝
0

gr t∝

0t∝hH
0.083FC =

0
aK t∝

0
h tω ∝

0.124pλ ≈
0

h tΦ ∝

Variation of halo momentum and 
energies during halo relaxation

λp: spin 
parameter

gr∝hH 1
h grω −∝

Spin-dispersion 
dominant

Axial-dispersion 
dominant
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Summary and keywords

 Review one-way energy transfer via vortex stretching in turbulence; 
 Halos enable a two-way energy transfer between mean flow and random motion;
 Analytical solutions of mean flow, velocity dispersion, and anisotropy parameters for halos at their 

early stage and late stage using decomposition of velocity dispersion.
 “Early-stage” halos have their mass, size, kinetic/potential/rotational energy, and the specific angular 

momentum all increase linearly with time via continuous mass acquisition. Halo core spins faster 
than the outer region. 

 “Late-stage” halos are more spherical in shape, incompressible, and isotropic. Due to finite halo 
spin, kinetic energy is not equipartitioned along each direction with the greatest energy along the 
azimuthal direction. Halos are hotter with faster spin.

 Identify the path of relaxation via halo stretching for halos relaxing from early to late stage involving 
continuous variation of shape, density profile, mean flow, momentum, and energy. 

 Might extend to consider effect of black hole at halo center on radial flow

Early stage “large” halos Late stage “small” halos Core mass ratio Axial dispersion
Vortex stretching Halo stretching Fictitious stress Spin dispersion

Path of halo evolution 
“relaxation”

Radial flow 
decomposition

Energy transfer
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Maximum entropy distributions 
in dark matter flow

Xu Z., 2021, arXiv:2110.03126v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2110.03126

https://doi.org/10.48550/arXiv.2110.03126
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Maximum entropy distributions in kinetic theory 
of gases

( ) 1X v dv
∞

−∞
=∫ ( ) ( ) 2

0
3 3
2 2BX v v dv k Tε σ

∞

−∞
= =∫

( ) ( ) ( ) ( )( ) ( ) ( ) 2
1 2 0

3ln 1
2

S X v X v X v dv X v dv X v v dvλ λ ε σ
∞ ∞ ∞

−∞ −∞ −∞

 = − + − + −      ∫ ∫ ∫

( )( ) ( ) ( )1 2ln 1 0
S X v

X v v
X

δ
λ λ ε

δ
= − − + + =

Taking the variation of the entropy functional with respect to distribution X:

Assume the distribution of one-dimensional gas molecule velocity is some unknown function X(v)
Review on how to derive maximum entropy distributions (Boltzmann distribution) 

Two constraints on X(v), normalization and fixed mean kinetic energy:

and ( ) 23 2v vε =
Particle energy:

Write down the entropy functional with Lagrangian multiplier: 

( ) ( )2
2expX v vλ∝ Boltzmann 

distribution

( ) 2
0

2 2
0 0

12E e ε σεε
πσ σ

−=( ) 2 2
0

2
2

3
0

2 vvZ v e σ

π σ
−=Maxwell-Boltzmann 

distribution for speed:
Distribution for 
particle energy:

This is the key to 
be identified for 
dark matter flow
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Maximum entropy distributions in dark matter flow

 Long-range and collisionless nature
 Identify all halos of different sizes at given z
 Group halos according to halo size np

Symbol Physical meaning
X(v) Distribution of one-dimensional 

particle velocity v
Z(v) Distribution of particle speed
E(ε) Distribution of particle energy ε
H(σv

2) Distribution of particle virial 
dispersion σv

2 (halo mass function)

Goal: maximum entropy distributions in DMF

( ) nV r r∝
A general power-law for two-body potential: 

n=-1 for standard gravity
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Velocity and dispersion decomposition

( ) ( )2 22 2 2

0

1
2

v
v vX v e H dσ σ σ

πσ

∞ −= ∫

2 2 2
h vσ σ σ= +

'
p h p= +v v v

Decompose particle velocity into halo 
velocity and velocity fluctuation 
(“Reynolds decomposition”)

Similarly, decompose velocity 
dispersion into halo velocity 
dispersion and halo virial dispersion

Halo group 
temperature

Halo
temperature

Gaussian velocity distribution (Maxwell-Boltzmann statistics) 
is expected for all particles in the same halo group.

( ) ( )2 2
2

2 2 2
30

2 v
v v

vZ v e H dσ σ σ
π σ

∞ −= ∫

( ) 2 XZ v v
v

∂
= −

∂

Boltzmann 
distribution

Maxwell-Boltzmann 
distribution

weighted 
average

weighted 
average

# of particles 
in halo group

# of particles 
in halo groupHalo group temperature is 

independent of halo size

( )2 ' 1 3var n
v p hmσ += ∝v

( )2 varhσ = hv
Relation 
between 
X and Z:



109

Particle energy in dark matter flow

( ) ( )
( )

( )
( )

2 63v v dv X v v
v

Z v dv Z v n
ε

ε  = = + 
 

2 0
g g

KE n PE− =

( ) 23 2
g

KE σ=

23 3
2h g g

KE PE
n

ε σ = + = + 
 

( ) ( )23 32
2v v dv v X v dv

n
ε  = + 

 

Energy distribution with respect to particle speed v:

( ) ( ) 3 3
2

X v v
v

X v n
ε  = − + ∂ ∂  

( ) 2 XZ v v
v

∂
= −

∂

In a given halo group, from Virial Theorem:

The specific kinetic energy of particle in that group:

The total specific energy of particle in group:
Energy per particle with a speed of v:

( ) ( ) ( )2 2
2

2 2 2 2
30

1
2

2 v
v h v v v

vN v dv e dv N H dσε ε σ σ σ
π σ

∞ −

 
 

=  
 
 

∫




( )
0h v v dvε ε
∞

= ∫
Energy distribution with respect to particle speed

Mean particle energy 
for entire system

For entire system, energy of all particles with 
a speed of v:

# of particles 
with speed v

Energy per 
particle with 
a speed of v:
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Maximum entropy distributions in dark matter flow

( ) 1X v dv
∞

−∞
=∫ ( ) ( ) 2

0
3 3
2 2BX v v dv k Tε σ

∞

−∞
= =∫

( ) ( ) ( ) ( )( ) ( ) ( ) 2
1 2 0

3ln 1
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∞ ∞ ∞

−∞ −∞ −∞
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S X v

X v v
X

δ
λ λ ε

δ
= − − + + =

Taking the variation of the entropy functional with respect to X:

Deriving maximum entropy distributions in dark matter flow (X distribution) 

Two constraints on X(v):

and
Particle energy:

Write down the entropy functional with Lagrangian multiplier: 

The X distribution

Z distribution 
for speed:

E distribution for 
particle energy:

This is the key

( ) ( ) 3 3
2

X v v
v

X v n
ε  = − + ∂ ∂  
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− +

=
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3 221 0 0

1 v vv eZ v
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+
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enE
n K v

γ γ α
ε

α α

− −
= −

+
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Maximum entropy distributions in dark matter flow

The X distribution with different shape parameter α

( ) ( )
2

2
0 1 0

exp
2 2

e vX v
v K v

α

α α α

−  
= − 

 
( ) ( )0 1 0

1 exp
2

vX v
v K vα α

 
= − 

 

0v v

0v v

Comparison with N-body simulation

Exponential wings forGaussian core for

Bessel function

X is a two-parameter 
distribution with 

shape parameter α
and velocity scale v0
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Maximum entropy distributions in dark matter flow

The Z distribution for particle speed with 
different shape parameter α

The E distribution for particle energy with 
different potential exponent n 
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Particle energy in dark matter flow
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  Comparison with N-body simulation

Particle 
energy:

Inner halo, 
Newtonian 
behavior

Outer region of halo, 
non-Newtonian 

behavior

External field effects 
and MOND??
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Summary and key words

 Statistical theory for maximum entropy distributions of velocity, speed, and 
energy in dark matter flow

 Halo mass function can be a direct result to maximizing system entropy 
 Maximum entropy velocity distribution (X distribution) naturally exhibits a 

Gaussian core at small velocity and exponential wings at large velocity (as 
observed from N-body simulations)

 Kinetic energy of dark matter particles follows a parabolic scaling for small speed 
(ε~v2, Newtonian) and linear scaling (ε~v, non-Newtonian) for large speed. This 
might be relevant for “deep-MOND” behavior. 

Maximum entropy Velocity distribution Entropy functional
Speed distribution Energy distribution Particle energy 

Gaussian core 
& exponential wings 

Shape parameter Velocity scale
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Halo mass functions from 
maximum entropy distributions in 

collisionless dark matter flow
arXiv:2110.09676 [astro-ph.CO]

https://doi.org/10.48550/arXiv.2110.09676

https://doi.org/10.48550/arXiv.2110.09676
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Introduction
( )2 2
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0 0.76η = 0.556q =

 Halo mass function, the most fundamental quantity
 Conventional Mass function from nonlinear collapse

 Press-Schechter (PS) formalism
 Threshold overdensity from spherical collapse 

 Extended PS using an excursion set approach
 Overdensity as a random walk process 

 ST model
 Ellipsoidal collapse model gives a mass-

dependent overdensity threshold
 Mass function from mass cascade in dark matter flow

 Double-λ mass function
 Assume two different halo geometry 

parameter λ for different size of halos.
 The mass/energy cascade as an intermediate 

statistically steady state for non-equilibrium systems to 
continuously maximize system entropy. 

Are there or what are the connections between 
halo mass function and maximum entropy?? 0 0.5η = 1q = ( )PSf ν

( )PSf ν
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Maximum entropy distributions

 Long-range and collisionless nature
 Identify all halos of different sizes at given z
 Group halos according to halo size np

Symbol Physical meaning
X(v) Distribution of one-dimensional particle 

velocity v
Z(v) Distribution of particle speed v
E(ε) Distribution of particle energy ε
H(σv

2) Distribution of particle virial 
dispersion σv

2 (halo mass function)
J(σv

2) Distribution of halos with virial 
dispersion σv

2

P(v2) Distribution of square of one-
dimensional particle velocity v

( )2
p p vn n σ≡ ( ) nV r r∝ n=-1 for standard gravity( )2 2 2 2

0v v v vH dσ σ σ σ
∞

= ∫
( )2 2 2 2 2

0h h v h vH dσ σ σ σ σ
∞

≡ = ∫ 2 2 2 2
0v hσ σ σ σ= + =
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Relations between maximum entropy distributions

( ) ( )2 22 2 2

0

1
2

v
v vX v e H dσ σ σ

πσ

∞ −= ∫

( ) ( )22 2 2 2

0

1
2

x
v vP x v e H d

x
σ σ σ

π σ

∞ −= = ∫

( ) ( ) ( )2 2 2
v v p vH J n Nσ σ σ=

( ) ( )2 2 2

0 v p v vN J n dσ σ σ
∞

= ∫

( ) ( ) 2 22 2 2

0

vt t
v vX v e dv H e dσσ σ

∞ ∞−

−∞
=∫ ∫

( ) ( )2 2

20 0

1
1 2

xt
v vP x e dx H d

t
σ σ

σ

∞ ∞− =
+

∫ ∫

Average number of particles per halo
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The X distribution for maximum entropy principle:
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h hf v H vσ σ=
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( )2 3 2 2
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v h v hh

h hv h

m mmv
m m

σ σ
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Halo mass function is 
intrinsically related to H, and 

hence X, the maximum 
entropy distribution

Introduce 
dimensionless 

variable
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Parameters and distributions for some typical 
potential exponents n

Short range 
interaction

Long range 
interaction

( ) ( ) 2 22 2 2
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Gaussian

Laplacian or 
exponential

Integral transformations between distributions:

X distribution
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H and J Distributions for large halos
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2 0hσ → 2 2
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We first consider an extreme case, large halos with σh
2 << σv

2 :
Halo group 
temperature

Halo 
temperature
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for

From integral transformations between distributions:

2 2
vσ σ=With H distribution for large halos:

J distribution  for large halos:

Halo size: 

3 2β = 1n = −

and

Interestingly,  Hꝏ distribution can be obtained 
directly using the maximum entropy principle 
without resorting to X distribution (Next slides)
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2 2Hf K

α ν γν
γ α γ ν∞

  
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Dimensionless H distribution for large halos:
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Hꝏ and Jꝏ Distributions from maximum entropy 
principle 
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Following the maximum entropy principle for velocity distrution:

Hꝏ distribution is a maximum entropy 
distribution satisfying three constraints:

Taking the variation of the entropy 
functional with respect to distribution H:

Write down the entropy functional with 
Lagrangian multiplier: 
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Modeling halo virial dispersion and halo velocity 
dispersion
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To solve H distribution using integral transformation:

We need model for velocity dispersion σ2:
2 2 2

v hσ σ σ= +

Model for halo velocity dispersion (halo group 
temperature):

Model for halo virial dispersion (halo temperature):
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H Distribution for small halos

2 0vσ → 2 2
hσ σ≈

We consider another extreme case, small halos with σv
2 << σh

2 :

Halo group 
temperature

Halo 
temperature

H distribution for small halos:

and

2
0
2
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vαγ
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=

Dimensionless mass function for small halos:
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dispersion with v2

PS mass 
function for γ=1

Halo mass functions
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Halo mass function from maximum entropy 
distributions
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Laplace transform of halo mass functions:

2 2
h h hν σ σ=

From integral transformations between distributions:
H distribution from maximum entropy distribution 
should satisfy:

Relation between dimensionless halo mass function 
and H distribution:

Dimensionless maximum entropy halo mass function:

and
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Moments of halo mass functions:
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Halo mass function from maximum entropy 
distributions

( ) ( ) ( )
0

hv t
X XF t f e dνν ν

∞ − += ∫

No analytical solutions can be found. Instead 
Introduce a transformed function Fx to compare 
different halo mass functions:

Subscript X is the abbreviation of the mass 
function model, PS, ST, Dλ and ME. 
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K t
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K t
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α γ α
ν ν

α γ α

∞ − +
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=
+∫

Equation for maximum entropy halo mass function:

 ST and Dλ almost coincide with each other.
 Both agree better with the ME than the PS 

mass function. 
 Halo mass function can be an intrinsic 

distribution to maximize system entropy.
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Summary and keywords
Maximum entropy Velocity distribution Spherical collapse

Halo mass function Energy distribution H and P distributions

 Halo mass function is a fundamental quantity for structure formation and evolution. 

 Conventional halo mass functions are based on simplified spherical/elliptical collapse models

 The H distribution for particle virial dispersion is essentially the halo mass function that can be 
related to X distribution that maximizes system entropy.

 The H distribution for large halos is also a maximum entropy distribution. 

 For small halos, H approximates the distribution of square velocity (P) and recovers the Press-
Schechter mass function. 

 Halo mass function can be interpreted as an intrinsic distribution to maximize the system entropy
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Two-body collapse model 
(TBCM): an elementary step 
of mass cascade and GSCH 

for pairwise velocity
Xu Z., 2021, arXiv:2110.05784v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2110.05784

https://doi.org/10.48550/arXiv.2110.05784
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Introduction: TBCM as an elementary step of 
inverse mass cascade

 Analytical tools are invaluable. 

 Solutions are extremely difficult to find due to 
the highly non-linear nature of collapse.

 Two examples: the spherical collapse model 
(SCM) and stable clustering hypothesis (SCH).

 For an infinitesimal interval, mass cascade 
should involve the merging of two and only two 
substructures.

 Two-body problem in static background is 
known: Kepler’s laws.

 Goal: solutions for two-body in expanding 
background and relations with SCM and SCH

Two-body 
collapse

Two-body collapse in expanding background is 
an elementary step of mass cascade. 

 Goal: Prove SCH and Generalized SCH 
for moments of pairwise velocity.
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Introduction: Damped harmonic oscillator as a 
fundamental model in dynamics

 Damped harmonic oscillator is a fundamental model in 
dynamics that is extremely insightful.

 There exist a critical damping cs. For c<cs, spring force is 
dominant (underdamped); For c>cs, damping is dominant 
(overdamped).

 Does two-body collapse model play a similar role as 
harmonic oscillator?

 Overdamped and underdamped in gravitational collapse?
 Insights into the energy/momentum evolution? 

2sc km=
Critical damping:

Energy 
evolution:

2 0dE c K
dt m

 + = 
 

( )
( )

22
1s

c m
k m

β = =

( ) ( ) 0c m k m+ + =r r r 

damping spring force

Competition

Define a 
critical ratio to 

quantify 
competition:

http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html

E: total energy (potential + kinetic)
K: kinetic energy
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Equations of motion in comoving and transformed 
systems

2
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2 2 3
0H H a=

23 2H H= −

( )2 8 3yH G aπ ρ=

Equations of motion in a comoving 
system with expanding background

Potential with an arbitrary 
exponent of n for particle-

particle interacting

Introduce a new 
transformed time scale s

 If p=-2, s is the time variable for 
integration in N-body simulation.

 Transformed system: fixed 
damping and no scale factor a; 

3 2p = − Matter dominant
Velocity in time scale s:

Peculiar velocity in comoving:

Equation of motion in a transformed system 
with fixed damping in static background
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Formulation of a TBCM model in transformed system
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1 1 12 2
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( )1 2 2= −r x x

TBCM solution depends on five parameters: 
exponent n, damping H0, mass m1+m2 , Initial 
position ri, Initial velocity vi; how to reduce #?Displacement 

vector r:

Reduce to Eq. 
of motion for 

vector r:
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( ) ( )
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1 20
01 3 exp
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nG m m rvHr r H s
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( )2 2 µ= − −x r
1 µ=v r1 µ=x r

( )2 2 µ= − −v r
2

1 2

2m
m m

µ =
+

Reduce to equations of motion for two-body:

Compute particle 
position and velocity:

Equation of motion for radius function r (magnitude 
of r): (similar to spherical collapse model)

Expanding 
background or 

damping
Gravitational 
interaction

Angular 
momentum

Competition between three terms 
determines the collapse regimes 

Similar equation as 
damped oscillator 

in dynamics

damped 
oscillator 

Two-body 
collapse

( ) 0k mγ+ + =r r r 

Standard damped 
oscillator Eq.: 
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Formulation of a TBCM model in transformed system
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Equation of motion for r: 

( )sω ω≡Frequency ω:

Frequency 
function F(s):

Introduce frequency function F(s):

Equation for frequency function:
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speed

(virial theorem):

Ratio γs reflects competition: gravity vs. angular 
momentum; System in initial virial equilibrium if γs =1;

( ) ( )1 2 0exp
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n
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H sr s r
n

γ − +  = − + 

term 2 (gravitational force) = term 3 (angular 
momentum) leads to mean solutions:
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Examples of numerical solutions

Trajectory of the motion of 
displacement vector r

Time evolution of system kinetic, 
potential and total energy

Kinetic and potential 
energy Oscillating; 
Total energy is smooth

Polar coordinate: 
Radius function r(s)
Frequency ω(s)

( ) ( )( )cosx r s s sω=
( ) ( )( )siny r s s sω=

Initial 
position
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Two-body collapse: free fall or equilibrium?

Depending on the competition between three 
forces, two types of collapse can be identified. 

Variation of radius r with time s exbibits 
two different collapse. Equilibrium 

collapse involves a mean and fluctuation.
0

4
i

s
i

H r
v

λ =
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TBCM model in the simplest form and perturbative 
solutions for equilibrium collapse

( )

2
1 3

22 2

2 3

1

( ) ( )2 ( ) ( )
2

na a
a a

F x F xn F x F x
x xn

− −∂
= − +

∂ −  



( ) ( )1 2
0

n
a sF x γ +=

( )

0

1 2

2

n
a s s

x x

F
x n

β γ − +

=

∂
=

∂ +

( )2 2

0
2 2

2

n
s

s

nx
n

γ
β

+ +
=

−

0s i iH r vβ =

( )2
s ri iv vγ =

( ) ( ) ( )( ) ( )m a m m aF s F s F s F s F xω= =

Decompose frequency function F(s) into the mean 
and amplitude and substitute to equation for F(s):

mean amplitude

The simplest form of TBCM for amplitude function Fa: 

Solution now only depends on three parameters: 
 ratio γs reflects competition: gravity vs. angular momentum
 ratio βs reflects competition: damping (or expanding 

background) vs. angular momentum
 exponent n

( )
1 2

1 22
n i

ri n
i

nG r m mv
r −

− +
=

( )mx s sω=

( ) ( )
1 2

1 2 02exp
2 4

n i
m s

i

r H snF s
v n

γ − +   − = − ⋅   +  

( ) ( )2 2 02 2 2exp
2 2 2

n
m s

s

H sn ns
s n n

ω γ
β

++ − = ⋅ − + 

Stable orbital speed:

Mean solutions:

For long-range interaction n>-2, the 
competition between terms 2 and 3 

leads to an oscillatory solution 
vibrating around the mean value Fa=1 
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Classifying two-body collapse

Freefall collapse : 
 Short-range interaction with exponent n<-2
 γs >>1 : gravity is dominant over angular momentum
 βs >>1 : damping is dominant
 γs <<1 : There is a turnaround before free fall

Equilibrium collapse :
 γs ≈1 and βs <<1 : stable orbit (angular momentum 

comparable with gravity) with week damping
 βs =0 : Standard two-body problem in static background

0s i iH r vβ =( )2
s ri iv vγ =

γs>>1
or 

βs>>1

γs<<1
or 

βs>>1

γs ≈1 
and 

βs<<1

Freefall 
collapse

Freefall 
collapse

Equilibrium 
collapseEquilibrium collapse has an oscillatory motion with a 

much longer time to fully collapse than free fall collapse! 
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Solutions of free fall collapse and free fall time

( )2
s ri iv vγ = →∞

( )

3 2

1 2

i
ce

rs
G m m
π

=
+

0iv =
Zero initial speed (no angular momentum):

Free fall time 
in static 

background:

( )
2 1 2

0
2

0 1 2

28
n n

si i
c c

n

H rs s
H nG m m
λ − −

≈ = =
− +

0

4
i

si
ri

H r
v

λ =

For small λsi
(weak damping):

Competition between 
damping and gravity

For large λsi
(strong damping):

( )
3 2

1
0 1 2

24 2
n n

si i
c c

n

rs s
H nG m m
λ − −

≈ = =
− +

 Due to damping, free fall time of two-body in 
expanding background is greater than the free fall 
time of same two-body in static background. 

The earlier collapse starts (the smaller ti), the 
greater the free fall time (H is decreasing)
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Perturbative solutions for equilibrium collapse

( )

2
1 3

22 2

( ) ( )2 ( ) ( )
2

na a
a a

F x F xn F x F x
x xn

− −∂
= − +

∂ −

( ) 02 2 2 2exp 1
2 2 2s

s

H sn n ns
n n

θ
β

 + + − = ⋅ −  − +  

( )
( )

( )
1 2

0
3 2

2exp 1 sin
2 4 2

i s
s

i

r H snF s
v n n

β θ
   −   = − ⋅ +    +  +    

( )
( )

( )0
3 2exp 1 sin

2 2
s

i s
H sr s r

n n
β θ

   = − +  +  +  

( )
( ) ( ) ( )0 0 0exp cos
2 2 2 2

i
s

r s H r nH s H rr
s n n n

θ
 ∂

= = − −  ∂ + + + 


( ) ( )

2
1 2 0

2 3 2
1 2

2 2exp 1 sin
2 2

i s
s s

m m v nH sK
nm m n

β θ
 − ≈ −  + + +  

( ) ( )

2
1 2 0

2 3 2
1 2

2 22exp sin
2 2

i s
s s

m m v nH sP
n nm m n

β θ
 − ≈ +  + + +  

( )
( ) ( )

1 2 0
1

1 2

2
exp

22
n i

s s s n
i

n m m G r nH sE K P
m m nr −

− + − = + =  + + 

Frequency function: mean fluctuation

Radius function:

Angle function:

Radial velocity:

Specific kinetic energy:

Specific potential energy:

Specific total energy (fluctuation cancelled):

2 0s sK n P− =

( ) ( )
1 2 1 2

2 2
1 2 1 2

4 4
s

m m m mG rr
m m m m

= ⋅ =
+ +

r v 

( )
( )

( )
2 2 1 21 2

02 2
1 2 1 2

44 1ˆ ˆexp
2

i i
s

m m v rm m r F s H s
m m m m

−  = = − 
 + +

H z z

Radial 
momentum:

Angular 
momentum:

All have exponential evolution in time scale s!
Mean energy satisfying virial theorem:

Solve:



Critical values of βs (analogue of critical damping) 
and critical halo density 

( )3 2
1 2s nβ = +

( )
( )

3 2

2

2
2s

n
n

β
π

+
=

−
2 6
1 3

mn
m

−
=

+

0 0 1i i
s

i ri

H r H r Radial
v v Circular

β = ≈ = 

Also see angle of incidence

( )
( )

( )0
3 2exp 1 sin

2 2
s

i s
H sr s r

n n
β θ

   = − +  +  +  

Equilibrium collapse :
 γs ≈1 and βs <<1 : stable orbit with week damping
 βs =0: Standard two-body problem in static background

2

1ri
s

i

v
v

γ
 

= ≈ 
 

Weak damping

( ) ( )
( )

( )
2

3 2
3 22 2

1
2

n
n

s
s i

n ts
n t

θ
β

−
+

 
+   = −  −    

angular momentum 
comparable with gravity

Critical halo density:
Angle function:

( )3 2 1
2

s

n
β

≤
+

First critical value for existence of equilibrium 
collapse with oscillator solution:

Second critical value for equilibrium collapse 
with oscillator solution:

( )sin 0s it ktθ = =  

1,2,...m = ∞

1, 10 7, 8 5... 2n = − − − −

2 2
22 18c sβ π∆ = =

Radius function:

139
ti 2ti 3ti
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Evolution in comoving system for two-body angular 
velocity, spin parameter and angle of incidence

Evolution in transformed system with time 
scale s can be equivalently transformed 
back to original comoving system: 

( )0 ln is t t t=

( ) ( )0exp iH s a a ττ →

3 2ds dt a−= ( )
( )
( )

1 2 3 2
1 2

3
1 2 1 2

2 2 0.0884
2 16

s s
p

E m m
G m m m m

λ = = = ≈
+ +

H

Exponential evolution 
in time scale s

Power-law 
evolution in time t

( )( ) ( )22 2 2
1 2 1 2

1 2
2 s sm m r m m Kµ µ ω+ − = +

( ) 0
2exp

2 2
i

s
i

v n H s
r n

ω
 −

≈  + 

3 2
3 2i

t m
s

r Hrω
β

−=

Two-body kinetic energy:

( ) ( )

2
1 2 0

2 3 2
1 2

2 2exp 1 sin
2 2

i s
s s

m m v nH sK
nm m n

β θ
 − ≈ −  + + +  

Two-body spin parameter:

Kinetic energy in terms of angular velocity:

Angular velocity in co-moving system 
dependent on halo size rm , larger halo has 

smaller angular velocity

( ) ( )

3
2

cot
2

s s

s i

G a
n a

βθ
−

 ⋅
= = = −  × +  

vr
r v
r v H

Evolution of two-body angle of incidence:

2 2
3 2v h

h

GMK
r

σ = =

Kinetic energy for large halos with an infinitesimal lifetime:

( )
2

0 2s
h s

i

K s M GMdK dM
a M ar

α
=

= = ⋅
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Prove stable clustering hypothesis (SCH) and 
derive generalized SCH

( ) ( )'2L L Lu r u u∆ = −

2 2 cosL s i su Har uβ θ∆ = − +

( )1 2 12 2 2s
L

G s
a u r

r r
⋅

∆ = = =
r v



2 2 cosL s i su Har uβ θ∆ = − +

1 2
02 2Lu Har a H r−∆ = − = −

( )2 2 2 20 4 cos 0L s i su r uβ θ∆ → = >

( ) ( ) ( )2 1 2 22 1 2 1 2m m m
L L L Lu m u u m u Har+∆ = + ∆ ∆ = + ∆ −

Peculiar pairwise velocity:

See two-body virial 
quantity for radial flow

Stable clustering 
hypothesis (SCH) 

proved

Generalized stable clustering 
hypothesis (GSCH)

Non-zero pairwise 
dispersion, a feature 
of collisionless flow
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Connections with spherical collapse model (SCM)
2

2 2

d R GM
dt R

= −

( )


22
0 0

22

1
2 22 2

H Hr r GM r
s s r
∂ ∂

+ + =
∂ ∂

( )
( ) ( )

22
0

022 3

2

exp
2 2 2

i irvHr r GM H s
s s rr
∂ ∂

+ + = −
∂ ∂



 Spherical collapse model (SCM) solves the 
motion of spherical shells. Many important 
insights can be obtained from SCM.

 There are fundamental connections between 
two-body collapse model (TBCM) and SCM.

 The original SCM describe exactly a two-body 
collapse with one-dimensional radial motion 
only and zero angular momentum. 

 TBCM model describes a spherical collapse 
model with a non-zero angular momentum and 
non-radial orbits

 Both models predict a critical halo density ratio 
Δ=18π2, while TBCM can predict freefall and 
equilibrium collapse and SCH and GSCH.

Equation of motion 
for SCM in physical 

coordinate

Equation of motion 
for SCM in 

comoving system

Equation of motion for two-body 
collapse model (TBCM)

Term 1: due to the absence of 
a uniform background density

Term 2: angular 
momentum
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Summary and keywords

 Formulate two-body collapse model (TBCM) that plays the same role as harmonic 
oscillator for fundamental understanding of gravitational collapse

 Propose the competition between gravity, expanding background, and angular 
momentum and classify collapse into: 1) freefall collapse for weak angular momentum; 
and 2) equilibrium collapse for weak damping

 Identify two critical values, βs1=1 for free fall collapse and βs2=1/(3π) for equilibrium 
collapse, that quantifies the competition between damping and gravity

 Predict a critical halo density ratio of 18π2, same as the spherical collapse model.
 Prove the stable clustering hypothesis (SCH), i.e. mean pairwise velocity proportional to 

the separation r.
 Develop a generalized stable clustering hypothesis (GSCH) for higher order moments of 

pairwise velocity.

Harmonic oscillator Transformed system Free fall time
Critical damping Two-body collapse Expanding background 
Stable clustering Generalized SCH Spherical collapse model

Equilibrium collapse Freefall collapse Critical halo density
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Evolution of energy, momentum, 
and spin parameter in dark 

matter flow and integral 
constants of motion

arXiv:2202.04054 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.04054

https://doi.org/10.48550/arXiv.2202.04054
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Introduction

 Goal 1: Formulate large scale dynamics in 
dark matter flow (how energy and momentum 
evolves?) 

 Goal 2: Energy, momentum and spin 
parameter in halos

 Goal 3: Formulate integral “constants” on large 
and halo scales (are they still constants?)

Review: In freely decaying turbulence, there is no 
energy injection on large scale and total energy is 
continuously decaying with time. 

 Both integral scale l (energy-contained scale) and 
energy dissipation rate ε vary with time. 

 What is the large-scale dynamics of freely decaying 
turbulence? How does energy evolve with time?

Due to the formation and virilization of halos, 
the kinetic energy in dark matter flow 
continuously increases with time. In this regard, 
dark matter flow is a freely growing turbulence. 

( )
2 3u uA A

l u l
ε ≡ = 2 10 7u t−

2 7l tLoitsyansky integral invariant 
(integral of velocity correlation):

' 2 2 5d u l const⋅ ≈ =∫ u u r r
17 7tε −



What is the large-scale dynamics of dark matter flow? 
How do energy/momentum evolve with time?
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Equations of motion in comoving and transformed 
systems

2

32 32
N

p i ji i

j i i j

Gmd dH
dt dt a ≠

−
+ = −

−
∑

x xx x

x x

2
0

22 2

N
i ji i i

n p n
j i pi j

d H d nG m
ds ds m−

≠

−
+ = =

−
∑

x xx x F

x x

( ) 2 n
p n pV r G m r−= −

2

22 32
N

n p i ji i
n

j i i j

nG md dH
dt dt a −

≠

−
+ =

−
∑

x xx x

x x pds dt a=

( )
2

22 3 22
N

n p i jpi i
np

j i i j

nG md d p a H
ds ds a

−
−+

≠

−
+ + =

−
∑

x xx x

x x

3 2 1 2i i
i i

d da a
ds dt

= = =
x xv u

1 2i i
i i i

d da H a
dt dt

−= = − =
x ru r v

2 2 3
0H H a=

23 2H H= −

( )2 8 3yH G aπ ρ=

Equation of motion in a comoving 
system with expanding background

Potential with an arbitrary 
exponent of n for particle-

particle interacting

Introduce a new 
transformed time scale s

 If p=-2, s is the time variable for 
integration in N-body simulation.

 Transformed system: fixed 
damping and no scale factor a; 

3 2p = − Matter dominant
Velocity in time scale s:

Peculiar velocity in comoving:

Equation of motion in a transformed system 
with fixed damping in static background
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Energy evolution in transformed system

2 2

1 1

1
2 2

N N

s i i p
i i

aK aK
N N= =

= = =∑ ∑v u

2
0

22 2

N
i ji i i

n p n
j i pi j

d H d nG m
ds ds m−

≠

−
+ = =

−
∑

x xx x F

x x

id
ds

 
 
 

x


2

02

1 0
2

i i s

i

d d PH N
ds ds

∂
+ + =

∂
x x

x

Starting from equation of motion in transformed system: Specific potential energy (radial moment):

Specific kinetic energy of entire system:

Potential energy 
in physical 
coordinate

Peculiar 
kinetic 
energy

Express force as potential gradient: Dot 
product 
on both 
sides:

Time evolution of energy in t:

( ) ( )1 12 0n n
p y p yK a P H K a P

t
− − − −∂

+ + + =
∂

With n=-1

( ) ( )2 0p y p yK P H K P
t
∂

+ + + =
∂

Exactly same as  
damped oscillator. 
Need additional 
relation to close.

Standard cosmic 
energy equation

Recall solution from Two-body 
collapse model (TBCM): 

exponential evolution of energy

0exp
1s

H sK α
β α

 
= − + 

0exp
1s

H sP β
β α

 
= − + 

( )
0 0s s

s

P K
H K

s
∂ +

+ =
∂

( )1 N
n

s i y
i

P a P
N

φ −= =∑ x

Time evolution of energy in s:
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Energy evolution in comoving system and εu

The variation of kinetic and potential energies with 
scale factor a from a N-body simulation. Both 

energies exhibit a power-law scaling.

( )0 ln is t t t=

( ) ( )0exp iH s a a ττ →

3 2ds dt a−=

( )
( )

( )
( )

2 22
3 1 1

pK t a
β α β α
β α β αε ε
+ +

− −
+ += − = −u u

( )
1

1
n

n
y sP a P a β αβ ε

α

−
+= = u

2 10 1
7

p
e

y

K
n

P
= = − ≠ −

Transformation back to comoving system:

Exponential in s corresponds to power-law in t:

Power-law for 
Peculiar 

kinetic energy

Power-law for 
potential energy

Power-law time evolution for energy in terms of rate of 
energy cascade εu:

2
7

34.6 10p
u

K m
t s

ε −= − ≈ − ×

Effective exponent for virial theorem:

Kp~t

Kp~a

N-body simulation Early time: Kp∝ a; Early time: Kp∝ t;  

Mostly from Halo 
surface energy
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Momentum evolution in transformed system
Specific virial quantity (radial moment):

Peculiar 
virial 

quantity
1 2 1 21 1N N

s i i i i p
i i

G a a G
N N

= ⋅ = ⋅ =∑ ∑v x u x
2

0
22 2

N
i ji i i

n p n
j i pi j

d H d nG m
ds ds m−

≠

−
+ = =

−
∑

x xx x F

x x

ix
2

02

1 0
2

i i s

i

d d PH N
ds ds

∂
+ + =

∂
x x

x

Starting from equation of motion in transformed system:

Express force as potential (Ps) gradient: Dot product 
on both sides

Time evolution of virial quantity in t:

Time evolution of virial quantity in s:

0
1 2
2

s
s s s

dG H G K nP
ds

+ = −

2

2 n
p p y

p

dG aK na P
HG

dt a

−−
+ =

1 2 1 21 1N N

s i i i i p
i i

a a
N N

= × = × =∑ ∑H x v x u H

Specific angular momentum:
Peculiar 
angular 

momentum

i×x

Taking cross product on both sides
2

02

1 0
2

i i s

i

d d PH N
ds ds

∂
+ + =

∂
x x

x

0 1 0
2

N N
s s

s i i i
i ii p

d H P
ds m

∂
+ = − × = × =

∂∑ ∑H H x x F
x

Time evolution of angular momentum in s:

 This is for open system without boundary. 
 Extra care is needed for N-body systems with periodic boundaries
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The evolution of momentum on halo and large scale

1 1N

p i i py
i

G G
N a

= ⋅ =∑u x

1

1 1N

p i i py
iN a=

= × =∑H x u H

'
i h i= +x x x '

i h i= +u u u

( )' '

1

1 1pn

hc p p h
ipn a=

= × =∑H x u H

( )' '

1

1 1pn

hc p p h
ip

G G
n a=

= ⋅ =∑ x u

Virial quantity in entire N-body system:

Angular momentum in entire N-body system:

Subscript 
 “p” for Comoving
 “py” for physical coordinate

Decompose both position x and velocity u:

Halo virial quantity (radial momentum):

Halo angular momentum: 3 2
pyG a∝

5 2
py a∝H

3 2
hG a t∝ ∝

3 2
h a t∝ ∝H

On large scale 
(see here for 

proof)

On halo scale 
(Consistent with 
previous results)
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The variation of energy in halos

* g
s

v

Hr
β

σ
=

2
* v g
s

h

r
Gm
σ

α =

 Identify all halos of different sizes 
 Group halos according to halo size np or mh
 Compute mean square radius rg for each halo
 Compute halo virial kinetic energy σv

2 for each halo
 Compute intra-halo potential energy Φh
 Compute the group average and std.

22

1

1
3

pn

v k h
kpn

σ
=

= −∑ u u
1

1 pn

h k
kpn =

= ∑u u

g g hr rγ=

h
h

h

Gm
r

γΦΦ = −

Halo virial 
kinetic energy:

Halo velocity:

1 3
* *21

2g s s cγ α β = ∆ 
 

( )2 3* *2

*2

6 2s s c

v s c

α β
γ

γ βΦ

∆
=

∆

218c π∆ =
23 v

v
h

σγ = −
Φ

Small halos of same size are generated at different 
time (large std). Large halos are synchronized and 

generated at the same time (small std). 

Ratio of kinetic to 
potential energy

Angle of 
incidence

Critical 
density ratio

Halo 
virial ratio
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The variation of momentum in halos

* 1
h s v gG r aτ σ −= − * 1 2

h s v gr aη σ=H

 Compute mean square radius rg for each halo
 Compute halo virial kinetic energy σv

2 for each halo
 Compute radial momentum Gh for each halo
 Compute angular momentum Hh for each halo
 Compute the group average and std.

*
2 2
h h h

s
v v

E Kz
σ σ

+Φ
= =

2
* 2 3h v
s v

h h

Kn σ γ= = = −
Φ Φ

1 2 * * *
p s s sa zλ α η=

( )
( )

3 2
1 2

3
1 2

2 2 0.0884
2 16p

m m
m m

λ = = ≈
+ The variation of momentum with halo size 

from a N-body simulation. 
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The variation of momentum in halos

λp=0.031 for 
large halos
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Relevant parameters for halo energy and momentum



( ) '
2 ,R r a = ⋅u u

Velocity correlation

for all particle pairs with r
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Integral constants Im and physical meaning of I2

( ) ( )' 2 3 2 3
2 20

4m m m
mI r d R r r d R r r drπ

∞− −= ⋅ = =∫ ∫ ∫u u r r

The virial quantity (radial momentum) and angular momentum are intimately related to integral 
constants for dynamics of dark matter flow. Starting from the velocity correlation function R2, defining

( ) ( ) ( )20

1 sinuE k R r kr kr dr
π

∞
= ∫

( )1 2
2

0

1
4

m m
u

m m
k

EI a
m k

π
+

=

− ∂
= ∝

∂

Integral constant Im is the derivative of spectrum at long wave-length limit (large scale):

2
' 3 ' 3 '3 3

2
1 1lim lim 0

V V VV V
I d d d V d

V V→∞ →∞

 = ⋅ = ⋅ = = 
 ∫ ∫ ∫ ∫u u r u u x x u x

Energy spectrum is Fourier transform of R2:

( )0uE k a→ ∝with

3 0
V

d =∫ u xAssume linear 
momentum vanishes:

2

2
0

0u

k

E
k

=

∂
=

∂

I2 is related to the linear 
momentum. This leads to a  k4

velocity spectrum on large scale.
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Physical meaning of integral constants I4

31
V

G d
V

= ⋅∫ x u x 31
V

d
V

= ×∫H x u x

31
V

d
V

= ⊗∫M x u x 31
V

d
V

= ⊗∫I x x x

Defined in comoving coordinates:

,k ku

( )2
4 lim

V
I V

→∞
= − H

( ) 22:T TT Gα α= ≈M M H

( )2
4

2 lim
V

T

I G V
α →∞

= −

Virial 
quantity

Angular 
momentum

Momentum 
tensor

Inertial 
tensor

:T = M M Contraction of 
momentum tensor

( ) ( )2
4 ,2 lim lim : k kV V

I T V u V
→∞ →∞

 = − = − + H M I

For incompressible flow with vanishing 
divergence (uk,k=0), I4 is related to the 
angular momentum of entire system  

For dark matter flow with 
vanishing H on large scale, Both 
M and I are diagonal. I4 is related 
to the virial quantity (radial 
momentum) of entire system. 

is mean divergence

αT=3 if structure collapsing into a point, 
αT=2 if collapsing into a filament (N-body)
αT=1 if collapsing into a plane. 

3 0 0
0 3 0
0 0 3

G
G

G

 
 =  
  

M
2 0 0

0 2 0
0 0 0

G
G

 
 =  
  

M
0 0

0 0 0
0 0 0

G 
 =  
  

M

αT=3 αT=2 αT=1 
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Evolution of momentum on large scale 

2
31 1

3 2i j ijV

Lx x d
V

δ = =  
 ∫I x

31 :j i ijV
G x u d

V
δ= =∫ x M δ

2
,24

T
k kG L uα

=

2
2 2 2

0 22
8

TT G a u r aα
≈ = ∝

2 2 2 2 3
0 20.002a u r a a= ∝H Time variation of momentum with scale 

factor a from N-body simulation

( )2
,:

2
T

k kG uα
= − M I

( ) ( )( )2
4 ,

2 lim lim : k kV V
T

I G V u V
α →∞ →∞

= − = M I

Integral constant on large scale:

Inertial tensor 
on large scale

Virial quantity 
on large scale

Virial quantity is 
related to divergence 

or density contrast
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Momentum and integration constants on halo scale 

3

3 2 0
1 2 3 0

0 0 3
hV

h

G
d G

m
G

ρ
 − 
 = ⊗ =  
  

∫
H

M x u x H

221 1:
3 2

T G = = + 
 

M M H
2

2 2

6 6
52 3T

G
T G

α = = =
+ H

3 21 1
3i j h g ijV

h

x x d r
m

ρ δ= =∫I x 2
gG Hr= − = −H

Momentum tensor:

On small (halo) scale, velocity field is of constant divergence 
and matter density is non-uniform.

( ) ( )2
4 ,2 lim lim : k kV V

I T V u V
→∞ →∞

 = − = − + H M I

Inertial tensor: Halo radial and angular 
momentum are equal
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Summary and keywords
Large scale dynamics Comoving/transformed system Rate of energy cascade

Integration constants Radial/angular momentum Spin parameter
Velocity correlation function Velocity spectrum function Effective potential exponent

 The energy and momentum evolution of N-body system is analytically derived. This is 
made possible by introducing a new time scale s.

 The kinetic and potential energy of N-body system increase linearly with time with a 
constant rate of energy production εu.

 For entire N-body system, the radial momentum scales as  Gpy~a3/2, while angular 
momentum Hpy~a5/2.

 The specific momentum (radial and angular) in halos scale as  ~ a3/2

 At same redshift, the analytically derived halo spin parameter decreases with halo mass, 
i.e. λp =0.09 for typical two-particle halos and λp =0.031 for large halos.

 The spin parameter of a given halo is a constant of time for early-stage halos with faster 
mass accretion and increases with time for late-stage halos with slower mass accretion.

 The radial/angular momentum are closely related to integral “constants” Im that is defined 
as integral of velocity correlation or the mth derivative of energy spectrum at small k.
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Statistical (correlation-based) 
approach for dark matter flow
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The statistical theory of dark 
matter flow (second order)

Xu Z., 2022, arXiv:2202.00910 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.00910

https://doi.org/10.48550/arXiv.2202.00910
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Introduction

 N-body simulations are invaluable to understand dark 
matter flow (DMF). 

 Fundamental problems when projecting N-body 
velocity field onto structured grids:
 Velocity field is only sampled by N-body 

simulations at discrete locations of particles. 
 The sampling has a poor quality at locations with 

low particle density
 Velocity field can be multi-valued and 

discontinuous due to the collisionless nature. 

Review: 
Statistical theory in hydrodynamic turbulence
 Kinematic relations between statistical measures 

 Correlation functions
 Structure functions
 Power spectrum functions

 Incompressible on all scales
 Divergence-free
 Constant density

Approach:
 Use pairwise average for real-space two-point 

statistics to avoid projecting 

 Take advantage of symmetry implied by the 
assumptions of homogeneity and isotropy. 

 Develop kinematic relations between different 
statistical measures

 Identify the nature of DM flow, i.e. incompressible, 
constant divergence, or irrotational flow. 

Goal 1: what are the kinematic relations in 
dark matter flow?

Goal 2: what is the nature of dark matter 
flow on different scales?
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Two-point first order velocity correlation tensor 

( ) ( ) ( )',i iQ u p=x r x x

( ) ( ) ( ) ( )1,i i i iQ Q Q r A r r≡ ≡ =x r r

( ) ( )( ) ( )' 1
13i

i

Q r Ap A r
r r

∂ ∂
= − ∇⋅ = +

∂ ∂
u x x

( ) ( )( ) ( )' 1
1, 0i k

ijk ik
r r Ap A
r r

ε δ ∂ ∇× = ∇× = − + = ∂ 
Q x r u x x

the Levi-Civita symbol 
satisfies the identity 0ijk jkε δ = 0ijk j kr rε = × =r r

' = +x x r
General correlation tensor between velocity field and a scalar field p(x): 

Reduced to function of r due to homogeneity and isotropy:

Divergence of first order tensor:

Curl of first order tensor (always zero):

Pairwise average:  Averaging 
over all particle pairs with the 

same separation r.

 The first order correlation tensor 
must vanish for incompressible flow

 The curl of the first order correlation 
tensor is always zero for any flow

( ) ( )1 3A r pθ= − x

Incompressible 
flow

Constant 
divergence

( )1 0A r =

( ) 0iQ r = ( ) ( )
3i iQ r p rθ = − 

 
x
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Two-point second order velocity correlation tensors 

( ) ( ) ( ) ( )'ij ij i jQ Q r u u= =r x x

( ) ( ) ( ) ( )2 2ij ij i j ijQ Q r A r rr B r δ= = +r

2 2
, 2

14ij i j
A BQ A r r
r r r

∂ ∂ = + + ∂ ∂ 

( ) 2
2

1 0ij imj m
BQ r r A

r r
ε ∂ ∇× = − = ∂ 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

Second order velocity correlation tensor:

General form of isotropic second order tensor: 

Divergence of second order tensor:

'= −r x x ˆ r=r r

Curl of second order tensor:

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

( )( ) ( )', 0ij i i jQ u u= − ∇⋅ =x x

( )( ) ( ) ( )' '
, 0ij i i j jQ u u uθ= − ∇⋅ = − =x x x

Incompressible flow
Constant 

divergence 
flow

Irrotational 
flow

Same even order kinematic 
relations for incompressible flow 

and constant divergence flow

Used to derive 
Kinematic relations
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Two-point second order velocity correlation functions

( ) ' ' 2
2 2 23ij ij i iR r Q u u A r Bδ= = ⋅ = = +u u

( ) 2 ' 2
2 2 2ij i j L LL r Q rr r u u A r B= = = +

( ) ( )'
2 22ij i j T TT r Q n n B r= = ⋅ =u u

( ) ( ) ( ) ( )2 2 22 2R r R r L r T r= = +

Using index contraction of second order tensor to define three scalar correlation functions

( )
'

2

L L
L

L

u u
r

u
ρ = ( )

'

2

T T
T

T

rρ
⋅

=
u u

u
( ) ( ) ( )

1 21
3

u a  = ⋅ 
 

u x u x
One-dimensional 
RMS (root-mean-
square) velocity:

Total correlation function:

( ) ( ) ( )
0

sin
u

kr
R r E k dk

kr
∞

= ∫

( ) ( ) ( )
0

2 sinuE k R r kr kr dr
π

∞
= ∫

( ) ( ) 1
0 2 20 0

1
2u ul R r dr E k k dk

u u
π∞ ∞ −= =∫ ∫

Longitudinal correlation function

Transverse correlation function

Two correlation coefficients can be defined for 
longitudinal and transverse velocity:

and

The velocity power spectrum and correlation function 
form Fourier transform pair

Integral scale: the length scale within which velocities 
are appreciably correlated
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Kinematic relations for correlation functions

nth order spherical 
Bessel function of 

the first kind: ( ) 2
2 23 0

1 r

iR R y y dy
r

= ∫

Relations between 
correlation functions( )2

2 2 ,

1
2 r

T r L
r

= ( )3
2 22 ,

1
r

R r L
r

=

( ) ( ) ( )2
2 2, ,

1
2ij i j ijr r

Q r L rr r L
r

δ = − − 

For incompressible flow or constant 
divergence flow:

( ) ( ) ( )1
2 0

2
u

j kr
L r E k dk

kr
∞

= ∫
( ) ( ) ( ) ( )1

2 00 u

j kr
T r E k j kr dk

kr
∞  

= − 
 

∫

( ) ( )0 22 20 0

1 1
ul R r dr L r dr

u u
∞ ∞

= =∫ ∫

Correlation tensor in 
terms of correlations

Relations to power 
spectrum function

Integral length scale

( )nj kr
Characterizing the type of flow

2 2iR T=

For incompressible or 
constant divergence flow: 2 2iR L=

For irrotational flow:

For irrotational flow:

( )3
2 22 ,

1
r

R r T
r

= ( )2 2 ,r
L rT=

( ) ( )2 2,

i j
ij ijr

r r
Q r T T

r
δ= +

( ) ( ) ( ) ( )1
2 00

2 2u

j kr
L r E k j kr dk

kr
∞  

= − 
 

∫

( ) ( ) ( )1
2 0

2
u

j kr
T r E k dk

kr
∞

= ∫

( ) ( )0 22 20 0

1 1
ul R r dr T r dr

u u
∞ ∞

= =∫ ∫
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Correlation functions from N-body simulation 
and nature of dark matter flow

The variation of two-point second order velocity correlation 
functions (normalized by u2) with scale r at z=0 

Using correlation functions to 
characterize different types of flow.

rt

L2 and T2
Crossover at r= rt

<0>0L2 <0 at large r 
T2 >0 for all r
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Velocity correlation and collisionless particle 
“annihilation”

'
1 2 3mv mv m v+ = ( )3 1 2'

mv v v
m

= +

( ) ( )
2 2

22 2
3 1 2 0' '2 1L L

m mv v v u
m m

ρ   = + = +   
   

2 2 2 2 ' 2 ' 2
1 2 3

1 1 1
2 2 2

mc mv mc mv m c m v+ + + = +

( )
22 2 2 2

'
0 02 2 4 21 1 2 1

2 4 2
L L L L

L L

u u u u
m m m

c c c c
ρ ρ

      = + + − + ≈ + −      

Particle “annihilation” (r=0) leads to extra mass converted 
from kinetic energy if gravity is the only interaction and no 
radiation is produced from that “annihilation”. 

The correlation coefficients for longitudinal 
velocity and  for transverse velocity

Momentum conservation:

m, v1 m, v2 m’, v3
annihilation

Mass-energy conservation:

( ) ( ) ( )2 2 2
h v h h hm m mσ σ σ= + 2 2 1 2cor hρ σ σ= ≈

Equipartition: halo T and halo group T
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Modeling velocity correlation functions on large scale

Transverse velocity correlation function T2
varying with r at different redshifts z 

On large scale, transverse velocity correlation 
can be well modelled by exponential function:

2 21.4r Mpc h≈

( ) ( )2
2 0 2, expT r a a u r r a= − ∝ ( )2

0 0 0.45a u u a=

Redshift-independent length scale, 
might be related to the size of sound horizon 

( ) 2
2 0

2 2

, exp 1r rL r a a u
r r

  
= − −  

  

( ) ( )' 2
2 0

2 2

, 2 exp 3r rR r a R r a u
r r

  
= ⋅ = = − −  

  
u u

( ) ( )0 2 0 22 20 0

1 1 2
2ul R r dr R r dr a r

u u
∞ ∞

= = =∫ ∫

Using kinematic relations for irrotational flow 
on large scale

Longitudinal 
correlation

Total 
correlation

Correlation 
length
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Longitudinal and total velocity correlation

The variation of longitudinal velocity correlation 
function L2 with scale r and redshift z

The variation of total velocity correlation 
function R2 with scale r and redshift z
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Density and potential correlations on large scale
Using kinematic relations and exponential transverse 

velocity correlation, we can analytically derive all 
correlations for velocity, density and potential on large scale.

( )maHf
δ η ∇⋅
≈ = −

Ω
u ( )

4
mHf

G a
φ

π ρ
Ω ∇

= −u
2

24 G a
φδ η

π ρ
∇

≈ =

Linear perturbation theory and Zeldovich approximation 
on large scale: 

( ) ( )log 1η δ δ= + ≈xLog-density field: 

( )
( )( )

22
0

2
2 2 2 2

1, exp 7 8
m

a u r r rr a
rr r r raHf

ξ
      
 = ⋅ − − +     
 Ω       

( ) ( )
( )( )

2
2 0

23 0
2 2 2

3 3, , exp 4
r

m

a u r rr a y a y dy
r rr r raHf

ξ ξ
  

= == − −  
Ω   

∫

( ) ( ) ( )

2

' 2 2 0
0 2

2 2

1 9 exp 1
2 8 m

aH r rR a u r a
f r rφ φ φ

      
= ⋅ = − + ∝       Ω      

x x

Density correlation: 

Averaged density correlation: 

Potential correlation: 

Density correlation at z=0 and 
comparison with model
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Velocity/density/potential spectrum functions on 
large scale

( )
( )( )

2
2

0 32
2

2

8

1 1
u

kE k a u
r krπ

−

=
+

( ) 4
uE k k∝ 2 1kr 

( ) 2
uE k k −∝ 2 1kr 

Signature of Burger’s equation in 
weakly nonlinear regime

( ) 2
max 2 0

256
125uE k r a u

π
=max 2 2k r =

( )
( )( ) ( )( )

2
0

2 32
2 2

16 1

1 1m

a uE k
aHf r kr

δ
π

=
Ω +

( ) ( )
( )( ) ( ) ( )( )

2
2 2 0 2

2 32 2

2 2

32 1, 2 ,
1 1m

a u rP k a E k a k
aHf kr kr

δ δ
ππ= =

Ω +
( )

( )( )
2

0 2
max 2

128,
27 m

a u rP k a
aHf

δ
π

=
Ω

( ) ( ) ( )( )
2 2 4

0
32

2
2

18

1 1m

a u kaHE k
r f kr

φ π

− 
=   Ω  +

Velocity spectrum function: 

for

for

k4 spectrum due to 
vanishing linear momentum

k4

k-2
Eu

k
kmax

k-5/4

Small 
scale

Density spectrum function: 

Matter power spectrum: 

Potential spectrum function: 
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Second order velocity dispersion functions and 
energy distribution in real space

( ) ( ) ( ) ( )22 ' '1
3u u urr

r E k W kr dk E r drσ
∞ ∞

−∞
= =∫ ∫

( ) ( ) ( ) ( )1
3

3 sin cos 3
j x

W x x x x
x x

= − =  

( ) ( ) ( )22 1 1
3d ur E k W kr dkσ

∞

−∞
 = − ∫

( ) ( )( )3 2 4
2 2 2

1 12
24 uR r r r r

r r r r r
σ∂  ∂ ∂  =   ∂ ∂ ∂  

( ) ( )2 2 2
u dr r uσ σ+ =

( ) ( )2
u

ur

r
E r

r
σ∂

= −
∂

Dispersion function for smoothed velocity 
(energy contained in scales above r):

Window function for tophat spherical filter:

Energy contained in 
scales between [r, r+dr]

Energy contained in scales below r:

Energy decomposed into 
scales below and above r:

Relations to velocity correlation function:

Variation of two dispersion functions with scale r (simulation). 
Fraction of energy contained in large scale decreases with time.
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Second order velocity structure functions

( ) ( ) ( ) ( )( )22 ' 2
2 22lp

L L L LS r u u u u L r= ∆ = − = −

( ) '
1
lp

L L LS r u u u= ∆ = −

( ) ( )( ) ( )( )' 2
2 2 20

2 lim 2l
L Lr

S r u u L r u L r
→

= − = −

( ) ( )2 2
lp lS r S r≠

( ) ( ) 2
2 20 0

lim lim
r r

L r T r u
→ →

= =
The variation of longitudinal velocity dispersion 

<ΔuL
2> with scale r at different redshifts z 

2 2

0
lim 2Lr

u u
→

= 2 2lim Lr
u u

→∞
=

2 2
Lu u≠because of

Second order longitudinal structure function 
(pairwise velocity dispersion):

Second order longitudinal structure function (modified):

( ) ( ) ( )2 ' mlp
m L L LS r u u u= ∆ = −

Longitudinal Structure functions are moments of 
pairwise velocity:

2
2 20

lim lim 2lp lp

r r
S S u

→ →∞
= =

( ) ( )2 2lim lim 0
r r

L r T r
→∞ →∞

= =
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Second order velocity structure functions
Total velocity structure function:

( ) ( ) ( )22 ' 2
2 26 2ip

LS r u R r= ∆ = − = −u u u

( ) ( )2
2 26 2iS r u R r= −

( ) ( ) ( )( )2 00
4 1i

uS r E k j kr dk
∞

= −∫

( ) ( )( )3 2 4
2 2 2

1 12
12

i
dS r r r r

r r r r r
σ∂  ∂ ∂  =   ∂ ∂ ∂  

Structure function for enstrophy and real space 
enstrophy distribution:

( ) 2

0n uE E k k dk
∞

= ∫Enstrophy:

( ) ( ) ( ) ( )2 2 2 ' '
2 0

1
2 3

x

u nrr

S r
E k k W kr dk E r dr

r
∞ ∞

= =∫ ∫

( )( ) ( )24
22

21 1
3

i
x S r

S r r
r r r r r

∂∂ ∂  = ∂ ∂ ∂ 

( ) ( ) ( )2
2 2x

nrE r S r r
r
∂  = −  ∂

Total velocity structure function (modified):

Relation to velocity spectrum function:

Relation to velocity dispersion function:

Enstrophy of smoothed velocity by a filter of size r:  

Real space distribution of enstrophy between [r r+dr]:  

Relation to total structure function:

( ) ( )2 2
ip iS r S r≠ 2 2

Lu u≠because of
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Kinematic relations for structure functions
For incompressible flow or constant divergence flow:

( ) ( ) ( )1
2 0

4 1 3
3

l
u

j kr
S r E k dk

kr
∞  

= − 
 

∫

( ) ( )3
2 22

1i lS r r S r
r r

∂  =  ∂

( ) ( )( )3 2 4
2 5

12
12

l
dS r r r r

r r r
σ∂ ∂ =  ∂ ∂ 

Relation between different structure functions:

Relation to velocity dispersion functions:

For irrotational flow:

( ) ( ) ( ) ( )1
2 00

4 1 3 6
3

l
u

j kr
S r E k j kr dk

kr
∞  

= − + 
 

∫

( )
( )2 3

22

1i
l

rS r
r S r

r r r

 ∂ ∂   =  ∂ ∂

Relation between different structure functions:

The variation of longitudinal velocity structure 
function Slp

2 with scale r at different redshifts z 
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Energy and enstrophy distribution in real space

The real space distribution of energy   
on scale r at different redshifts

The real space distribution of enstrophy 
on scale r at different redshifts
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Correlation functions of velocity gradients and 
Kinematic relations

( ) ( )θ = ∇ ⋅x u x ( ) ( )= ∇×ω x u x

2 ' ' ' 2 2
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r r r
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θ θ⋅  ∂ ∂  = = − + +  ∂ ∂  

Divergence of velocity: Vorticity (curl):
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ω ω
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Vorticity correlation (divergence is zero):
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2' 2 22
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1 1 1 r TRr r
r r r r r r r r

θ θ
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( ) ( ) ( )' 2

0

sin1
2 u

kr
R r E k k dk

krθ θ θ
∞

= ⋅ = ∫

Divergence correlation (vorticity is zero):

For incompressible flow or constant divergence flow:

For irrotational flow:

Divergence and vorticity correlations:
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Modeling the longitudinal structure function on large 
scale

2 2

1 2

1 exp 1L d
d d

r ru u a
r r

   
= + − −   

   

( ) ( ) ( )( )2 2
2 22lp

L LS r u u L r= ∆ = −

7 40.44da a=

1 11.953dr Mpc h=
1 4

2 27.4dr a Mpc h=

Structure function (pairwise velocity dispersion):

Modeling longitudinal velocity dispersion on large scale:

The variation of normalized longitudinal velocity 
dispersion 
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Modeling the longitudinal structure function on small 
scale (two-thirds 2/3 law)

( ) ( ) ( )( )2 2
2 22lp

L LS r u u L r= ∆ = −

Second order structure function (pairwise velocity dispersion):

Construct reduced structure function that is purely determined 
by the rate of energy cascade εu:

Variation of normalized reduced longitudinal 
structure function and two-thirds law

( ) 2
2 2 2lp lp

rS S r u= −

2
20

lim 2lp

r
S u
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=with

( )2 33 2 * 2 3
2 2
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r uS a rβ ε= −( )2 3 2 3

2
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r uS rε∝ −

For hydrodynamic turbulence: 20
lim 0lp

r
S

→
=

( )2 2m s :uεand ( )3 2m s

Dimensional analysis leads to two-thirds law for 2
lp
rS

or

( ) ( )2 32 2 *
2 2 22 2lp lp

r sS r S u u r rβ = + = + 

By introducing a length scale rs: upper limit for two-thirds law

3
0 0

0 0
0

4 2 1.58
9 3s

u

u ur u t Mpc h
Hε

= − = = ≈ *
2 9.5β ≈and

Two-thirds law might be used to predict dark matter particle properties



181

Modeling the longitudinal structure function on 
small scale (one-fourth ¼ law)

1/4 law for (modified) structure function on small scale:
Also see slides for additional information. 
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 − −
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Potential energy for a sphere of radius r:

( ) ( )2 0T r U rγ+ =
Virial theorem

Use virial theorem:

Use kinematic 
relation



1/4 law for (modified) longitudinal structure function 
can be used to derive all other velocity correlations 
on small scale:
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Modeling velocity correlation functions on small scale
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and

Using kinematic relations on small scale:

Longitudinal 
correlation

Transverse 
correlation

Total 
correlation

Velocity dispersion function for energy contained 
below scale r:

Total structure 
function

Structure 
function for 
enstrophy

Vorticity 
correlation

Velocity & 
vorticity 

spectrum

Proportional 
constant
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Modeling the velocity correlations on entire range

The fitted velocity correlation functions compared 
to original correlations from N-body simulation

 Correlation functions are modelled on both large and 
small scales

 Need smooth and differentiable velocity correlations for 
the entire range of scales 

 Correlations of vorticity and divergence can be obtained 
as derivatives of velocity correlations

( ) ( )
1

1 c ar x x
b

s r
x e− −

=
+

( ) ( ) ( )1 2
1

3 3
n

s
rf r R r n
r

 
= = − +  

 

( ) ( )2 2 0
2 2

exp 3l
r rf r R r a
r r

  
= = − −  

  

( ) ( ) ( )( ) ( )( )1 2
2 22 1

n n
s lfitR r R s r R s r= − +

Interpolation function 
for smooth connection

Correlation function 
on small scale

Correlation function 
on large scale

Final fitted correlation function is obtained by parameter 
optimization using correlations from N-body simulation
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Modeling divergence and vorticity correlations on 
entire range of scales

 With correlation functions modelled on entire range of  
scales, correlations of divergence and vorticity can be 
obtained using kinematic relations.

 Divergence is negatively correlated on scale  

 Vorticity is negatively correlated for scale r between 
1Mpc/h and 7Mpc/h (pair of particles mostly from 
different halos) and positively correlated on small 
scale (pair of particles from the same halo).

30r Mpc h>

Variation of correlation functions of divergence 
and vorticity with scale r at z=0

 Vorticity is dominant on small scale while divergence is 
dominant on large scale.
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Summary and keywords

 Identify connections with homogeneous isotropic turbulence for the development of the statistical 
theory in terms of correlation, structure, dispersion, and spectrum functions

 Identify the nature of peculiar velocity in dark matter flow: constant divergence flow on small scale 
and irrotational flow on large scale. 

 Develop kinematic relations between different statistical measures
 The limiting correlation coefficient of velocity ρ=1/2 on the smallest scale (r=0) is a unique feature of 

dark matter flow (ρ=1 for incompressible flow) along with the implications for particle annihilation
 On large scale, the transverse velocity correlation has an exponential form with a comoving length 

scale r2=21.3Mpc/h. All correlation/structure/dispersion/spectrum functions for velocity, density, and 
potential can be derived analytically using kinematic relations for irrotational flow. 

 On small scale, the longitudinal structure function follows a one-fourth law S2
l~r1/4, along with other 

correlation/structure/dispersion/spectrum functions obtained from kinematic relations for constant 
divergence flow.

Velocity correlation tensor Longitudinal velocity Two-thirds law / one-fourth law
Kinematic relations Transverse velocity Spectrum functions

Correlation functions Structure functions Dispersion functions
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Scale and redshift dependence 
of density and velocity 

distributions in dark matter flow
Xu Z., 2022, arXiv:2202.06515 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.06515

https://doi.org/10.48550/arXiv.2202.06515
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Introduction

 N-body simulations are invaluable tools for DMF: 
 Velocity fluctuation and distributions
 Density is non-uniform (density 

fluctuation/distributions) 

 Fundamental problems when projecting N-body 
density/velocity field onto structured grid:
 N-body fields are sampled discrete locations 

of particles. 
 The sampling has a poor quality at locations 

with low particle density

Review: 
Statistical theory in hydrodynamic turbulence
 Velocity fluctuation and distributions
 Incompressible on all scales

 Divergence-free
 Constant density

Halo-based non-projection approach:
 Instead of projecting, analysis is performed by 

the statistics over all pairs on different scales 
to maximumly preserve the information from 
N-body simulation 

 Based on the halo description, divide all 
particles into halos and out-of-halo particles, 
whose distributions evolve differently

 Scale and redshift dependence of distributions 
can be studied by the variation of generalized 
kurtosis for a given distribution. 

Goal 1: Density distributions and two-point 
statistics

Goal 2: Velocity distributions and redshift 
and scale dependence
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One-point probability distributions of density field

( ) ( )
0

1
ρ

δ
ρ

= −
x

x

( ) ( )( ) ( )
0

log 1 log
ρ

η δ
ρ

 
= + =  

 

x
x x

( )
1 1

1 δ
=

+ x
( ) 1e η− =x

 Projecting particle field onto structured grid involves 
information loss and numerical noise. 

 Without projecting onto grid, Delaunay tessellation is 
used to reconstruct the density field and maximumly 
preserve information in N-body data. 

 Compute the volume Vp occupied by every particle

Delaunay 
tessellation 

( ) p pm Vρ =x

Particle 
density

Particle log-density

Particle density 
contrast

Constraints for density 
contrast and log-density

Redshift evolution of particle density distribution from z=10 
to z=0. Density evolves from initial Gaussian to an 

asymmetric distribution with a long tail ~δ-3
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Probability distributions of log-density field

( ) ( ) ( )2 2
1 21 1

2 2
1 21 2

1exp exp
2 22 2

c cf
η µ η µ

η
σ σπσ πσ

   − −−
= +   

      

Distribution of log-density at different redshifts z. The 
log-density evolves from Gaussian to an approximately 

bimodal distribution at z=0 with two peaks.

1 0.404c =

1 0.30µ = −

1 1.212σ =
2 4.256µ =

2 2.979σ =

 Gaussian distribution of log-density at high redshift. 
 Bimodal distribution of log-density at low redshift. 
 Two peaks corresponds to contributions from particles 

in all halos and particles out-of-halo.
 Best fitted bimodal distribution at z=0 showing fraction 

of particles in halos is about 60%, consistent with 
inverse mass cascade theory.

2 11 0.596c c= − =

Particles in halos should have an average density close 
to Δc, the critical density ratio 18π2, such that the mean 
density for all halo particles <μ2>=log(18π2) ≈5 
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Halo-based non-projection approach for particle 
density

 Checking the density distributions of particles in halos 
and out-of-halo particles separately. 

 Identifying all halos in entire system and dividing all 
particles into halo and out-of-halo particles. 

 For out-of-halo particles, the distribution is relatives 
Gaussian (or δ is lognormal) with mean density 
decreasing with time. 

 For halo particles, log-density distribution evolves with 
increasing mean density due to the formation of halos. 

( )
( )

( )
( )
( )2 22

2

n
cp
n

n n ncp

S
K

S

τ τ τ
τ

ττ τ

−
= =

−

( ) ( )ncp
nS τ τ τ= −

Characterizing the time evolution of the shape of 
distribution by introducing nth order generalized kurtosis:

nth central moment
Redshift evolution of log-density distributions 

for two different types of particles. 

Generalized 
kurtosis

3 5 0K K= =2 1K = 4 3K = 6 15K = 8 105K =For Gaussian:
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Time evolution of comoving particle density field

The redshift evolution of generalized kurtosis of log-
density for two different types of particles. 

 Distribution of η is always 
Gaussian for out-of-halo particles.

 Distribution of δ for out-of-halo 
particles is approximately log-
normal

 Distribution of η for halo particles 
approaching some symmetric non-
Gaussian distribution with 
vanishing odd order kurtosis
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Time evolution of particle density field

The variation of mean and standard deviation 
of log-density with scale factor a. 

 For out-of-halo particles, the mean log-density 
decreases with time and  <η><0 after z=1. This 
reflects less and less out-of-halo particles due to 
inverse mass cascade.

 For halo particles, mean log-density increasing with 
time (<η> ~ a1/2) reflects more and more particles 
residing in halos

 For halo particles, standard deviation of log-density 
increasing with time (std(η) ~ a1/2)
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Two-point statistical measures of density field
Defining two-point density correlation function from radial 
distribution function g(r) in statistic mechanics, a quantity 
to measure the averaged particle density from an arbitrary 
reference particle:

( ) 24p
p

N
dN g r r dr

V
π=

( ) 2
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1
4 p
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N
g r r dr V

N
π

∞ −
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( ) ( ) ( ) ( ) 1r g rξ δ δ= + = −x x r

( ) 2

0
, 4 0pr a r dr V Nξ π

∞
= − <∫

Correlation cannot be 
positive on all scales

( ) ( )0 0
,l a r a drδ ξ

∞
= ∫ ( ) ( )2

1 0
,l a r a rdrδ ξ

∞
= ∫

pN V
mean number 

density of particles 
in entire system

Two length scales can be defined from density correlation:
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 = ⋅ − − +     
 Ω       

On large scale, transverse velocity correlation 
can be well modelled by exponential function:

2 21.4r Mpc h≈

( ) 2
2 0

2

, exp rT r a a u a
r

 
= − ∝ 

 
( )2

0 0 0.45a u u a=

Redshift-independent length 
scale, might be related to the 

size of sound horizon 
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u u

Total velocity correlation

( )maHf
δ η ∇⋅
≈ = −

Ω
u Linear perturbation 

theory on large scale: 

Modeling density correlation on large scale:
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Specific potential/kinetic energy from density 
correlation function

( ) ( )20
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2 1 g
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PE r g r V r dr
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πρ ∞
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In statistical mechanics, potential energy of any system 
with particles interacting via a pairwise potential Vg(r)  
can be related to the radial distribution function g(r):
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1 30
0

56,
45

ul a r a rdr a
Hδ
εξ

∞
= = −∫

Cosmic energy equation

The variation of two comoving 
correlation lengths with scale factor a.

Power-law evolution and rate of energy cascade εu:
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Density spectrum/dispersion functions and real 
space distribution of density fluctuation 
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Window function when smoothed with a filter of size r
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Correlation and spectrum form Fourier pair:

Matter spectrum function:

The power per logarithmic interval:

Density dispersion function (the variance of the density 
fluctuation on scale r): First order spherical 

Bessel function of 
the first kind

The real-space distribution 
of density fluctuation in 

scales [r, r+dr]
Modeling density dispersion function on large scale:
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Density correlation function (simulations & models)

Density correlation function (solid blue) 
varying with scale r at z=0.

Density correlation function varying with 
scale r at different redshifts. 
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Density correlation and spectrum functions 
(simulation & models)

Two-point second order density 
correlation varying with scale factor a. Without projection, density power spectrum can be 

obtained from Fourier transform of correlation. 
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Density dispersion function and distribution of 
density fluctuation

Density dispersion function obtained from density 
correlation and compared with models.

Distribution of density fluctuation on scale r 
obtained from density dispersion function
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Characterizing distributions of velocity fields 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

'= −r x x ˆ r=r r

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

We focus on the distribution of seven types of velocities:

Based on halo-based non-projection approach, 

Velocity of all particles in entire system: 
Redshift-dependent velocities (dependent on z): 

pu

Velocity of all halo particles: hpu

Velocity of all halos: 

Velocity of all out-of-halo particles: opu

hu

Scale-dependent velocities (dependent on r): 

Pairwise velocity:
'

L L Lu u u∆ = −
Velocity sum: '

L L Lu u u∑ = +

Longitudinal velocity: '
Lu Luand
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Redshift dependence of velocity distributions
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u u S u r
K u r

S u ru u

∆ − ∆ ∆
∆ = =

∆∆ − ∆

( ) ( ),
ncp

n L L LS u r u u∆ = ∆ − ∆
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The scale and redshift variation can be studied by 
Introducing generalized Kurtosis:

Redshift evolution of generalized kurtosis for velocity 

The central moment of order n: 

The nth order longitudinal structure function:

 All velocities are initially Gaussian. 
 Velocity distribution of halo particles deviates from 

Gaussian much faster than out-of-halo particles 
due to stronger gravitational interaction in halos. 

 All velocities become non-Gaussian with time to 
maximize system entropy 
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Scale-dependence of velocity distributions
 Even order generalized kurtosis (4th, 6th, 

and 8th order) at z=0. 

 Velocity of fully developed dark matter flow 
is never Gaussian on any scale due to 
long-range gravity despite that they can be 
initially Gaussian.

 For incompressible flow with short range 
force, distribution is nearly Gaussian on 
large scale and non-Gaussian on small 
scale due to viscous force. 

 On small scale, distribution of ΣuL
approaches the distribution of uL with 
ρL=0.5.  

 On large scale, distribution of ΣuL
approaches the distribution of ΔuL with 
ρL=0. 
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Scale-dependence of velocity distributions
 On both small and large scales, generalized 

kurtosis approaches constant such that there 
exist unique (limiting) probability distributions 
that are independent of scale r.

 While on the intermediate scale around 1Mpc/h, 
all three velocity distributions exhibit the 
greatest value of generalized kurtosis of 
different order. 

 Third order kurtosis (skewness) vanishes on 
both small and large scales, where distributions 
are symmetric. 

 The negative skewness on the intermediate 
scale (distribution skews toward positive side) 
can be an important signature of inverse 
cascade of kinetic energy.
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First moment of velocity fields and pair conservation 
equation

The variation of first moment of longitudinal velocity   
(mean pairwise velocity) with scale r 

( )( )
( )( )

( )( )1 , ln 1 ,
ln3 1 ,

L r a r au
Har ar a

ξ ξ

ξ

+ ∂ +∆
= −

∂+

Pair conservation equation relates the pairwise velocity 
with density correlation

For large scale in linear regime, average correlation   

1ξ  ln ln 2aξ∂ ∂ =

( ) ( )( )
( )( ) ( )

2 , 1 , 2 ,
33 1 ,

L r a r au
r a

Har r a
ξ ξ

ξ
ξ

+∆
= − ≈ −

+

ln ln aξ α∂ ∂ =( ),r a a rα γξ ∝

1Lu
Har
∆

= − 3α γ= +

and

and
For small scale in non-linear regime, 

Stable 
clustering 
hypothesis
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First moment of velocity fields

Lu Har∆ = − 2Lu Har=

( )5 25 3
L tu Har ua r r−∆ = − −

( ) 2
2 0

2 r

L
Hau y y dy
r

ξ∆ = − ∫

( )
2

02

0 2 2 2

22 exp 4L
a uR r ru

aHf r aHr r r
  ∂

∆ = = − −  Ω ∂   

'
2R = ⋅u u

0LuΣ =

Mean velocity difference (pairwise velocity, normalized 
by u) varying with scale r at different redshift z

On small scale:

A better relation to fit the simulation data: 

On large scale:

Total velocity 
correlation

From pair 
conservation 

equation



205

Second moment of velocity fields

Second moment of velocity (normalized by u^2) 
varying with scale r at z=0

Increase of velocity dispersions with r for r<rt (pair of 
particles are more likely from same halos) is mostly due 
to the increase of velocity dispersion with halo size.
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Second moment of pairwise velocity (pairwise 
dispersion) and the two-thirds law

Second order longitudinal structure function 
(pairwise velocity dispersion)

Reduced second order longitudinal structure function 
(pairwise velocity dispersion) and two-thirds law
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Two-thirds law for higher even order structure 
functions and generalized stable clustering (GSCH)

( ) ( ) ( )2 32 *
2 2 22 ,0lp n n

n n L n sS r u K u r rβ = ∆ + 

*
2 9.5β = *

4 300β = * 4
6 2.25 10β = ×

* 6
8 2.75 10β = × * 1.826 1.003

2 10 n
nβ −≈

( ) ( ) ( ) ( ) 1
2 1 1 22 1lp lp lp

n nS r n S r S r r+ = + ∝

3
0 0

0 0
0

4 2 1.58
9 3s

u

u ur u t Mpc h
Hε

= − = = ≈

2
2 7 2 30
0 0

0

3 9 4.6 10
2 4u

u u H m s
t

ε −− = = = ×

Original scaling for incompressible flow does not 
apply for dark matter flow.

All odd order structure functions follow linear law 
from generalized stable clustering hypothesis

All even order reduced structure functions follow 
the same scaling of two-thirds law.
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Comparison of velocity fields between incompressible 
and dark matter flow
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Modeling velocity distributions on small scale

( )
( )

( )

22
0

0 1

1
2

v veX v
v K

α

α α

− +

=

 On small scale, velocities  uL and ΣuL should have 
the same limiting distribution. 

 On small scale both should follow a X distribution to 
maximize system entropy.

Maximum entropy distribution:

Shape parameter: α; 
Velocity scale: v0;

Distributions of  velocities on 
scale of r=0.1Mpc/h at z=0

( ) ( )
( )

( )( ) ( ) ( )
( )

2
1 21

2 1

1 22
m

m
m

KmK
K X

K K
αα

α απ
+Γ + 

= ⋅  
 

The mth order generalized kurtosis of X distribution:

 The shape of velocity distribution changes with 
redshift z such that α is redshift-dependent. 

 Kurtosis Km is only dependent on α and also redshift-
dependent



210

Distribution of pairwise velocity on small scale
 On small scale, velocities  uL and 

ΣuL follows X distribution.
 Distribution of pairwise velocity ΔuL

is different with moment estimated.
 Pairs of particles with same r can be 

from halos of different size.

The limiting distributions of velocity fields on small and large scales

( ) 2 2
cor h hmρ σ σ=

( )
( )

( ) ( )
2 24 1

0

1
2 2 1

corx p
uL p

cor

P x e f dρ σ β ν ν ν
π ρ σ

∞  − − 
∆ =

−∫ ( ) ( ) ( ) ( )
( )

1

2

2 22 !
!2 1 2

n

n L nn

n p q p qn
K u

n p q

−
Γ + + Γ +  ∆ =

Γ + +  

( ) ( )
( )

( )
0 2 1

0

2
exp

2 4

q

q
Df f

qλ

η νν ν ν
η

−

−  
= = − Γ  

'
L L Lu u u∆ = −

Key: correlation between two longitudinal 
velocities decreases with halo size:

Double-λ halo mass function:

Generalized kurtosis:

Exponential??
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Velocity distributions on intermediate scale

Distribution of ΣuL is symmetric, while the distribution of ΔuL is non-symmetric with non-zero (negative) 
skewness and skew toward positive side. This is a necessary feature of inverse energy cascade.
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Modeling velocity distributions on large scale

( ) 21 sech
4 2Lu

xP x
s s∆

 =  
 

( ) 1 exp
Lu

xP x
s s∆

 →∞ ≈ − 
 

 Distribution of ΔuL on large scale is usually assumed 
to be exponential in literature (non-smooth).

 This seems not agree with N-body simulation
 On large scale, Both ΣuL and ΔuL can be modelled 

by a logistic distribution. 

Logistic distribution for both velocities:

( ) ( ) ( )
L L Lu u uP z P x P z x dx

∞

∆ −∞
= −∫

( ) ( )sinuLP
stMGF t

st
π
π

=

Reduce to exponential at large velocity:

Longitudinal velocity uL should satisfy for ρL=0:

Moment 
generating 

function for uL
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The redshift evolution of velocity distributions

 Distribution of different types of velocities  
changes due to redshift evolution of α.

 Shape parameter α decreases with time.

 Most velocities follows the X distribution 
to maximize system entropy

 Halo velocity and out-of-halo particle 
velocity evolves much slower than halo 
particle velocity due to weaker gravity on 
large scale.

( ) ( )
( )

( )( ) ( ) ( )
( )

2
1 21

2 1

1 22
m

m
m

KmK
K X

K K
αα

α απ
+Γ + 

= ⋅  
 

Generalized kurtosis of X distribution:

Plot K4 vs. K6, K4 vs. K8, and K4 vs. K10;
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Summary and keywords

 A halo-based non-projection approach is proposed to study the scale and redshift 
dependence of density and velocity distributions in dark matter flow. 

 A two-thirds law for pairwise velocity was established, i.e.  S2
lp-2u2~ εu r2/3, where r is the 

separation between pair of particles and εu is the constant rate of energy cascade.
 Two-thirds law can be generalized to all even moments of pairwise velocity, while odd 

moments ~r 
 The distributions of longitudinal velocity uL , pairwise velocity ΔuL, and velocity sum ΣuL, 

are analytically modeled on both small and large scales
 Fully developed velocity fields are never Gaussian on any scale despite that they can 

be initially Gaussian. 
 Delaunay tessellation is used to reconstruct the density field from N-body simulation, 

which results in an asymmetric density distribution with a long tail. 
 Density correlation is obtained by directly counting all pairs on a given scale r along with 

simple analytical models for all second order density statistics. 

Delaunay tessellation Pairwise velocity Skewness
Generalized kurtosis Velocity sum Generalized stable clustering 

Two-thirds law X distribution Pair conservation equation
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The statistical theory of dark 
matter flow (high order)

Xu Z., 2022, arXiv:2202.02991 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.02991

https://doi.org/10.48550/arXiv.2202.02991
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Introduction
Review: 
Statistical theory in hydrodynamic turbulence
 Kinematic relations between statistical measures 

(2nd and 3rd order) 
 Dynamic relations between statistical measures of 

different order (from NS equations of velocity)
 Reynolds decomposition
 Closure problem, eddy viscosity, etc… 

 Most kinematic relations between 
statistical measures (2nd) 
Need to extend to high and arbitrary order

 Develop self-consistent dynamic equation 
for velocity field

 Develop dynamic relations between 
statistical measures of different order

 Derive the “eddy” (artificial) viscosity from 
velocity fluctuation

Current statistical theory of dark matter flow is not satisfactory:
 Dark matter flow is intrinsically complex with different nature 

of flow on different scales, i.e. a constant divergence flow on 
small scale and an irrotational flow on large scale. 

 The kinematic and dynamic relations need to be developed 
separately for both types of flow on different scales.

 Dynamic equations of velocity (Jeans’ equation) are not self-
closed. No dynamic relations can be derived without a self-
closed dynamics for velocity evolution. 

 Existing work mostly focus on the 1st and 2nd 
order velocity statistics, while the peculiar 
velocity field contains much richer information 
beyond the second order. 

 Finally, very challenging to explore high order 
statistics, as that inherently involves tensor 
and vector calculus of great complexity. 
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Two-point third order velocity correlation tensors 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

Third order velocity correlation tensor (homogeneous and isotropic):

General form of isotropic third order tensor: 

Divergence of second order tensor:

'= −r x x ˆ r=r r

Curl of second order tensor:

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

( ) ( )( ) ( )( )' '
, 0ijk k i j jQ u u u= ∇ ⋅ =x x x Incompressible flow

Constant 
divergence 

flow

Irrotational 
flow

Different odd order kinematic 
relations for incompressible flow and 

constant divergence flow

Use this to derive Kinematic relations

( ) ( ) ( ) ( ) ( ) ( )' ',ijk ijk ijk i j k i j kQ Q Q r u u u u u u= = = =x r r x x x

( ) ( ) ( )( ) ( )3 3 3ijk i j k i jk j ki k ijQ r A r rr r B r r r D r rδ δ δ= + + +

'
3 3 3

, 3 3 3
25 2 3i j k

ijk k i j ij
k

u u u A B DQ A r rr B r D
r r r r r

δ
∂ ∂ ∂ ∂   = = + + + + +   ∂ ∂ ∂ ∂   

( ) ( )( ) ( )( ) ( ) ( )( )' '
, 0ijk k i j j i jQ u u u u uθ= ∇ ⋅ = ≠x x x x x

( ) ( )3
, 3

1 0mni ijk mnk j imk n k ink m k
BQ r Q A r r r r

r r
ε ε ε∂ ∇× = = − + = ∂ 
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Two-point third order velocity correlation functions

( ) ( ) ( )3 3 32R r L r T r= +

Using index contraction of third order tensor to define four scalar correlation functions

Two total correlation functions:

Longitudinal triple correlation function:

Transverse third-order correlation function:

Relation to third correlation tensor:

( ) ( )2 ' 3
3 3 3 3ˆ ˆ ˆ 2ijk i j k L LL r Q rr r u u A r B D r= = = + +

( ) ( ) ( )' 3
3 3 3 3

1 ˆ ˆ 4
2 ijk ik j jk i LR r Q r r u A r B D rδ δ= + = ⋅ = + +u u

( ) ( )' 3
31 3 3 3ˆ 2 3ijk ij k LR r Q r u A r B D rδ= = ⋅ = + +u u

( ) ( )'
3 3 3 32 2L T TT r u R L B r= ⋅ = − =u u

( )2
, , , 32 ,

1
iki k ijk i jk ikk i r

Q Q Q r R
r

δ= = =

( )2
, 312 ,

1
iik k r

Q r R
r

=

Correlation functions of any order (pth order):

( ) ( ) ( ), 1 , ,2p q p q p qR L T+ = +
( )

2 ' 2 '
, 1

q p q q p q
L i i Lp qR u u u u u u− − − −

+ = = ⋅u u

( )
1 '

,
q p q

L Lp qL u u u− −=

Goal is to identify kinematics relations between 
correlations functions of same order



Kinematic relations for third order correlation 
functions

Relations between 
correlation functions

For incompressible flow:

Correlation tensor in 
terms of correlations

For irrotational flow:

( ) ( )
' '

3 3 3 3 32ˆ ˆ ˆ ˆ ˆ ˆ
2 4 2ijk i j k i jk j ki k ij

L rL L rL LQ r rr r r r rδ δ δ− +
= + + −

( )4
3 33 ,

1
2 r

R r L
r

= ( )2
3 3 ,

1
4 r

T r L
r

= ( ) ( )2 2 4
3 3, ,

2
r r

r r R r T= ( ) '
31 0LR r u= ⋅ =u u

For constant divergence flow:

( )2 4
3 33 ,

1 1
2 2L r

R u r r L
r

θ+ = ( )2 2
312 ,

1
r

u r R
r

θ =

2 23 Lu u≈ ( ) ( )2 4
3 31 33, ,

1 1
6 2r r

R r R r L
r r

+ =

( ) ( )4
3 31 33, ,

1
r r

rR R r L
r

+ = ( )3 31 3 ,
3 2

r
L R rT− = ( )4

3 31 33 ,

23
r

R R r T
r

− =

0∇⋅ =u

θ∇ ⋅ =u

0∇× =u

Reduced to incompressible flow with Θ=0 
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Scaling laws for two-point third order velocity 
structure function (review)

( ) ( ) ( ) ( )33 ' 3
3 36 2lp

L L L LS r u u u L r u= ∆ = − = − ( ) ( )' mmlp
m L L LS u u u= ∆ = −

( ) ( ) ( )2 3 2 3
2 2 0lp lp

n n uS r S rε− ∝ −

:uε

Two-thirds law for even order (reduced) structure function:

Structure functions as moments of pairwise velocity:

rate of energy cascade.

( ) ( ) ( ) ( )2 1 1 22 1lp lp lp
n nS r n S r S r+ = +

( ) ( ) ( ) ( ) ( ) 2
2 1 2 22 1 0 2 2 1 ,0lp lp n n

n n n LS r n HarS n K u Haru r+ = − + = − + ∆ ∝

( )2 ,0 :n LK u∆ Generalized kurtosis of the distribution of pairwise velocity

Generalized stable clustering hypothesis (GSCH)
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Velocity correlation functions of any (pth) order 
L(p,q) and R(p,q)

or R3 or R31

p independent correlation functions

( ) ( ) ( ), 1 , ,2p q p q p qR L T+ = +( )
2 ' 2 '

, 1
q p q q p q

L i i Lp qR u u u u u u− − − −
+ = = ⋅u u( )

1 '
,

q p q
L Lp qL u u u− −=

Kinematic 
relations 
(for same 
order p)

Dynamic relations 
(for different order p)

2Lu∆or 
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Correlation functions in the limit of small and 
large scale

1

10
lim

q p q
L

pr
L

u u p
p qu

− −

−→
=

−

For odd order p 

1

1
lim

q p q
L

pr
L

u u p
p qu

− −

−→∞
=

−

( )

( )

1 ' 1
,

1 ' 10, 0, 0,
,0

lim lim lim
q p q q p q

L L Lp q

p pr r r
p L L L

L u u u u u p
L p qu u u

− − − −

− −→ ∞ → ∞ → ∞
= = =

−

( )

( )

2 '
, 1

1 '0 0
,0

1lim lim
1

q p q
Lp q

pr r
p L L

R u u p
L p qu u

− −
+

−→ →

⋅ +
= =

− −

u u

For even order p 

( )

( )

1 '
,

1 '0, 0,
,0

1lim lim
1

q p q
L Lp q

pr r
p L L

L u u u p
L p qu u

− −

−→ ∞ → ∞

+
= =

+ −

 The collisionless nature has effects 
on the limits of correlations functions 
oat both small and large scales.

 These results can be confirmed by 
N-body simulation data
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Correlation and structure functions from N-body 
simulation

Two-point third order velocity correlation and 
structure functions (normalized by u3) at z=0 

Two-point fourth order velocity correlation and 
structure functions (normalized by u4) at z=0 



Kinematic relations for correlation functions L(p,q) and 
R(p,q) of any (pth) order (derivation skipped)

For incompressible flow: For constant divergence flow:0∇⋅ =u θ∇ ⋅ =u

For irrotational flow: 0∇× =u

( )( ) ( ) ( ) ( )( )1
, 1 , 2 ,, ,

12 p q
p q p q p qp qr r

R r p q L r L
r

− +
+ + −+ − − =

( ) ( ) ( ) ( ) ( )( )1
, 1 , 2 , ,

22 p q
p q p q p qp q r

p q R p q L r T
r

− +
+ + −− − − − =

( ) ( ) ( ) ( ) ( )( ), , 2 , ,
2 2p q p q p q r

p q L p q L rT+− − − − =

( ) ( ) ( )( )1
, 1 , ,

11 p q
p q p qp q r

p q R r L
r

− +
+ −− − =

( ) ( ) ( )( )2
, , ,

12 1 p q p q r
p q T r L

r
− − =

( )( ) ( )( )2 1
, 1 ,1, ,

2 p q
p q p qp qr r

r R r T
r

− +
+ − −=

( ) ( ) ( )( )1 1
, 1 , ,

11 q p q p q
Lp q p qp q r

p q R u u r r L
r

θ− − − +
+ −− − + =

If Θ=0

Kinematic relations for even order correlations of 
constant divergence flow should be the same as 

that of incompressible flow

If Θ ≠0 and p is even: 1

0
lim 0q p q

Lr
u u − −

→
=

( ) ( ) ( )( )1
, 1 , ,

11 p q
p q p qp q r

p q R r L
r

− +
+ −− − =

If Θ ≠0 and 
p is odd:( )( )1 2

, 1 ,

1p
p p r

u r r L
r

θ−
−=

( ) ( ) ( )( )1 1
,1 ,0 ,

11 p p
Lp pp r

p R u r r L
r

θ− +− + =

( )( ) ( )2 2
1,02 2 ,,

1 1
2 L rr

r L r u
r r

θ = = ∆ If Θ ≠0 
and p=1:
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Kinematic relations validated by N-body simulations

( ) ( ) ( )
( )

( )
( )

( )
( )

( )

, 1 , 1
, , 11 0

, ,

1 1 1
r p p p pS p q

p q p qp q
p q p q

L Lp q
H r R r dr

r L p q p q L
− −−

+− +

 − −
= − + ⋅ =  − − 

∫

( ) ( ) ( )
( )

( ), , 11 0
,

1
1

rS p q
p q p qp q

p q

p q
H r R r dr

r L
−

+− +

− −
= =∫

( ) ( )
( )

( ) ( ) ( ) ( ), , 1 , 21 0
,

1 2 1
2

rL p q
p q p q p qp q

p q

H r p q R p q L r dr
r T

−
+ +− +

 = − − − − = ∫

On small scale, kinematic relations for even order (even p) 
correlations are the same as those for incompressible flow:

On small scale, kinematic relations for odd order (odd p) 
correlations are the same as those for incompressible flow:

On large scale, kinematic relations for irrotational flow:

 To validate kinematic relations with N-
body data, we need to construct 
equivalent relations.

 Extract high order correlation functions 
from N-body simulation data

 Dark matter flow is of constant 
divergence on small scale and 
irrotational on large scale

 Check the equivalent kinematic 
relations against simulation data

Original Kinematic relations 
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Kinematic relations validated by N-body simulations

N-body simulation data satisfy the 
kinematic relations.
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Dynamic relations from dynamics on large scale
 Kinematic relations are relations 

between correlation and structure 
functions of the same order;

 Dynamic relations are relations between 
correlation functions of different orders 
and can only be obtained from the self-
closed dynamic evolution of velocity. 

 However, closure problem is well known 
for Jeans’ equations which are not self-
closed. 

 Self-closed dynamic equations of 
velocity must be introduced on small and 
large scale. 

 Dynamic equations are subsequently 
converted into dynamic relations.

( )c a
t

∂
=

∂
v v

( ) ( ) ( ) 21
2

c a a
t a

ν∂
+ ∇ ⋅ = + ∇

∂
v v v v v

( ) 21
2

j i i
j j

j

v v v
cv v

t a x
ν

∂ ∂
+ = + ∇

∂ ∂
( )' ''

' '2 '
'

1
2

j ji
i i

i

v vv cv v
t a x

ν
∂∂

+ = + ∇
∂ ∂

Self-closed adhesion approximation on large scale : 

“Artificial “ 
viscosity

Damping

( ) ( ) 21 c a a
t a

ν∂
+ ⋅∇ = + ∇

∂
v v v v v

Neglect 
second 
order

Zeldovich
approximation 

( ) ( )
04 1

2m

Gc a H H
Hf
π ρ 

= − =  Ω 
( ) ( )1

2
⋅∇ = ∇ ⋅ + ∇× ×u u u u u u

Matter dominant

0∇× =v

Using identity:

Index Eq. at location x'
iv×

jv×+ Index Eq. at location x’

= ( ) ( )' ''
' ' ' 2 ' '

'

1
2

k kj i k k
i j j i i j j i i j

j i

v vv v v v
v v c v v v v v v v v

t a x x
ν

∂∂ ∂
+ + = + + ∇ +

∂ ∂ ∂
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Dynamic relations from dynamics on large scale

21 2 2
2

ij kkjkki
ij ij

j i

Q QQ cQ Q
t a r r

ν
 ∂ ∂∂

= + + + ∇  ∂ ∂ ∂ 

Time evolution of the second order correlation tensor Qij: 

ijδ×

Time evolution of the second order correlation function R2: 

( ) 22 2
2 2

12 2 2R Rr cR r
t r r r

ν
  ∂ ∂∂

= Γ + +   ∂ ∂ ∂  

( ) ( )2
312 ,

1 1
2 2

kki
r

i

Qr r R
a r ar
∂

Γ = =
∂

( ) ( ) ( )2, 2 , 2 ,u
u u

E T k t cE k t k E k t
t

ν∂
= + −

∂

Fourier transform: 

( ) ( ) ( )
0

2 sinT k r kr kr dr
π

∞
= Γ∫

Real-space energy 
transfer function

Spectral energy 
transfer function

Dynamic relation 
between 2nd and 3rd 
correlation functions

( ) ( ) ( ) 2
313,2 2 RL r R r a

r
ν ∂

= = −
∂

( )
( )( )

2 2
2 2

1 1

m

Rr r
r r raHf

ξ  ∂ ∂  = −   ∂ ∂  Ω

( ) ( )( ) ( )
22

2 0

2 2 2 2

exp 7 8m
a u r r rr aHf r
rr r r r

νν ξ
      
 Γ = Ω = − − +     
       

( )
2

22 ' 2 0
31

2 2 2

2 exp 4L m L
a u a r rR u u Ha f u

r r r
νν

  
= = − Ω ∆ = − − −  

  

Density correlation: 

( )
( )( )

2
0 32

2
2

16 1

1 1
T k a u

r kr

ν
π

=
+

Eu: Energy spectrum Third order correlation: 
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Modeling high order correlation functions 
on large scale

( )
2 ' 3

31 3 33,2
2 2

expL
r rL R u u a u b
r r

  
= = = − −  

  

( )
2 ' 4

4 44,3
2 2

exp r rR u a u b
r r

  
= ⋅ = − −  

  
u u

( )
4 ' 5

5 55,4
2 2

expL
r rL u u a u b
r r

  
= = − −  

  

The same model can be generalized to high order 
correlation functions: 

( ) ( ) ( )
( )2 3 2' ' 2

1, 1,0

q qq q
L Lq qL u u u u Ha L aν +

+ = ∝ ∝ ∝

( ) ( )( )
( )

2 22 ' 2 ' 2 2
, 1 2,1

qq q q
q qR u u Ha R aν

−− −
− = ⋅ ∝ ⋅ ∝ ∝u u u u

Generalize to any order correlation functions: 

V(a) is artificial viscosity
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Modeling high order correlation functions 
on large scale

Two-point fifth order velocity correlation L(5,4) Two-point third order velocity correlation L(3,2) 
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Dynamic relations from dynamics on large scale

( )2
2 ,

1
2 L r

r u
r

θ = ∇⋅ = ∆u

( ) ( ) ( )' '2m mf f rδ δ δ ξ δδΩ = Ω + = =

Kinematic 
relation

( )maHf
δ η ∇⋅
≈ = −

Ω
u

On large scale, mean density at two locations is 
proportional to density correlation on the same scale

( ) ( ) 2
2 0

2 2,
3

r

L
Hau Har r a y y dy
r

ξ ξ∆ ≈ − = − ∫

From pair conservation equation:

( )Ha rθ ξ= ∇ ⋅ = −u

( )maHfθ δ= ∇ ⋅ = − Ωu

Dynamic equation 
on large scale



Reduced velocity dispersion is 
proportional to density 

correlation or mean density on 
the same scale

2 2lim 3
r

u u
→∞

=On large scale:

Dynamic relations from dynamics on large scale
Use dynamic equations at locations x and x’:

( ) 21
2

j i i
j j

j

v v v
cv v

t a x
ν

∂ ∂
+ = + ∇

∂ ∂
( )' ''

' '2 '
'

1
2

j ji
i i

i

v vv cv v
t a x

ν
∂∂

+ = + ∇
∂ ∂

ĵr×

−

=

îr×
2' 1ˆ ˆ 2ji

i j L

uvvr r c u
t t a r r

θ
ν

∂∂ ∂∂
− + = ∆ +

∂ ∂ ∂ ∂

( )Ha rθ ξ= ∇ ⋅ = −u

( ) ( )2
2 22 2 2m

u r
a a Hf Ha

r r r r
θ δ ξ

ν ν ν
∂ ∂ ∂ ∂

= = − Ω = −
∂ ∂ ∂ ∂

( )c a
t

∂
=

∂
v v

( ) ( )ˆ ˆi
i i i L

vr c a rv c a u
t

∂
= =

∂

( ) ( )
'

' 'ˆ ˆi
i i i L

vr c a rv c a u
t

∂
= =

∂

( ) ( )mf rδ ξΩ =Use and

( ) ( )
2 2 2

2 2 2

2 21
3 3 3 m

u Ha r Ha f
u u u

ν ξ ν δ− = − = − Ω

ˆ r=r r

Unit vector 
between two 

particles
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Divergence of velocity on all scales

( )Ha rθ ξ= ∇ ⋅ = −u

( )2
2 ,

1
2 L r

r u
r

θ = ∇⋅ = ∆u

Kinematic relation (good for all scales):

( ) 2
2 0

2 r

L
Hau y y dy
r

ξ∆ = − ∫

From pair conservation equation:
(for large scale)

( ) ( )m maHf aHf
θδ ∇ ⋅

= − = −
Ω Ω
u

Dynamic equation on large scale

On large scale:

Velocity divergence on different scales 
(normalized by Ha)
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Deriving exponential velocity correlation functions 
on large scale

 The exponential function was proposed for 
second order transverse velocity correlation 
T2 on large scale.

 This is not a coincidence and must be deeply 
rooted in the dynamics and kinematics on 
large scale.

( ) ( ) ( ) ( ) ( )2
2,1 2,0

1
4u r R r T rσ  ≈ + 

On large scale, velocity dispersion function 
can be approximated by:

Relate to velocity 
correlation functions 

(Equipartition)

( ) ( ) ( )22 1
3u ur E k W kr dkσ

∞

−∞
= ∫

Velocity dispersion function for kinetic energy 
contained in all scales above r: 

( ) ( ) ( ) ( )1
3

3 sin cos 3
j x

W x x x x
x x

= − =  
Window 
function

3 translational 1 rotational
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Deriving exponential velocity correlation functions 
on large scale

( ) ( ) ( ) ( ) ( )2
2,1 2,0

1
4u r R r T rσ  ≈ + 

( )
( ) ( ) ( ) ( )2,1
2,1 2,0

8

r

Ra R r T r
u r

ν
α

∂
 = + ∂

( )2,0
2

exp rT Const
r

 
= ⋅ − 

 

( ) ( ) ( )2,1
3,2 2

R
L r a

r
ν
∂

= −
∂

On large scale velocity dispersion function 
can be approximated as,

Relate to velocity 
correlation functions 

(Equipartition)

On large scale, the rate of energy cascade (m2/s3):

( ) ( )3
3,2

u

L ru
ar ar

Π ∝ ∝

( )
( )

2
u

u

r
ar u
σ

Π ∝
Kinetic energy in 

scales above r
Turnaround time for 

energy cascade

( ) ( ) ( )2
3,2 uL r u rσ∝

From dynamic relation on large scale:

Exponential second order transverse 
correlation function:

From kinematic relation on large scale for 
irrotational flow:

( ) ( )( )3
2,1 2,02 ,

1
r

R r T
r

=

2
8

r

ar
u

ν
α

= −with
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Deriving power-law velocity correlation functions 
on small scale

( ) ( ) ( ) ( ) ( ) ( ) ( )2
2,1 2,0 2,0

1
5u r R r T r L rσ  ≈ + + 

( ) ( )( )
2 2

1

24 2
4 6

nn

d
rr u

n n r
σ

 ⋅
=  + +  

3 translational 1 internal 
rotational (two-
body is planar)

 Similar idea can be applied to determine the power-
law exponent of correlation functions on small scale

 On small scale, velocity dispersion function can be 
approximated as

From kinematic relations on small scale:

( )2 2
2 2 ,

1

1 21
2 2

n

r

n rT r L u
r r

  +
 = = −  
   

( ) ( )3 2
2 22 ,

1

1 3 3
n

r

rR r L u n
r r

  
 = = − +  
   

( )2
2 12 nlS u r r=

( ) 2 22
2

1

1
2

nlS rL r u u
r

  
 = − = −  
   

( ) ( )2 2 2
d ur u rσ σ= −

See slides

1 internal 
longitudinal 

relative motion

Power-law that can be 
related to virial theorem

( )2 2

1

31
10

n

d
rr n u
r

σ
  = +   

   
See slides

n =0.27 ≈ ¼, the one-forth law on small scale
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Dynamic relations from dynamics on small scale
 Self-closed equations for velocity evolution on 

small scale seems not exist. 

 we will first formulate the self-close equations 
for velocity on small scale. 

 These equations are subsequently applied to 
derive the dynamic relations on small scale. 

( ) ( ) ( ), , ,h h vt t t= +v x v x v r

1 1 1H
t a a a

φ
ρ

∂ ∇ ⋅
+ ⋅∇ + = − − ∇

∂
v pv v v

v r ϕ= +v v v Polar flow is neglected

( )tθ∇ ⋅ =v

( )*

1

1 1 1H
t a a a

φ γ∂
+ ⋅∇ + = − ∇ + ∇× ×

∂
v v v v v v



( ) ( ) *1 11
2

H
t a a a

γγ φ∂
+ − ⋅∇ + ∇ ⋅ + = − ∇

∂
v v v v v v

( ) ( ) ( ) ( ) *1 1 11 1
2

H
t a a a a

γγ γ θ φ∂  + − ∇ ⋅ ⊗ + ∇ ⋅ + − − = − ∇ ∂  
v v v v v v

Jeans equation (not self-closed):

ρ= 2p σ

Stress 
tensor Velocity 

dispersion 
tensor

Decompose total velocity into halo velocity and 
velocity in halos

Decompose velocity in halos into radial and 
azimuthal flow

Self-closed description of mean flow (derivation skipped):

 γ=1/2 for small scale 
dynamic equation.

 γ=1 for large scale 
dynamic equation.

Centripetal 
acceleration,
significant on 
small scale

Four equations and four unknowns
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Self-closed description of dynamics

( ) [ ]1 1

LHS RHS

H
t a a

γ∂
+ ∇× ⋅∇ + = ∇× ×

∂
ω v v ω ω v
 

( )*

1

1 1 1H
t a a a

φ γ∂
+ ⋅∇ + = − ∇ + ∇× ×

∂
v v v v v v



Taking curl on both sides:

∇×

Equation for vorticity: = ∇×ω v

 On large scale (large grid size Δx), γ≈1

 On small scale (small grid size Δx), γ≈1/2. 

 There is a transition between the two regimes.
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Averaged dynamic equations for velocity and the 
origin of effective viscosity 

( ) ( ) *1 11
2

H
t a a a

γγ φ∂
+ − ⋅∇ + ∇ ⋅ + = − ∇

∂
v v v v v v

'= +v v v * * *'φ φ φ= +

( ) ( ) ( )* ' ' ' '

1
2

1 1 11
2 2

H
t a a a a a

γ γ γγ φ
 ∂ − + − ⋅∇ + ∇ ⋅ + = − ∇ − ⋅∇ + ∇ ⋅
 ∂
 

v v v v v v v v v v




( ) ( ) ( ) 21
2

c a a
t a

ν∂
+ ∇ ⋅ = + ∇

∂
v v v v v

With the self-closed description of velocity, we can derive 
the effective equations for mean flow 
Similar to Reynolds decomposition, decompose velocity 
and potential into mean and fluctuation in time,

Substitute into the self-closed description:

( ) ( )' ' 21
2a

ν ν− ∇ ⋅ = ∇ = ∇ ∇⋅v v v v

( ) ( )' '1 1 1
2 2 2

Ha
t a a

∂
+ ∇ ⋅ = − ∇ ⋅

∂
v v v v v v

* 3 2Haφ∇ = − v 1γ =and

Compare to dynamic equation on large sale:

The artificial viscosity on large scale origins 
from the unresolved velocity fluctuations

Subgrid model

Force as the gradient of 
kinetic energy in 

unresolved fluctuation

Force from 
Newtonian law of 

viscosity for 
mean flow

Divergence 
proportional to 
overdensity δ

( ) ( )'2 22 mF t a Hfν δ= + Ωv

( )maHf
δ ∇ ⋅
= −

Ω
vUse and integrate both 

sides of subgrid model

The larger mean density (higher resolution), 
the smaller unresolved velocity fluctuations

Averaging is essentially a filtering 
process with a cutoff resolution 

to separate variables into 
resolved and unresolved parts
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Dynamic evolution of vorticity, enstrophy, and energy

( ) ( )1 1H
t a

γ∂
+ = − ∇× ⋅∇

∂
ω ω v v

( ) ( ) *1 11
2

H
t a a a

γγ φ∂
+ − ⋅∇ + ∇ ⋅ + = − ∇

∂
v v v v v v

Taking curl on both sides of self-closed description:

∇×

Equation for vorticity: = ∇×ω v

( )
 

2 31

1 11 1 H
t a Ha a

γ θ γγ∂ − − + ⋅∇ + + − = ⋅∇ ∂  
ω v ω ω ω v



Dynamic evolution of vorticity:

1: Transport 
of vorticity

2: Destroy of 
vorticity on 
large scale

3: Generation 
of vorticity on 
small scale

( )


( )
2 2

2

2
3

1

2 1 11 1
2

H
t a Ha a

γ θ γγ∂ − − + ⋅∇ + + − = ⋅ ⋅∇ ∂  
ω ωv ω ω ω v





Dynamic evolution of enstrophy:

( )*

1

1 1 1H
t a a a

φ γ∂
+ ⋅∇ + = − ∇ + ∇× ×

∂
v v v v v v



Taking scalar product on both sides:

⋅v

2
2 * 2 2 *2 1 1 1 1

2 2
H

t a a
φ φ∂     = − ∇ ⋅ + − + + ∇⋅    ∂     

v v v v v v

Dynamic evolution of energy E at different location:

2 *1
2

E φ= +v1
2V

K dV= ⋅∫ v v

Specific kinetic 
energy: Total energy:

( )2 *2 0
V

dVβφ+ =∫ v

( ) ( )( )2 2ln1 1
ln

E Ha
a
θθ γ θ∂   ∇ + + = − ⋅ ∇ −∇ + ⋅   ∂ 

v v ω ω

Virial relation:

Rotational 
contribution

Velocity 
gradient

Decay on 
large scale
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Dynamic relations from dynamics on small scale

( ) ( ) ( ) *11 11
2

i k k ki
i

k i i

v v v vv Hv
t a x a x aH a x

γγ γ φθ
∂ ∂ − ∂ − ∂

+ + + − = − ∂ ∂ ∂ ∂ 

( ) ( ) ( )' ' ' '' *'
'

' ' '

11 11
2

j k k kj
j

k j j

v v v vv
Hv

t a x a x aH a x
γγ γ φθ

∂ ∂∂ − − ∂
+ + + − = − ∂ ∂ ∂ ∂ 

'
jv×

iv×+

Self-closed dynamic equations at two locations x and x’:

( ) * ' *'

'

1 2 2 12 1 j iij ikj kkj
ij

k i i j

v vQ Q Q
HQ

t aH a r a r a x x
φ φγ γ γθ

 ∂ ∂∂ ∂ ∂−  −
 + − = + − + ∂ ∂ ∂ ∂ ∂    

ijδ×

( ) ( )
( ) ( ) ( ) ( )( )2,1 2 *
2,1 3,1 3,22

1 1 22 1 2 2
R

HR r R L
t aH ar r a

γ
θ γ γ θ φ

∂ −  ∂  + − = − + +    ∂ ∂  

( ) ( )
2 2

3,1 3,2
1 4
2 9L uR L Hau r u u arε + = − = ∆ = 

 
( ) ( ) ( ) ( )

* 2
2

2,1 3,1 3,22 * 2 2 3 20

1 2

5 1 1
2

ru
R y y dy R L

u u u r Haru
φ

β

−  = = − + 
 ∫





Dynamic relations 
between second and 

third order correlations 
on small scale

With self-closed dynamic 
equations on small scale, we 

are ready to covert it into 
dynamic relations. Same 
approach was applied for 

irrotational flow on large scale.
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Dynamic relations from dynamics on small scale

( )3

3
8

L

u

u

ar
ε

∆
=

( )3 8
3L uu arε∆ =

( ) ( )
2 2

3,1 3,2
1 4
2 9L uR L Hau r u u arε + = − = ∆ = 

 

( ) ( ) ( )3
3,1 3,2

1 1
2 6 LR L u + = ∆ 

 

( ) ( )3 2 23 6L L L Lu u u u u∆ = ∆ ∆ ≈ ∆

( )3 4
5L uu rε∆ = −

Dynamic relations:

For comparison,  the 
four-fifths law for 
incompressible flow

GSCH:
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Summary and keywords
Third order velocity 
correlation tensor

Vorticity, Energy and 
Enstrophy

Self-closed velocity 
equation

Effective viscosity Kinematic relations Dynamic relations

 Analogy between dark matter flow and homogeneous isotropic turbulence is established 
for development of statistical theory in terms of correlation, structure, dispersion, and 
spectrum functions;

 General kinematic relations for two-point velocity statistics are developed on small and 
large scales respectively;

 On large scale, the redshift dependence of qth order velocity correlations follows  
~a(q+2)/2 for odd q and ~aq/2 for even q; The overdensity is proportional to density 
correlation on the same scale, i.e. <δ>=<δδ’>; (Negative) Effective viscosity in adhesion 
model originates from velocity fluctuations. 

 On small scale, self-closed description for velocity is developed such that the dynamic 
relation can be obtained, which can be validated by N-body simulation.
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Applications of dark 
matter flow
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Dark matter particle mass and 
properties from two-thirds law 

and energy cascade in dark 
matter flow

Xu Z., 2022, arXiv:2202.07240v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.07240

https://doi.org/10.48550/arXiv.2202.07240
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Introduction
 The existence of dark matter (DM) is supported by 

numerous astronomical observations: 
 Rotation curves of spiral galaxies
 Motion of galaxies in galaxy clusters
 Gravitational lensing
 Bullet clusters
 CMB ……

 Though the nature of dark matter is still unclear, dark 
matter is believed to be cold (non-relativistic), 
collisionless, dissipationless, non-baryonic, and barely 
interacting with baryonic matter except through gravity. 

 Dark matter must be sufficiently smooth on large scales 
with a fluid-like behavior that is best described by self-
gravitating collisionless flow dynamics (SG-CFD).

 Direct detection by underground experiments
 XENON
 DarkSide
 LUX, SuperCDM

 Indirect Astronomical observations like high 
energy cosmic rays
 Pierre Auger Observatory

 Production by the accelerator such as LHC 

The null results from the detection of standard WIMP particles 
suggest new perspectives maybe needed. 

 It is often assumed to be a thermal relic, weakly 
interacting massive particles (WIMPs)

 However, no conclusive signals have been 
detected in searches for thermal WIMPs. 
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A classical “top-down” example in physics

2
2

04 e e
e

e m v
rπε
=

e e em v r = 

2

0

1
4 137

ev e
c c

α
πε

= = ≈


Heisenberg's 
uncertainty principle

Virial theorem

Kinetic 
energy

Potential 
energy

At the scale of electron, we have three fundamental constants

2 1m kg s−⋅ ⋅ 

e A s⋅

4 2 1 3
0 s A kg mε − −⋅ ⋅ ⋅

Elementary 
charge
Planck 

constant

Vacuum 
permittivity

2 1
0ev e m sε −∝ ⋅ 

Even if the detail of physics is unknown, we can use 
simple dimensional analysis to predict the electron speed: 

What is the typical speed of electron? If we know the physics:

2

04e
ev
πε

=


More accurate 
electron speed:

Sommerfeld's interpretation of the fine 
structure constant:

Goal: can we apply similar method (by identifying key 
constants) to find dark matter particle properties ??

Electron speed:

Required by 
Coulomb force

Required by 
quantum effect
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What we need for predicting DM particle mass?

At the scale of DM particle, Assumptions:
 Only gravity is present without any other known interactions involved;
 DM particles still exhibit the wave-particle duality on the quantum level;
Then we have at least two fundamental constants:

2 1m kg s−⋅ ⋅ 

3 2 1G m s kg− −⋅ ⋅

Planck 
constant

Gravitational 
constant

What is the mass of dark matter particles?

Required by 
Newtonian gravity

Required by 
quantum effect

Dimensional analysis points out:
 No matter how you combine two constants, you cannot get mass;
 These two constants are not sufficient to solve problem;

Then what is the other constant besides these two?

This additional constant 
might come from the 

properties of dark matter flow.



Length scale

Wavenumber

ε

or η

ε: dissipated 
by viscosity ν
into heat.

ε

Energy 
contained 

scale
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Energy cascade in hydrodynamic turbulence

 There exist an inertial range with a scale-
independent rate of energy cascade (ε does not 
depend on eddy size l) for eddy size η< l <L. η is a 
dissipative scale determined by viscosity ν and ε.

 In inertial range, inertial force is dominant over 
viscous force. A general scaling for velocity 
structure functions Sm(r) for pairwise velocity ΔuL
can be identified:

( ) ( ) ( )',
mm

m L L LS r a u u u= ∆ = −

( )2 3 2 3
2 uS rε∝ −( ) ( ) 3 3m m

m uS r rε∝
m=2

Two-thirds law

Big whirls have little whirls, That feed on their velocity; 
And little whirls have lesser whirls, And so on to viscosity. 
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Mass/Energy cascade in dark matter flow (SG-CFD)
Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth. 

Halo mass mh
H

al
o 

gr
ou

p 
m

as
s 

m
g=

m
hn

h

Injection at 
smallest scaleεm,εu

Propagation 
range

Deposition 
range

Dissipated 
to grow 
halos.

t

 Collisionless nature and long-range interaction. 

 Long-range gravity requires a broad spectrum of 
halos to be formed to maximize system entropy. 

 A continuous cascade of mass/energy from 
smaller to larger mass scales with a scale-
independent rate of mass transfer εm and εu in a 
certain range of mass scales (propagation range). 

 The mass/energy cascade is an intermediate 
statistically steady state for non-equilibrium 
systems to continuously maximize system entropy. 

 The maximum entropy distribution of dark matter 
flow.
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Mass/Energy cascade in dark matter flow (SG-CFD)
 Collisionless, no dissipation range in SG-CFD. 
 The smallest length scale of inertial range is not limited by viscosity. 
 This enable us to extend the scale-independent εu down to the smallest scale, where quantum 

effects become important
 Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant 

divergence flow on small scales and an irrotational flow on large scales.
 The constant divergence flow shares the same even order kinematic relations with those of 

incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter. 

Dissipation 
scale η

Integral 
scale L

Cascade (inertial range ε)Molecular 
scale

Cascade (propagation range εm,εu)Quantum 
scale

deposition 
range

3D 
Turbulence

Dark 
matter flow

(η is not present for 
dark matter flow)

mL
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Constant (time and scale independent) rate of 
energy cascade

The time variation of specific kinetic and potential energies 
from N-body simulation.

pK tε= − u

7
5yP tε= u

Power-law for 
Peculiar 

kinetic energy

Power-law for 
potential energy

Power-law time evolution for energy in terms 
of rate of energy cascade εu:

2 2
70

3
0

3 4.6 10
2

p
u

K u m
t t s

ε −= − = − ≈ − ×

Also see detail analysis for inverse kinetic 
energy cascade.
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The two-thirds law on small scales

( ) ( )2 32 * 2 3
2 2 22lp lp

r sS r u S r r rβ− = = ∝

( ) ( ) ( )2 32 * 2 3
2 2 22 ,0lp n n

n n L n sS r u K u r r rβ− ∆ = ∝

( ) ( ) ( ) ( ) 1
2 1 1 22 1lp lp lp

n nS r n S r S r r+ = + ∝

( ) ( )2 2 3 * 3 2
2 22lp

l rv S r aβ=

( )
2 22 2l l

u l
l

v vv
r r v

ε− = =

Extend all the 
way to the 

smallest scale

Acceleration

Odd order moment (generalized stable clustering 
hypothesis):

Even order (two-thirds law):

Second order (two-thirds law):

Introduce a velocity scale:

Turnaround 
time

Variation of normalized reduced longitudinal 
structure function and two-thirds law
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Postulating dark matter particle mass and properties

2X X Xm v l⋅ = 

X X ua v ε⋅ = −
2

X X XGm l a=
22X X XGm l v=

7 2 34.6 10u m sε −= − ×

34 21.05 10 kg m s−= × ⋅

( )11 3 26.67 10G m kg s−= × ⋅

( )
1

1332 3.12 10X ul G mε −= − = ×

( )
1

2 2 5 7932 7.51 10X X X ut l v G sε −= = − = ×

( )
1

5 4 15 129256 1.62 10 0.90 10X um G kg GeVε −= − = × = ×

( )
1

2 794 4.16 10X uv G m sε −= = ×

( )( )
1

7 294 1.11X ua G m sε= − =

( )
1

5 4 9
X um Gε∝ − 

( )
1
3

X ul G ε∝ − 

At the smallest scale, we have three fundamental constants:

Rate of 
energy 

cascade
Planck 

constant

Gravitational 
constant

Required by 
Newtonian gravity

Required by 
quantum effect

Required by 
dark matter flow

Even if the detail of physics is unknown, we can use 
simple dimensional analysis to predict : 

Mass scale:

Length scale:

( )
1

2 2 5 9
X ut G ε∝ Time scale:

If we know the physics:
Heisenberg's 

uncertainty principle

Virial theorem

Energy cascade 
(two-thirds law)

Acceleration

Velocity scale:

Acceleration scale:
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Postulating dark matter particle mass and properties

12 2
23 15

22 10 6.2 10
X

X
X

X u X

m c c es yr
m c

α

τ
µ ε

= = − = × = × ≈


3 22 35.33 10X Xm l kg m≈ ×

1
10 5 9

22 2 3
4

256 7.44 10 0.0046u
X X X X X X X um a v F v m kg m s eV s

G
εµ ε − 

= ⋅ = ⋅ = − = − = × ⋅ = 
 



2 914 0.87 10
2X X X X Xt t m v eVµ −= = = ×

17 310 kg mNuclear density:Density scale:

Particle lifetime:

1
15

2 6.2 10
X

X
X

e yr
m c

α

τ = = ×
 1

136.85Xα ≈

Energy scale: Rydberg energy of 13.6 eV for the 
ionization energy of the hydrogen atom

If instantons are responsible for the decay [1]:

[1] Anchordoqui, L.A., et al.,Astroparticle Physics, 2021. 132.

Power scale (Joule/s):

Fine structure constant:
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Where is our prediction?

This work

arXiv:hep-ph/0404052
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Summary and keywords

 Establish connections between dark matter flow and hydrodynamic turbulence.
 Review direct energy cascade from large to small scales in hydrodynamic turbulence 

with the smallest length scale η determined by viscosity and the rate of cascade ε.  
 Review the inverse energy cascade in dark matter flow from small to large mass scales 

with a constant rate of energy cascade.  
 Two-thirds law for pairwise velocity dispersion on small scale r.    
 The collisionless nature of dark matter flow enables us to extend constant rate of 

cascade and two-thirds law down to the smallest scale where quantum effects are 
dominant.

 Suggests a heavy dark matter scenario by combining rate of energy cascade, Planck 
constant, and gravitational constant to predict dark matter particles with a mass 
~0.9x1012 GeV and a size ~3x10-13 m.

Dark matter flow Mass/energy cascade Dark matter particle mass
Two-thirds law Rate of energy cascade Fine structure constant
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The origin of MOND acceleration 
from mass and energy cascade 

in dark matter flow
Xu Z., 2022, arXiv:2203.05606v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2203.05606

https://doi.org/10.48550/arXiv.2203.05606
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Introduction

 What is the origin of MOND acceleration?
 What is the origin of deep “MOND” behavior?
 Could MOND be an intrinsic property of dark 

matter flow?
 Instead of falsifying, MOND supports the 

existence of dark matter?

 The existence of dark matter (DM) is supported 
by numerous astronomical observations: 
 Flat rotation curves of spiral galaxies
 Motion of galaxies in galaxy clusters
 Gravitational lensing
 Bullet clusters, CMB ……

 Though the nature of dark matter is still unclear, 
dark matter is believed to be cold (non-
relativistic), collisionless, dissipationless, non-
baryonic, barely interacting with baryonic matter 
except through gravity, and sufficiently smooth 
with a fluid-like behavior.

 However, no conclusive signals have been 
detected in searches for dark matter particles.

 Alternative theory of dark matter: Modified 
Newtonian Dynamics (MOND)

 Empirical Tully and Fisher relation:  
1 4

fv M∝ observed baryonic mass

 MOND (Milgrom) is a popular empirical 
model to reproduce flat rotation curve 
without invoking dark matter hypothesis.

10 2
0 1.2 10a m s−≈ ×

F ma=
2 2

0F m a a a= ∝

0a a

0a a

Critical MOND 
acceleration

( )22

2
0

fv rGMm m
r a

= ( )1 4
0fv GMa=

Newtonian

Deep MOND
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Hydrodynamic turbulence vs. dark matter flow

260

Key attributes of hydrodynamic turbulence:

 Disorganized, chaotic, random;
 Nonrepeatability (sensitivity to initial cond.); 
 Multiscale in length and time scales;  
 Intermittency in space and time;

 Dissipative and collisional
 No long-range interaction
 Velocity fluctuation
 Vortex as fundamental building block
 Maximum entropy distribution (Gaussian)
 Incompressible on all scales

 Divergence-free
 Constant density

 Energy cascade from large to small length 
scales

Key attributes of dark matter flow:

 Disorganized, chaotic, random;
 Nonrepeatability; 
 Multiscale in mass/length/time scales;  
 Intermittency in space and time;

 Dissipationless and collisionless
 Long-range gravity
 Velocity & acceleration fluctuation
 Halos as fundamental building block
 Maximum entropy distribution? (the X dist.)
 Flow behavior is scale-dependent

 Small scale: constant divergence
 Large scale: irrotational (curl-free)

 Mass/energy cascade from small to large mass 
scales

0∇⋅ =v θ∇ ⋅ =v
0∇× =v

MOND 
acceleration

Deep 
MOND 
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Energy cascade in hydrodynamic turbulence

 There exist an inertial range with a scale-
independent rate of energy cascade (ε does not 
depend on eddy size l) for eddy size η< l <L. η is a 
dissipative scale determined by viscosity ν and ε.

 In this range, inertial force is dominant over 
viscous force. For eddies with a characteristic 
velocity u and size l , the lifetime (turnaround time) 
of eddy is l/u. The rate ε can be computed as the 
kinetic energy passed per eddy lifetime.

Big whirls have little whirls, That feed on their velocity; 
And little whirls have lesser whirls, And so on to viscosity. 

( )
2 2u u u

l u l
ε ≈ ≈ 3u l∝

turnaround time
acceleration
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Mass/Energy cascade in dark matter flow (SG-CFD)
Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth. 

Halo mass mh
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 Collisionless nature and long-range interaction. 

 Long-range gravity requires a broad spectrum of 
halos to be formed to maximize system entropy. No 
halo structure for short-range forces.

 A continuous cascade of mass/energy from smaller 
to larger mass scales with a scale-independent rate 
of mass transfer εm and εu in a certain range of 
mass scales (propagation range). 

 The mass/energy cascade is an intermediate 
statistically steady state for non-equilibrium systems 
to continuously maximize system entropy. 

 The maximum entropy distribution of dark matter 
flow (the X distribution).
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Mass/Energy cascade in dark matter flow (SG-CFD)
 Collisionless, no dissipation range in SG-CFD. 
 The smallest length scale of inertial range is not limited by viscosity. 
 This enable us to extend the scale-independent εu down to the smallest scale, where quantum 

effects become important
 Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant 

divergence flow on small scales and an irrotational flow on large scales.
 The constant divergence flow shares the same even order kinematic relations with those of 

incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter. 
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(η is not present for 
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Constant (time and scale independent) rate of 
energy cascade

The time variation of specific kinetic and potential energies 
from N-body simulation.

pK tε= − u

7
5yP tε= u

Power-law for 
Peculiar 

kinetic energy

Power-law for 
potential 
energy

Power-law time evolution for energy in terms 
of rate of energy cascade εu:

2 2
70

3
0

3 4.6 10
2

p
u

K u m
t t s

ε −= − = − ≈ − ×

Also see detail analysis for inverse kinetic 
energy cascade.
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The maximum entropy distribution in dark matter flow

( )
( )

( )

22
0

0 1

1
2

v veX v
v K

α

α α

− +

=

In dark matter flow, the maximum entropy 
distribution of velocity can be derived as 
the X distribution:

The relation between particle energy and 
velocity can be obtained from X distribution:

( ) ( ) 3 3
2

X v v
v

X v n
ε  = − + ∂ ∂  

Energy per 
particle with 
a speed of v:

The X distribution with a unit variance compared with 
the velocity distribution from N-body simulation

( )
2

2 2
0

0

3 21
2

vv v
n v

ε α
  = + +   

   

α: shape parameter;
v0: velocity scale;
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Particle energy in dark matter flow

( ) ( ) 3 3
2

X v v
v

X v n
ε  = − + ∂ ∂  

( )
( )

( )

22
0

0 1

1
2

v veX v
v K

α

α α

− +

=

( )
2

2 2
0

0

3 21
2

vv v
n v

ε α
  = + +   

   

( )
2

2 2
0

3 21
2 2

vv v v
n

ε α
α

  ≈ + + ∝  
  

0v v

0v v
Exponential wings for

Gaussian core for

( ) 0
3 21
2

v v v v
n

ε  ≈ + ∝ 
 

Comparison with N-body simulation

Particle 
energy:

Inner halo, 
Newtonian 
behavior

Outer region of halo, 
non-Newtonian 

behavior

External field effects 
and MOND??
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Acceleration fluctuation in dark matter flow

 In kinetic theory of gases, molecules undergo random 
elastic collisions with a short-range of interaction. Only 
velocity fluctuation and no fluctuation of acceleration.

 The long-range gravity in dark matter flow leads to 
fluctuations in acceleration, in addition to the fluctuation 
in velocity. 

 This unique feature hints to the potential generalization 
of standard Brownian/Langevin dynamics to include 
acceleration fluctuation in dark matter flow. 

 Critical MOND acceleration can be related to the 
fluctuation of acceleration.

Short range: molecule 
acceleration vanishes

Long range: nonvanishing 
and fluctuating acceleration 
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Acceleration distributions in dark matter flow

32

N
p i j

p
j i i j

Gm
a ≠

−
=

−
∑

x x
a

x x

Proper acceleration for particle i: 

Halo-based non-projection approach for acceleration 
distributions: 
 Halo particle acceleration: ahp
 Out-of-halo particles acceleration: aop (Gaussian)
 Acceleration decreases with time
 A long tail ~ahp

-3 in halo core region
 MOND acceleration a0 is right in the middle
 Analytical models of acceleration distribution? 

(future work)

Fluctuation leads to distributions of acceleration
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The variation of acceleration with redshift

The variation of typical (root-mean-square) 
accelerations with scale factor a

 Acceleration of all particles: ap
 Halo particle acceleration: ahp ~ a-3/4

 Out-of-halo particles acceleration: aop ~ a-1/2

 Halo acceleration: ah ~ a-1/2

Halo-based non-projection approach
Root-mean-square accelerations:

 All typical accelerations decrease with time
 The only exception ahp at z=0.3 requires further 

confirmation
 Halos and out-of-halo particles have similar 

accelerations that are much smaller due to 
greater distance

 At z=0, the typical acceleration of halo particles 
matches the critical MOND acceleration
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The variation of acceleration with halo size

i
hp hp hp hp hh
= − = −a a a a a

1

1 pn

h hp hph
kpn =

= = ∑a a a

 Acceleration in halos   increases with halo size 
and reaches about   for large halos. 

 Acceleration of halos  is relatively independent of 
halo size, much smaller than acceleration in halos.

Acceleration decomposition: 
(similar to velocity decomposition)

Halo 
acceleration 
(inter-halo):

Intra-halo 
acceleration:

1 22
hg h

g
a = ai i

hg h g
a a=

1 22i i
h hp

h
a = a

Group average 
intra-halo 

Inter-halo 
acceleration
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The original of MOND acceleration

( ) ( ) ( ) ( )0 cot cotu r r ur ura u a a u aε θ θ= − = −
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2 2 4u
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ε −≈ − = − = − = − ×
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Assume a0 is the typical acceleration scale of fluctuation,
u is the typical velocity scale of fluctuation, θur is the angle of incidence.

The rate of energy cascade in terms of a0, u and θur :

( ) 1cot
3urθ
π

=

The rate of energy cascade:

Energy 
cascade

( ) ( )1 2

0

3
0

2
a z c

π
Λ

= ≈

Potential connection with dark energy??  Ideal gas pressure P ∝ temperature T  
∝ velocity fluctuation

 DE density ∝ a0
2 ∝ acceleration 

fluctuation (implies an entropic origin?)
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The deep MOND behavior
 Fluctuation of acceleration introduces a scale of 

acceleration a0;

 Deep MOND for particles with acceleration ap<<a0.

 Consider a one-dimensional dark matter flow with a 
velocity scale v0 and acceleration scale a0

Baryonic mass subject to external force 
Fp is suspended in and in equilibrium 

with dark matter flow

Fp

mp

vp

p
p

dv
a

dt
=

2

0 0
1
2

p p
p p p u

dv dv
v a v a v

dt dt
ε= = = = −

K
p p p

dF v m
dt
ε

=
2

20

0

p
p p p p p

p

avF m a m a
v a

= = ∝

( ) 0K pv v vε =

Constant rate of 
Energy cascade

Maximum entropy distribution: 
particle kinetic energy is 
proportional to velocity 
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Summary and keywords

 Direct energy cascade from large to small scales in hydrodynamic turbulence
 Inverse energy cascade in dark matter flow from small to large mass scales with a constant rate 

of cascade  
 Long-range interaction of dark matter flow leads to a fluctuation in acceleration with a typical 

scale a0
 The acceleration fluctuation in N-body simulation exactly matches the value of critical MOND 

acceleration
 The acceleration fluctuation in dark matter flow as the origin of MOND acceleration that can be 

related to the constant rate of energy flux.   
 Suggest dark energy density might be also related to the acceleration fluctuation. 
 Both Newtonian dynamics and “deep-MOND” behavior can be recovered based on the maximum 

entropy distribution and energy cascade in dark matter flow.

Modified Newtonian 
Dynamics

Constant rate of energy 
cascade

Maximum entropy 
distribution

Critical MOND acceleration Mass/energy cascade Deep MOND
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The baryonic-to-halo mass 
relation from mass and energy 

cascade in dark matter flow
Xu Z., 2022, arXiv:2203.06899v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2203.06899

https://doi.org/10.48550/arXiv.2203.06899
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Introduction

 The BHMR from the mass and energy 
cascade of dark matter flow?

 What is the average mass fraction of 
baryons in all halos?

 What is the fraction of total baryons 
residing in all galaxies? 

 The existence of dark matter (DM) is supported by 
numerous astronomical observations: 
 Flat rotation curves of spiral galaxies
 Motion of galaxies in galaxy clusters
 Gravitational lensing, Bullet clusters, CMB ……

 Though the nature of dark matter is still unclear, dark 
matter is believed to be cold (non-relativistic), 
collisionless, dissipationless, non-baryonic, barely 
interacting with baryons except through gravity, and 
sufficiently smooth with a fluid-like behavior.

 Total galaxy baryonic mass = stellar mass + cold gas. 

 Stellar-to-halo mass relation (SHMR)
 halo abundance matching approach

 Baryonic-to-halo mass relation (BHMR)

 Baryonic Tully and Fisher relation (BTFR):  
observed baryonic mass

 Halo mass mh can be related to the halo virial 
radius rh through constant density ratio Δc

4
0f bv Gm a=

( ) ( )3
0

4
3h h cm r aπ ρ= ∆

 The BHMR (mb and mh) can be obtained only 
if the relation between vf and rh is known. 
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Energy cascade in hydrodynamic turbulence

 There exist an inertial range with a scale-
independent rate of energy cascade (ε does not 
depend on eddy size l) for eddy size η< l <L. η is a 
dissipative scale determined by viscosity ν and ε.

 In this range, inertial force is dominant over 
viscous force. For eddies with a characteristic 
velocity u and size l , the lifetime (turnaround time) 
of eddy is l/u. The rate ε can be computed as the 
kinetic energy passed per eddy lifetime.

Big whirls have little whirls, That feed on their velocity; 
And little whirls have lesser whirls, And so on to viscosity. 

( )
2 2u u u

l u l
ε ≈ ≈ 3u l∝

turnaround time acceleration
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Mass/Energy cascade in dark matter flow (SG-CFD)
Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth. 
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 Collisionless nature and long-range interaction. 

 Long-range gravity requires a broad spectrum of 
halos to be formed to maximize system entropy. No 
halo structure for short-range forces.

 A continuous cascade of mass/energy from smaller 
to larger mass scales with a scale-independent rate 
of mass transfer εm and εu in a certain range of 
mass scales (propagation range). 

 The mass/energy cascade is an intermediate 
statistically steady state for non-equilibrium systems 
to continuously maximize system entropy. 

 The maximum entropy distribution of dark matter 
flow (the X distribution).
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Mass/Energy cascade in dark matter flow (SG-CFD)
 Collisionless, no dissipation range in SG-CFD. 
 The smallest length scale of inertial range is not limited by viscosity. 
 This enable us to extend the scale-independent εu down to the smallest scale, where quantum 

effects become important
 Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant 

divergence flow on small scales and an irrotational flow on large scales.
 The constant divergence flow shares the same even order kinematic relations with those of 

incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter. 

Dissipation 
scale η

Integral 
scale L

Cascade (inertial range ε)Molecular 
scale

Cascade (propagation range εm,εu)Quantum 
scale

mL deposition 
range

3D 
Turbulence

Dark 
matter flow

(η not present for 
dark matter flow)

mh*
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Constant (time and scale independent) rate of 
energy cascade

The time variation of specific kinetic and potential energies 
from N-body simulation.

pK tε= − u

7
5yP tε= u

Power-law for 
Peculiar 

kinetic energy

Power-law for 
potential 
energy

Power-law time evolution for energy in terms 
of rate of energy cascade εu:

2 2
70

3
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3 4.6 10
2

p
u

K u m
t t s

ε −= − = − ≈ − ×

Also see detail analysis for inverse kinetic 
energy cascade.
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Dimensional analysis for critical mass scales

7 2 34.6 10u m sε −= − ×
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( )
1
3
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At the smallest scale, three fundamental constants:

Rate of 
energy 

cascade
Planck 

constant

Gravitational 
constant

Simple dimensional analysis predicts: 
Mass scale:

Length scale:

( )
1

2 2 5 9
X ut G ε∝ Time scale:

The smallest mass scale (dark matter particle mass)
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3
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Three fundamental constants:

Rate of 
energy 

cascade
Velocity 

dispersion or 
Hubble constant H

Gravitational 
constant

Simple dimensional analysis predicts: 

Mass scale:

Length scale:
2 9
0 8.7 10L ut u yrε∝ ≈ ×Time scale:

The largest mass scale (critical halo mass)
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The baryonic-to-halo mass ratio from energy cascade
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Baryonic Tully-Fisher 
relation (BTFR):  

Halo mass and halo 
size relation:

4
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4
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Baryonic Tully-Fisher 
relation (BTFR):  

Halo mass and halo 
size relation:

Small halos <mL:
Baryonic mass in 

equilibrium with DM,
i.e. same kinetic energy u2

Large halos >mL: 
Baryonic mass and DM 

are two miscible 
phases sharing same 

rate of cascade. 

Rate of 
energy 

cascade

Turnaround time
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Critical scales and Baryonic-Halo-Mass Ratio
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rotation 
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The baryonic-halo-mass ratio in critical halos:

( ) ( )1 3 4 3
1b c hm M m−= ( ) ( )

716 512

1
2
3 2

q c
c f

u

uM a a
G

β
ε

 ∆  =     
     

( ) ( )5 9 4 9
2b c hm M m= ( ) ( )

1316
12 555
5

2
2 2
3

p
c f

c u

uM a a
G

α
ε

−
−     =      ∆     

The baryonic mass in small halos:

The baryonic mass in large halos:
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Relevant parameters for baryonic-to-halo mass ratio



284

SPARC (Spitzer Photometry & Accurate Rotation 
Curves) data and model

Halos have different rate of energy cascade with an average 
around εu (spatial intermittence in dark matter flow?)
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SPARC data and model
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SPARC data and model
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Baryonic mass 
in small halos:

Baryonic mass 
in large halos:

Model incorporate two limits:

 Dash line: the stellar-to-halo mass ratio obtained 
from halo abundance matching approach (required 
to match the stellar mass function)

 The scaling 4/9 law for both SHMR and BHMR
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Redshift variation of baryonic-to-halo mass ratio

 There exist a maximum BHMR ~0.076 at 
critical halo mass mhc=1.33x1012 Msun

 The critical halo mass decreases with time

 The maximum BHMR increases with time

( ) ( ) ( )

1
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1 3 9

2

m m m

b h hm

h hc hc

m m mA z
m m z m z

−
− 

    = +       
     

m is a parameter to adjust the transition;

Models for baryonic-to-halo mass ratio:
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Redshift evolution of baryonic-halo-mass relation
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Overall cosmic baryonic-to-DM mass ratio (including 
both halos and out-of-halo) is ~18.8% in ΛCDM model:
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Baryonic-to-DM mass 
ratio in out-of-halos

Baryonic-to-halo mass 
ratio in all halos

Fraction of DM mass in halos

Use double-λ mass function to compute:

The baryonic-to-
halo mass ratio 
in small halos

The baryonic-to-
halo mass ratio 
in large halos Redshift evolution of BHMR
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Summary and keywords

 Review direct energy cascade from large to small scales in hydrodynamic turbulence

 Reveal inverse mass and energy cascade that is unique for dark matter flow

 Present a fundamental theory for baryonic-to-halo mass ratio based on the mass/energy cascade in dark 
matter flow (agrees well with SPARC data)

 Predict a maximum baryonic-to-halo mass ratio ~0.076 for halos with a critical mass   (agrees with SPARC 
data) and an average ratio ~0.024 for all halos

 Predict two distinct regimes for small and large halos, respectively, with critical halo mass and size 
explicitly derived (agrees with observations of stellar-to-halo mass ratio). 

 Predict the fraction of total baryons in all galaxies is ~7.6% and that fraction increases with time (agrees 
very well with astronomical surveys including optical Sloan Digital Sky Survey and HIPASS). Most baryons 
(~92.4%) are not in galaxies.

Halo mass function Mass/energy cascade Tully-Fisher relation
Modified Newtonian 

Dynamics
Stellar-to-halo mass 

relation 
Baryonic-to-halo mass 

relation
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