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Dark matter, 1f exists, accounts for five times as much as ordinary baryonic
matter. Therefore, dark matter flow might possess the widest presence in
our universe. The other form of flow, hydrodynamic turbulence in air and
water, 1s without doubt the most familiar flow 1n our daily life. During the
pandemic, we have found time to think about and put together a systematic
comparison for the connections and differences between two types of flow,
both of which are typical non-equilibrium systems.

The goal of this presentation is to leverage this comparison for a better
understanding of the nature of dark matter and its flow behavior on all
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications

Structural (halo-based) approach:

0.
1.

Data https://dx.doi.org/10.5281/zenodo0.6541230

Inverse mass cascade in dark matter flow and effects on halo mass
functions https://doi.org/10.48550/arXiv.2109.09985

Inverse mass cascade in dark matter flow and effects on halo deformation,
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

Inverse energy cascade in self-gravitating collisionless dark matter flow and
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

The mean flow, velocity dispersion, energy transfer and evolution of rotating
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

Two-body collapse model for gravitational collapse of dark matter and
generalized stable clustering hypothesis for pairwise velocity
https://doi.org/10.48550/arXiv.2110.05784

Evolution of energy, momentum, and spin parameter in dark matter flow and
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

The maximum entropy distributions of velocity, speed, and energy from
statistical mechanics of dark matter flow
https://doi.org/10.48550/arXiv.2110.03126

Halo mass functions from maximum entropy distributions in collisionless
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

Statistics (correlation-based) approach:

The statistical theory of dark matter flow for velocity, density,
and potential fields
https://doi.org/10.48550/arXiv.2202.00910

The statistical theory of dark matter flow and high order
kinematic and dynamic relations for velocity and density
correlations https://doi.org/10.48550/arXiv.2202.02991

The scale and redshift variation of density and velocity
distributions in dark matter flow and two-thirds law for
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

Dark matter particle mass and properties from two-thirds law
and energy cascade in dark matter flow
https://doi.org/10.48550/arXiv.2202.07240

The origin of MOND acceleration and deep-MOND from
acceleration fluctuation and energy cascade in dark matter
flow https://doi.org/10.48550/arXiv.2203.05606

The baryonic-to-halo mass relation from mass and energy
cascade in dark matter flow
https://doi.org/10.48550/arXiv.2203.06899
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* Some fundamentals of dark matter research
= Basic concepts in hydrodynamic turbulence
= Dark matter flow (SG-CFD) vs. hydrodynamic turbulence

= Theory of dark matter flow
= Structural (halo-based) approach
= Statistical (correlation-based) approach

= Applications of dark matter flow
" Predicting dark matter particle properties

= Understanding the origin of MOND
= The baryonic-halo mass ratio and total baron faction
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Some fundamentals of dark
matter research
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= Key questions: Does 1t exist? Where 1s 1t? How much 1s 1t? and What 1s 1t?

= (Observational evidences (Does it exist? Where 1s it? How much 1s 1t?)
Motion of galaxies in galaxy clusters

Rotation curves of spiral galaxies

Gravitational lensing

Bullet clusters

Cosmic microwave background (CMB)

VVYVYVYYVYY

* The nature of dark matter (What 1s 1t?)

Massive astrophysical compact halo object (MACHO)

Primordial black holes

Axions

sterile neutrino

WIMPs (Weakly Interacting Massive Particles) <=mm M\ ost popular
Superheavy dark matter

YVVVYVYYVYYVYY
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8 Zwicky (1937) L
Coma cluster is much larger
= than expected!

= Coma cluster:
—— ~1000 galaxies
= ~20Mpc in diameter
~100Mpc from Earth (320Mlys)

1Mpc = 3.086e+19 KM = 3Mlys

Fritz Zwicky

* Measuring speed of galaxies moving in Coma
B = Enormous speed found ~1000km/s
= Fast enough to rip the cluster apart
£~ a9~ " Unseen matter that holds all galaxies together

Coma cluster
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Rubin (1970s):
Rotation of M31
Andromeda Nebula

Solar system il .

rOtation curve Institute of Physics .
Vera Rubin

From NeWtonian ! Mercury  Solar System Rotation Curve G
mechanics 8 40| v=y/GM/r |

E " Venus o | A expected

= - Earth ; : : from
Galaxy flat § h:ars ; : o luminous disk
rotation curve a 20|

S Jupiter

g 10 L _ Saturn
Unseen matter s Jranus Neptune piuto
that holds galaxy 10 20 30 40 50 v s " MB33 rotation curve

mean distance from Sun (AU) Triangulum - (fig. 1)
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Without dark matter With dark matter
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Dark matter halo '
Dark Matter Halo

Extent of Survey
around the Sun

Luminous vy

Disk
Milky Way model

Dark matter halo harbors
our galaxy
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Gravity bends light (General Relativity)

B AN
o 4
'! .\'- -
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= Gravitational lensing by galaxy cluster

» Gravity from mass of matter bends light

= Effect of bending is stronger than
expected from visible matter only

Pe

Gravitational Leng
Galaxy Cluster 0024+1654

PRC96-10 - ST Scl OPO - April 24, 1996

HST - WFPC2

W.N. Colley (Princeton University), E. Turner (Princeton University),

J.A. Tyson (AT&T Bell Labs) and NASA
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Composite image of X-ray (pink) and weak
gravitational lensing (blue) of the famous
Bullet Cluster of galaxies (colliding)

Red: gas and dust (baryonic matter)
Moving slower because of viscosity
(collisional due to electromagnetic
interactions)

Blue: dark matter
Moving faster than baryonic matter
because of collisionless nature
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Planck results of CMB temperature anisotropy
Cosmic Spheres of Time (4-year survey from 2009-2013)
http://new-universe.org/ Baby universe: 400,000 years after Big Bang

cold (blue) and hot (red)
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Angular scale

Today’s universe matter-energy content

90° 2° 0.5° 0.2°
6000 P l . | -
= WMAP :
- Acbar 3
5000 £ Boomerang =
= CBI .
— - VoA . dark matter 26.1%
N 4000 gu
% = :
= = 3
C : :
. 3000 E
& - - atoms 4.5%
~ - -
+ ~ -
T 2000 =
S = .
1000 E ﬁu/}/ = dark energy 69.4%
. - T‘\I =
0§I|1|||11|I | | I I NN NN N I :
10 100 500 1000 1500
Multipole moment £
Power spectrum of the CMB temperature anisotropy today

in terms of the angular scale. Also shown is a -
theoretical (double-dark ACDM) model (solid line) © Encyclopesdia Britannica, Inc.
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Discovery of CMB fluctuations ACDM as the

®=—— galaxy cluster Discovery of flat from COBE standard

velocity galaxy rotation Confirms CDM cosmological

— ~1000km/s curves prediction model

= 2003-
s Discovery of Cold Dark Matter Evidence for Dark WMAP and LSS

the CMB (CDM) model Energy and data Confirm ACDM
proposed; accelerating expansion: predictions
MOND theory; Type la supernova

2013-

COBE: COsmic Background Explorer (NASA) 2018
= \WMAP: Wilkinson Microwave Anisotropy Probe (NASA) | | Webb  Planck data of
g™ | SS: |arge Scale Structure (LSS) of the universe Discovery of ~ James Ve anck 214 O
£ ™ CMB: Cosmic Microwave Background dark matter Space  CMB anisotropies
B A\CDM: dark energy + cold dark matter (double dark) particles?? Telescope C%r;ggir::,é\oigwl

Planck: European Space Agency (ESA)



o

Pacific

Northwest \What is dark matter?

No definite answer.

What it should not be? What it should be?

= No electric charge = Non-baryonic

= No color charge (strong interactions) = Cold (non-relativistic)

= No strong self-interaction = Collisionless

= No fast decay: stable and long-lived = Dissipationless (optically dark)

= Not any particles in standard model = Sufficiently smooth with a fluid-like
of particle physics behavior (justifies a fluid dynamics

approach)

What is the nature of dark matter flow (DMF)?
Dark matter flow can be described by a non-relativistic, self-gravitating, collisionless fluid dynamics (SG-CFD).

Then why dark matter flow? understanding dark matter flow behavior on entire spectrum.

Dark matter particle Halo scale structure Large scale structure
mass & properties? property & evolution formation & evolution

%
10-10m Kpc~Mpc ~102°m 100Mpc~10%*m

16
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Cosmological N-body simulations

|II1IIIII[|II1[IIII:I[III[IIII][III!IIII]

Millennium

1D1|:|__ direct - Run 15 /_
P'M or AP'M f,,f

B distnbuted-memory parallel Tree » /11’ 7]

parallel or vectorized P°M

distnbuted-memory parallel TreePM

“~Used by T

_ 4 this work
108 Extremely expensive simulations —

= Particle number ip,/éfmulations doubles
- every 16.5 mgn’chs -

simulation particles

f""”"—iSprmgeI et al. 2005

rd
B [ 1] Pesties {1670) 1100 Wiaeman, Ciuinn, Saimon & Zurek | 1063)
1{]11 | [ 7] Weyeshi & Kikara (1875) 111] el & Bertschingte (1004] Sl
e [ 3] ¥Whise | 187 117] Zurek, Cuinn, Salven & Warmen | 1E54)
4 [ 4] Aarsetn. Tumes & Dot (1ETR) H Jerkrs et 3 (1008}
// [ 5] Efstabiou & Eastwood (1981) [14] Geovernato e . {1500)
F [ 6] Diareis, Efstathiou, Freck & Whe (1086) 15 Bode, Bahcall, Ford & Ostriker (2001
el L L [ 7] White. Frenk. Davis. Efststhiou (1987)  [18] Colterp ¢4 al. (2000) -
| ] Carlbang & Couchman | TREE) 17] Wambsganss, Bode & Osirker (2004)
1 /2 [ 9] Suin & Suginamara (1591) (1E] Sprimgad ¢4 al, {2005)
1':’2|I.-"‘i|IIIIII-|IIIIIIIII|IIIIIIIII|IIIJIIIII
|j 1970 1980 1990 2000 2010

year of publication

Dehnen and J. |. ReadThe European Physical Journal Plus, 126, 55
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 The Millennium Simulation:

= More than 10 billion "particles”
= Each with a billion Solar mass

= The large-scale structure of the
universe ("the cosmic web")

= The largest simulation of dark
matter structure at the time

E Use N-body simulation:

= Self-gravitating collisionless
2 fluid-like behavior

® = Dark matter flow forms and
~evolves structures on both
large and small scales



https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/index.shtml
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Run Q A h r O, L(Mpe/h) N, mp(MG/k) [z (Kpc/h)

SCDM1I 1.0 00 05 05 051 2395 256°  227x10% 36

= The numerical data are public available and generated from N-body simulations carried out by the
Virgo consortium. https://wwwmpa.mpa-garching.mpg.de/Virgo/data_download.html

= As the first step, current study focus on the standard CDM power spectrum (SCDM) with matter-
dominant gravitational flow.

= Similar analysis can be extended to other models with different assumptions and parameters.

* The same set of data has been widely used in many studies from clustering statistics to formation
of halos in large scale environment, and test of models for halo abundances and mass functions.

19
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Comparison of two non-
equilibrium systems:

Dark matter flow (DMF or SG-CFD)
VS.
Hydrodynamic turbulence

S SG-CFD: Self-Gravitating Collisionless Fluid Dynamics
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LI R L e |
" ly r.—r J'F-‘r ru | ‘:rl'ji"lllff “"{IM u.+’"“ =

1 ALl e o i '
v '#Hmrjj'c]r‘iu LN st NARA Aia e allpe wand -
a d ¥ x ]

b i e .'h ""1'!"‘" ptemd 11N i araal R Yows . oo

E~ da Vinci sketch of turbulence: plunging water jet

b= = “turbolenza”: the origin of modern word “turbulence”
= The pattern of flow with vortexes in fluid
* The random chaotic nature

“ ..the smallest eddies are almost
numberless, and large things are
rotated only by large eddies and not
by small ones, and small things are
turned by small eddies and large.”
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Key attributes:
= Disorganized, chaotic, random;
= Nonrepeatability (sensitivity to

e initial conditions);
(0 ) ) L |
i g = Multiscale: large range of length
QQ< X 'PQ »
Flux o

and time scales;
= Dissipation mediated by viscosity;
e DQQOOCOCOOOD || amgye
iy @000 oD0CO0 000000 D |

“Big whorls have little whorls, That feed on their velocity;
And little whorls have lesser whorls, And so on to viscosity.”

= Three dimensionality;

v | = Time dependence;
: g::gr::mf = Rotationality (incompressible);
@) (b) = |ntermittency in space and time;

= (Cascade: energy is injected at
large scale, propagating, and

(a) : Cascade of energy, (b) : Lewis Richardson diSSipated at the Sma”eSt Scale.
[1] "Weather Prediction by Numerical Process®, Richardson, L.F. 1922

22
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Statistical Movement
—_—— — ,. ______
3- [%] = E > = c E’i > o S =
3 S s 2 £t EE iR
‘) =« - fF £ 5 §3 8=
o = m >
&8 ]
b
Structural Movement
__________________ b.______________
= o3 o c = c
@ e c @ 2 ©
E 22 & 3 E 5
o ©
S - -
L =
(300
Deterministic Movement
————————————————————————————— —
-0 = NODOOE O > c c
= @ cC>mgcit-amo ©
: s bggssfe = &
S JgnSecz @ 2
a 2 @0 ? g g
S X 5
T ©
1 =
o
e ! | | | | | I | | ! |
o =] o o o o o
o o o I w (0] o
o o] [+7] +7] ()] (o7 o
- - - - - - (3]

Statistic approach: (correlations etc.)

= Focusing on means and various
averages

= Celebrated problem of closure

= Structureless without power of
conceptualization

Structural approach: (vortex ect.)

= EXxistence of coherent structures

= Detecting and analyzing coherent
structures in turbulent flows

Deterministic: (should be explored in DMF?)l

= Chaotic behavior in simple deterministic :

systems I
= Deterministic chaotic behavior can occur |
after just a few bifurcations l

= Bifurcation theory, strange attractors,
fractals, and renormalization group
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T large scale
\ Energy

integral scale contained
scale

inertial
subrange

<
o
z dissipation
- / scale _ _
/ » Freely decaying vs. forced stationary
I;’E €: dissipated = [ntegral scale: energy injection
y by viscosity * Inertial range: inertial >> viscous force
Length scale _>into heat = Dissipation range: viscous dominant

= Dissipation scale: determined by viscosity
| | 3""( 13 ) 1/4 (m?/s) and rate of cascade (m?/s3)

ky by kgorn 1=

= |s there energy cascade in dark matter flow?
log & Wavenumber o

If yes, how 1t initiates, propagates, and dies ??
24
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=« There exist an inertial range with a scale-independent rate of Dissipation (Kolmogorov) scale:

N< [ <L. L is the integral length scale where energy is injected.

energy cascade (€ does not depend on eddy size /) for eddy size 1 1/4
1= (%)

E

= [n this range, inertial force is dominant over viscous force. For ) 3

eddies with a characteristic velocity u and size /, the lifetime _ouu 3 ]
. . &R ~r— B U
(turnaround time) of eddy is //u. The rate € can be computed as (l/u) /
the kinetic energy passed per lifetime. furnaround time /
= = |n this range, a general scaling for velocity structure functions for = Intermittence of cascade in space
pairwise velocity can be identified (the most important results in and time can be identified from the
turbulence) deviation from ideal scaling law
S (r,a =< Au m>=< u, —u m> 3 mf3
( ) ( L) ( g L) | ‘ S (r)oc (g”) 4 What is the dissipation scale n in DMF?

Is there any simple expression for £7?
What are the scaling laws in DMF?
What about the intermittence in DMF?

= Touched here but need to be

two-thirds law in further studied.
hydrodynamic turbulence 25

Velocity |
correlation R, (r,a) = <U-u > -------

-1=
=
T
7
N
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* Freely decaying turbulence is free from any external
force to maintain the turbulence (Coffee example).

=+ There is no energy injection on large scale and total

energy is continuously decaying with time.

= = Both integral scale / (energy-contained scale) and

energy dissipation rate € vary with time.

= « \What s the large-scale dynamics of freely decaying

turbulence? How does energy evolve with time?

2 3
=g % 4% NS
(Z/u) [
Loitsyansky integral invariant » ] ~ t2/7

(integral of velocity correlation):

, ~17/7
| I<u-u>r2drzu215 = const E~1

Due to the formation and virilization
of halos, the kinetic energy in dark
matter flow continuously increases
with time. In this regard, dark matter
flow is a freely growing turbulence.

= \What is the large-scale dynamics in DMF?

= How energy and momentum (both radial and
angular) evolve on large scale?

= Loitsyansky integral invariant is related to the
conservation of angular momentum

Do we have similar integral “constants” of
motion in dark matter flow? Are they still
constant or varying with time?

26



S

Pacific

Northwest VOrtex Stretching mechanism for energy cascade
Moment of Conservation of angular momentum:
inertial: [,
A
Moment of — 4“% ] 1 a)l — ]2 a)Z l W, > @,
1nert1?1: h \ Ratio of rotational kinetic energy:
— 2
Volume / , D, !/ 1 2 2
conserved > » ]2502 > ]la)l
] 1 a)l ] 2

-~ =~
» KJ Rotational kinetic energy is passing

down the scales (direct energy cascade) !

defzreasing / = Does similar mechanism hold for halos in dark
diameter

) matter flow?
(scale) = What is the major mechanism for energy cascade
I,>1,

in dark matter flow? (facilitated by mass cascade)
27
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Reynolds decomposition %; = u; + “’Ev Jeans’ equation (not self-closed):
P = _' ._ : - , Pressure from
= Navier—Stokes equation (self-closed): Mean flow Fluctuation  Potential
— (V-u=0 3 ¥ ¥
B ] 2

_ ot 8xj Ox, Ox ; Ox ; Ot / 8xj Ox ; ox,

;_ Reynolds Averaged Navier—Stokes Reynolds 0'; = <uiu ; > — <ui > <u j> = <ulu] >
& (RANS, not closed): Stress

= . 0p 9 ou; ¥ = s it possible to obtain a self-closed equation for
= P [ 5% + U 8:1:j] R + oz, (# 9z, P“E“ff) dark matter flow? (closure problem)
1 J .. . . .
= Any similar concept as eddy viscosity in

E " Reynolds stress facilitates the one-way energy dark matter flow?

B cxchange from coherent (mean) flow to random
fluctuation and enhances system entropy. = How energy/momentum exchanges between
% = Eddy viscosity models the Reynolds stress mean flow and random fluctuation in dark

using the rate of strain of mean flow 7 = —2v4,Si;,  matter flow?
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Boussinesqg’s Prandtl “mixing- Kolmogorov: Kraichnan’s inverse

concept of “eddy length theory” the “K41 theory” cascade in 2-

viscosity” replacing predicts the Two-thirds law dimensional
molecular viscosity eddy viscosity -5/3 law turbulence

i:- _' = MM»

—  Earliest Reynolds number Taylor’s statistical Lorenz propose
§=—recognition of for transition from methods involving possible links
¢ ——turbulence as laminar to turbulence; correlations power between

- aphysical Reynolds’s spectra; “deterministic chaos”

= phenomenon decomposition (RANS) Karman and Howarth and turbulence
V=<vy>+V

Reynolds stress; For all concepts listed here, we
can identify their counterparts
in dark matter flow!

B RANS: Reynolds-averaged Navier-Stokes Equation;
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Key attributes of hydrodynamic turbulence:

Key attributes of dark matter flow:

= Disorganized, chaotic, random,;

= Nonrepeatability (sensitivity to initial conditions);
=  Multiscale in length and time scales;

= |ntermittency in space and time;

= Disorganized, chaotic, random;
=  Nonrepeatability; - Common
= Multiscale in mass/length/time scales; features
= Intermittency in space and time;

= Dissipative and collisional
=  Short-range interaction
=  Velocity fluctuation
= Vortex as fundamental building block
=  Maximum entropy distribution (Gaussian)
= Incompressible on all scales . yv = ()
= Divergence-free
=  Constant density
=  Energy cascade from large to small length scales
=  Vortex stretching responsible for energy cascade
=  Volume conserving
=  Shape changing
=  Uniform density
= Reynolds decomposition
= Reynolds stress for energy transfer between mean

flow and random motion (turbulence)

= Closure problem, eddy viscosity, etc...

= Statistical theory: correlation/structure functions
scaling laws in inertial range

= Dissipationless and collisionless -
. Long-range gravity Critical MOND
= Velocity & acceleration fluctuation === acceleration a,?
= Halos as fundamental building block
= Maximum entropy distribution?? (X dist.) == Deep MOND?
=  Flow behavior is scale-dependent (peculiar velocity)
= Small scale: constant divergence V -v =68
= Large scale: irrotational (curl-free) V xv =()
= Mass/enerqgy cascade from small to large mass scales
= Role of halos for energy cascade??
= Halos are growing, rotating, with nonuniform density
= |s halo shape changing important?
= Mass cascade facilitates energy cascade?
=  Velocity/acceleration decomposition?
=  What facilitates the energy transfer between mean flow and
random motion??
=  Self-closed model (analogue of NS) ?? Closure problem?
=  Statistical theory: Kinematic and dynamic relations?
Scaling laws?
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Theory of dark matter flow Applications
= Structural (halo-based) approach = Predicting dark matter mass and properties
" Inverse mass cascade in dark matter flow " Origin of MOND acceleration
= Impact on halo mass functions = Baryonic-to-halo mass relation and total
= Impact on halo energy and density profiles baryons in halos

= Energy cascade in dark matter flow
= Properties of spherical, axisymmetric, rotating, and growing halos (from mass accretion)
= Maximum entropy distributions in dark matter flow

= Halo mass function from maximum entropy distribution

= Two-body collapse model (TBCM): an elementary step of mass cascade

* Energy and momentum evolution and integral constants

= Statistical (correlation-based) approach
= One-point statistics: velocity, density, acceleration distributions in dark matter flow
= Two-point statistics:
= Kinematic relations for second order statistics (correlation, structure, spectrum functions)
= Kinematic and dynamic relations for high order statistics
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Structural (halo-based)
approach for dark matter flow




o

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

Inverse mass cascade In
dark matter flow and effects
on halo mass functions

Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2109.12244
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Review: In hydrodynamic turbulence, “energy

= cascade’ involves the energy transfer from
= large eddies to small eddies with a scale-

— independent rate of energy cascade.

= The dark matter flow, a self-gravitating

— collisionless flow, involves a continuous mass
= transfer from small to large mass scales with

E— a scale-independent rate of mass cascade «,,,.

v

= Goal 1: |dentify and formulate mass cascade

2 2 2
Tho Tho Tho Opo | e

1 = Goal 2: Explore the random walk of halos in

Mass space = |dentify all halos of different sizes
= Group halos according to the halo size n,
- = 5oal 3: Derive the halo mass function based = Mass flow across halo groups from small to large mass scale

on the theory of mass cascade (inverse) through the merging with “single merger”
= (Cascade leads to random-walk of halos in mass space
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Backward function: fraction of mass

5, =03 n, =2 n, =35 n, =10 n, =20 n, =50
inherited from all other halo groups at
an earlier time |
-
Dy, (:"l’n_pl’:l’npl) T;n i‘.’:@c
Forward function: fraction of mass Forward mass |
passed to all other halo groups at a redistribution function |
later time 201 |nm,=2 |n,=5 |m,=10 [n,=20 |n,=50
Minus sign
Dy, (:1’npl’:3’ﬂp3)
— : : Backward mass
= Backward mass redistribution function ¢qistribution function
g -- Forward mass redistribution function
=, =00 ;=2 ny =5 ;=10 n ;=20 1 =50
g — Net mass redistribution function

35
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EIT T T T I 1 |:]-I'|I ! ! T

_DFM(:]_LE,:]_B,n pg} _DBM(G'LE’G'G "pa}
06 F D, (0.1,5,03n pE:. ! 06k =D, (01,5000 p3} |
—DFMW-LMJHBJH pE} —DBM([J_1,1[J,D_[J,H p3}
05 - 05+ —D_(01,2000n :
- — D, (0120030 ) _ B pa)
.E ——D,,(0.15003n ) S _DBM([J.LE[J,D.[J,H pa)
= 04r p2” | = 04 i
= =
A= =
Z 03 E 03
= =
02 02
0.1 0.1
0 ]
0 10 20 20 n 41 a0 60 70
p3
Forward mass redistribution function Backward mass redistribution function

= [ocal: cascade is local in mass space
Halos inherit/pass their mass mostly from/to halos of the same or similar size.
(energy cascade in turbulence is also local in wavenumber space)
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0.3 T T i 1 1 T

Net mass redistribution function Dy,:

—DEM{D_1 ,E,D_Dnpz}—Dm(D_LE,[!_E,npz}
0.25 ——Dgy (015000 D (015030 ) <0: inherit more mass than pass mass
0ol < Dg(0.1,10,00n 5)-Dpy (0.1,1003 0 ) || >(0: pass more mass than inherit mass
——Dpgy,(0.1.20,0.0,n ;)-Dp,(0.1,20,0.3,n ) Sum of Dy, =0
0.15 F e Dgyy(0150,00n _)}-Dp (0.1,5003n ;) 1
01} Pass massto _ Net effect: halos transfers mass from

larger halos

below to above.
0.05

= Asymmetric: cascade is two-way in
mass space but not symmetric

-0.03

Inherit mass from
smaller halos

0.1

» |nverse: from small to large mass scales

0.13

(enerqgy cascade in turbulence is a direct
0 10 20 3 40 50 60 70 cascade from large to small scales)

Net mass redistribution function .
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‘= Average waiting time of a merging event with a single
merger in a given halo group of halo mass m,,

— The rate at which mass is passed up from this group:

= Average waiting time (halo lifespan) of a merging event
i for a given halo in halo group with n,, halos of mass m,

— = Average time required to form halo of mass m,, via a
= sequence of merging events (n, times):

2 Time required to cascade entire mass M, 1n all halos:

= Time required to form halo of a characteristic mass m,*
R should be on the order of the current physical time t:

[Ty (a)er (mh,a)ZTg (mh,a)ZTh (mh,a)

z,(m,,a)

gm - _mh/z-h

m,n, m
& &

m m

z-f (mh’a) — Z-gnp — z-gmh/mp

0y (a)==M,(a)/e,(a)~ 1

p 38
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“Little halos have big halos, That feed on their mass, And

big halos have greater halos, And so on to growth” " Mass cascade 1s Local, Asymmetric,

Inverse;

I, (m;.a)

221 = Justifies a chain reaction description of
T (mﬁ,a) oc m, (mﬁ/mp)

mass cascade;

en(a) =1L, (m,.a) )

* The initial stage: initiation/generation of
the chain carriers (free radicals)

o » The propagation stage: a sequence of
Depositing accretion of single mergers to propagate

the mass along the reaction chain

> * The termination stage: the deposition of
Chain reactions provide non-equilibrium systems a the mass cascaded from the scales
potential mechanism to continuously release energy below to grow halos

Propagating

and increase the system entropy. 39



i Mass flux function (kg/s):
= {otal mass flux from all
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Mass flux function:  I1, (m,,a)

1= Total mass of all halos: M, (a)
=— halos below m;
= Mass flow across mh :
== P Halo mass function:  f,, (mh,a)
= Hm (mh’a):_a[Mh (d)jmh fM (m,mh )dm:| Halo group mass: mn, (mh,a)
& Mass transfer function (1/s): rate of mass transfer for halos of mass m; Halo mass: ™,
7 (m a) _ ol1 (mh, ) _ 8[Mh (a)fM (mh’mh )] _ om, (mh9a) Particle mass: M,
mA om, ot m 0t
== In mass propagation range: m, < m,
P — T = Rate of mass cascade is
e, S & (Cl ) — Ly (@9 Cl) o Mass-scale independent;
i T _ amg (mh 4 a) 0 _ * Halo group mass 1s time-
85 . (my,a) = = mg(mh)=mg(mh»@) ¢

m, Ot independent (steady-state);

40
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102 - e ————r 107 ¢ ——— ———— —
B £ ) T Ir ]
Mass injection : =) oy Mass : Mass
* 1] L
107 A\ 1 7031 - propagation 1 deposition
S\ Mass l —05)] 10° S ,
N\ , 10l 5
o | propagation | =15|1 : l
= 0F | ——2z=2.0(3
= | —— =30
E - 107 F
ey 10°F | 3 : =0.0;z.=0.1
= ) Mass | —2,0.0:2,0. |
= 14 ] i A1 —
% 4 deposition: | —2,0.1;2,=03 |
< 0*H——2,=0.3;2,=0.5
o : s, — l
é ol :—zl—{}.i,zz—l.ﬂ I
: ‘[ .| _zl=1.D; 22=1 3 I
| : 15— |
1[:25— E_El 1.5,22 2.0 |
. _zl=2.ﬂ; 22=3 0 I
*'Um_g o 02 o 10° 10’ 10° 10° 10*
“p &

Mass tlux function 11 _(m,, a) (normalized by
Nm,/t)) varying with halo size
(scale-independent in mass propagation range) +'

Halo group mass m,(my, @)
(time-independent in mass propagation range)
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: * Merging frequenc
In mass propagation range: M, <m ging 1req M
propas s ! ! for halo group: fh (mh ? a)
= @Afh(a)
<., (a)=Hm (mh =O,Cl)=— P Halo geometry ﬁ,
t parameter:
- S, (a) — _mhﬁz (mh ) CZ) Fundamental
el ,  frequency for merging  f_ (a) oc q °
= . m_ | m of two single mergers:
_ p h
/. (mh,a) = 1, (a)Mh (a)fM (mh,mh (a))
m, \ m,
\f o ~ _/
Term 1: proportional to the ~ Term 2: proportional surface Independent variables: M, a

g number of halos in group; area of halo in group;

/1%2/3

Free parameters: m, 3

42
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:'.___::: = . . * 11}1 : . . - . - . -
= [n mass propagation range: 7, << m, | Millennium Simulation g3
== Dimensional analysis . N A | s
- - N /Y (mh9mh):ﬂ0mh (mh) = M
requires mass function: 2ol L _
= 107} A :
i [ ﬂj’ﬂ‘j@ ]
= R
Table 2. List of dependence on the scale factor a for different values of 7, and A ‘;; o
11}1 - OO'DCLI
Ao s, My fyoom, T n, Mg I, f -
Y T a® a" 613,/2—1[, afo—?rﬁ (3/2-19) (3/2-4ry) (3, (+)  _ 3.4 (rp-34/2)
' g g (3 0){1‘) a (2 "i-7) q .| [11McBride et. MNRAS, 2009. 398(4) p. 1858
. . o, SOV SUOLA) P. 1998
10° q 10°
23 12 g g g a4 a" a a° a2 The halo mass for type Il halos
(the dominant type for large
3 /4 1 a—l a—l al,fz a—lfz az a3 a—?/z a—m a—lﬂ halos, Fig. 2 in ref. [1]) exhibits

a power law scaling

43
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Table 3. List of dependence on the halo mass m,
Fundamental frequency f,, for merging

S ﬂ ST, / \ between two single mergers depends
on particle mass (same as cosmological
1— W

m;” \mf / m;' m, m;" redshift for photon frequency f~a!):
. . -1/3
Table 4. List of dependence on the mass resolution m, ﬁ) oca m

fu L T [5 m\ T, T ﬁh\ ﬁ/{“ ¢, Py
0o 0 o\ o 0 0 . 5 P— Can we detect f,
m, m, m, WJ m, —m, W;u/ k";u/ m, m, from any experiment

or observation?
n, T, ﬁ-\ b, A, n, m, n,

-1 A-1 A-1 1-4 -1
mp mp p m W / mp mp mp mp mp

44
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Merging frequency — @ — _‘ - ’
fh (m noa ) ' my

= for halo group:

1D Random walk equation in mass space:
Characteristic

— merging time for 7, (mh . Cl) — l/jph 8mh (t) B mpf(t) B \/ZD ,
= halo group: ot _T (m )_ p(mh)g( )
g h
~ Characteristic . S ,
= El,efrg,ing )ti;ne 4 of halos in group Fokker-Planck equation for distribution function:
t
: Q;VZ;IE;O:OM ‘ OF, — 0 { D 0 ( /D P )} - D i{mﬂ L(mﬂp )}
= waiting time to z-g (mh > Cl) = n,7, ot Om,, " om, 7 *> om, ' om,, Y
— merge _
' Halo mass function: l
a , L \A - 2227
g [hecexponential | for (m,,a) - (””h ] : exp : (””h ]
g (istribution of Tgr m My ) = X — *
s@ &7 _ g m m 4 m
g " waiting time to P (Tgr) = . CXp ; 7o g g RN _

merge: g & Reduce to Press-Schechter (PS) mass function 1if A=2/3 !
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A: halo geometry parameter; naturally, we 2= . . - . - . .
can have different A for different range. | TR — Simulation
A, for mass propagation range (small halos); ok ‘ - - 1.
A\, for mass deposition range (large halos); AR, -1 ()
K S §7)
- 200 2f / s
= 1_ ﬂ, * @ ! _
S (mh’a):( )(mh%%exp _— (mh) 2 /! )
n, \m, ) m, I 4n, \ m, | % i /
= | 2 {
= Double-A mass function: l i
1y |
. ; |
/()= (2ym) L e"p(‘Lj ,-*' o
= JDA - sl ! arge halos y
_ [(q/2) m, | )
ﬁ == " PS mass function T 1 S E— 2 :
® " ST model (modified PS) from ellipsoid collapse og(v)
® = JK mass function by data fitting Comparison between different mass

= More generally, A, can be a function of halo mass m,, functions and simulation
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Hydrodynamic turbulence Dark matter flow Mass redistribution
Direct energy cascade from Inverse mass cascade from Random walk
large to small length scales  small to large mass scales Heterogeneous diffusion

“inertial range” & propagation range & Waiting time
“dissipation range” deposition range

Chain-reaction
Halo mass function

= Strong connections between dark matter flow and hydrodynamic turbulence

= The mass cascade is local, two-way, and asymmeltric in mass space

= Scale-independent rate of mass cascade and time-independent halo group mass

= Chain reaction description for mass cascade to release energy and maximize entropy
= Random-walk of halos in mass space with an exponential distribution of waiting time
= Press-Schechter mass function is a special solution from halo random-walk

= New Double-A halo mass function (based on the mass cascade)

= Extend double-A halo mass function to consider A as some function of halo size.
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Effect of mass cascade on halo
energy, size, and density profile

Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2109.12244
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Review: In hydrodynamic turbulence, “Energy cascade” involves the energy transfer from large
eddies to small eddies with a scale-independent rate of energy cascade. No mass cascade!

“Little halos have big halos, That feed on their mass, And big halos have greater halos, And so on to growth”

“Eddy” is not a well-defined object in turbulence literature. However, “halo” are well-defined dynamical
objects, whose abundance and internal structure have been extensively studied over several decades.

= (Goal 1: Explore effects of inverse mass cascade on halo enerqy,
momentum, halo size and internal structure (density) evolution.

= (Goal 2: Explore the dynamic evolution of halo size (geometric
Brownian motion)

= Goal 3: Explore the random walk of particle in halos with a randomly
evolution size. This leads to a universal halo density profile.
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" Halo grows with a new layer of particles of thickness r;,
formed due to halo mass accretion (mass cascade)

= Original halo (dash line) deforms 1n size (shrinks to
green) by rp’ due to gravity of new layer

= The net change in halo size 1s 1, - rp’

= Halo deformation at halo surface induces a non-zero
inward radial flow u,

= What about the radial flow at halo center??
= Must be outwards 1f no blackhole considered

Halo deformation ah — 1 — 7 / 4
parameter Pl P
Schematic plot of halo mass Isothermal profile (vanishing radial flow, no time to —1
accretion and deformation relax or deform due to extremely fast mass accretion): &) =

50
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" Reduced spatial/ x(r,a)= r__
temporal coordinate: r.(a) 1,(a)
D Function F(x) for m (r,a) =m, (a) F(x)
I I enclosed mass at given 7: F(c)
EJ_ 05 . 1 om_(r,a 3F x
" s A
y: Ty r ) (c)
[ |==——TIsothermal Radial P
——NFW continuity opy (r-a) 12 [r pi(r.a)u, ( } 0
—Einasto equation: Ot r or
15 ' ' : : ' - :
: .. 0 0.5 1 15 }.’E 2.5 3 3.5 4 Radlal ﬂOW ) (x) |, F(X) ' MaSS
= b Outward flow 1n core and inward flow 1n outer region equation: h F ( x) C ascade

= = Radial flow creates a new length scale for any halo Density p;, “ F(x) “ Radial flow u,(x)

density: the scale radius rg Isoth 1
. — _ Sotnermal.
= Vanishing radial flow for isothermal: extremely fast N,FW° d (x) In (1 * x) x/(l * X)a F _
mass accretion and no time for halo to deform Emasto: F (x) - F(3/ a) B F(3/ a,2x / a) (x) o )C/ ¢ v
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Logarithmic slope of density: = Single mergers merging with halo at an angle: angle of incidence

Ol p, OolnF (x) ou, / Ox = Neither perpendicular nor tangential
- Oln x T e 1-u, / X -2 . Angle of incidence determined by peculiar radial flow u, and

Olnx . .
‘ circular velocity v,
Oln p ou h u 1 (1 1 Deformation parameter
Atr=r t=-2 and = cot(8, )=—"= - for Isothermal profile: & = 1
© Olnx Ox (6,) v, 27\la, 3 neE

0.5

1} |=—sothermal
e N F W
- inasto

Radial flow 1s at
1ts maximum at
scale radius r

0 0.3 1 15

P 2.5 3
X

—

Determine critical halo density A,
(two-body collapse model) l
Determine the rate of energy cascade !

= No energy cascade if tangential

* Maximum cascade if perpendicular *,
Understand the critical MOND ’

acceleration a,
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Radial flow from simulation

0.2 .

0.1

—-0.4

—-0.5

|
o
L]
IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

—0.6 —

M,o=101h"1M

—_——— — — —

o

0.25

0.5

0.75

1
R/ Rage

Radial flow from simulation

Klypin A. etc.., 2016, Mon. Not. R. Astron. Soc., 457, 4340

0

2 LI T T T

T L] T T T

1.5

1.2 |

P(R)/Pago(R/ Rogg)?

1

0.9

0.8

1.2x10"h~'M_

Relaxed
DY? 1 Ll 1 l 1

0.05 0.1
R,/ Ragg

R/ R,

Figure 8. Density profiles of haloes with mass Mgy == 1.2 x
1014 p—1 M@ at z = 1.5 (full curves). Left (right) panels show relaxed
(all) haloes. Dot—dashed curves show Einasto fits, which have the same
virial mass as haloes in the simulation. The NFW profiles (dashed curves)
do not provide good fits to the profiles and significantly depend on what part
of the density profile is chosen for fits.

Einasto profile 1s better than NFW for

massive halos (high peak height v), why?
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= Radial flow at halo center:

Jeans’ equation:
2
= Term 1 from mass cascade usually neglected N 1 8(,0,@, ) _ 99, (r,a) _ Gm, (r.a)
p, Or Or r

* The radial flow should vanish for virialized ‘

small halos with extremely slow mass

accretion (late stage); gravity exactly balances , 8ln( phaf) P2 ou,( dlnr dlnr ,

pressure; stable clustering hypothesis (SCH) o olmx  #|ax U olnr tup 1= _‘:3&

1 A4

= . The radial flow should be the Hubble flow for

large halos with extremely fast mass accretion 1: from pressure; 2: from radial flow; 3: from gravity

(early stage). ‘
= = In spherical collapse model, the initial velocity Parabolic pressure around halo center: , (x = O)v2
of mass shells is simply the Hubble flow D, (x) =p, (x) o’ (x) = p, (x _ O) h cir 2

, .
Define 'a halo Define a halo core size x,
deformation rate: /

J __________ 1N pi(x)=0 mp = \/2ph(( ))

2p; (a)e’
o, (0

V.

cir
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Density Concentration ¢ | Deformation Deformation rate pp(r <ry)
profiles parameter oy, parameter Yh

Isothermal
NFW 3.5 0.8329 1/2
Einasto (0=0.2) 3.5 0.8371 2/3

3/4

| Density p,, “ F(x) “ Radial flow up(x)

dlnp, OInF (x) ,_ du, /Ox _, 0w, (x) F(x)F (x)

~ Olnx Olnx _l—uh/x o F'z(x)

Double power-law: -

0, ( , <y ) o r(37h—2)/(1—7h)

(e, —1)_2
c—Xg ah =C

F(c)

F(e)

p,(r>r)ocr

Double power-law is a natural result due to radial flow
in outer and inner regions

Halo deformation parameter from mass cascade controls
density in outer region

Halo deformation parameter controls density in inner
region

The larger deformation rate at center, the larger
logarithmic slope
(baryonic feedback for core-cusp?)
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= Vanishing radial Linear momentum (halos at turn-around)'

3 ; m.v T T T
= L, (a):jhu (r a)47zr2ph (r,a)dr— hchr J z=0.00 | z=1.03
I 0 2ncF

Limltlng o
for NFW
=2 I dx # concentration ¢ = 3.5
for | hal profile !
- - N 1997 1
o1 arge alos — Hﬁlv]?;.*T 2001 {K=3."-"5]1~"" L\\”‘*\
Eke 2001 (| \ -
0.16 T T T T T T T T T —— This waork ."".‘
0.14 _Ah for linear momentum . 1
.12 —IDD}‘K‘ for kinetic energy 0 -
01 Limiting c~4 |
008 from mop|
005 simulation '
0.04 -
002
1 poopmmiid v owpaiil o gpaniild e g pauil uliuu}u o oiwiniil o ogeiainl e oieal |||||J‘H| e
o 10" 10" 10 10 101 (0. 10V 10'® 10w 10 10w
002 b M (h-" M_) M (h™' M)
' Zhao etc.., 2009, Astrophys. J., 707, 354
Jﬂ'mﬂ 1 2 3 4 5 5 7 8 g 10
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0.6

0.5

04

D3r

0.2

0.1

—Jsothermal bl
—-=0, ,(x) (From ¢, ) '
= -a'il(x) (From ur)
_”ixl (K}F”iz (x) _ -
_ -
0 0.5 “: 1.5 2 2.5 3 3?5 4

Effect of radial flow on velocity dispersion

= Radial flow wusually mneglected for
virialized halos;

» Effect of radial flow can be significant
for halos 1n their early life before fully
virialized (high peak height v);

» The radial flow tends to enhance the
radial random motion and 1s only
significant in the halo outer region.
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= Standard virial theorem for static halos with a

vanishing radial flow (K 1s 1D kinetic energy): Halo surface energy:

= Potential S (S + S ) ~—1.3#-1
— 6K_-—n®, =0 exponent 1= -1 | q)
' Jeans® o for SOt . Halo surface tension:
eans’ equation for 1sotropic growing halos )
s=— with non-zero radial flow: Sth =D / (2Ah ) Surface area: Ah =4 7,
. = 5( ,Ohu,,) N 1 5(%” 2%2) N 5(,0;,0 ’ ) s Gm, (r,a) 0 Young—Laplace equation relates the pressure jump
Ot 7 Or Or P P2 across halo surface to halo radius or curvature;
Integrating Jeans’ Equation leads to a AP — 28, S, 0.15
= generalized virial theorem for growing n T T T T P
== . . mean h hh
= halos with fast mass accretion: flow S G # Halo surface mass
' - & 'O sur’) density: py,, ~1;™"
6K_+O, =

. . . . Mass cascade (fast mass accretion) leads to finite
s Rewrite to introduce effective eXpoqniﬂ% S q halo surface energy, surface tension, surface mass
# 6K_—n®, =0and n, = —1+ = O, T, density, and an effectiv§ potegtial exponent n~-1.3,

: © () confirmed by N-body simulation. .
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ot

t  elho t e Solution leads to a lognormal probability distribution of halo size:
i e
e o o c 000 | 1 i
o® o ° . ‘ " ' @ Bh(rh,t): 1 exp _(n(l’h/l’ho)—(l—ZDrh/3) n(t/tl.))
e .%o @ C‘ O ”h\/gﬂDm In(z/t,)/3 8D, In(t/t,)/3
0.3 .
_tﬁi=4
1D Random walk of halos in mass space: 005 | —t/t=8
om, (1) m,&(t)
_ = 2D, (m,)e (1) 02 |
Tg (mh) \/ ! '

015 f

= 1D Random walk of halos in size space
2 (Geometric Brownian motion):

_ ' 01l
= dr (t) 3 v

I ZIE ) B EHF}’ (t) + 1, (t)grh (t) 0.05 |
Covariance:

(2,02, (1)) =20, 501 n
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A spherical particle of radius a, moving at a constant velocity #, in a fluid of viscosity 7,

subject to a force F,. Local steady-state velocity #, can be determined by the driving force
1.e., the gradient of the osmotic pressure 11, = p k,T", which is a localized(short-range force

= Current velocity from stokes law:

F, 11 dlI, _ Mg 5(kaBT)
_ 07115y 67”73 » Py OX Py OX A simple closure:
— Osmotl.c Ve.10c1ty W=D, dln p, u, =—u,
from diffusion flux: Ox

= | motion (forward and backward):

Stochastic equations for Brownian

CZ [uh( +uh }./2D§

(x,) |+2D,& (¥)

7;:[% (xt)—uz

Fokker-Planck equations
(forward and backward):

Particle distribution in halos: a review of Brownian motion

& Quick review of standard Brownian motion in viscous liquid:

o
o o0 !

F,, . o
*." °
“ o

The Einstein relation:

m) D, =k, T

Diffusion equation for
density distribution:

8P xt o°P OP, (x,t 0P
B0 2w i()n]en, 2wy B R
OP (x, 0 \ o:P - ., OlnP
é;c ) _ ax[(uh(x)_uh(x))e]_DB i m) u=-u,=D, o~
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& | Brownian motion of particle in halos with stochastically (lognormal) growing size:

= Stochastic equations for Brownian motion (forward and backward):

= (i * Multiplicative noise -
i E )[u,,(xt)+uh(xt)]+0(xr)’1(i)Hfrh (t) @ (dependent on r, 1tself)
o= t Y = due to random varying
dz;t _ i’sf )[uh(x) u (x )]Jrg( N () HE, (1) halo size!! \
= N s
— Radial Osmotic 1 = Duyeto long-range interaction, Uh i —MZ
ﬂow ﬂOW

4 = Key is to find a simple closure to close
¢ —— Fokker-Planck equations (forward and backward): equation! (an example in ref)

Mz_wa[(uh( )+u;;(x))za]ﬂf(r)HDrha‘%(oz(x)B) = x%f=§c[uh(x)ﬂ]

ot t Or
0

| f = Et) or [( u, (x)—u, (x))P]—r2 (t)HD,, 88—:2(02 (x)R) » u, (x) =d o’ (x)—ln[a2 (x)B (x)]

ot rdo Ox

Exact relation between current d.c* (x ) ou, 0c” (X ) J
j— d .
and osmotic velocities: “h (x) xX—1u, ( x) Ox T4, With O'(x

~ X, expected
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To derive halo density, adopting a Two-parameter cumulative distribution function:

= simple model of osmotic velocity : ; (a bx" ”r)) y(a,,,brxl/ ("f"’r))
* l+a 7 I (ar) I (Clr)
u, (x)=y,x— B x"
D I 1
_ $ 1 OF
s = |wo-parameter particle distribution function: osfP ()< X’
—— 1 b
b a, r .
: T-. })I” (X) = r eXp _brxar_br xar_br al « n =4 (Slm)
= r(ar)(ar _br) ( —_ ﬂ%tedmuve
' 4 E sl . n=10(Sim) | |
= Three-parameter halo density profile: = ﬁ“_ﬂgﬁmg?’ﬂ
— m, P (x) ! 3b,-2a, oh 2f Density of ’ I;p_d (Sum) |
— o, (x) == = et exp| —bxt Tt |x ¢ A " composite halos of |~ I;tfmcgf;)
' Arr;x 25 different mass — fredcurve |
$ a /b =3/2 has a central core | , n =100 (Sim)
, N, and universe | —fitted curve | ]|
&= |wo-parameter Einasto: - Slﬂpe 1s 3 density prof”ell

o 2 2 7 a a5 1 L I
_ 2/a a | _ 2/a 2 18 16 14 12 - 06 04 02 0
4 ry=pe’ exp|——x |=pe’ exp| ——| —
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Constructing composite halo for a halo group Ll e e e e P ' :

including all halos of the same mass:

Halo #1

Halo #2

Halo #3

Composite
Halo

ror

o Einasto shape
—1/(a-b)|=a — parameter

Composite halo reflects complete statistics of
particle distribution resulting from particle random- 1o ‘1[']1 : T
walk in dynamic halos; 5

All composite halos have a central core (no cusp) = Fitted a /b =3/2 for all size of halo groups
The density profile of composition halo (o=[1.2 (implies an Einasto profile)

0.7]) can be different from individual halo (0=0.2); 63
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Northwest Equation of state for relative pressure and density

2 &

a b . ) !
ph (I") — pse2/ exp(_brxbr ] Wlth br = 2/6! 10° Press:;?;d
halo center

For small x (halo center)

i WS ER e B .
= ph(x)zph(o) 1-bx" \ j

& Parabolic pressure at halo center:

O . . .
e

= 1 o, (0)v, ]
pu(5)= ()07 (5)= py (x=0) A A D o T 1-
Pi€ :
Cancel x in both Equations: 1 / : ;
| [ o, (O)T"’r V2 X . ; /¢ —b=555 - - b=583 -:—phn[l[}} vs.p (O]
[P (0) =1 (x) == =LA (0) = (%) AN ) | —bas - b
2 2(br) Py€ ¢ Nummc:al: el wa =l :
- B , , P ! : e
B Equation of state (EoS) for relative pressure and s - - o = 0 o
e rclative density (relative to the center of halo): . , o , .
o, 00 & " = EoS 1s good tor entire range ot relative P and p
Aph = KS (A,Oh ) ' = Why? might because of halo grows from center

64



Factic ¢ OUMMary and key words

NATIONAL LABORATORY

Radial flow & scale Halo surface Current velocity Mean flow&
radius energy/tension random motion
Deformation Deformation rate Osmotic velocity Limiting
parameter q, parameter vy, concentration
Angle of incidence Random walk Fokker-Planck Equation of state

= Mass cascade induced nonzero radial flow (outwards and inwards).

= Self-similar solution to relate halo density profile with radial flow.

= Radial flow leads to an extra length scale (the scale radius r,).

= Limiting halo concentration c=3.5 for fast growing halos at their early stage, with a Hubble flow
at halo center leading to a central core.

= Composite halos from N-body simulation always have a central core.

= Radial flow enhances velocity dispersion in outer region.

= Radial flow leads to a nonzero halo surface energy/tension.

= Random walk of halo size is a geometric Brownian process with log-normal distribution

= Random walk of particles in halo with varying size leads to analytical particle probability
distribution (i.e. the halo density profile).

= Equation of state for relative pressure and relative density (relative to halo center)
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Energy cascade in dark
matter flow

Xu Z., 2021, arXiv:2110.13885v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2110.13885
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Review: In hydrodynamic turbulence, “Energy cascade” involves the energy C
transfer from large eddies to small eddies with a scale-independent rate of

energy cascade (direct cascade). No mass cascade!

Vortex stretching is a major mechanism for energy cascade in turbulence. e s |

“Big whorls have little whorls, That feed on their velocity,
And little whorls have lesser whorls, And so on to viscosity.”

“Eddy” is not a well-defined object in turbulence literature. However,
“halo” are well-defined dynamically growing and rotating objects

with nonuniform density, whose abundance and internal structure

e j / Eddy> R

lldtl_'f ¥

T, (m,.a)«<m, (m,,[mp)

(N
«DOOEC ﬂ
e DQVOCCDROO |l
¢
L.:::::‘mu{
IL,, (m,.a)

2-24

(m

have been extensively studied over several decades.

“Little halos have big halos, That feed on their mass,
And big halos have greater halos, And so on to growth”

Propagating

= Goal 1: Identify and formulate kinetic/potential enerqy cascade
= Goal 2: Identify a constant scale-independent rate of enerqy cascade
= Goal 3: Explore the effect of halo shape on energy cascade

Depositing
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Decompose particle velocity into halo
velocity and velocity fluctuation
(“Reynolds decomposition”)

\% b v, +V D

.- Similarly, decompose velocity
dispersion into halo velocity dispersion

= and halo virial dispersion

2 2 2
o =0, +0;
7 \

Halo group Halo

temperature temperature

Halo group temperature is

02 = Var(V )
h b/ independent of halo size

2 _ ! 2/3
o, = Var(vp) ocm,

Decomposition of kinetic energy

10°

Solid line: o

| Dash line: o

= N

10° F

KM?/s”

41 |
0 g | .
= = 2 2
. o, (a) ~ Ppau, oca
2/3
2 N 1, 2 ~1_2/3
o, (m,,a)= S, a u; (mh/mp) oca m,
103 | L L TR B A | L i R |
10" 10’ 10° 10°
n

p
Variation with halo size for redshifts z

=0,0.1,0.3,0.5,1.0, 1.5, 2.0, and 3.0

10*
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.= Mass flux function: ‘/Tm? ;
- _;._;E"_'i::"-'-. !
&= (otal mass flux from (I_* b ‘ ‘
“

$ = = all halos below m,,
9, aHm (mh,a) amg (mh’a)

Mass transfer function: rate of
mass transfer for halos of mass m,

Energy flow across 'm,

IT (mh,a):—

8t[ M, (a )_[ Sor ( ma)dm} j T, (m,a)dm T, (m,,a)= o - g

Mean (specific) halo kinetic energy:

<G§>=ijM (mh,mZ)O',f (m,,a)dm, o« a

= = Energy flux function for halo kinetic energy Oy

is .:' L1, (mhaa) - _J-OO L &’”’?aa)o-; (m, a)dm ~ 1, (mh’ a)<0',f>

== " Mean (specific) virial kinetic energy:
$ —— Energy flux function for virial kinetic energy o, 2: 2\ _ [ |2
i=— gy St : gy Oy 2 <av > — J;) fy lm,,m, )Jv (mh,a)dmh o a
S I, (mh,a) — —J-m T (m,a)O'v (m,a)dm =11 (mh,a)<0'V > Equipartition <O_2> ~ <02> _ 102
= requires: ! ’
= Total mass of all halos: M, (a) = Direct energy cascade = In dark matter flow, inverse
Halo mass. in hydrodynamic energy cascade is facilitated by
Halo mass function: f), (m, a) turbulence through the the inverse mass cascade through

Dispersion of all particles: 3° change of vortex shape mass transfer function T
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10°F . 10°
Propagation

- " Propagation
range
A E —zl=ﬂ.ﬂ; zz=ﬂ.1
1% zlzﬂ'ﬂ; ZI:D'I 10 —zl=ﬂ.1; zz=[l.3
z,=0.1:2,=03 z.=0.3:2.=0.5
0.3:2,=0.5 e S
z,=0.3; z,=0.
! : —Z =0.5;, 2z =1.0
z =D.5;zz=l_[} Al 1 2
102 F : 0 —z,=1.0;z.=1.5
zl=1.D; 22=l.5 1_1 . ;1_2 ;
z,=1.5:2,=2.0 Iy T 4y
zl=2_[}; :-:2=3_D —El=?...ﬂ; EE=3.[J
-d el T ..HTJ'- 2 Lo ososell § 5 5 i ddpl i HE - | . . ....,.41
° '1{:'.:' '11}1 -‘”}E .1[:,3 mﬂ, 10" 10! 1:|1|[|2 107 10
" P

The variation of energy flux function 1, with

The variation of energy flux function ., with
9y v the size of halo groups.

the size of halo groups.
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Decompose particle potential into inter-halo 10— o RS
potential (due to interaction with particles from | Solid line: -,

other halos) and intra-halo potential (due to | Dash line: -6 b
v -

iInteraction with particles in the same halo): 106 | . l :
= ¢ — ¢h + ¢V Inter-halo potential is relatively . 3
' independent of halo size . e
5 P
= Inter-halo Intra-halo EU ,,;;:': g Z ?
e potential  potential | =4 ;gg 3
10 7 ;“:
The virial ratios: %300, i E 5};;#‘ B ¢. —a
Intra-halo: 7, =-30" /4, w00 | B = h =
d Inter-halo: y, = 30h/¢h 1|:|“- R . -\ | : —Q, ~a m,
For large halos: 7, 1.3 \-‘“1“. H . e : 4
- due to halo surface energy Wy 10 10 ki 10 10
. g iyl F
ot “’“ Direct cascade for potential l". Variation with halo size for redshifts z
Wl P '|
‘ ' =0,0.1,0.3,0.5,1.0,15,2.0,and 3.0

energy from large to small " " e = pe
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d

101 .
10° : e
\Slnpe 1/2
M, /N

—e—M;/Nm
107 F —e—M /Nm_

—H—-*-‘:Th:bz—%:aﬁ}f{: 6>

—8— <y >=3< gi},&: 6>

; |
n, Sog {Thu}:_3{5ﬁu}’{¢hu}
._‘ .. ,1[]-2 i i i P S P PR

The variation of total halo mass M,, out-of-halo
mass M, and virial ratios with scale factor a.

107 =

Mass flux from out-of-halo to halos sustains the total
halo mass growing as M, (a)~a'?, as predicted from
mass cascade.

~ 60% of total mass are in halos and ~40% 1n out-of-
halo (single merges)

For the motion of halos, virial ratio (yellow) takes
longer time to reach equilibrium due to weak gravity
between halos.

For motion in halos, virial equilibrium 1s established
much faster with virial ratio =1.3 (yellow).

Virial ratio=2 (green) for out-of-halo particles(single
mergers). The out-of-halo sub-system is energy
conserved (no virilization), 1.e. KE+PE = 0.
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Total total kinetic energy of entire N-body
system (green line: 1+2+3) grows « t.

Total kinetic energy in out-of-halo sub-

Pacifi . . . . .
Northwest Redshift evolution of kinetic energies
1{]6 : : . - — [ |

32 m
10° :

] 2

10k ——1: Mh-:icrh:#Nmp —h—1+3 )

——2: M, <0’>/Nm_ —8—1+2
W P ‘
—ap— 3 M *-’i.:.lr‘?l >Nm — —s—1+2+3 |-

o ho p
10? =

107" 10° 10

a
Variation of three kinetic energies for halo and out-
of-halo particles with scale factor a

&

u

system (magenta: 3) is time-invariant.

The total kinetic energy of halo sub-system
(red: 1+2) becomes dominant over out-of-
halo sub-system grows « {.

(oi)={o7) =3

A cross-over can be found at around a=0.5.

A constant and scale-independent rate of
energy cascade can be identified:

2 2
_ W 3 0 2 s 46x10
21 21, 4

2
L, m

3
S
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The rate of mass cascade:

1
! : (o)~ (o7) =5 (") =
gmzﬂm(mh—>0,a)=—5Mh(a)Hoca1 O o, 9 G )*d
The rate of cascade of halo kinetic energy o,2: = Total mass in N-body system: M,
- | = Total halo mass in all halos: M,
- g p— H m —) O,a o g 0'2 — ——M a H 0-2 oC ao " TOtaI maSS in OUt-Of—ha|O: Moh
| (7 )= & < h> 2 " (a) < h> = One-dimensional velocity
= The rate of cascade of virial kinetic energy o2 dispersion in N-body system: u?
5 = One-dimensional velocity
_ _ 2 0 dispersion in all halos: <0?>
& = o (m” — 0, a) 9 M, (a)H <O-V > > d = One-dimensional halo velocity

- dispersion in all halos: <o,2>
# The rate of cascade of total kinetic energy: = One-dimensional halo virial

dispersion in all halos: <o, 2>
2 Vv
e o - E (8"’1 " gkv) M, (a) — —2H62 M, (a) ~ Su = Hubble parameter: H
) M, (a) M 4 M o Physical time: t

tot tot




\7/ Inverse cascade of halo radial and rotational

Pacific

Northwest kinetic energy o
: X I
.= Decompose halo particle position and velocity - |Solid line: [H, | |
: | Dash line: —th ? 1'??
Xp :Xh _I_Xp .“]2%_ '5!’ 3‘ ' ﬂ
| ' . ,'f‘;;_
— Iy i
u,=u,+u, 5 1
— *21:]1- =
| . in 107 | |
= Define the mean square radius r,,: ‘5“ 4> 4
nP 2 -
- S / _
» » o0 F ~g Eail 177..2
\/pl (peculiar) virial quantity E T i"‘$ th Jo (mh ) % Hrg
' . ]
_ Angular momentum: (radial momentum) ‘Hh‘ x f, (mh)ao'sl—]rg2
= L G o _
“-'I.?-._L | Hh — (Xp Xup) hp (X u ) 1D_11DU L .1.D1 N ....1.[]2 R ...1.[]3 L. ....1.[]4
p idl Pyl "
,
_ 3/2
% th (mh ’ a) a (mh Variation with halo size for different redshifts
G

) (Next slides) 2=0,0.1,0.3, 0.5, 1.0, 1.5 2.0, and 3.0.

H,(m.a) Sy (m,
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0

10 ! _ 0
9
\ .
10" 10°
=l ]
p i
£ ~0.284 mg | Blue: fm,) |
Mpc/h 2.27x10° M /h _ Black {_(m,)
‘“TE PR S - a i | PR R S R A P S M R o | PR - ry T P IREd:TG{mh}
10° 10’ 10 10° 10t o i’ w? o o
In n
p N
The variation of mean square radius r The variation of two coefficients fg, f; and ratio yg
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104 109 F
10° F
_ g 10% F
= F
= o
E,mf' r
= 10°
=
-
10° F
Dash line: K
10" : e
5 10° 101 10° 10° 10*
10 N
10% 2

2/3
1 3 3 2Gm,H
K= gMfo =3l ) =377, On )| 20

The variation of halo angular velocity, rotational 4 A,

kinetic energy and radial kinetic energy | s 1, [ 26m 1, T
KFP:E(th/rg) :Eyga [fG(mh)] {#}
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Vortex Stretching (shape changing) responsible for energy cascade in turbulence.
= What about the shape change of halo? 10 T
&= Assuming ellipsoid shape, 3x3 inertia tensor for every halo: '

— I R Three eigenvalues
iji pr,ixp,j » (length of I"M < 7’22 < 7"13
p=l

| semimajor axis) 100 b
§= Mean square radius: Same =
o ) ) ) volgr’ne s
10°

= Define two critical ratios: | Moment of inertia
: for ellipsoid ~—, , 5
rl r2 2 2/3 102 1 A O S U R S . L A
Va3 =1 Moment of inertia (rfilrfwr/w) 10° 10° 10° 10° 10*
for sphere P

for small halos. a Simulated halos: Change of halo shape
- ﬂ, ~ 0,5 unique path Of’shape _ . . should not play a Significant
1 ! evolution (green); ﬂ"”z =1 for sphere; ﬂ'ﬂ o [1 55’ 2] role in energy cascade. .
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i ARSS
raossrn \AI:I y
Oblate: I < Voo =713 Prolate: Fiy =71s < V3
= Triaxiality parameter:
R h, =1  prolate
23~ "2
h, =-—-5—= h, =0  oblate
Y33 ~ T
= Ellipticity & prolateness parameters:
Vi — T
h, = 43 4l h,=—h, oblate 2l
2(7”/11 +7,, +7'/13) 10° 10 15? 103 10
P

Vi — 21, + 1y,

h,= h =h  prolate The variatic_m of halq shape
2(7”11 +7,,+ ’”/13) g parameters with halo size at z=0
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- All three-body halos have planar structure (blue

0.5 | .

- n s Vortex Line = —_> line) with mean values of 1/8 and 3/8.
Bt stretching
4r| e =0 ) 'f}’lrilﬁtt; = The mean shape parameters for all halo groups
RSN g (black circles). Green circles highlight the halos
3, <h >vs. ihe> forn1;=[2 200] \ ] in range of n,=[3 200]. Halos are more prolate.
=== TFEvolution path ,./'_- f
e | = With increasing size, the shape of halos evolves
P consistently toward sphere along a unique path
| (green line) before a “V” turn. Path required
: A.=0.5.
np= ]
Tﬁ:ﬁs | = Red line with arrow pointing to low peak height
indicates the evolution path of simulated halo
1T (n;ki?f;) y shape from early stage (v=5) to late stage (v=0.5).
@ (b =) h, =0.098log,,v +0.094
02 Oblate 7
(1) =1 p=oho) @ -1 h,=0.0791og,, v +0.025
_0'30 0.1)5 0.|1 0.|15 o.lz 0.|25 0.|3 0.|35 0.|4 0.;5 05 Peak helght V= §cr/o-(mhaz) [5 tO 05]
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Inverse energy cascade Direct energy cascade Halo inertia tensor
Energy flux function Energy transfer function Halo mean square radius
Prolate & oblate Ellipticity & prolateness Halo moment of inertia
Halo virial/velocity Intra- and inter-halo Halo radial & angular
dispersion potential momentum

= Establish connections of energy cascade in turbulence and dark matter flow

= Direct energy cascade in hydrodynamic turbulence is facilitated by the vortex stretching
(shape changing) along its axis of rotation

= |nverse cascade of kinetic energy from small to large mass scales in dark matter flow

= Direct cascade of potential energy from large to small mass scales

= A constant scale-independent rate of energy cascade ¢,~a° and a is scale factor

= Energy cascade in dark matter flow is mostly facilitated by the mass cascade of halos

= The shape change of halos does not play the major role.

= A unique evolution path of halo shape that gradually approaches spherical shape with
iIncreasing halo size
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The mean flow, velocity dispersion,
. energy transfer and evolution of
rotating & growing dark matter halos

Xu Z., 2022, arXiv:2201.12665 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2201.12665
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Review: In hydrodynamic turbulence, “Reynolds stress” facilitates the one-way energy exchange
from coherent (mean) flow to random fluctuation (turbulence) and enhances system entropy.

Existing study of halos mostly focus on the spherical non-rotating non-growing halos with a
vanishing radial flow (fully virialized halos with slow mass accretion in their late stage).

= Goal 1: Explore solutions of mean flow and dispersions for spherical, Axisymmetric
axisymmetric, growing and rotating halos (fast mass accretion in their ~ ® means no @
early stage) with an effective angular velocity w, (t) and varying size r,(t) dependence.

= Goal 2: Explore the transition of halos from early to late stage

= Goal 3: Explore the role of halos in energy transfer between mean flow
and random fluctuation.

Density: 0, = P, (r,t) Potential: @ = ¢@. (r,t)
Radial flow: u, =u, (r,t) o, =0, (r,0,t)
The polar flow
(meridional flow) : Uy = Uy (l”, Q,t) O-;H - 039 (r,@,t)
azimuthal flow
(zonal flow): u, =u, (r,0,1) O-ci(p ~ O-;(p (r,H,t)
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x Anisotropic parameter should include effect of u,, or
= [he continuity equation reduces to: g, equations and 8 centripetal force:

_'_--_. ) ) 2 2 2 2
=y 1 5(7”2,0;1%) Variables: need extra ; :l_GaeJFGW ol | B :1_0'99+O'¢¢+% New
p +— S =0 closures to solve; h 262 i 262
Zr. ]/. ’/. rr rr
10% g T - -
Observations of flow on rotating sphere strongly suggest - Simulation s !
= that as the rotation rate increases, the azimuthal flow t .
i becomes dominant and the polar flow may be neglected.
With u, ~0 and o>, =0" =0, =0
= 2] ré re 0 1015_
The full momentum equations (Jeans’ equation) reduces to 2
2 0
ou, N ou, N 1 5(%%) N 2 2 Cop+0,, +il, N 0¢, 0 b >
e ur —O0,. — = _ _ _ __ %0 &
Ot or p, Or r 20" or TR R R VAR g
N — y o +ﬂp=3 —e—np=3 +np=4 ’ wl L0
= . 2 1 —p—0n =4 —5-n =4 —p—n =10|g
fa, 2 sinf oo P °_ P_
. For® u =o,-0, + = | o4 Gm(r.1) BECDEIR
Vo cos@ 06 . r— S - —&—1=20 —e—n =20 e |
r r . 2 10 0
o 8 6% au " U 100 | 10 r(I\prcfh) 10 | 10
SForg: —24+u —2+—2=0 0, = 1 om,(r.t) Circle: u,, ; Square: radial flow u, ; Diamond: ug

Ot or r 4zr*  or Polar flow can be neglected 84
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From continuity and momentum equations: = |n hydrodynamic turbulence, angular momentum
2 IS conserved during vortex stretching.
olow) 12l ]
ot e or v Pitly * |n dark matter flow, halo angular momentum is
The halo angular momentum is: not conserved and always increasing with time.
H, = _[Oh 27’ p, (r)(j: u, sin’ Hde)a’r = The Tidal Torque Theory (TTT) relates the

angular momentum to the misalignment between

= Time evolution of angular momentum: the tidal shear field and halo shape.

— K7 7 . or;
Gth =271 p, (rh)jo u,(r,,0)sin 26’61’9(@—2’—@1 (, )j
= The halo angular 5,

&= momentum s

= conserved only if

= TTT predicts a linear increase with time t for halo
with a fixed given mass H, ~¢

—=u,(r
Ot (1) = Agrowing halo may obtain its momentum
through continuous mass acquisition and H, ~ ¢*

However, for ﬁrh Gt > (0 8H
=9~ orowing halos ( ) »
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From continuity and momentum equations: ® In hydrodynamic turbulence, the "Reynolds” stress
facilitates the one-way energy exchange from coherent

@( Ph“; ) | a[( Ph“; )urrz] o u ) (mean) flow to random fluctuation and enhances entropy.
: _ 3 . o — —
N af. o I ﬁf” / — r * |n dark matter flow, the production term describes the
derivative advection -/ production fictitious stress acting on the gradient of mean radial flow
$ Fictitious  4r4dient  to facilitate the energy transfer between mean azimuthal
_ stress flow and random fluctuation.
®#=~ The halo rotational kinetic energy is
= obtained by integration: = Since u, is positive in core region and negative in outer
— region, the energy transfer is two-way, i.e. energy is drawn
K, = EJ‘O 2y I (Ph )sm 0dOar from random motion to mean flow in outer region and from

mean flow to random motion in core region.

\ 4

= However, for entire halo, there is a net transfer from mean

B Time evolution of rotational kinetic energy: flow to random flow to enhance the halo entropy.
: ;’i‘f‘- oK 2 . or o o U T, 1: surface contribution from
e — =77, (rh)jo (rh,H)sdeH(a—;’—u rh)j—J‘O 27y Py (IO u, smﬁdﬁ)a’r mass cascade

. . 2 Y ” 2: bulk cont. from energy transfer
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Key: decomposition of velocity dispersion: |
separation of -y, (1-,6,1)=a, (1)r, (1)F,(x)K,(6)

— Introduce reduced x(r,t) __r __¢r variables: ¢
= spatial/temporal coordinate: r(t) (1) ) ( 00 ) ; ( 00 ) ; ( P ) 5 ( )
- o (r,0d=0,1)=0,(r,0=0,1 =0, (0= JL)=0,\7,!
A== 039 (7’, 6',1) = Gfo (’”J) Ta, (r,t)u; (7”, HJ) * Spin causes velocity anisotropy; Velocity dispersions can
Yy DY ’ be expressed as a function of azimuthal flow u,,.

1: Axial-dispersion 2: Spin-dispersion| = Velocity dispersion is expected to be isotropic for non-
— 2 ’ rotating halos with a spherical symmetry.
—0,,(r0.t)=05(r.t)+ B, (rt)u,(r.0.t) | . For spherical halos with a finite spin, velocity dispersions

o (r, 99;) =0, (r,t) +7, (r,t)u; (r, (9,;) are only isotropic along the axis of rotation (6=0)
' Halo spin E‘a) aln;?/\ Mass
+ bt : cascade

&= Momentum 6u(p 6u(p u.u, 0 o OlnF, “h (x) x( Olnt  Olnt j
== ; i:.. ..: . . - _|_ ur _|_ — —

= equation for ©: Py or B Olnx leln’”s —u, (x) —— Radial flow

nt

= Momentum , . _, sin@ oo, with an 1+8,-a,
o o9& _ — . 4+ . . ay —
B cquation for g: Yo =90 TP Ty 50 = K,(0)=(sin0) angular G 2a

exponent @
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Momentum & au 1 0(po.) 2 2(1_0§e+05¢+”a+5¢r_0

equation forr: 5, T +10h PV 207 Py
Equation for axial-dispersion: ‘ Equation for spin-dispersion:
op,0 oln(y,u,) olnp rF, (7t
8ur+ur8ur+ 1 (Ph r0)+a¢’"+Fa(r,t):O and 8\140 of . = I : )
Ot or p, Or or nx nx Yoy
The coupling function reflects the coupling between axial-dispersion and spin-dispersion
Two anisotropy B = 1-a, o = (a(p + 5, +1)
. hl 2 2 a
parameters are related: 1+o;0/(7/¢u¢) 2y,

For virialized “small” halos with slow mass accretion (late

2 2
stage), the axial- and spin-dispersions are decoupled. I, (r,t) =0 and O, >y u, = p,=0

!'{-;7._‘ 2 Axial-dispersion is dominant to balance grauvity.

For “large” halos with fast mass accretion (early stage),
4 ® the axial- and spin-dispersions are decoupled. a Py

0
F (r,t)z— 9, and O'rzo < 7/¢u;‘ﬁh1zl_aa

Spin-dispersion is dominant to balance gravity.
88
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We still require a clear definition of “small” and “large™ halos.

Enclose mass within radius r Halo density The ratio of core mass to halo mass:
F(x m, (1) F (x F(1 1
mr(r,t)zmh(t) ( ) ph(r,t)z h(3) 2( ) Cr= ():mr(rs )
F(c) 4rzr} x*F(c) F(c) m,(¢)
Peak height: From spherical o is (root mean square) fluctuation of
collapse model the smoothed density
V= §cr/0(mh,z) 0, ~1.68 At same redshift z, large halos has higher v
Properties of “large” halos: Properties of “small” halos:
= Early stage of halo life with high peak height v = Late stage of halo life with low peak height v
= Extremely fast mass accretion = Extremely slow mass accretion
= A growing core with scale radius r~t = Astable core, constant scale radius r; and
= Growing halo size r,~t and halo mass m, ~t constant core-to-halo mass ratio Cy

= Constant halo concentration ¢=3.5 (limiting ¢) = Increasing concentration c~t*3~a and m,~F(¢)

89
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Couplin 10° ———y
Foho Meanflow:  Velocity dispersions: |
F (rt)=0 u.=u,=0 o’ =0, =0,+u,
Anisotropy parameters :  ¢f_ =1 :Bhl = () ol
Angular exponent : o, =1 o
_ 5 _ _, =0
1+a¢—,3¢—7/¢ a(p—l ,B¢—7¢—2 S
10° F
Properties of “small” halos (continued):
" Virialized and bound with vanishing radial flow
2 = Incompressible (proper velocity) with V-v =0 T %o
B " More spherical and isotropic an_z w T
B = Axial-dispersion dominant over spin-dispersion r (MPc/h)

9.1 = = Azimuthal flow u,, strongly dependent on polar angle 0

§ = Negligible surface energy The variation of mean flow and velocity dispersions

from N-body simulation
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Northwest ENErgy equipartition along three directions

Table 2. Velocity dispersions for rotating and non-rotating halos

Radial () Azimuthal (@) Polar (@)

Rotating halo Random of; = G'fo + 2”; 0';;» = 0':‘0 + 2”; 0'929 = O'fo + “;
(Eq. (9) Mean flow 0 , 0
Non-rotating halo Random o’ =0, =0, 0";} =c, Ooy =0y
(Eq. (50)) Mean flow 0 0 0

Due to finite spin, kinetic energy is not
equipartitioned along each direction with the
greatest energy along the azimuthal direction and
the smallest along the polar direction.

Different from usual objects, halos are hotter with
faster spin due to energy transfer between mean
flow and random motion.

"H}i_ T T T T T 1

10 [

10° |

| =— .5,_4..‘ x for 1‘-lp:[‘:l 8] 8 - x, for nP:[l 00 200]

1 it M for HP=[4 8] = v o for nP=[1 00 200]

| —— o for np=[2t: 40] e 3 -ar for nP=[5 00 1000]
) -y for np=[2D 40] = = a.!"_ﬂ::.-" for np=[5 00 1000]
10° 107 10
r (Mpc/h)

The variation of dispersion parameters
G<P’ B<P’ and Y<P 91

10
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Northwest Solutions for “large” halos at early stage
%or]Lér:II:)r;]g Mean flow:  Velocity dispersions: "ﬂ'ﬁg S S i R SR R T

2

— 0 _ 2 2 2
— F;(r,t)z_ﬁ ue—o O —O-¢¢—O-99+u

rr ¢
or
Anisotropy parameters : IBm ~ ,Bh 0k n_=[5001000]
i Angular exponent : o, K 1

l'~11112."sE

p,=a,+1  a,>1 y,~a,+10

107 F

E— —"ﬁf}
Properties of “large” halos (continued): — oy
= Non-virialized with non-zero self-similar radial flow — , —0, ¢:ﬂf§5
* Spin-dispersion dominant over axial-dispersion o T .
= Azimuthal flow u, is less dependent on polar angle 0 r (MPch)
= Non-zero surface energy The variation of mean flow and velocity dispersions

from N-body simulation
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Northwest Solutions for “large” halos at early stage
Radial flow: ¥, (X) =Uu, (7”) =X—— From NFW Profile ——1=[100500]
I/:V(t) F(X) n=[41 —n =[53001
Azimuthal F(x) p_[ a ;100 1000]
flow: u(” (l’, g’t) - u(" (X, 9) - afa)h (t)]/:? (t) X 10° f _ﬂp_[lﬂ 100
Axial- 5 ovx F?(x) ) e 2F (x) - 2F*(x)
dispersion: 70(¥)= 47[202F'(x){x2F'(x) ) L x> F(x)x’ i %m
Angular (3 1) ¢ . 16>,
velocity: ** {2% 2JF e, A T
"H:ID =
Dispersion oy < F*(y)F (») F(y)F (y)
E parameter: 7/‘”(x)_F2(x)F'(x){18L y’ dy”’fjx ! D
: _1{|-1 L
97Z2F(C) - 0 rMpety 1
- AT A

== Deformation
‘ - - a +5 +1 1-a
4 ¥ parameter: Anisotropic ( @ 'Bcv ) ,3;,1 — a

a, parameters: @, = 27,(/) 1+ O'fo / ( 7¢u; )

The variation of azimuthal flow from
N-body simulation and comparison
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10° p R e — . ; — g T ; ———
- The variation of angular exponent ag and i | Variation of new (1) and traditional
[ anisotropic parameter a, | '. ' anisotropic parameter ([3,,) and comparison
[ 1 [ : -
. i 1 L - -, ‘ \
L 1 E =
- 1
T
' -
L -
i§ - ;"'#’ i
[ |t forn =[48] - - ., forn =[2040]
ol ;l,.* I P hl P
107 | vy ; — o forn =48] ——a forn =S[100200] § | o[ RO  fy fern SI00 200 1]
; .: L - -0, B =48] - -, forn =[10020] ; ul ‘ —— i, forn =[100200] - - B,  forn =300 1000]| |
~1, o, for 1y ={20 40] —— a1, forn,=[500 1000] 1 ; e}, forn =500 1000] mmmuPredicted
] - - o forn, =[2040] - - -, forn ={500 1000] 'I: = = -/, forn =[4 8]
10 L—T 1 ' I I | r  S— — B ! — ’ |

-2 -1 a q
10 10 10° gy 1t

r (Mpch) ° r {(Mpc/h)




Northwest Halo momentum and energy in terms of F(x)

Moment of inertia: Angular momentum:

Mean square radius:
rz—ij‘rh47zr2 ( )rza’r—r2 1- 2 er(x)dx = y?p? Iwzgmhrgz Hh:za)hrgz
— g mh 0 IOh ~—'h CZF(C) 0 T yg h 3 3
(physical) 3 Specific momentum tensor:
radial linear [, =— | "4zr’p,u dr = (1— i (x)dx)l—[r - 7

s — — momentum: I h ( )'[ h | th/3 _Hh/2 0

=— (peculiar) —j X@llppth: Hh/z th/3 0

- - 1 4 ¢ m, °V
8  radial linear L, ——j 47cr’ pyu,,dr =—| 1- jo (x)dx |Hr, h 0 0 th/?,
—— momentum: 2 eF(e) | - §
| (physical) 1 o

¥ = (phySICaI) G :LJ‘F" 472'7"3,0 U dl" 23 1— 3 '[CXF(X)CIIX Hr2 I’adlal k|net|C K :2_ urz (raa)47””2,0h (r,a)dr

= virial quantity: e ¢*F(c) %0 h energy: m

(peculiar) 1

(peculiar) 1{ 5 e , S
= " «. G =—/|"4xr’pu, dr==|1-— xF (x)dx |Hr; radial kinetic &, =5
virial quantity: j W F(C)jo energy: h

Angular H - 11y e (G _G ): 1 1)y < 12 Rokfﬁgﬁgall{ :—I 271 p,, ( (I —u smé’dﬁ)a’
momentum: " la, 3 F(c)af o a, 3 F(c)af 8 !
energy. 95

rh u2 dzr’p, (r,a)dr
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Two definitions of spin parameters:

——— 1/2 1/3
H, |E ' H,
= A= h| h| and ﬁp NG Mean square . =y r=v.a 2Gm,
= Gmh chr radius: £ g £ ACHS
= Halo (specific) energy and angular momentum: /s
E =0 +K and H =+ Hy> Virial 2__p Do = 1 A, H Y 41
== h h h h 7/H h dISperSIOH O-v h 3 3 7@)/1/ 2 (Gmh 0) a

[ (specific) potential energy:

._ ;_.._;:_ . . cFx F' X
(Dh _— Gmh _ _mLJ'O 472'1”2,0h (r,a) Gm r g — _%%DA H2Vh2 and Ve :[ C J’O ( ) ( )dx} ~ 1
h

X

1= & Halo (specific) kinetic energy and rotational kinetic energy:
' 1 3 Circular v, = JA /2Hr, =37 Hr
K,=3/20, =(n,/2)®, and K, z5|Hh|50h =z(|Hh|/’”g )2 velocity: " o[ 2Hr, g

B 4 n, | K, 2 A K ;/H Spin parameters

between rotational and
virial kinetic energy

“ - 9 ." ' 27/ Ka 1 Ka '
o =7, L=§7/g\/27/®7v > —> /1p—3ﬂ_\/_~0038

v
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Table 3. Relevant parameters for two different density profiles Table 3. Relevant parameters for two different density profiles
Symbol ~ Physical meaning Equation Isothermal ~ NFW profile Symbol  Physical meaning Equation Isgilz_ﬁgal T;if Cl: m_ﬁz)e
.proﬁle with , =0 with &, =1 and ¢ : 3.5
AL mdeoss Specific virial quanti Eq. (102) 0 :
F(x) Function for density p, Eq.(33)  «fc In(1+x)-x/(1+x) G, pectiic virial quantity q- (102) -0.027 Hr;
1 - ; 2 2
a, Deformation parameter Eq.(66) 1.0 0.833 Gig Peculiar virial quantity Eq.(103) -Hr'f3 0348
f Deformation rate parameter ~ Eq. (69) 0 12 H Specific angular momentum _ Eq. (105) Hr; 0511Hr,
i : ,
; : 1.5H 238H
a; Constant for functionF@ (x) Eq.(77) 2¢ /3 9.20 D Angular velocity Eq. (81)
Radial kinetic ener Eq. (108) 0 o,
A Constant for equation for 7, Eq.(92)  97%/c 10.895 X, S gy 4. (105) 000028,
K Peculiar radial kinetic energy Eq. (109) g% /6 0.1937H 2
Ve Coefficient for H, Eq. (106) 13 0.511 G S &y *q i g
K Rotational kinetic energy ~ Eq.(110) H*%’/3  0.7658H%
Vs Coefficient for potential ®,  Eq.(113) 1 0.936 - , Fp— —
T— Eq. (115) 15 3 Q, Halo potential energy Eq.(112) -97°H r. -844r°H'r;
& ‘ _ i | ' A, First halo spin parameter Eq.(119) 0.018 0.031
yi=r 1} Ratio of two halo sizes Eq.(73) 13 0.3214 , ,
= £ : : A, Second halo spin parameter ~ Eq. (119) 0.025 0.038
L Specific radial momentum  Eq. (100) 0 0
L, Peculiar radial momentum  Eq. (101) - Hr, /2 -0.5014r,




\‘7/ The energy transfer between mean flow and

Pacific

Northwest random flow in “large” high v halos
Two contributions for ch ange of halo momentum Table 4. The rate of change of halo momentum and energy for two different density profiles
/energy: _ _ _ Symbol  Physical meaning Isothermal NFW profile
S1: Bulk contribution from internal exchange with @, = 0 @, =0;c=35
between mean flqw a_nd random flow oL /ot radial momentum 0 0
S2: Surface contribution from mass cascade s Bulk contribution 0 02m 7, /P
Examp|e: [ | S, Surface contribution 0 —0.2m,r, / t
8Zh m,n, 1 1 2 c 0H /0t angular momentum xmtly X mby [ : _1]
=—2* | 1-—— |+ — IOF(x)dx 1 7 4 ¢ |2a, 2
ot ! @) \ @) cr C?r / S, Bulk contribution 0 0
: 5 S, i S, Surface contribution T ﬁ 7 m,Hr; ( 301 ]
* For angular momentum, all contributions from S2, 1 7 4t |\2a, 2
— I.e. mass cascade. oK for  radial kinetic energy 0 0.0062H"r m, /t
=« For radial kinetic energy, two contributions are S, Bulk contribution 0 ~0.0391H°r; m, [t
== Comparab|e_ S, Surface contribution 0 0.0453H°r. m, /t
= = For rotational kinetic energy, contribution from S2 &K, /ér peculiar radial kinetic energy  H’rm, /(61)  0.1937H’r; m, /1
2 is dominant, i.e. mass cascade. 5, Bulk contribution —H'rym, /(3t)  —0.6525H"r, m, /[t
2 = |n addition, local energy transfer can be two-way. S Surface contribution Hrym, /(2t)  0.8462Hr, m, [t
B S1<0 for entire halo, one-way net kinetic energy @K, /ér  rotational kinetic energy H'rjm, [(2t)  0.7661H’r m, /1
is transferred from mean flow to random motion to S Bulk contribution 0 —0.0801H 1, m, Jt

enhance halo entropy. 5, Surface contribution H'r, /2 0.8462H°r, m, [t
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Pacific
Northwest Halo relaxatlon (stretchlng) from early to late stages
o TR 7 = Two-parameter Einasto profile for relaxation
' CFﬂ 15 —C,=035 F(La) m(r) i = The path of evolution in c-a space (shape
_ci=u_:a _::F=n-4 Floa) m :CF(f): parameter vs. concentration)
e 0 =0.27 == = Evolution Path (N-body)
: : = Contour for constant core/halo mass ratio C¢
10° |
| = Evolution path from N-body simulation (green)
Large
=30 = Simplified path for analytical calculation (blue)

Blue segment 1 (BS1): constant c=3.5
Blue segment 2 (BS2): constant a=0.2

-

[
L
1

stage &:0-25 Small Late = Path to composite halos with a=0.7 (red)
1=0.5 stage {  follows a constant Cr = 0.27; Adiabatic process

= (Goal: explore the continuous variation of halo

00 - ~ . shape, density profile, mean flow, momentum,

peeEen e and energies during halo relaxation. 9
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— Extend key function F(x) to two-parameter function F(x,a), where a is a shape parameter:

= 1 Om, (r,a) _m, (t) F (x,a) _ B F(x,a)
p, (r,t)= o 4 xF(ca) Enclosed mass: m, (r,t)=m,(t) F(e.)

op,(r,a) 1 0m(r,a)  om(r,a) ) o .
: s 4 =—4 From continuity equation
' Ot 47{1/2 orot ot o, (r.a)py(r.a) ( Y e )

= Early stage “large” halos: u,.=0 and u, =0
Up =Uppy, + Uy T Uy, radial flow from cascade u,,,, is dominant;

From mass 6lnr F(x « 81n m, = Late st “ I” halos: all th dial
cascade: 8lnt F ( olnt ate stage "small” halos: all three radia
flows vanishes and u,=0;

From conc. Olnc X, )
uhc
change: OlnyF (x,a) 5‘1110
a)
)

* For halo “relaxation” from early to
late stage (BS2), we expect a

alnF(c,a) (9111F(x,a)} constant r,, constant a,m,~F(c,q),

: From shape Glna X, X
g u,,=0, and u,,+u,.=0

change: \olnt/ F X,

Oln o Oln o
100
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1 =& During BS1 with constant c=3.5 and constant
C, decreasing a involves significant change of
density in halo core, i.e. steeper density slope

c=3.5 and increasing core mass.

1
£ a=0.45 i = During BS2 with constant a=0.2, increasing ¢
0 ;‘\ involves a stable core (constant scale radius r,
< m,F (1) N , constant core mass, and core density p.) and
N e xtending halo skirt (“halo stretching” vs.
e T a3)ar’F (c.a) v N o ? tending ha 0 | .t( alo s g
* BSZ: -, vortex stretching” in turbulence).
- E 1‘
-I TNV L B : | = Vortex stretching: anisotropic, volume
+ |[=—Emasto{c=3.5; 0=0.T) +Emasto(c=224; o=0. k ' .
I O e N e t conserving, constant dens_lty, apd
' |—Emasto{c=3.5a=02) = = Emasto(c=28;0=0.7) | decreasing momentum of inertia.
|- - NFW(c=28) ;
1|:I-‘|3 " ||||||iﬁ 1 .||||||i-‘ A .||||||ic A .......l.‘ f .......l.ﬁ .
* ¢ K 1§ N - “ = Halo stretching: isotropic, increasing
Variation of halo density normalized by the volume, varying density, and increasing

average core density p. (with r<r,) momentum of inertia. 101
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107 ¢

- [Red: Path 1) in Fig 11 L7
L Green: Path 2) in Fig. 11 d
| Blue: Path 3) in Fig. 11 4

' | Black dash: Path 3) with NFW ’

w
T
ey

i

=%
=

2

Moment of Inertia I¥

2,

17 101 104 107 10

Concentration ¢

Variation of moment of inertia
with concentration ¢

Moment of inertia from early to late stage

M%Qﬁir]at:()f ]co :gmhrz _%mh 2F (a C)
s e (e) = JF (<)
F (a C):(aja F(5/05)—F(5/a,2ca/a)

o\ &> 2) T(3/a)-T(3/a,2/a)

+ = Red path is adiabatic with constant halo mass, with

both angular momentum and rotational energy
conserved.

= Green path from simulation shows significant
increase in moment of inertia from halo “stretching”.

= Simplified blue path with constant r, and core mass
shows the increase in moment of inertia that
plateaus at large c.
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—m(©  —K(©
|1 (0) & H () —— ()
|—2,(0) - = A
_CF

Early
stage

Late
stage

101 102

Cocnentration c

Variation of halo momentum and
energies during halo relaxation

107

Specific rotational

Variation of mass, moment, energy during relaxation

1 3 2
kinetic energy: K :E|H’1|w’1 :Z(|Hh|/rg)

Specific angular

Ap: spin
momentum:

2
H, ==,
3 parameter

For early stage “large” halos:
A, 0031 my,oct [Hjoct K oct’
C.=027 r,oct @, ct’ @
For late stage “small” halos:
A,~0.124 m, oc 1 ‘Hh‘ oc ¢’
C,=0.083 r, ct’ @, ct’

Spin-dispersion
dominant

\ 4

Axial-dispersion
dominant

0
p Ol

K, ot
D, o’

Halo “relaxation” (via BS2): with constant a=0.2,
Increasing c, constant r, , core mass, and core density
Specific rotational kinetic energy is relatively conserved
‘Hh‘ 1, @, C rg_l

Spin-dispersion dominant to axial-dispersion dominant _
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Early stage “large” halos Late stage “small” halos =~ Core mass ratio Axial dispersion
Vortex stretching Halo stretching Fictitious stress Spin dispersion
Path of halo evolution Radial flow Energy transfer
“relaxation” decomposition

#=——— = Review one-way energy transfer via vortex stretching in turbulence;
$=— = Halos enable a two-way energy transfer between mean flow and random motion;
= Analytical solutions of mean flow, velocity dispersion, and anisotropy parameters for halos at their
: early stage and |ate stage using decomposition of velocity dispersion.

= “Early-stage” halos have their mass, size, kinetic/potential/rotational energy, and the specific anqular
momentum all increase linearly with time via continuous mass acquisition. Halo core spins faster
— than the outer region.
B = “Late-stage” halos are more spherical in shape, incompressible, and isotropic. Due to finite halo
' spin, Kinetic energy is not equipartitioned along each direction with the greatest energy along the
=~  azimuthal direction. Halos are hotter with faster spin.
BT = Identify the path of relaxation via halo stretching for halos relaxing from early to late stage involving
f continuous variation of shape, density profile, mean flow, momentum, and energy.
= Might extend to consider effect of black hole at halo center on radial flow
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Maximum entropy distributions
in dark matter flow

Xu Z., 2021, arXiv:2110.03126v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2110.03126
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“7/ Maximum entropy distributions in kinetic theory

Pacific

Northwest Of gases
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~  Review on how to derive maximum entropy distributions (Boltzmann distribution)
Assume the distribution of one-dimensional gas molecule velocity is some unknown function X(v)

&= Two constraints on X(v), normalization and fixed mean kinetic energy:

jj:oX(V)dv=1 and jiX(v)g(V)dv:%kBT:%gg

. Write down the entropy functional with Lagrangian multiplier:
S[X( J- v)In X (v a,’v+/11(_‘._oo X(v)a’v—l)+}u2

spect to distribution X:

Particle energy:

g(v):3v2/2
L]

3
X(V)e()d =205 | 1his is the key to
be identified for

dark matter flow

oS X(v) Bolt
OOt 270 erlir) S

&= Maxwell-Boltzmann Z(v)= 2V o200 g DiSUDUIONTOT gy o | £ el
p y distribution for speed: Nrol particle energy: 7o, O,
‘ 0

Taking the variation of the entropy functional wit

106
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Northwest Maximum entropy distributions in dark matter flow
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Goal: maximum entropy distributions in DMF

______ Symbol Physical meaning

X(Vv) Distribution of one-dimensional
particle velocity v

Z(V) Distribution of particle speed
n, 7, ,, A E(¢) Distribution of particle energy ¢
o (npl) o (nﬂ) o (npj) o (ﬂp4) ------ H(o,?) Distribution of particle virial
3 3 > 5 dispersion 6,2 (halo mass function)
Oho T o Cho o AL

- A I -law for two-body potential:
= Long-range and collisionless nature SELETAl pOWRImIAW 0T TWO-DOTY poteniia

| = |dentify all halos of different sizes at given z V (;/-) oC r"
== " Group halos according to halo size n,

=-1 for standard gravity
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=~ Decompose particle velocity into halo Gaussian velocity distribution (Maxwell-Boltzmann statistics)
= = velocity and velocity fluctuation is expected for all particles in the same halo group.
& (“Reynolds decomposition”) 1
.- : o0 2 /252 :
V =V, +V X(V) =I e 2 H(O'f)dO'f weighted
| P h p " |\\N27mo 3 average
: Similarly, decompose velocity 1 i of articles
= dispersion into halo velocity Boltzmann # Ol P
—= . : L . : distribution in halo group
= dispersion and halo virial dispersion
2 2 2 ol [2 v L |
O =0, +0, Z(V):I 2 o /20 H(Gf)daf weighted
P o 2 o\ 7 o° average
Halo group Halo T 1

Maxwell-Boltzmann # of particles

o2 = Var(V ) Halo group temperature is distribution In halo group
= h independent of halo size -
Inaep Relation oX
2 ' 1+n/3 between Z (V) — _ZV_
O, =var\v jom, X and Z: OV 108
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In a given halo group, from Virial Theorem: For entire system, energy of all particles with
2<KE> —n<PE> _0 a speed of v:
g g
. . S 3 3
The specific kinetic energy of particle in that group: ( )dv 2| — 2 v X (v) dv
n

(KE), =(3/2)0"

The total specific energy of particle in group:
P g3y 3p SHOHD g, (v)dv X(v)v2

:<KE>g+<PE>g:(E+Zj02 5("):@2 Z() (3+gj

Energy distribution with respect to particle speed v:

Energy per particle with a speed of v:

(v = 0 oX # of particles

< (> Mean particle energy (V) o Va_ with speed v
8h> = j g (v) dv e . v

o " or entire system

Energy distribution with respect to particle speed "'

( ) Energy per X( ) 3 3

Ne, (v)dv= Jm gie_vz/z"zvag (O‘z)H(O'Z)dﬂz particle with g(v) N 0X | Ov (E nj
" "Nz o’ JR N S A a speed of v:

e 1
\ D) ) 109
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Deriving maximum entropy distributions in dark matter flow (X distribution)

Two constraints on X(v): Particle energy:
- » 3 3
J-_OOX(V)dv:I and j_wX(V)g(V)dVZEkBngag

Write down the entropy functional with Lagrangian multiplier:

S[X(v)]:—jj:OX(v)lnX(v)dv+ﬂ1(j_iX(v)dv—l)Jrl

This is the key

Taking the variation of the entropy functional with respect to X:

5S(X(v)) 1 —Ja2+(v/v(>)2
=—InX(v)-1 A 0 L
SoX n (V) A4+ 2‘9( ) — X( ) 2o, K (a) The X distribution
;+ 2 distribution Z(V) ) 1 —\/a +(v/v )’ E distribution for e o 7/2 .

for speed: Bl K, ( Vo \/a v/vo - particle energy: E(g):—3(n+2) oK ()7

110



o

Pacific
Northwest

NATIONAL LABORATORY

Gaussian core for M <V,

X(v)

2

e
2av,K,

V2
2av§ X(V) -

(a)‘”‘p(‘

Exponential wings for

- 2av0K1k(a) L

1 vj
exp| ——

= 07
06
= 05"
04F
03}
e 02+

\

ﬂ — =0 (Laplace)
—a=1.0
—a=10

= a=00 (Gaussian)

Bessel function

| X is a two-parameter

distribution with
shape parameter a

| and velocity scale v,

\

5

The X distribution with different shape parameter a

0

D5

Probability distnibution linclion
th:l i
(23]

Maximum entropy distributions in dark matter flow

Gaussian
core

Exponential
wings

R

e The X distribution
—u with r=0.1Mpc/h

1 1

45 -4 -2 2 4 i

0
uL std{uL}

Comparison with N-body simulation
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06

05F

04r

03F

02¢F

01F

Maxwell-

—a=0 |

Bultzmann ——a=10|
—a=10

=00 |

{II_I5 “ll 1_I5 .'IE 2_I5 SI 315 rrll 4:5
"iJ:".:;r
0

The Z distribution for particle speed with

different shape parameter a

Probability distribution

3

25

Maximum entropy distributions in dark matter flow

— Naxwell-Boltzmamn
—n=1.5

—n—=-1.0
e 11 ==(). 5

15 2 25_ 3 35 4 45 5
IEIJ’cr

The E distribution for particle energy with

different potential exponent n
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= 1 e @ +(v/) X(V)V 3 3 : | | ' ' |
) (()=-22.2) LB |
2av, Kl(a) oX/ov\2 n S —
At e .
2 =~ -
. 3 2 V | - — .
Partlcle. E(V) _ _(l_l__jvg a2+ X 15 - -
energy: 9 7 v, . _
Gaussian core for M <V, =T .
Inner halo, af |
3(. 2 , vV , | ===  Newtonian =15
&(v)=~ 5 1+; v F5 |V behavior il :z:g |
il =1 3 |
Exponential wings for M >, Outer region of haloﬁ”j - ::__blujy smulation |
4mm non-Newtonian s ' . - : .
3 2 . 0 S 1 15 2 25 3
g(v) R 5 l+—|y,vecy behavior o
n
¥ Comparison with N-body simulation

External field effects
and MOND?? e
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Maximum entropy Velocity distribution  Entropy functional
Speed distribution Energy distribution Particle energy
Gaussian core Shape parameter Velocity scale

& exponential wings

= Statistical theory for maximum entropy distributions of velocity, speed, and
energy in dark matter flow

= Halo mass function can be a direct result to maximizing system entropy

= Maximum entropy velocity distribution (X distribution) naturally exhibits a
Gaussian core at small velocity and exponential wings at large velocity (as
observed from N-body simulations)

= Kinetic energy of dark matter particles follows a parabolic scaling for small speed
(e~v2, Newtonian) and linear scaling (e~v, non-Newtonian) for large speed. This
might be relevant for "deep-MOND” behavior.
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Halo mass functions from
- maximum entropy distributions in
collisionless dark matter flow

arXiv:2110.09676 [astro-ph.CQO]
https://doi.org/10.48550/arXiv.2110.09676
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Halo mass function, the most fundamental quantity V= 52/0.52 (mh) S =1.6865
Conventional Mass function from nonlinear collapse ¢ | ¢
» Press-Schechter (PS) formalism V) = o[ -
= Threshold overdensity from spherical collapse- Irs (v) N _[O f(v)dv =1

= Extended PS using an excursion set approach

= Qverdensity as a random walk process 5 I i
= ST model for (v) — 4 <q 1+ o2
= Ellipsoidal collapse model gives a mass- mp T (qv)p 2\/;

dependent overdensity threshold

Mass function from mass cascade in dark matter flow A=032 ¢=0.75 p=0.3
= Double-A mass function 4=05 g=10 p=0 = f, (v)
= Assume two different halo geometry

parameter A for different size of halos. \ 7
The mass/energy cascade as an intermediate (2 770) 421 v
statistically steady state for non-equilibrium systems to for (V)= I(¢/2) v oxp _H
continuously maximize system entropy. 1 0

n,=0.76 q= 0.556

Are there or what are the connections between
- =0.5 =1 1%
halo mass function and maximum entropy?? o 9 = fPS( )

116
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® . Symbol |Physical meaning
® X(v) Distribution of one-dimensional particle
® . """" velocity v
: Z(V) Distribution of particle speed v
® . E(¢€) Distribution of particle energy €
o oo oy | H(0,2)  Distribution of particle virial
)| o (m) | o2 (my) () | dispersion 0,2 (halo mass function)
= - - e J(0,2) Distribution of halos with virial
____ " " " " dispersion o2
2 » Long-range and collisionless nature P(v2) Distribution of square of one-
= |dentify all halos of different sizes at given z dimensional particle velocity v
| = Group halos according to halo size n,
4 oo Sl PV v 0 LV A V (r) oc " n=-1 for standard gravity

N(01)=5, =], H(o))oido? (o) =(0)+(0}) =0,

0
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_r 1
- 5=

e_vz/z"zH(Gf)daz

1%

Relations between maximum entropy distributions

The X distribution for maximum entropy principle:

e [ (- IfH(crf)e“z’Z%f

)=l

0 0 1

27TX0

—x/20' H(O_z

)d0'2

b= ||, P(x)ede= | H (o)

J1+ 2062

()= (o) ()
N = J?J(Gf)np (Gf)daf

Average number of particles per halo

[ gV m) N

X(v)z m) P

2av, K, (a) ()= 20K, (a)Vx

. ‘2 1(05\/1+2vo )
j H(Gf)e(”dof:
’ 1( \/1+2vt

2/3 ) )
m, o (mh) o ( mh) Introduce
V=l | T 57 T = dimensionless
m, o, (mh) Oy variable
‘ Halo mass function is

intrinsically related to H, and
hence X, the maximum
entropy distribution
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AAAAAAAAAAAAAAAAAA LapIaC|an or
exponential
/
N o v (o) (7)) xX(v) [H(x=0}) P(x=v)
2 —Jvfoy _x/o? _JI=/o,
0 1 0 2o 0o o = - / S °
2 20, o, O, 2x
ITong rar]ge 4 i Kl (a:) B <U'§> ﬂ'ﬂzKl (CI) ﬂ-é (Té E_ﬁ.l"f{"‘ﬁh}l/ X distribution E‘ﬂ‘II“LI/‘t%
= Interaction 2 K,(¢) o, ak, () 2 2 2avK () Zm—*ﬂKl(af)\/:?
& _VzXszul —xflﬂ.%
§—— Shortrange e e
= interaction 3 * 0 o 0 Pro 5(x) Ny
T 0 0
Gaussian
Integral transformations between distributions:
o0 o0 0 0 |
—vt 7. 2\ o2 7 2 —xt .. _ 2 2
LOX(v)e dv_jo H(o?)e P do! [ P(x)edx=] H(GV)JIHGZI do-

119
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We first consider an extreme case, large halos with 0,° <<o0,?: H (02) — J(gf ) n, (sz )/]V

V

&= Halo group 2 2 2 Halo
—0. >0 and o o0 —
—— temperature T/ v temperature  gistribution for large halos: ‘

| From integral transformations between distributions: ) 1 av; ’ al oo  av;
JOO(O'V)Z : — | exp|— —+—
K, (0(\/1 N 2V§t) 2av, K, (a)\ o; 2\ av; o
| )
= |, H(o?)edo? = 2 (@)( o2 Y’
Kl(a)\/l+2v0t Halo size: n (af)zﬁ Al sz
2 2 ’ K, (0‘ ) aVy
With o~ = O, ‘ H distribution for large halos:
- oy B=3/(3+n) B=3/2 for n=-1
== ) 1 a| o) av,
— H_ (Jv): : -eXp| — ~+—
= 2av, K, («) - 2\avy, o,

Interestingly, H_, distribution can be obtained
g Dimensionless H distribution for large halos: ‘ directly using the maximum entropy principle

1 alv vy (ng without resorting to X distribution (Next slides)
./, (v)- oxp| -E[ Li L) =L
> 27K 2 ;
/4 1(05) i Yy vV O,
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Following the maximum entropy principle for velocity distrution:
§= H, distribution is a maximum entropy Write down the entropy functional with
= distribution satisfying three constraints: Lagrangian multiplier:
j H dG =1 S[ } j lnHoo(Gf)dO'f
t - ["H,(0%)0%do? =(o?) T :
= |, +/12\ OO(O' )O'de' <
o0 @ Hoo O-f / .
J‘ 7 (O_z)do_zzj' ( ) do? =1 . ro H, (CTV) Jo? 1
0 O v % 0 5 7 p v B v
/ 2
U (GV Vo ) H (O- Yo )
Taking the variation of the entropy l
functional with respect to distribution H:

/ i i [ (O'f) = 1 -exXp| — 025 ( sz + Olvzo ] - H_ (af) = exp(lzaf + é(—
‘| a ﬂ

avy, O,




\7/ Modeling halo virial dispersion and halo velocity

Pacific

Northwest dispersion

To solve H distribution using integral transformation: 19 5

= K, (0( \/ 1+ 2\/3 t )
= (o 2\ o )
= j H(O'v)e dO'v —
o K, (a)1+2v2
= \We need model for velocity dispersion o2: 10

) 2
0 =0, +0;,

' Model for halo virial dispersion (halo temperature):

e Halo velocity dispersion f;rillﬁ

e Halo vinial dispsersion .-,rfuﬁ

e To0tal velocity dispersion 52113

- = -Halo velocity dispersion (Fitted)
_ = = .Halo vinal dispersion (Fitted)

= = Model for halo velocity dispersion (halo group
I temperature).

“, B m m — 500 5 ioioioiidiil - =
S 67 (m,)=0.375] 1 tanh( 1/ j oo o i B
il 600 Halo size [np}
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We consider another extreme case, small halos with 0,2 << g,?:

= Halogroup __ 52y () and o° & 524_ Halo e, Halo mass functions |~z
= temperature 4 temperature | T ==
J " =-=nIgln)
& If approximate the virial 2~ o2 TN e £.()
:  dispersion with v v ' : - =)
2r P(1) (Eq. (64)
== e X . / f __ £, (Eq.(65)
: H(xzavz)zP(xzvz): exp| — : S ! / LA
== 20v,K, (0!)\/; 2av, % A .J'I .'Ir |
O ! !
H distribution for small halos: ‘ B / !
A I L -
j , 1 o2 PS mass i X
- (O-v ) = — CXP| ~ — function for y=1 i | ;
\/272'0{1/‘0 o, 200v, af ! ' Large halos |
P Dimensionless mass function for small halos: ; X
3 2 } i [ i i i i
1 | %4 ayv, " 4 3 2 -1 0 1 2 3 4 5
exp| —— log(v)

st (V):W 2y V= 5}? 123
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distributions

From integral transformations between distributions:

H distribution from maximum entropy distribution
& should satisfy:

K, (a \/ 1+ 2v§ t )

" ij(az)e_azthf =

i "I.'. — — - O

V

K, (a)\1+2vt

Relation between dimensionless halo mass function
§=—=— and H distribution:

. ow (va;)a;

o —_—

& Dimensionless maximum entropy halo mass function:

K, (a1+2yt/a)
K (a)J1+2yt/a

il ___: | 2 _2 _ *

V

‘V/ Halo mass function from maximum entropy

Laplace transform of halo mass functions:
1

|, Jes (v)edv = N,
Ja Nr+T(1/2-p)(1/2+1/q)

by Jor(v)edv = Ja+2t Nz +27T(12-p)

o 1
Ve dv =
.[o fm( )e (1_|_4770t)q/2

Moments of halo mass functions:
- ) LT (1/2+n)
jo Sos (VIV'dv =2 7
. o (2Y T()2+n)+27T(1/2+n- p)
_[0 fST(V)V dv_(qj I’(l/2)+2_pr(l/2—p)
(4770)nr(q/2+n)
T'(q/2)

J‘Ooofm (vv"dv =
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Equation for maximum entropy halo mass function: 1

.' —— V+vh)t _ Kl (a\/l_l_ zyt/a) 0.9 FPS(‘[-) 7
: j fME dV 08 ST -
| K (a)J1+2yt/a | F @

~=0.8 inEq.(66)
- - --7=0.85 inEq.(66)

= No analytical solutions can be found. Instead
i Introduce a transformed function F, to compare 0.6 |

| = different halo mass functions: 06 | —— = =0.91mnEq.(66)
V—I—V
j f X ) dv 04
= Subscript X is the abbreviation of the mass 031
¢ function model, PS, ST, DA and ME. 0o L
= i = ST and DA almost coincide with each other. 01k .

& = Both agree better with the ME than the PS |
mass function. 0 i ' ! ' . l ' | : ’

s = Halo mass function can be an intrinsic o 01 0z 03 04 ¢ 05 06 07 08 09 1

distribution to maximize system entropy. s
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Maximum entropy Velocity distribution Spherical collapse
Halo mass function Energy distribution H and P distributions

= Halo mass function is a fundamental quantity for structure formation and evolution.
= Conventional halo mass functions are based on simplified spherical/elliptical collapse models

= The H distribution for particle virial dispersion is essentially the halo mass function that can be
related to X distribution that maximizes system entropy.

= The H distribution for large halos is also a maximum entropy distribution.

= For small halos, H approximates the distribution of square velocity (P) and recovers the Press-
Schechter mass function.

= Halo mass function can be interpreted as an intrinsic distribution to maximize the system entropy
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Two-body collapse model
(TBCM): an elementary step
of mass cascade and GSCH

for pairwise velocity

Xu Z., 2021, arXiv:2110.05784v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2110.05784



https://doi.org/10.48550/arXiv.2110.05784

7 Introduction: TBCM as an elementary step of

Pacific

Northwest |nverse mass cascade

= Analytical tools are invaluable.

—— TWO-bOdy Hm(mh,a)
= Solutions are extremely difficult to find due to collapse \ T (my,a)ccm,(m, fm )™

the highly non-linear nature of collapse.
&, (a) =11, (m;.a) ®
= Two examples: the spherical collapse model Lu(mpa) =0 5 ”
—

(SCM) and stable clustering hypothesis (SCH). & o
@@ |
= For an infinitesimal interval, mass cascade o :; @. Oeposicing
should involve the merging of two and only two
substructures. Topagang .

_ _ _ Two-body collapse in expanding background is
= Two-body problem in static background is an elementary step of mass cascade.
known: Kepler’s laws.

» Goal: solutions for two-body in expanding * Goal: Prove SCH and Generalized SCH
, background and relations with SCM and SCH for moments of pairwise velocity.

128
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http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html

Define a 2 " -
Critical damping:
critical ratioto - 3 — (C/Zm) —1 » P
quantify 0 (k/m) c, =2\ km
competition:
g dE (2c E: total (potential + kinetic)
force Energy arL | £€ . : total energy (potential + kinetic
e E::ll::ﬁ:m evolution: dt +( m jK =0 K: kinetic energy
A Linear _ _ _ _
— +_ﬂ, damping = Damped harmonic oscillator is a fundamental model in
force : : .
dynamics that is extremely insightful.
i ¢ Velocity = There exist a critical damping c.. For c<c, spring force is
damping ¥ dominant (underdamped); For c>c,, damping is dominant
(overdamped).
¥ +(c/m)¥+(k/m)r=0
a 4 = Does two-body collapse model play a similar role as
damping  spring force harmonic oscillator?

= Overdamped and underdamped in gravitational collapse?
Competition * |nsights into the energy/momentum evolution? 129
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- Equation of motion in a transformed system
with fixed damping in static background
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Equations of motion in a comoving
system with expanding background

d’x. dx. Gm, & X, —X, Potential with an arbitrary
i I ! 2 —n
4t +2H di B e Z 3 exponent of n for particle- Vp (7”) = —Gnmp /7”
77X, _Xj‘ particle interacting
— Introduce a new = |f p=-2, sis the time variable for
_ nGm &, X —X. . !
, 47X, +2H ax, =" 7 Z : J__ transformed time scale s integration in N-body simulation.
t? dt a’ X, —X ‘ - dS/dl‘ —a? * Transformed system: fixed
' / damping and no scale factor a;
°X. nGm &, X —X,
d )i’ X, “(p+2)a"H = ot Z L | Peculiar velocity in comoving:
ds ds a X — X H:—3H2/2 u _adX,- dr, Hr, = a—1/2
P = _3/2 ‘ Matter dominant -« H? = 87Gp, (a)/g, ’ dt dt
mdx YooX, —X, F Hg _ 2 Velocity in time scale s:
= nG m, =— dx, 32 dx, 1/2
dS U m V,=—"=a =a'u,
j#i ‘X —X. ‘ p ds dt
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Reduce to equations of motion for two-body:

Two-body d d v
- ampe
X +ﬂ5{1 — nGn’fi T collapse - oscillator
2 (2r) ‘1" 0
< +ﬂx nGm r r
20 9 T2 (2,,)1—" r| TBCM solution depends on five parameters:
—— . v, €xponentn, damping Hy, mass m;+m, , Initial
= Displacement Stand.ard damped ’ position r;, Initial velocity v;; how to reduce #?
L {7 vector r: oscillator Eq.:
=5 :__'ﬁ_'_: F = (X1 -X, )/2 r 4 7/1; n (k/m)r — 0 Equatio_n c?f motion for r_adius function r (magnitude
=== of r): (similar to spherical collapse model)
. 2
$= Reduce to Eq. )24 nG (m. +m r . H, . nG (m +m, ry,
— = Of mOtion for -I; +_()l°. — n ( 1 — 2) . » 7 -|—707'— ( — ) — ( 3) eXp(_HOS)
vector r: 2 2(2r) ‘l" t 2(2r) 4 t
= Compute particle Similar equat_ion as Expanding t
B position and velocity: damp: @ oscllator background or  Cravitational Angular
Y Ll damping interaction momentum
| X, = ur vV, = ur 2m,
__(» _ ( 7 _ )l" H = Competition between three terms
X, = _( ~ ,u)r v, = H m, +m, determines the collapse regimes
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Formulation of a TBCM model in transformed system

Introduce frequency function F(s): Frequency w: @= a)( s)
— IPNIVEN: 1 2
= r(s)=(m) F(s )eXP(—ZH osj Frequency — 2 [ 9(s)
= . function F(s): F(S) B (a)+sa)) B
Equation of motion for r: - 0s
2
. H, . nG, (m1 +m2) (rl.vl.)
v +707” - () = TGXP(_HOS) Ratio vy, reflects competition: gravity vs. angular
( r) momentum; System in initial virial equilibrium if y, =1;

. - Equation for frequency function: ‘

term 2 (gravitational force) = term 3 (angular

) ) 1+n/2
0 F :ﬂF(S)—]/ Vi Frl (S)exp _n—2H0S + F~3 (S) momentum) leads to mean solutions:
“ot 16 ) 4 — g
' 1 > e / )| T 2—-n H.s
| PN e £, (S):?/sl/(z i exp(— ) j
oF HO v 7 Vv, 2+n 4
— =—|— F(S = 0) =+
aS -0 4 v V. I 2+4+n 2/(2+n) 2—n HOS
- . ’ @, ($)= o7 x| S
V. stable orbital -nG, 1. m, +m, 3 e b i
Y= speed " 1=n _ Y@, N
’ v, (virial theorem): (2’?) 2 (s)=7 i 2P 241
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0.8 T T T T T T 10* r - ' 1 - T T r I e
K K K
Z ] ]
06 | ok p=l3 P —P —P ||
s ﬂ_—lﬂ __EE __EE __EE :
04+F - 102k \ Kinetic and potential
__ | energy Oscillating;
—n=-1.0 \ Total energy is smooth]
021 —n=-1.5 10'F
il ‘ n=-0.5 I| :
h : ‘vii' D
0 : ,‘,; ‘ o) 100
"“xf x=r(s)cos(a)(s)s) rlitia :
y:r(s)sin(a)(s)s) position
02F Polar coordinate: . 107!
Radius function r(s)
Frequency w(s)
04 | I | | I L m_: i i i i i i i i i
04 02 0 0.2 0.4 06 0.8 1 0 2 4 6 g8 10 12 14 16 18 20
Time s
Trajectory of the motion of Time evolution of system kinetic,

displacement vector r potential and total energy
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| | : : -
o= |
f.. | k‘wm _ _| Free fall
4 Iansttion Equilibrium 1 1.l Free fall _| collapse
/ collapse \ ;
] Mean r, 1 et o o080 | o

42 . :
Ak 24 41 R Rl L] on e 1 p.T] B4 a3 -] [ F] a4 [ 1] [ 1]

=]

J-‘-H o [n'r'--I =25

.. Equilibrium

e 1173 ;Hﬂrifvi=[l. 1;
=3 ;I-IﬂrifviZI 0;

. _11=-1;Hﬂrifvi=1;

" Free fall

cﬂllaps : *@L\ « collapse

i i i 1
0 1 2 3 4 5 6 8 g 10
Time s
Variation of radius r with time s exbibits _ - H 7
two different collapse. Equilibrium Depending on the competition between three Qo= 0

collapse involves a mean and fluctuation. forces, two types of collapse can be identified. ° 4y



= and amplitude and substitute to equation for F(s)

= 0°F,
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' Decompose frequency function F(s) into the mean

TBCM model in the simplest form and perturbative
solutions for equilibrium collapse

Mean solutions:

1/2
7/S—l/(2+n) ( 1 ] exp (_
Vi

2-n Hgs

= F(S):Fm(s)l*;(a)ms)sz(S)Ez(x) () 2+n 4 j
mean — ‘ amplitude o (S) _ 2 2+n 7,82/(2+n) exp 2—n _ Hs
s —— _ _ _ PB.s2—n 24+n 2
= The simplest form of TBCM for amplitude function F:
2(x) — 2n 5 Fa(zx) _}?’a”‘1 (x)+ Fa‘3 (x) X=w, (S)S For long-range interaction n>-2, the
ox (2 — n) X — competition between terms 2 and 3
\ ~ / 2/(24n) leads to an oscillatory solution

(x ) (e ! OF, _ By Ve X, = 2y, 2+n vibrating around the mean value F_=1

a\70) /s Ox o 24+ n ﬁs 2—n

Solution now only depends on three parameters: B
k- = ratio y, reflects competition: gravity vs. angular momentum Vs =

ratio B reflects competition: damping (or expanding
background) vs. angular momentum
exponent n

(Vm' /Vi )2 Stable orbital speed:
l.

\/—nGn :

(2r)™"

m, +m,
2
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=(vm./vl.)2 B, =Hr /v,

Freefall collapse :

= Short-range interaction with exponent n<-2

= Yy, >>1:gravity is dominant over angular momentum
= [ >>1:damping is dominant

" V. <<1:Thereis a turnaround before free fall

Equilibrium collapse :

= v, =1and 3 <<1 : stable orbit (angular momentum
comparable with gravity) with week damping

= [, =0 : Standard two-body problem in static background

Equilibrium collapse has an oscillatory motion with a
much longer time to fully collapse than free fall collapse!

¢ ¢ o
000

Ys << Vs ~1
or or and
B>>1 B>>1 B<<1
Freefall Freefall Equilibrium

collapse collapse collapse
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Zero initial speed (no angular momentum):

v,=0 = % :(Vri/vi)z —> ©
3/2

l

in static S0 =
= background: \/G(m1 + mz)

= 1 = Hyr, ¢ Competition between
4y damping and gravity

3—n_2-n
| For small ?\S‘ s, s, = 42 Ay — 2
2 (weak damping): Hy \=nG,(m +m,)
== For Iarge )\Si -8 ﬂ“szl _ HO Zl_n 7;.2_’1
= - (Strong damplng) SC - Sc2 - Ho B _nGn (ml T m2)

= Due to damping, free fall time of two-bodly in

expanding background is greater than the free fall
time of same two-body in static background.

5

| —Numerical FFT in Expanding
. [|7Analytical (Eq. 47) FFT in Static .
10 | mem C01TECION fACTOT ,‘-'ILE 10
E —t ."rE {Eq. 53)
10° F = 10°
R ‘ mzmgj
=, G
LT} 10’
10° 10°
107" Increasing ti 10
_,H::I-E - i T 1 ..Jﬂ.z
107 107 10° 10’ 10°
A
81
The earlier collapse starts (the smaller t,), the
greater the free fall time (H is decreasing) 137
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= O°F p) F Specific kinetic energy:
:_ SOIVe: az(x) _ n . a(zx) _F;n—l (x) + F;l—3 (x) 2m " V2 CoH 2IB
Ox (2—n) X K, = L2 i exp( 0 ] 1— 5 sin 6,
Ereauency function: mean fluctuation (m, +m,) 2+n (2+n)
$ —— L Y " ' ‘ pd ) j . Specific potential energy:
L — v, 2_n H_s IB . 2m.m v? —nH s 2 2ﬂ
— F(s)=|— exp(— 0 j<1+ ——sin(0. )y P = 1725 q ( 0 j 4 s __sin@
= F() (vj 24n 4 )| (2+4n)” ( )) Tlmam)y 2en 0 ey

== Angle function: Specific total energy (fluctuation cancelled):

oN2+n 2+n[  (2-n H
P, 2-n| 2+n 2 T (m, +m,) (2@)1_” 2+n
Radius function: . ) p . Radial o Am,m, . 4m,m, .
S : U= V=
- r(s)=r exp(— ; . j% 1+ : : )3/2 sin(6,)p Mmomentum: (m, +m,) (m, +m,)
s e +n 2+n
Radial velocity: \ y Angular H, - 4m,m, : 22 (s)i _ 411117712\21.1;.2 exp(—lHosji
$0-" R momentum: (m, +m,) (m, +m,) 2

. or(s) H,r exp(— 2nHoS )]cos(ﬁs)— Hyr  Mean energy satisfying virial theorem: 2<KS>—n<P > =0

Os (2+”) (2+” 2+n All have exponential evolution in time scale s!
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= Equilibrium collapse :
#= - \ =1andp, <<1: stable orbit with week damping
#— " [, =0: Standard two-body problem in static background

First critical value for existence of equilibrium
collapse with oscillator solution:

."'::‘;j}f-:- V. 2 H,r H ¥, Radial P <l W p (2 + i’l)3/2
L PAEIRCHESI WA <1 (2+n)3/2_ 1
= v, v, V. " Circular
g angular momentum \ Weak damping Second critical value for equilibrium collapse
i =——— comparable with gravity =~ Also see angle of incidence with oscillator solution:
3/2
Radius function: . 2+n
AIbs THREHon 7| 3 ) s1n[6’s (t:ktl.)]:o » 5, :(2 )
r(S):rl.exp(— - jd—l— 37 Sin(95)> ( —n)7z'
2+n k (2+n) n_2—6m l
Angle function: B
o HneHen / - oy I+3m Critical halo density:
2 3(2+n m=1,2,...00 _ 2 _ 2
0,6)= 2L L] A =2/ =187
B (2-n) |\t =-1,-10/7,-8/5
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Northwest Velocity, spin parameter and angle of incidence

Evolution in transformed system with time T _ _
& scale s can be equivalently transformed wo-body spin parameter:

1 = back to original comoving system: 1/2 3/2
= _|H||E B J2 (mlmz) B J2 _
dS/dt =q? W 5= ln(t/ti) %= G(m +m,) e Ot

2 (m+m,) 16
.
expltH,s)—(a/a.
_ p( _O) (/’) Evolution of two-body angle of incidence:
Exponential evolution » Power-law 3
in time scale s evolution in time t cot(6,,) = rv G  p (d] ?

|r><v| - |HS| B (2+n

— Two-body kinetic energy:

2
K =~ 21 M5, > exp( nHOS]{I— 28, sin @

(m, +m,) 2+n (2+ n)3/ * Kinetic energy for large halos with an infinitesimal lifetime:
= Kinetic energy in terms of angular velocity: K (s=0) 2M GM
s | 5 N 5 s \th: S( ) AM - o, —— » O' kil
E(ml,u +m, (2—u) )a)sr =(m, +m,)K, a M ZVh
e v ¥ 5 i 302 Angular velocity in co-moving system

-3/2 « dependent on halo size r,, , larger halo has
m .
; smaller angular velocity 140

= r.
wszjexp 2(2+n)HOS » o, =
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Northwest dlerive generalized SCH
P I I t : 10° — ———y —
eculiar pairwise velocity: | | o rh
{4, _ " | |'-.-I sP(sPglP
Au, (2r) = (uL uL) 14 w0 | psish
‘ m { | STI(5557)
: G (s ) . 5
al/zAuL _9 r-v, _9 S( ) e See_tw? bodv. vllrfllal m1 ‘ | H””“t., S
r 7 guantity for radial flow | h.

u, =—2Har+2L u. coso. 100 il

Stable clustering 107 ¢
hypothesis (SCH)

A
| <AuL>!—2Har+2<,BS OS(9S>
<Au

_ N-body simulation confirms GSCH
V=—2Har =—2a"H, € ~ povea | "PodVsimulation confirms GSCH |
Non-zero pairwise 107 r(h«ﬂgf:;hj 0 10°

— Au§>(r—>0)= <,B u’ cos’ >>0 dispersion, a feature
of collisionless flow

(
—><Au§m+l> _ (2m + 1)<Auzm><AML> = (2m 4 1)<Auzm>(—2Har) pr— Genehr}e/l:)i(z)te:ez’;:lzlgscgj’;ering
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= Spherical collapse model (SCM) solves the d’R GM Equation of motion
motion of spherical shells. Many important T T for SCM in physical
insights can be obtained from SCM. coordinate
= There are fundamental connections between ‘
two-body collapse model (TBCM) and SCM.
2 2 Equation of motion
= The original SCM describe exactly a two-body 0 ’; + H, or + GM = = H, v for SCM in
collapse with one-dimensional radial motion oS 2 Os 2(2r) 2 comoving system
only and zero angular momentum. 1
Term 1: due to the absence of
= TBCM model describes a spherical collapse a uniform baczkground density
model with a non-zero angular momentumand 52, H,or GM (,ﬂivi)
non-radial orbits >t + > = 3 exp(—HOS)
Os 2 0s 2 (2 r) T ’
¥ = Both models predict a critical halo density ratio 2

A=18m=, while TBCM can predict freefall and Equation of motion for two-body ~ Term 2: angular
equilibrium collapse and SCH and GSCH. collapse model (TBCM) momentum
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Harmonic oscillator  Transformed system Free fall time
Critical damping Two-body collapse Expanding background
Stable clustering Generalized SCH Spherical collapse model
Equilibrium collapse Freefall collapse Critical halo density

= Formulate two-body collapse model (TBCM) that plays the same role as harmonic
oscillator for fundamental understanding of gravitational collapse

= Propose the competition between gravity, expanding background, and angular
momentum and classify collapse into: 1) freefall collapse for weak angular momentum;
and 2) equilibrium collapse for weak damping

= |dentify two critical values, B.,=1 for free fall collapse and 3.,=1/(31r) for equilibrium
collapse, that quantifies the competition between damping and gravity

= Predict a critical halo density ratio of 1812, same as the spherical collapse model.

= Prove the stable clustering hypothesis (SCH), i.e. mean pairwise velocity proportional to
the separation r.

= Develop a generalized stable clustering hypothesis (GSCH) for higher order moments of
pairwise velocity.
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Evolution of energy, momentum,
and spin parameter in dark
matter flow and integral
constants of motion

arXiv:2202.04054 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.04054
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Review: In freely decaying turbulence, there is no Due to the formation and virilization of halos,
energy injection on large scale and total energy is the kinetic energy in dark matter flow
continuously decaying with time. continuously increases with time. In this regard,

dark matter flow is a freely growing turbulence.
= Both integral scale / (energy-contained scale) and y9 g

energy dissipation rate € vary with time. What is the large-scale dynamics of dark matter flow?

e
= What is the large-scale dynamics of freely decaying 1OW d0 energy/momentum evolve with time"

turbulence? How does energy evolve with time?
= Goal 1: Formulate large scale dynamics in

1’ Th dark matter flow (how energy and momentum
e=A =A4— y? ~ 1717 evolves?)
(1/u) [
Loitsyansky integral invariant » | ~ t2/7 " Goal 2: qurqv, momentum and spin
(integral of velocity correlation): parameter in halos
\ s 5 0s o 1
j<u-u >1' dr ~u”l” = const = Goal 3: Formulate integral “constants” on large
and halo scales (are they still constants?)
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- Equation of motion in a transformed system
with fixed damping in static background
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Equation of motion in a comoving
system with expanding background

d’x. dx. Gm, & X, —X, Potential with an arbitrary
i I ! 2 —n
4t +2H di B e Z 3 exponent of n for particle- Vp (7”) = —Gnmp /7”
77X, _Xj‘ particle interacting
= 2 Introduce a new = |f p=-2, sis the time variable for
| . o nGm. &, X —X, , p=-2,
| d ’2‘1 +2H ax, =——1F Z J__ transformed time scale s integration in N-body simulation.
[ dt a X, —X ‘ ) dS/dt — g” = Transformed system: fixed
I J — .
‘ damping and no scale factor a;
°X. nGm &, X —X,
d )i’ X, “(p+2)a"H = ot > 1 | Peculiar velocity in comoving:
ds ds a X — X H:—3H2/2 u _adX,- dr, Hr, = a—1/2
P = _3/2 ‘ Matter dominant -« H? = 87Gp, (a)/g, ’ dt dt
mdx YooX, —X, F H? = H24° Velocity in time scale s:
= nG m, = — - B dx, Y) dx, 2
dS U — m vV, = =da =a U,
j#i ‘X X. ‘ p ds dt
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Starting from equation of motion in transformed system: Specific potential energy (radial moment):

d’x, H, dx. YooX, —X, F. 1 & Potential energy
1 == Ly L=n Z L = ! P =—Z¢(X) =a"P, ®m  ijphysical
— n 2 g ; physica
ds 2 ds g X — X, m, N 5 ’ coordinate
Express force as potential gradient: Dot Specific kinetic energy of entire system:
t x| dx OP 0 (a’xi product B
= L — S — * — | on both Peculiar
ds® 2 ds OX, ds ) .. K, = v, = u; =ak ,®= kinetic
 Bezesns : sides: 2N i=1 2szl energy
§= Time evolution of energy in s: Exactly same as ~ecall solution ¢ Two-bod
G(P + K ) damped oscillator. + LAl SUILUTON IO WO=DOtY
S S H K =0 Need additional collapse model (TBCM):
= Os 07 olation to close exponential evolution of energy
& |ime evolution of energy in t: | ‘
&0k aap ) H(2K, sa P ) =0
: f p T y) ( p A y) - Hs Hys
& With n=-1 K =aexp| - P = pexp| —
V 1+ 8/« 1+ f/a
4 . )+H(2K L p ): 0 Standard cosmic
| p Ty p Ty

Ot energy equation
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Transformation back to comoving system: 10°¢ ,
3/2 —o—K (3)
— (0 = - =P @
ds/dt=a" & s=1 1n(t/t,) e i

[ |——V,@72K (@)P (a)

& Exponential in s corresponds to power-law in ¢
—h—E (2)=K (2)+P (a)

_ exp(tH,s)— (a/a,)

: Power-law time evolution for energy in terms of rate of % [

energy cascade ¢, g [

— 2(2+8/a) _(2+B/a)  Power-law for
K — A 3 (1+ﬂ/0!) = —& a (1+ﬂ/a) Peculiar 104 |

P ! o kinetic energy S

- P =4"P zég an_(1+ﬂ/a) Power-law for
’ Coa potential energy =

B N-body simulation Early time: K, o« a; Early time: K o t; 02—t S

a

Effective exponent for virial theorem: o . . : :
% The variation of kinetic and potential energies with

2K 10 . Mostly from Halo scale factor a from a N-body simulation. Both

«~ p 7 surface energy energies exhibit a power-law scaling. .
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Starting from equation of motion in transformed system:  Specific virial quantity (radial moment):

— 5 voox - X, 1 & Peculiar
— d X, + HO dX = nG m Z Fi Gs :_Zvi ‘X = a1/2 le X, = al/zG virial
— e 2 ds X, =X m, N7 " quantiy
- . . Specific angular momentum
Express force as potential (Ps) gradient: ) pot product P | b p Peculiar
e Jx 1 dx. OP on both sides  Hj =—ZXZ-><V,- —ZX xwa'" =a"H, angular
Ly S =) °X. N 5 momentum
ds® 2 dS OX, ’
= Time evolution of virial quantity in s: Taking cross product on both sides
s ——dG. 1 2
4~ H .G =2K. —nP dx +1 dx, OF, —0 XX,
ds 2 ds® 2 dS OX,
@ Time evolution of virial quantity in ¢ Time evolution of angular momentum in s:
= -'.' I‘fﬁi‘::'- —na " dH H
a de _|_HG B ZCZKP na })y — _ZX x S ZX )(F O

= This is for open system without boundary.
= Extra care is needed for N-body systems with periodic boundaries 149
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| Virial quantity in entire N-body system: 10" g i il et T Ten
— 1 & 1 Subscript | j
t =—— G, = —Zui X, =—G, - “p” for Comoving A 5
= P N a Py 0¥k 1
i = “py” for physical coordinate _ §
Angular momentum in entire N-body system: P
& 1 =
Hp:—.lxl.xui:ngy % | ;
— = = [ | ]
—— Decompose both position x and velocity u: =27 3
= ' ' 34 :
X =X, +X. u =u, +u. o F - -
l Z o —o—G [ —w—(M,<G,>Nm )’
Halo virial quantity (radial momentum): ; ’ —e—H P e (M,<H, >N Y
1 n, | | 1 m*; -o -Gi}_ —1—{{{}]1}]:
| O, (x,u,) P SRS k. e
e p i=l 1% 107 i0” t0’
Halo angular momentum: » 2 .,
, 1 o, 1 On large scale pr oc a”’ Onhaloscale (G, )oca” oct
H =— (x Xu ) =—H (see here for (Consistent with
he h 5/2 3/2
n, = v a proof) ‘pr‘ xa previous results) <‘Hh ‘> xa ot
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= |dentify all halos of different sizes

= Group halos according to halo size n, or mj,

= Compute mean square radius r, for each halo

= Compute halo virial kinetic energy ¢,? for each halo
= Compute intra-halo potential energy @,

= Compute the group average and std.

Halo velocity:

—— Haloviial _, 1 ¥ 2 1
g é ol=—>lu-u| u,=—>u, |
= Kinetic energy: 371p kzl‘ ‘ n, ; 10 |
2 2
gt oD%y g g =2
— S — c = T v -
’ o, Gmh (Dh
| Angle of Ratio of kineticto ~ Critical Halo

incidence potential energy density ratio virial ratio

6(a 57, [2)"
.8 A,

1 1/3
7/g :(Easﬁszch 7/CD =

The variation of energy in halos

i
L B
'\-\.L‘_-
L] l--ﬁh—'_
L —‘2{35} —Etd{ns]
E

-

* <a > Ts
10 . = e

10” 10° 10° 10° 10

Halo size n =m, ‘'m
P rﬂh P

Small halos of same size are generated at different
time (large std). Large halos are synchronized and

generated at the same time (small std).
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Compute mean square radius r, for each halo
Compute halo virial kinetic energy o, for each halo
Compute radial momentum G,, for each halo
Compute angular momentum H,, for each halo
Compute the group average and std.

. * —1 L 1/2
G,=-t,0,1,a ‘Hh‘ =1,0,r,a
n*zth:wf:_y o _E _K+2,

) (Dh (Dh ' ’ 62 62
/Ip = al/za:n:«/ z:
3/2
2 (mm 2
A =J_( ), =£z0.0884

p

2 (m+m,)’ 16

The variation of momentum in halos

103§

Mpc'h KM/s

—
—
=)

T L — T T T L — T T T

—<[H, >

101 102 102
Halo size I:Lp

The variation of momentum with halo size
from a N-body simulation.
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1 S e e
| g Ml
1w -
[ # #* _‘:T_I*::'
| S ) e A =0.031 f
#® # =0. or
P
| — S —_—) =
Std(ﬂs) std ZS) A large halos
M | L L M B | i 1] _H:l-E{lD § i i I....I1 i i i |....l=|:'E i i i |....|3 i |.|||..i
10° 101 102 103 108 i ! 10 10
1 P
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Table 2. Relevant parameters for halo energy, momentum and spin from theory and simulations

H# *

Type of halos Yo Ve Yy A, % p:
Eq.(54) Eq.(54)
Two-body halos 2
(theory) 1/4 1/2 1.0 187 1/24 J3 / (37)
Large halos 0.936 0.567 2
(NEW) Eq.(49) Eq(48) 1.3 187 0.230 0.095
Large halos 1 \/37/3 15 1872 \/?:/6 ﬂ.l'2/3/(3:?1')
(isothermal)  Eq.(45) Eq.(43) Eq.(54) Eq.(54)
n, z. 7. T S (my)  fo(my) A,
Eq.(68) Eq.(68)  Eq.(63) Eq.(63) Eq.(63) Eq.(63) Eq.(70)
Two-body halos
heons) 10 -15 NE) V3/(37) 37 1 J2/16
Large halos ) )
(NFW) 1.3 0.81 0.151 0.103 1.59 1.08 0.031

L hal
(i:;ti;;”g 15 05 2/3/(37)  2/3/(37) 1 1 1/(187)




Pacific

Northwest INtegral constants | . and physical meaning of |,

NATIONAL LABORATORY

The virial quantity (radial momentum) and angular momentum are intimately related to integral
= constants for dynamics of dark matter flow. Starting from the velocity correlation function R,, defining

x for all particle pairs withr

Energy spectrum is Fourier transform of R,:

i £ (k)= % [ R, (r)hrsin (k) dr

Velocity correlation

s = Integral constant |, is the derivative of spectrum at long wave-length limit (large scale):

2 (_1)1+m/2 0"E : . .
]m =47 U oc g Wwith Eu (k — O) oC |, is related to the linear
m  Ok" | _, momentum. This leads to a k*
_ velocity spectrum on large scale.
= Assume linear 3
i ‘._L'":-_'_ : . . udx — O
£ momentum vanishes: %

\ 4

I, :j<u.u>dr =111_I)I()10;"-VJ‘V<u.u>dX dax :;1_13301/ (;IVudX ) =0 » 8](2 g = ()




: 15_:1-'.“ G = lj X lldX3

s T=-M:M
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Defined in comoving coordinates:

Virial
guantity
1 1
M:_J‘ X ® udx’ Momentum g _
|4 tensor | A
Contraction of

momentum tensor

I, =2 tim (1)) = fim [—\H\z +(M: I)”_‘k’k}V

V—o0 V—o0

.

H:ij' x xudx® Angular
y

momentum

S

3 Inertial
J. X ® xdx tensor G50 G 0 0
M= 0 G3 0 M=O G/20 0 00
_ _ 0 0 Gf3 0 o 0 0
U, , is mean divergence ]
ar=3 a=2 a=1

ar=3 If structure collapsing into a point,
ar=2 if collapsing into a filament (N-body)
‘ aor=1 if collapsing into a plane.

[For incompressible flow with vanishing

& | divergence (u, =0), 1, is related to the
B | angular momentum of entire system

1= Jim (1) )

For dark matter flow with
vanishing H on large scale, Both

a,T =a,(M:M)~G* > H

M and | are diagonal. |, is related ‘

to the virial quantity (radial 2. )

momentum) of entire system. I, = _Q_;T}O«G >V)
T
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Integral constant on large scale: 10° ' SRmREEe
—— 2 2 : T\ |
P === I, __a_Tllfl—IEo«G >V):II/1_1£O(<(M.I)U/¢,k>V) M?E-
‘ 108 F
) o _ SN
s <G >:—7T<(M:I)uk,k> =
1= 2 | S
—n lJ‘ I — 1(L 5 Inertial tensor %
. , it ARk = 3\ 2 ) “7 onlargescale  E 1ot}
= I: - [ +G2
5 e l YU dX35 M :$ Virial quantity 10° F o1
) = y v on large scale : >T
. ¥ et 10l ——Eq. (98)
O g irial quantity is | —4a—Tq (99
G = EL Uy 4B related to divergence 101 = (- )- N—— : -
3 or density contrast 107 };'1 10°

Time variation of momentum with scale
factor a from N-body simulation 157
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On small (halo) scale, velocity field is of constant divergence
& and matter density is non-uniform.

(1)) = [ E vy, ]

V —o0 V—oo

:— | Momentum tensor:

' G/3 -H|[2 0
—_— M:—J XQup, dx” = ‘HV2 G/3 0
m, *V
0 0 G/3

Inertial tensor:

Halo radial and angular
J. momentum are equal

dx’ 25.
=38 G=JH|=—;
T=M:M-= (le —‘H‘j - aT:Gzz 6 ¢

3 T 243/ /G’
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Large scale dynamics Comoving/transformed system Rate of energy cascade
Integration constants Radial/angular momentum Spin parameter
Velocity correlation function Velocity spectrum function Effective potential exponent

= The energy and momentum evolution of N-body system is analytically derived. This is
made possible by introducing a new time scale s.

= The kinetic and potential energy of N-body system increase linearly with time with a
constant rate of energy production €.

= For entire N-body system, the radial momentum scales as G, ~a*?, while angular
momentum H, ~a>2.

= The specific momentum (radial and angular) in halos scale as ~ a3?

» At same redshift, the analytically derived halo spin parameter decreases with halo mass,
l.e. A, =0.09 for typical two-particle halos and A, =0.031 for large halos.

= The spin parameter of a given halo is a constant of time for early-stage halos with faster
mass accretion and increases with time for late-stage halos with slower mass accretion.

= The radial/angular momentum are closely related to integral “constants” | that is defined

as integral of velocity correlation or the mth derivative of energy spectrum at small k.
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Statistical (correlation-based)
approach for dark matter flow
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The statistical theory of dark
matter flow (second order)

Xu Z., 2022, arXiv:2202.00910 [astro-ph.CO]
https://doi.orq/10.48550/arXiv.2202.00910
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= Review:
= Statistical theory in hydrodynamic turbulence

Kinematic relations between statistical measures
= Correlation functions
= Structure functions
= Power spectrum functions
Incompressible on all scales
= Divergence-free
= Constant density

N-body simulations are invaluable to understand dark
matter flow (DMF).
Fundamental problems when projecting N-body
velocity field onto structured grids:
* Velocity field is only sampled by N-body
simulations at discrete locations of particles.
= The sampling has a poor quality at locations with
low particle density
= Velocity field can be multi-valued and
discontinuous due to the collisionless nature.

Goal 1: what are the kinematic relations in
dark matter flow?

Goal 2: what is the nature of dark matter
flow on different scales?

Approach:
= Use pairwise average for real-space two-point
statistics to avoid projecting

= Take advantage of symmetry implied by the
assumptions of homogeneity and isotropy.

= Develop kinematic relations between different
statistical measures

= |dentify the nature of DM flow, i.e. incompressible,

constant divergence, or irrotational flow.
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General correlation tensor between velocity field and a scalar field p(x):

_ ! ' Pairwise average: Averaging

O, (X’r) <u’° (X)p(x )> X =X+r over all particle pairs with the

Reduced to function of r due to homogeneity and isotropy: same separation r.

O, (X,r) =0, (r) =0, (r) = A4, (r) v Incompressible Constant
flow divergence

Divergence of first order tensor: 4 (r)=0 A (r)= —6’<p(x)>/3

00) (v u(x) p(x)) =34+ 2 0.(1)=0  0()=~{$(r(x)):

or

Curl of first order tensor (always zero): = The first order correlation tensor

. r.r, OA t vanish for i ible fl
VxQ(x,r) = <(qu(x))p(x )> = &k (A@k + rk ('Brl j ~0 must vanish for incompressible flow

= The curl of the first order correlation

the Levi-Civi | _
e Levi-Civita symbo 51{ = Eqlil, =T XTI = 0 tensor is always zero for any flow

satisfies the identity ik j
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ll;r u

Second order velocity correlation tensor:

Q,(r)=0, (’”):<“i(x)uj (X)> u,

General form of isotropic second order tensor:

0, (r)=0,(r)=4,(r)rr,+B,(r)s, e

Pair of particles with
distance of r

= Divergence of second order tensor: Longitudinal velocity: Transverse velocity:
_. = Used to derive ~ A A
e =u-r=ur Uy =—(UXrxr
0. 4A L2 8A 2 _|_l 5B ” Kinematic relations o=t il T ( | )
= =i or r or )’ t u, =u -t =ur up =~ (i)
Qij,i _ _<(v ‘U, (X))u]. (x )> — () 4m Incompressible flow Velocity difference or Ay =1y —u
- Constant Pairwise velocity: BooE
0,,= —<(V-ul. (x))u] (x )> - —¢9<u]. (x )> =0 ¢= dlveﬂrgvevnce Velocity sum: Su, =u, +u,

ee=  Curl of second order tensor:

: Same even order kinematic
Irrotatlonal\ : . .

¥ VX QZJ ( ) glmjrm ( 2 ___j =0 @& flow relations for incompressible flow
and constant divergence flow
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Northwest TWO=-pPOint second order velocity correlation functions

AAAAAAAAAAAAAAAAAA

= Using index contraction of second order tensor to define three scalar correlation functions

Total correlation function: The velocity power spectrum and correlation function
— R,(r)=0,5, = <u u > = <”,”,> = A7’ +3B, form Fourier transform pair
Longitudinal correlation function R(r)= J“’OE (k) sin (kr) Jk
— - ) o Lo
== erl /r <uu> Ar +B,
Transverse correlation function E (k) — EJ'OO R (r)kr sin (kr) dr
| “ T 0
T,(r) =Q.nn, =<uT -uT>/2 =B, (r)
Integral scale: the length scale within which velocities
R, (”) = 2R(”) =L, (’”) +21, (’”) are appreciably correlated
&= [wo correlation coefficients can be defined for ] = LJ"’OR N =~ J‘“’E (k)k_ldk
= longitudinal and transverse velocity: 2Jo

and Pr (’” ) = <212T>> g&%'(zir?;ﬁggﬁ'_ u(a)= G<u(x).u(x)>jl/2

square) velocity:

)
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For incompressible flow or constant
divergence flow:

I
L=-(rL), -

kr
)= 07 .0 (1) -2
.= uiz OOOR(r)dr = uLZjOOOLZ (r)dr

Relations between
correlation functions

Correlation tensor in
terms of correlations

Relations to power
spectrum function

Integral length scale

Kinematic relations for correlation functions

For irrotational flow:

R, == (r'T,),

L, :(’”Tz),r

nth order spherical
Bessel function of j, (kr)
the first kind:

R

Characterizing the type of flow

1

2i :r__o,J‘OrRz (y)yzdy

For incompressible or
constant divergence flow:

For irrotational flow:

R2i — Lz

Ry, =1,
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'1'[]1: ! el R ! TP Do e | : PR LR Y ! e R S AR

Velocity correlation functions

1{]1}__!_!— E
i X nmy e
| g
4 £
107 F %, E =
* =
- R (r VoA 2
| —R,0| | Ta =
IIIIL T :: : E
0% 2( ) L,and T, H X =
: - Tz(r) Crossoveratr=r, § E
_ ; =
107 F
; L, <0 at large r
- T,>0forallr
1{]-4 i | O A Bl
107 107 10° 107

r (Mpc/h)

f_ " The variation of two-point second order velocity correlation

functions (normalized by u2) with scale r at z=0

10%p

.11]'1 -

L constant divergence flow
L on small scaler<ry

Irrotational flow

sz:Tz

R,~L, Tt

Incompressible or

— % (1)
e L 2I{r)
- T E[I')

On large scale r=r; |

1072
107"

10? 10 102
r{Mpec/h)

Using correlation functions to
characterize different types of flow.
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mvy, +myv, —mv3 m v, =
— 2
b m
' <V3>: — V1+V2
m

1 1

\ 4

o o @

&= \Momentum conservatlon

Northwest - @annihilation”

annihilation
ﬁ (v, +v,)
m
( j /OLO)

= Mass-energy conservation:

1

), )

L m=m l+-—-+4¢1-p,, 2

+
4¢*

2 2 2 2 "2 ' 2
mc” +—mv; +mc” +—mv, =mc” +—m;

zm{2+(l—pLo)<

radiation is produced from that “annihilation”.

2
u

=

=2 Particle “annihilation” (r=0) leads to extra mass converted

‘7/ Velocity correlation and collisionless particle

Equipartition: halo T and halo group T

o (m) =0l (m)+o1(m) Pu =(o0)/(")=1?

Correlation coefficients

— -PT

In collisional ey
PL = pr =1
hydrodynamics: i

-3

L i i 3
107 10 10 10°

r (Mpo/h)
The correlation coefficients for longitudinal
velocity and for transverse velocity
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Nortwest Modeling velocity correlation functions on large scale
10" T T e e S
On large scale, transverse velocity correlation N | Ing |

: —-—{u-‘unf

can be well modelled by exponential function:

.2
I |=4F g
| a(w uﬂi

1, (r,a) = auu’ exp(—r/rz) oca a,(ulu, )2 =0.45a

107
"y Redshift-independent length scale,
= 21'4]\4]90/hmight be related to the size of sound horizon

[

3
Using kinematic relations for irrotational flow 5
on large scale
. - 107 |
” ~\ Longitudinal :
L,(r,a)=au’exp| — || 1-— : :
2\ 0 ; y correlation | ———z=0 =10 z=5.0
? ? [ 2z=0.1 —2z=1.5 ——2=10.0
u I.; ._ | ) , , TOtal l — =13 ———7=20) - - 'T.?.(I:D) from E{l (1”})
= Rz(”’a):<“'“ > =2R(r)=ayu exp T 3- | correlation ||-———2z=05 ——2z=3.0 - - T,(z=10) from Eq. (110)
Z 2 2 A i I | | j
10 0 20 40 60 al 100 120
. I o L = Correlation r (Mpch)
s Lo =u—2f0 R(”)d”zﬁ 0 R, (r)dr =2a,r, length Transverse velocity correlation function T,

varying with r at different redshifts z 169
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LN | i "”]1I_ T LA B A A L | L T F T e T I B BB R | T LA B B |

107 E
107" E
<0
S —— 1 o2 =_
——z=0.1 —z=2.0 . ——z=0 ——z=1.0 —z=5.0
z=0.3 —z=3 o : ——z=0.1 z=1.5 z=10.0
—z=0.5 —=z=5 / - z=03 ——z=2.0 - = Eq.(112)forz=10
z=1.0 z=10 ——z=0.5 ——z=3.0 = = ‘Eq(112) for=0
i . TR ) R H | TR ,”].3. PR | P PR Y |
mn= 1™ n° 10’ w0 1072 107! 10° 10! 107
r (Mpc/h) r (Mpc/h)
The variation of longitudinal velocity correlation The variation of total velocity correlation

function L, with scale r and redshift z function R, with scale r and redshiftz 17
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4

10

Using kinematic relations and exponential transverse
velocity correlation, we can analytically derive all 10
= correlations for velocity, density and potential on large scale.

= | inear perturbation theory and Zeldovich approximation
on large scale:

V-u Hf (Q V¢ V?

wo ORIV Vg
aHf(Qm) 47 Gpa
o

Log-density field: n(x):log(1+§)z

10°

orN=-

-
=

= &(r,a)= . e exp [Lj —7(L]+8
= (aHf(Qm)) n, I\ " 10°
B Averaged density correlation:
= 3 ¢ >3
()= r—zfo E(y,a)y’dy = —— exp(—
&= Potential correlation:

- Density correla’ltion: 5 ( j
r

= £(r) from simulation
“b|===Log(1+£(r)) from simulation
= =£(r)fromEq. (117)
107" 1(° 10° 10°
r (Mpc/h)

[Lj +1} oc q’ Density correlation at z=0 and
comparison with model




\7/ Velocity/density/potential spectrum functions on

Pacific
Northwest Jarge scale
Velocity spectrum function:
8 k™
— 2 2
E, (k) = dolt k_r,= \/5 E, (k)= 12556 rau’
T

g (1 +1/(kry ) )3 max

4 k4 spectrum due to
L, (k) ok for kr2 <1 vanishing linear momentum =

E (k) oc k= for kr, >1 Signature of Burger’s equation in
weakly nonlinear regime

Density spectrum function:

16a.1> 1 Potential spectrum function:
E; (k) N - 2 2)\3 18 ( aH : au’k™
(aHf(Qm)) ar (1+1/(kr2) ) E, (k)= r [f(Q )] O 2\
AWARLY (1+1/ (r, ) )
Matter power spectrum:
2 2
P,(k,a)=27°E, (k,a)/k2 _ 32mau’ 1 Pa(kmaxaa): 128zau’r, :

(atf (2,)) (kr, ) (1+1/ (kry ) )3 27(aHf (,))
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\?/ Second order velocity dispersion functions and

Pacific

Northwest energy dlstrlbutlon |n real space
: —4:!’11:3:0} | -l:ri{:Fl'_'l} ---.:ri(z=u} GZ‘(FI'_'I} :..j.;..l.:,i{Fﬂj;frur;:lE:q_.{.lllijlh.E
2 (z=0.1) ——a7 (z=2.0) 7 (z=01) - == a3(z=2.0) - o7, (z=10) from Eq(115) |-
i o |20 — 20 - 03 3 |
=— J- E, (k) kr * di = j E dr | |— 02 (=0.5) — 2 (z=5.0) A(z=035) -~ o}(z=3.0)

35 —uﬁ{Fl.{l} —ai{Fm.ﬂ}----gi(Fl.ﬂ} gﬁ{Fl.ﬂ}

Dispersion function for smoothed velocity
(energy contained in scales above r)'

Window function for tophat spherical filter: I
= 3. Ji (%) _
W (x)== - =3
(x) ~ [sm(x) xcos(x)] .
= 0o, (r) Energy contained in
B, (r)=- o scales between [r, r+dr]
Energy contained in scales below r: 0 b

%j";E (k) [1=w (k)" ]

_ 2 2 _ 2 Energy decomposed into
— Ou (r) 0y (r) ~ 7 scales below and above r:

== Relations to velocity correlation function: L
- 1 0(10( 50 2/ .4 - e R
R, (2r)=— y _(gu (r)r ) Variation of two dispersion functions with scale r (simulation).
24r* or\r* or or Fraction of energy contained in large scale decreases with time. 73
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& Notwest Second order velocity structure functlons
Longitudinal Structure functions are moments of 10 : T . e D‘D _2 =
pairwise velocity: _32;:3 —I;S:D |

B - z =
SP(r)= <AuL> = <uL —uL>

2
Second order longitudinal structure function <?1L>(?')
(pairwise velocity dispersion): 0]

Sy (r)= <(AML )2> = <(”L U )2> = 2(<”£> -1, (’”)) - lim <HL> 2u” lim <uit> =u’

Second order longitudinal structure function (modified): i ey
S (I”) = 2(£i£%<uLu'L>—L2 (r)) = 2(u2 ~L, (r)) - Dark matter flow: <u§* > - <u§ (r) 2 o

2y 2
Sép (r);tSé (r) because of <u§>¢u2 Incumpressmle flnw <u£>—u

1r:r1cr2 1r:r‘ m"' 10° 10°
lim<u§> =2u’ 1im<uz> =2 1limSy =1limS? =2u° r (Mpch)
r—0 o : r=0 ro The variation of longitudinal velocity dispersion
lrlerlL (r)= lrl_I>I(}T2 (r)=u 12103L2 (r)= 1&1017; (r)=0 <Au, > with scale r at different redshifts z 7
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= [otal velocity structure function:

| R

= Total velocity structure function (modified):

| S1(r)=6u’ ~2R, ()

S;'p (,/);,gS;(r) because of <u§

>¢u2

Relation to velocity spectrum function:

=4] £, (k)(

sin Relation to velocity dispersion function:

1 0

1 o0

127 or

|

r* or

-

0
or

pul

1— j, (kr))dk

2
O, \r

"))

Second order velocity structure functions

Structure function for enstrophy and real space
enstrophy distribution:

Enstrophy: E = IOOO E, (k)k2dk

Enstrophy of smoothed velocity by a filter of size r:

$:(r) 1+,
~ =§j0 ()W (kr)dk = | E,, (r')dr

Real space distribution of enstrophy between [r r+dr]:

O T o
Em,(r):—g[S ( )/(2r2)]
Relation to total structure function:

_l_uﬁl(lnﬁl(sx( ) 4)j::55§(zr)

3r* or\ r or or
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107

= For incompressible flow or constant divergence flow: e [—=0.0 —2z=2.0]"
t= = 4 j (kl”) : —7=0.3 ——2z=5.0].
§ = _T[ _ /1 —z=1.0
= St (r) 3]0 E, (k)[l 32 ]dk |
Relation between different structure functions:

= 1 0O

(S (r)y=——|rS!(r

[51(r) === [S!(r)]

= | Relation to velocity dispersion functions: 0

I o 50
S (2r) = 55 5 (r35(0'§ (r)r4 )j

=| For irrotational flow:

= ) | L
._ ! _ 1 D _ b _
S2(r)_§jo Eu(k)(1—3]0(kr)+6 - dk ljl_IﬂI}Sé —111_}%83 =2u

| Relation between different structure functions: L ™ B

‘ o ; h

A 2 8[rS2 (r)}_ 1 0 5., o I(Iv[p.u:: ). |

. =— [r S, (r)] The variation of longitudinal velocity structure

or r- Or

function S'P, with scale r at different redshifts z '7¢
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Northwest ENErgy and enstrophy distribution In real space
.1[]2 E i oo e J v -1.DE' P e g T ETE G BB |
L ———z=0.3 ——z=3.0 10% F 7203 z=30 |1
10 z=0.5 ——z=5.0 |3 —g5 ——z=50 [
—2z=1.0 ——z=10.0|; S L7 | M DL
= ;
=R ?
= |
ﬂ::m-*l !
107 F
_1[]_3 Ly N R P ..H:I-E. LR piall PR S PR | R SR O |
102 107" 10° 10° 10 1072 107 10° 10 102
r (Mpc/h) r (Mpc/h)
The real space distribution of energy The real space distribution of enstrophy
on scale r at different redshifts on scale r at different redshifts
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Divergence of velocity: Vorticity (curl):
o(x)=v-u(x)  ©(x)=Vxu(x)
. . . 1 0 OR,
u>_<w.m>+<e.e>__r_25[r %
sm(kr) T

+ SRR

== Divergence and vorticity correlatlons:

1 0

— R, +R =— 2

4r* Or

1

0

|

0

7 2si(r)

° " 9672 or

(1@

GO

OB,
or ;

04, asz
or or ,

\7/ Correlation functions of velocity gradients and

For incompressible flow or constant divergence flow:

Vorticity correlation (divergence is zero):

W 1alL,erT 10],0[10(rL)
N a[ o J

R, (r) :%<co-(y)'> = jOwEu

(k)k? dk

sin(kr)
For irrotational flow:

Divergence correlation (vorticity is zero):

« 1o8[,R] 14| ,010(rn)
el a£ a J

R, (r) :%(9-9’) = ["E, (k)#* sin (kr)

dk




:Zfi;/ Modeling the longitudinal structure function on large
Northwest scale
Structure function (pairwise velocity dispersion):

S (r) = {8, )’ )=2((u )1 (1)

1[] i T T T T TrT] T B e e S R LE | T T T T T T T T T

= Modeling longitudinal velocity dispersion on large scale: (u§>(r)—l
r r \ L
2\ .2 o T SISETy
<uL>—u 1+adexp( ][1 ) z
i Fan Va2 ) |
z=0 7z=2.0
104 z=0.1 z=3.0
7/4 — i
a, =0.44a / z=0.3 z=5.0
z=0.5 z=10.0
z=1.0 = = 'Fit for z=0
Yy = 1 1953Mp6’/h 5 z=1.5 = = ‘Fit for z=3 "| l‘ll
1[]— M PR T T I N | i i P T | I b8 & g il | PR T T
_ 1/4 1072 107" 107 10 102
r,, =27.4a"" Mpc/h r (Mpc/h)

The variation of normalized longitudinal velocity
dispersion 179




\7/ Modeling the longitudinal structure function on small

Pacific

Northwest scale (two-thirds 2/3 law)

§ Second order structure function (pairwise velocity dispersion): 1

lim S"” = llmS P 2:.* T
" Ip — 2 — 2\ _ 1 b _ =7 2 r— r—0 —r=1.0 ——2z=5.0
Sy (r) <(Au,;) > 2(<UL> L, (l”)) with rl_I)lolS u ) tﬂ gl Mo
= For hydrodynamic turbulence: ~ 1imS7? =0

r—0

Construct reduced structure function that is purely determined

= by the rate of energy cascade ¢,;: 10° a‘ “‘\
Sél:” - Sép (r)—2u2 (m2/S2) and &, : (m3/S2) SianZS \

== . . . 0
= Dimensional analysis leads to two-thirds law for Séff, 1

Sé]; o (_gu )2/3 r2/3 or Sé’f, _ a3/2,82* (_5u )2/3 r2/3

S? (r)-2u’

102

= By introducing a length scale rg: upper limit for two-thirds law
10"

& s ()5t w24 ()]
= 2 4 o 1 «
u, 4u, 2 : . . £ (Vperh ; i

o dm 2 <9.5
d , tgly ~1 58Mpc/h and /5, Variation of normalized reduced longitudinal

g, 9H, 3 | |
Two-thirds law might be used to predict dark matter particle properties structure function and two-thirds law .




= 1/4 law for (modified) structure function on small scale: o'

U(r):_ v

' = Use virial theorem: "'

Y Cu (’” ) =

\7/ Modeling the longitudinal structure function on

Pacific

Northwest small scale (one-fourth Iaw)

AAAAAAAAAAAAAAAAAA

— _ = — e —
= Also see slides for additional information. S, (r) T |
§= = Potential energy for a sphere of radius r: | “ T e R Y |
gy P =05 =30 = = -§4z=0.5) from Eq. (132)
= : rG : ) 2 ) ) ]
— _[0 ;M(J’)P(J’)‘Wyzdy Virial theorem
U(’”):_ p 2T (r)+yU(r)=0
= Iop(x)4ﬂx2dx ( ) 4 ( )

E(r)=a"(rfr;) "wp(y)=p (1+£(2)) = poa” (/r:) "l
3—n GM(r)‘ 3a"H, 1’ (r ]n |

5-2n r 2(5—2n) r

The variation of
longitudinal velocity
structure function S\,

A(ty): [+ E0)(1+E() 'y
27 (1+g?(r)) -

1072 107! 10? 10! 102

: 2 va ( o r)2 .Y Use kingmatic 6— "
] : lat z y(6-n)(8-n) , 2 ! 1/4
: ; (7‘) 2(5 27’1) [’%j rﬂn > (7') 24(5 211)22 ¢ (HOF) Ve » S2 (r) = 181
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8 Nothwest Mlodeling velocity correlation functions on small scale
S 1/4 law for (modified) longitudinal structure function Velocity dispersion function for energy contained
= can be used to derive all other velocity correlations below scale r:
# == on small scale: 24.2" al a
—— 2 2 2
= i | o (r)= u | — | =1.0745u" | —
Sé=2u2(r/r1) with nz1/4 d( ) (4+n)(6+n) (rlj (VJ
* -3 * "
= W (Cl) Xna and B = 19-4MpC/h Total structure g (,,) — 2(3+n)u2 r
1= @ | _ function ’ 4
& | Using kinematic relations on small scale:
R ) . Structure 6n(3+n)-2" Y )
. ) r Longitudinal 2
Ly(r)=u”|1- [71] correlation enstrophy S N !

o - Vorticity =l<0)(x)-0)(x')>:n(1+n)(3+n)u2£Ljn

correlaton  ® 2 272

_ 2|1 2+n(r) | Transverse
T,=u"|1- > 7 correlation Velocity & ) B ()2 Oyt
- - vorticity £, (k):Cu nk o(k)=Cu’r,
n Total spectrum
Iy P r ota , 2(3+n)T((n+3)/2
: R, =u {3 (3+")[,ﬁj} correlation Proportional C=- (1_n n) ((n )/ ):0.4485
1 constant 27'0(3/2)T (-n/2) 182
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=—— = (Correlation functions are modelled on both large and 10 e e T e
small scales

= Need smooth and differentiable velocity correlations for
the entire range of scales

= Correlations of vorticity and divergence can be obtained
as derivatives of velocity correlations

10°

0'F

) Correlation function
ﬁ(r):R2s(r):3_(3+”)[_] on small scale

h

10 F
r ) . .
]Fz (7") = R2l (I/‘) =a, exp(__) (3 __j Correlation function :

v v on large scale :
| 2 2 0o p[” ™ R Ry
S( r) — Interpolation function == D)0 —L) 5 ®
1+ xbe_(r_x")/ & for smooth connection |- = T,0 —T, g ®
g P D_4 P e el
B 2 ()= R, (1-s() R, () I
o 274 ry=r, \1=sr + s\r _ _ - _
g, 2 ) ? . The fitted velocity correlation functions compared
B Final fitted correlation function is obtained by parameter to original correlations from N-body simulation

optimization using correlations from N-body simulation 183
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Northwest entire range of scales

\7/ Modeling divergence and vorticity correlations on

With correlation functions modelled on entire range ol
scales, correlations of divergence and vorticity can be

102

obtained using kinematic relations. 0|

Divergence is negatively correlated on scale

r>30Mpc/h o2
Vorticity is negatively correlated for scale r between ™ w®
1Mpc/h and 7Mpc/h (pair of particles mostly from s
different halos) and positively correlated on small

scale (pair of particles from the same halo). 107

Vorticity is dominant on small scale while divergence

— § ﬂ(ﬂ}[}
— RWI:I)T-’D
— : § E(I)'FRM{I')
=2 - =B IEiII[I}fili}
- - & RHIEI}‘:D

Y | i M -y | i I | .i R

dominant on large scale.

107" 1 10" 102

10
r (Mpc/h)

Variation of correlation functions of divergence

and vorticity with scale r at z=0
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Velocity correlation tensor  Longitudinal velocity =~ Two-thirds law / one-fourth law
Kinematic relations Transverse velocity Spectrum functions
Correlation functions Structure functions Dispersion functions

» |dentify connections with homogeneous isotropic turbulence for the development of the statistical
theory in terms of correlation, structure, dispersion, and spectrum functions

= |dentify the nature of peculiar velocity in dark matter flow: constant divergence flow on small scale
and irrotational flow on large scale.

= Develop kinematic relations between different statistical measures

= The limiting correlation coefficient of velocity p=1/2 on the smallest scale (r=0) is a unique feature of
dark matter flow (p=1 for incompressible flow) along with the implications for particle annihilation

= On large scale, the transverse velocity correlation has an exponential form with a comoving length
scale r,=21.3Mpc/h. All correlation/structure/dispersion/spectrum functions for velocity, density, and
potential can be derived analytically using kinematic relations for irrotational flow.

= On small scale, the longitudinal structure function follows a one-fourth law S,'~r'4, along with other
correlation/structure/dispersion/spectrum functions obtained from kinematic relations for constant
divergence flow.
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Review:

Statistical theory in hydrodynamic turbulence
Velocity fluctuation and distributions
Incompressible on all scales

Divergence-free
Constant density

N-body simulations are invaluable tools for DMF:

Velocity fluctuation and distributions
Density is non-uniform (density
fluctuation/distributions)

Fundamental problems when projecting N-body
density/velocity field onto structured grid:

N-body fields are sampled discrete locations
of particles.

The sampling has a poor quality at locations
with low particle density

Goal 1: Density distributions and two-point
statistics

Goal 2: Velocity distributions and redshift
and scale dependence

Halo-based non-projection approach:

» |nstead of projecting, analysis is performed by
the statistics over all pairs on different scales
to maximumly preserve the information from
N-body simulation

= Based on the halo description, divide all
particles into halos and out-of-halo particles,
whose distributions evolve differently

= Scale and redshift dependence of distributions
can be studied by the variation of generalized
kurtosis for a given distribution. 187
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Projecting particle field onto structured grid involves ol i PR B ] o P——
information loss and numerical noise. / n wp gt a g bl
Without projecting onto grid, Delaunay tessellationis wf —z=3 ——z=03|4
used to reconstruct the density field and maximumly PR

preserve information in N-body data.

-2

Compute the volume V, occupied by every particle 1

= -

4

p(x)zmp/Vp 5(X):,O(X)_1 10

e
Particle Particle density e
density contrast

. £
_ n(x):log(1+5(x)):log(p(x)j Delaunay ¥
= Po tessellation

. . -10
Particle log-density W 2 100 102 s 106

|

e | Constraints for densit ft evolut it density distributi _

g A _1 <e—n(X)> 1 onstraints for density Redshift evolution of particle density distribution from z=10

, contrast and log-density to z=0. Density evolves from initial Gaussian to an
asymmetric distribution with a long tail ~0-3 188
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= Gaussian distribution of log-density at high redshift. 1|

= Bimodal distribution of log-density at low redshift.
10
= Two peaks corresponds to contributions from particles
in all halos and particles out-of-halo.
= Best fitted bimodal distribution at z=0 showing fraction
of particles in halos is about 60%, consistent with 10!
Inverse mass cascade theory.

1

10°

)= gron| Ut e e U
¢, =0.404 ¢, =1-¢ =0.596
1, =-030  p, =4.256
o =1212 0,=2979

Particles in halos should have an average density close
i to A\, the critical density ratio 1812, such that the mean

density for all halo particles <u,>=log(181?) =5

n(x)

¥ S .
Gaussian z=5 z=] =———z=0
z=3 ———z=0.5 = = :Eq.(4) for z=0
\ —— =) ———7=03
In-halo A
\ a Out-of-halo
:'lﬂ
0
N i /
! i
I |
il 111
]
il
14 |
|
i
| [I
5 0 5 10 15 20

Distribution of log-density at different redshifts z. The
log-density evolves from Gaussian to an approximately

bimodal distribution at z=0 with two peaks.

189
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Northwest density
£ = T 0.7 T T T I I I I I
= = (Checking the density distributions of particles in halos Out-of-halo = 1)(z=0) for halo particles
= _Af. ‘lae canarataly, e n(z=0) for out-of-halo particles
_ and o.ut. of-halo partllcles geparately. o 06 | o 1(2=0.3) for halo particles |
= |dentifying all halos in entire system ar_wd dividing all 4 I R PO n(z=0.3) for out-of-halo particles
= particles into halo and out-of-halo particles. : i = p{z=1) for halo particles
» For out-of-halo particles, the distribution is relatives 0T ﬁ CR Y EF:IET:: i{nr Eglt-nf-hqlccl: particles ||
. . . . - = = n(z=_.) tor halo particles
Gau33|a.n (or.6 |sllognormal) with mean density h : 1 cvneer z=2) for out-of-halo particles |
decreasing with time. 0.4 T

i = For halo particles, log-density distribution evolves with
increasing mean density due to the formation of halos.

— Characterizing the time evolution of the shape of
distribution by introducing nth order generalized kurtosis:

<(T_<T>)n> _ Scp( ) Generalized

K"(T):<(T_<T>)2>"/2 S (7 )/ kurtosis

ST (1) = <(r —<r>)n> nth central moment

Redshift evolution of log-density distributions
For Gaussian: K, =1 K,=3 K,=15 K,=105 K,=K,=0 for two different types of particles. o
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Northwest Time evolution of comoving particle density field
10* - . - - ; - ——
- Dlstrlbutlon Of r] |S always —H—Es{rﬂ for all particles —-—Es{ﬂ] forparticles mhalos —.—Es{q}fnrparljcles nut-nf—hslll:uf
. . — w— K (n) forall particles =g =K (7} forparticles mhalos =g =K, (7) forparticles out-of-halo ]
GaUSSIan for OUt-Of-haIO partICIGS' # Kg(7) forall particles =« = K. (7) forparticles mhalos =@« K.7) for particles out-of-halo |-
| e K (1) forall particles =g =F 1) forparticles inhalos  ==gp =K (1) forparticles out-of-halo
107 F E
= Distribution of & for out-of-halo : i '
particles is approximately log- A, e
normal "'*-..H e
Al = e
L . : ————— o
= Distribution of n for halo particles | BT =IL'"""-.'._j‘_'“""'--—-n--'a--....,.__m :
. . = l..._- * S . h“- |
approaching some symmetric non- | / ‘: oy e
Gaussian distribution with Wl L R e, AR, L, - SRR
; 1 : L = =0 feas ‘14-
vanishing odd order kurtosis .
10 B
The redshift evolution of generalized kurtosis of log-
density for two different types of particles.
11}':‘}_1 | ' | 100

a 191




o

Pacific

Northwest Time evolution of particle density field

For out-of-halo particles, the mean log-density
decreases with time and <n><0 after z=1. This
reflects less and less out-of-halo particles due to
Inverse mass cascade.

For halo particles, mean log-density increasing with
time (<n> ~ a'2) reflects more and more particles
residing in halos

For halo particles, standard deviation of log-density
increasing with time (std(n) ~ a'?)

10°

| =€—mean( ) for all particles

| =—8—std(r) for all particles

| —€—mean( ) for out-of-halo particles
| =—8—std(n)) for out-of-halo particles
|=—®—mean( ) for halo particles

| —a— std(y) for halo particles

101

The variation of mean and standard deviation
of log-density with scale factor a. 192
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Defining two-point density correlation function from radial On large scale, transverse velocity correlation
= distribution function g(r) in statistic mechanics, a quantity can be well modelled by exponential function:

s— to measure the averaged particle density from an arbitrary , . )
= reference particle: Tz(i”,a)=aou CXp| —— |x<a 4 (”/“o) =0.45a
v
N 2 R _
2 edshift-independent length
e de = g(r)_p477r dr Np/V r, = 21.4Mpc/h scale, might be related to the
: ‘ V 5 ,‘v size of sound horizon
— — mean number | |
e Ioo g(r)47zr2dr _ N, -1 v density of particles Total velocity co'rrelatlon ) )
= s N, in entire system Rz(f”aa)=<u°“>=2R(’”)=aou2 exp L 3_r_
. _ 2 2
r)=(o(x)o(x+r))=g(r)—1
= f( ) < ( ) ( )> g( ) Srn=— V-u Linear perturbation
= . $ . Correlation cannot be aHf (Q,,) theory on large scale:
IO &(r,a)dnridr=-V[N <0 positive on all scales $
Two length scales can be defined from density correlation: ~Modeling density correlation on large scale:

o0

B o(a)=] &(ra)dr  I(a)=[ &(r.a)rdr 5(’%“):(ajazf(lgo))2 'aﬁf eXp(_ij{&Tq&}g
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Northwest correlation function

—_ .1[]5: . . . ————
P= |n statistical mechanics, potential energy of any system 5
= with particles interacting via a pairwise potential V(r) |
§=— can be related to the radial distribution function g(r): 10° :
_27p, (* |
= PE = mlzj -‘-0 r I:g(f')—1] Vg (l”)dl” o 10 ' _e_pF{aj from simmlation ——1,@;
= 3 NE E —e—P () from Eq (13) using L;) —g—1,(@) ]
27Gp, = 3H:I? = 10° : 3
= ])y(a):_ T 100‘[ f(r,a)rdr:— 051<O i ; 35.'2
ot = a 9 4a < |
=— Cosmic energy equation 3 5 107 ;
o(K,+P,) |
- +H(2K,+P,)=0 10' ~
4 g
\ 4 t \
” : p—a Oa y a y »Kp_ZH()a 51—61 jO S1 a a7 ]
evolution and rate of energy cascade &,; L T L
- 3 ,. , 7 o 56 8 Th iati d ft :
g K —_cf p-l.y > :J‘ _ 45 e variation of two comoving
" o5 » ;i (a) 0 §(rva)rdr= 45 H3 correlation lengths with scale factora. .,



\7/ Density spectrumldispersion functions and real

Pacific

Correlation and spectrum form Fourier pair: Density dispersion function (the variance of the density

fluctuation on scale r): First order spherical

Bessel function of

5 (k,a ——j r,a)krsin(kr)dr

Gg (7‘, a) = on E; (k, a) W(kr)2 dk the first kind
sm(kr) > \
e §(r,a) = jo Es (k,a) dk Window function when smoothed with a filter of size r
= W(x=kr) W(x):i[sin(x)—xcos(x)]=3j1(x)
&= Matter spectrum function: - X X

= The power per |ogarithmic interval:

IR i RN

== .- oo:(r The real-space distribution
Aa (k’ a) = L (k’ a) K L, (7”) =——" ( ) of density fluctuation in
e or scales [r, r+dr]
Modeling density dispersion functign on large scale: ) o .
‘v ol 1 9au® | (1, (rY 2r Y Y 7,
. ‘ 0-5(7"): 5 > 13| = +| — —CXp| —— I+ = 3| = +6| = |+4|f
(aHf(QO)) 2r r r 7, r r r .

- — — L -
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157 10* iy R R ) SRR EREE R A
: = ¢(r) from N-body Sim. : —z=0 - - z=0.5 ——z=20]
E™ ] . 3 E
o E—s 73(@) from {(r) using Eq. (27) ] 1 - = 7201 ——z=10 = = :z=3.0| ]
3 wennn 1) from model Eq. (33) : B __ ]
- e o2(r) rommodel Eq. (33) |1 102 RN e A Rl
10° :‘ﬁ.i'lu = = Linear theory E x .
F ""-rr‘w-, - = = .Nonlinear theory : 10! .
ﬂ:‘i': - o ] :
10' Vv 4 5
: ] 100 3
10° F 1 j E
: 1 101 I E
I ' ?
1k ]
L: 1 1072 l ;
.m-E - E 1.[]-]- I E
- Current model captures the , ]
2L correlation on large scale ] 10 : :
%= . better than previous theory | :
1D‘:U2 10 10° 10" 102 10° 10°! 10° 10! 10°
: r (Mpc/h) r (Mpch)
Density correlation function (solid blue) Density correlation function varying with

varying with scale r at z=0. scale r at different redshifts. 196
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Northwest (Simulation & models)
10° ' =B S. : [ : ! | T !
| —e—r1=0.1Mpch —e—r=3Mpch 2 -~ _ -
L ﬂ ""'L 10 g Ly
|| —&—r=03Mpch —&—r=5Mpch :
2 o r=05Mpeh —6—r=10Mpch .
| —e—r=1Mpc/h bl 2= :
: 5 Eﬁ{kza}zi—rjlﬂ g{jga}hm{h—}df CE
o'+ ON large scale, &(r)—a? ERCH 3
E On small scale, &(r)~a%2 2 !
! o 107 f \
0 = | \o
b A - = ~
_Eﬂﬂ" 5 e E (k) from N-body L
5 -, ’ 2k from N-body N
107" = ., ¢
107 g e P (k) from N-body
2 f - -Edﬂ{]ﬁnmﬂlenw
102k 1{:1'35' ! - -ﬂ%{l{]ﬁnmﬂlenw
f’ - - .Pﬁﬂ{]ﬁnmﬂlenw
10 ;;'r
1ﬂ—3ﬂ : okblal kil ‘e AW | F ikl prpae | Jlivimgasiasimannig o) ; R |
1072 107 10° 10” 10° 10" 107
a k (h/Mpc)

Two-point second order density

correlation varying with scale factor a. Without projection, density power spectrum can be

obtained from Fourier transform of correlation. .,




\7/ Density dispersion function and distribution of

Pacific
Northwest density fluctuation
-“}4 T T - e | 1 e B -1DE ?
| e — o —= =0
i . T o o ST E
10° f ——z=03 z=3.0 z=0.1 z=15|:
F={) § seereen z=0 from Eq.(35) 10t P z=03 —=z=2.0 3
——z=10 *nz=] from Eq.(35) st SR o AT i
10° F E o I R {
m— 102 E“*ahinﬁ':ﬁwgh
'11}1 E b E| e ~, % ‘:x“xx.:.: - b
9 ‘\"-. ‘xq:xx:-.;ﬁ‘_ \
I '.-._-_h' o - i LY ™ ,,MHR:EHR
S 100 [ ; =10° N AR
E L e, 1 E ! - \:x“‘x?:-‘\.
..... i o IR Y
| I -, g,
107 ¢ 1 | T ORI
: ; 1072 i RN
I I sl x‘“n::: :
- b ),
107°¢ E : *\*: \F\x
s, ST
: 107 o (r BN
1 ¢ o (1 WA
103F rf(lr]: . : . (D'J 4 E. (f']—— J( ) N
: 72r~ or\r or\_ &r f ar \
11}_4. HE - - A | P A A I I | A - HE J..‘..'i '1[]'Ei 5 ; i : ;
1072 107" 10° 10 10? 10° 10° 10 10 10
r (Mpc/h) r (Mpc/h)
Density dispersion function obtained from density Distribution of density fluctuation on scale r

correlation and compared with models. obtained from density dispersion function
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Northwest Characterizing distributions of velocity fields
U u We focus on the distribution of seven types of velocities:
Pair of particles with
distance of r . Scale-dependent velocities (dependent on r):
u, u; . . |
. ~ Longitudinal velocity: U, and U
r=x-x r=r/r 7 _ S
u®--Yu., Pairwise velocity: Au, =u;, —u,
Velocity sum: ZML =Uu, +u,
Longitudinal velocity:  Transverse velocity:
uL:u.f.:uii/; uT:—(quXf)
| | | : A Based on halo-based non-projection approach,
S = P u, =—(u' i xF)

Redshift-dependent velocities (dependent on z):
Velocity of all particles in entire system: 4,

Velocity difference or

Velocity of all halo particles: u,,
Pairwise velocity:

| Velocity of all out-of-halo particles: wu,,
Velocity sum: 2u, =u; +u,

Velocity of all halos: 4,

199
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= [he scale and redshift variation can be studied by 1« oK. (x) foral paricles oK o, for bl paicles K o) fo aut ol pacicee|
: +Eﬁ{%} for all particles —I—Kﬂ{uhp}fnr halo particles —Q—Kﬂ(uﬂp}fnr out-of-halo particles ]
: —E—EEII:'LH]} for all particles —I—Eﬂ{uhp}fnr halo particles —ﬁ—EE{uﬂp}fnr out-of-hale particles

Introducing generalized Kurtosis:
<(A”L_<AML>)n> 87 (Au,,r)

) )

u,,r) =

- '_ The central moment of order n:

S;P(AuL,r)=<(AuL —<AuL>)n>

The nth order longitudinal structure function:

52 ()= (o)) ={(s -

2 = All velocities are initially Gaussian.

= 2 = \elocity distribution of halo particles deviates frot |

Gaussian much faster than out-of-halo particles
due to stronger gravitational interaction in halos.

maximize system entropy

Redshift dependence of velocity distributions

10t F

10

10

- (Faussian

Redshift evolution of generalized kurtosis for velocity

10° 1

0
200
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= Even order generalized kurtosis (4th, 6th, 104 R RREERCH T SRR RALH FEn e MR R SR N T
and 8th order) at z=0. '

= = \Velocity of fully developed dark matter flow
is never Gaussian on any scale due to
long-range gravity despite that they can be
initially Gaussian.

& = Forincompressible flow with short range
force, distribution is nearly Gaussian on
large scale and non-Gaussian on small
scale due to viscous force.

Generalized kurtosis

= On small scale, distribution of 2uL
approaches the distribution of uL with
P, =0.5.

= On large scale, distribution of ZuL
¥  approaches the distribution of AuL with ]
p.=0. r (Mpc/h)

201



S

Pacifi . . - -
Northwest Scale-dependence of velocity distributions
_ 102 T SRR —— —
= " On both small and large scales, generalized Kg(ﬁuL!r)

kurtosis approaches constant such that there
exist unique (limiting) probability distributions
that are independent of scale r.

107 |

= = While on the intermediate scale around 1Mpc/h,
all three velocity distributions exhibit the
greatest value of generalized kurtosis of
different order.

109 |

' H

= Third order kurtosis (skewness) vanishes on 5 . ' <0

both small and large scales, where distributions . i | _

are symmetric. 10 | :
=2 . The negative skewness on the intermediate
’ scale (distribution skews toward positive side)
can be an important signature of inverse
cascade of kinetic energy.

1073 ¢

1074 —
1072 1077 100 107 107
r (Mpc/h) i
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equation

Pair conservation equation relates the pairwise velocity
107 -

— Jm density correlation

= <AuL> _ (1+6?(’"’a)) aln(1+g?(”aa))

Har

3(1+§(r,a)) Olna

= For large scale in linear regime, average correlation

. £ <1 and 0Iné/dlna=2

— (Au,) 28 (r,a)(1+¢ (r.a))

Har 3(1+§(r,a)) 3

2| For small scale in non-linear regime,

' E(r,a)oca”r” and Oln E/olna=a

Stable
A
clustering < uL> =—1 » a=y+3
hypothesis  Har

First moment of velocity fields and pair conservation

107

emaZil

-h-

—-<Au_ /(Hr)>

===] inear regime
— =Nonlinear regime

108
107

107 10° 10° 10°
r(Mpc/h)
The variation of first moment of longitudinal velocity

(mean pairwise velocity) with scale r 203
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= | On small scale: o ; ]
3 —— <AuL> = —Har <ML> — Har/z <ZML> =()
= | A better relation to fit the simulation data: 10" :
— _ -5/3 2
= <Au L> =—Har —ua (r/ v, )
B 107 E
#— On large scale:
1= 2Ha ¢r ) From pair . o—<An
t— — _ . T e uL‘-l*.-E atz=0 = = .{ﬁuLf? from Eq. (48) at =0
e ':. <AuL> ’/,2 -[0 5 (y) y dy Conservathn 1072 :-_—{E]_]L‘} at z=0 - - ,{ﬂ]_]L‘..} from Eq. (48) at =2
= equation |——-<Au>atz=03 e <Au > from Eq. (46) at z=0
R = <u-u' > Total velocity | ——<Aw >atz=10 seees <Au, > from Eq. (46) at z=2
= | correlation | ——-<Au >atz=2.0
: b e S s —
:‘ 5 T " <AuL> — 2 aRZ — 2a0u exp _L L —_ 4 I’(MIJC.-‘]J]
i aHf (Q,) or  aHr, r, )\ 7 Mean velocity difference (pairwise velocity, normalized

by u) varying with scale r at different redshift z
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Model from 2/3 law

r:uf:r = = 8P .1

—SP(r=cAr > = = SP(Au 1)

|

......... c:ui';a from Eq. (39)

el L i MR A |

n 237,

. 1 |
P TR 3 R R T — '
( L> 7 Iﬂi T, _

| 10° 10’
r (Mpc/h)
Increase of velocity dispersions with r for r<r, (pair of
particles are more likely from same halos) is mostly due

to the increase of velocity dispersion with halo size.

107 107 10°

Second moment of velocity fields

10!

—{ui::: — -{ﬂui::: |
-.-l"' ." 1 —-— -
gt —{112::{:‘11‘; «::Eui:: ]
a-"-—..-‘t
P b
7’ Vo
s “ \
'f L] 5
. N
”, « S >
e .
e L] A ._/. ""- \.‘ \‘\
‘-... ‘\'-‘.—- -
- h._____,.r-"
Energy is not
equipartitioned on
intermediate scale
2 107! 10° 10! 10°

r (Mpc/h)

Second moment of velocity (normalized by u”2)
varying with scale r at z=0
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::f::/ Second moment of pairwise velocity (pairwise

Northwest dispersion) and the two-thirds law
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.-H]: - T T T T T T T T

——z=0.0 —z=2.0

--=-7z=01 z=3.0
=03 =5.0

----z=05 ----=100 E|
z=1.0 = =From Eq. (55)|]

10!

107
A)—z=00 ----z=15 |
_ [ |--—z=0.1 ——z=2.0 I
I
| 2 v /=03 —--7z=3.0 | ,» <ﬁ 1>_2 )
<(ﬁﬂl) > oo =05 ——7=5.0 ( HL) TH
Y | ——z=1.0 ---2=10.0
10°2 10-1 AL 107 102 102 107" i 10° : 10! 10°
r (Mpc/h) (Npet)
Second order longitudinal structure function Reduced second order longitudinal structure function

(pairwise velocity dispersion) (pairwise velocity dispersion) and two-thirds law “*°




| B =2.75x10°

\‘7/ Two-thirds law for higher even order structure
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Northwest functions and generalized stable clustering (GSCH)
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Original scaling for incompressible flow does not
apply for dark matter flow.

= | All even order reduced structure functions follow

the same scaling of two-thirds law.

() 2K (3, 0) 2, 5

u§:4uo 2

v =——=——r=—uyt, = 1.58 Mpc/h
s gu 9H0 3 00 p/
2
—&, =§u—°:2u§H0 =4.6x107" mz/s?’
2¢ 4
B =95 B =300 p =225x10"

* 1.826n—-1.003
ﬂZn ~ 1 O

All odd order structure functions follow linear law
i | from generalized stable clustering hypothesis

SR (5! (r)=(2n+1)S" (r)SE (r)oc 7P

10
10 e ey ey ey
P2 ——SP(N)-96000 = = S = = +[,=2.25¢4
Pt — — SPE - = =95 = = [G=2.75¢6
8
10 ——sPEORs1280 ~ - SPEL - - 3=300
Slope 2/3 Lol
10°
1[}-1- Ll o o Ml ‘ q
™~
107 | : b

107} ”
s (R :‘li"'r.'
it N

V!

107 Slope 1

I
Slope 2/3
—"-l- " i M | i i PR T | i i PR T | ‘ i

1072 107! 10° 10! 102
r (Mpc/h) 7

10



Pfif;c Comparison of velocity fields between incompressible
Northwest and dark matter flow

Quantity Incompressible flow SG-CFD

<H;; > ={u-¥) 0 for all scale » ;Eﬁlm <u . > =0, varying with »
<u§ > u; for all scale r !1_1}& <y§ > =2u_, }L]E <y§ > = u,
<“13 > 0 for all scale }‘l—irI{{lm <“L3 > =0, varying with r
PDF of u, Gaussian Non-gaussian on all scales
<AHL > 0 for all scale r 111101199 <Au s > =0, varying with r
<ﬁ.uf> !1_1;% <Au§ > =0, }11_1;2 <Au§ > =u, !1_1’}% <Au§ > =2u;, }11_1;2 <Au§ > =2u;
K, (Au,) limK, (Au, )=-04, lim K, (Au, )=0 lim K, (Au, ) =0, varying with r
K4(Azfl) EﬁE&K4(ﬁzfl):m4 (depends on Re), Ej_I}I{}K4(Asz): 7.5,

lim K, (Au, )=3 (Gaussian) im K, (Au, )= 4.2

<Z u, > 0 on all scales 0 on all scales
<Z Hf > !1_1;% <Z uf > = 41{5 , }ﬂ <Z uf > = 23{5 !1_1’}% <Au§ > = éué , }11_1;2 <Au§ > = 21{5
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= = On small scale, velocities u, and Zu, should have

the same limiting distribution.

= = On small scale both should follow a X distribution to |

maximize system entropy.

= Maximum entropy distribution:

1 e_Ja /) Shape parameter: a;

Velocity scale: v;

The mth order generalized kurtosis of X distribution:

2K, (o) | T((1+m)/2) Koy (@)
£.(X) :( K, (a) j J | (Kl/()a)

B - The shape of velocity distribution changes with

redshift z such that a is redshift-dependent.

dependent

0

chions
oa

i daa Fa

Probability distnbution fun

dn

Kurtosis K., is only dependent on a and also redshift-

1

1 I I I 1

10 -5 0 3 10
Velocities at r=0.1Mpc/h

Distributions of velocities on
scale of r=0.1Mpc/h at z=0
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| = On small scale, velocities u_and  The limiting distributions of velocity fields on small and large scales
2u, follows X distribution.

. Distribution of pairwise velocity Au Velocity fields Distribution 4™ Kurtosis 6™ Kurtosis 8% Kurtosis
— . . . . L - — 1
= s different with moment estimated. 729 %> 2*%  N-body, z=0, Fig. 14 48 S7 1200
#=—— = Pairs of particles with same r can be _ " >0 Au, N-body,z=0,Fig. 14 | 7.5 160 6000 |
from halos of different size. r—0 U, T, X (x) 4.6 48.9 944.8
@ @ r—0 Au, Eq. (80) 7.7 159.24 6356
Au, = uL —u, r—>»  Au;,Zu;  N-body, z=0, Fig. 14  |4.181 41.46 670.8|
i Key: correlation between two longitudinal " % U N-body, z=0 Fig. 14 5.39 85.78 2800
= velocities decreases with halo size: r—w Au; Zu, Logistic (Eq. (82)) 4.2 279/7 685.8
e D ( mh) — O—}f / o r—oow u, P, (x)(Eq. (85)) 5.4 78.4 2269.8
: cor
& Double-A halo mass fun_g:tion: Exponential?? Laplace distribution 6 90 2520
v o 2\/777 Gaussian distribution 3 15 105
0 /2-1 4
/)= ho )= |
= (9/2) Mo Generalized kurtosis:

o[ 1 0] . (@) T (n+prg/2)[T(p+g/2)]"
B ) o e G A C Sy Y
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D ] || I | ] ] ‘1

05
= -1r .
k=
5 0
Z 05
%3 ! Negative ] al
k2 skewness
-
= 15}
= 4r N
=
E ]
51 : :
25l Negative
skewness
—E 1 1 1 | | | | _3 1 1 I 1 | | | |
-20 -15 -10 -2 0 2 10 15 20
Velncities atr= 1 3Mbch 0 05 1 15 Erﬂégc;h]g 35 4 45 5

Distribution of 2u, is symmetric, while the distribution of Au, is non-symmetric with non-zero (negative)
skewness and skew toward positive side. This is a necessary feature of inverse energy cascade.
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Exponential distribution

. == Nstribution of Au, on large scale is usually assumed 'f
= be exponential in literature (non-smooth).
#==5\is seems not agree with N-body simulation
large scale, Both 2u; and Au; can be modelled

]
I

a logistic distribution. ak |
&= | ogistic distribution for both velocities:
§ 1 x 2 = -
-~ P (x)=—sech’| —
= A”L( ) 4 (25) .l |
= Reduce to exponential at large velocity:
¥ = '-_'_ 1 | |
— I (x—)oo)z—exp(—fj i
= S S
Longitudinal velocity u, should satisfy for p,=0: i |
AuL I P, (z—x)dx sk ]
. Moment S Y
L TSt . 7 : s 1 i L i | - 5
= MGF, (t)= |— generating 45 10 5 I 5 10 i5
n ) \/Sln(””) function for u, Velocitiesatr = 100Mpc/h 212
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Distribution of different types of velocities -

changes due to redshift evolution of a.

Shape parameter a decreases with time.

Most velocities follows the X distribution
to maximize system entropy
[ind
Halo velocity and out-of-halo particle
velocity evolves much slower than halo
particle velocity due to weaker gravity on .
large scale.
Generalized kurtosis of X distribution:
m/ 10°
2K, (a) i F((1+m)/2) K o) (@)
K,(X)=| 7+ -
K, (a) Jr K, ()
Plot K4 vs. K6, K4 vs. K8, and K4 vs. K10; '

10° F

Light green: out-of-halo particle

T T
- Red: halo velocity; Black: halo particle

T

—

r

X dist.

Kﬁ from X distribution
KE from X distribution
Km from X distribution

K,(u, ) for =5,3,2,1.5,1.0,0.5,030.10 I
Ky(n, ) forz=5,3,2,1.5,1.0,0.5,03010 |
K (0, ) for=5,3,2,1.5,1.0,0.5,030.10

I{ﬁ{upj for=z=3.3,2,1.5,1.0,0.5,03010

Kﬂ{up] forz=53.2,1.5,1.0,05,03010 |
Km{u]]] forz=53.2.1.5,1.0,05,03010 N

K(u, ) for=35,3.2,1.5,1.0,0.5,03010

Ky(n, ) forz=5,3,2,1.5,1.0,0.5,03010 [
K\ (u,) for=3.3.2,1.5,1.0,0.5,030.10

K,(u) forz=3.2.1.5.1.0,0.5.03010
Kﬂ{uh] forz=3.2.1.5,1.0,0.5,03010
Km{uh] forz=3.2.1.5,1.0,0.5,03010
Kﬁ{ﬂuL._Fm:l forz=2.1.0340
KE'I:E':uL._F.’:E-:I forz=2.1.0.310
Kﬁ{ﬂuL._FD'::I forz=2,1,0.30
KE{&UL._F-“‘M’-:I forz=2,1,0.30
Eﬁ{uL._FﬁE:I for=2,1,0.30
KH{UL._F:C:I for=2.1.030
Kﬁ{uL._F'EI:I for=={

KE{UL._F'D:I for z=0

Kﬁ{.iuL__FD:I for z=

H.E{ﬂnuL._Fﬂ:l for =0

3] T

]
K, (4thorder generalized kurtosis)

OO OO 0 O @ @ 8 =« % B # % o0 #» % 0 8 % 8 @

9 10
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Delaunay tessellation Pairwise velocity Skewness
Generalized kurtosis Velocity sum Generalized stable clustering
Two-thirds law X distribution Pair conservation equation

A halo-based non-projection approach is proposed to study the scale and redshift
dependence of density and velocity distributions in dark matter flow.

A two-thirds law for pairwise velocity was established, i.e. S,P-2u?~ ¢,r?3, where r is the
separation between pair of particles and ¢, is the constant rate of energy cascade.
Two-thirds law can be generalized to all even moments of pairwise velocity, while odd
moments ~r

The distributions of longitudinal velocity u, , pairwise velocity Au, , and velocity sum 2u,,
are analytically modeled on both small and large scales ) )
Fully developed velocity fields are never Gaussian on any scale despite that they can
be initially Gaussian.

Delaunay tessellation is used to reconstruct the density field from N-body simulation,
which results in an asymmetric density distribution with a long tail.

Density correlation is obtained by directly counting all pairs on a given scale r along with
simple analytical models for all second order density statistics.
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The statistical theory of dark
matter flow (high order)

Xu Z., 2022, arXiv:2202.02991 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.02991
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Introduction

Review:
Statistical theory in hydrodynamic turbulence

Kinematic relations between statistical measures
(2" and 3" order)

Dynamic relations between statistical measures of
different order (from NS equations of velocity)
Reynolds decomposition

Closure problem, eddy viscosity, etc...

Current statistical theory of dark matter flow is not satisfactory:

Dark matter flow is intrinsically complex with different nature
of flow on different scales, i.e. a constant divergence flow on
small scale and an irrotational flow on large scale.

The kinematic and dynamic relations need to be developed
separately for both types of flow on different scales.

Dynamic equations of velocity (Jeans’ equation) are not self-
closed. No dynamic relations can be derived without a self-
closed dynamics for velocity evolution.

= Existing work mostly focus on the 1st and 2nd
order velocity statistics, while the peculiar
velocity field contains much richer information
beyond the second order.

= Finally, very challenging to explore high order
statistics, as that inherently involves tensor
and vector calculus of great complexity.

+» Most kinematic relations between
statistical measures (2"9)
Need to extend to high and arbitrary order

¢ Develop self-consistent dynamic equation
for velocity field 1

s Develop dynamic relations between
statistical measures of different order

¢ Derive the “eddy” (artificial) viscosity from
velocity fluctuation 216
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Third order velocity correlation tensor (homogeneous and isotropic):
0,1 (%) =0y (1) = 0y () = (. (), ()1, () = (s, )
General form of isotropic third order tensor:

O, (r)= 4, (r)rl.rjrk + B, (r)(:gé}k + rj5ki)+D3 (r)rké'l.j

Two-point third order velocity correlation tensors

Pair of particles with

X distance of r

r=X —X

r=r/r

u--—--"Ur

§= | Divergence of second order tensor:

or r or

or,

& | (0 (00, ) (7, ()= 0((w (), ()

Use this to derive Kinematic relations

Ql-,-k,k=<(u,.(x)uj(x))(v'.uj(x'))>:0 4 Incompressible flow

or

Constant
0 .
0 4m divergence

Transverse velocity:

u, =—(uxrxr)

Longitudinal velocity:
u, =u-r=ur

u, =—(u xf'xf')

>

u, =u -r=u,

1

~,

flow

Velocity difference or

. . Au, =u,
Pairwise velocity:

Velocity sum: 2u, =up+u;

i==_ Curl of second order tensor:
1 0B,

{ VxQ

r or

mni (r) - giijmnk’j - ( 3 ___)(gimkrnrk + ginkrmrk) = O

flow

Irrotational
-

Different odd order kinematic
relations for incompressible flow and
constant divergence flow
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Northwest TWO=point third order velocity correlation functions

.= Using index contraction of third order tensor to define four scalar correlation functions

—— Two total correlation functions:
= 1 - |

R3(r) 2ka (5 r+0, ) <uLu-u >:A3r3+(4B3+D3)r Quix = kaz i = Qs =r—2(r R3)’r

1
R, (r)= Q0,1 = <u-uu'L> = A, +(2B,+3D,)r Qir = r_z(’”sz )’,,

Relation to third correlation tensor:

= Longitudinal triple correlation function: Correlation functions of any order (pth order):

Ly(r) = Quhtf, = < fu2>:A3'”3 +(2B,+Dy)r Lipgy = <u u, " 1ML>

. . . R, = <uqu” "_zuiu;> =<uqul{’_q_2u~u'>
Transverse third-order correlation function: P-4

I (r) - <uLuT u, >/2 = (R3 — L, )/2 = B,r R(Paqﬂ) - L(p,q) T 2T(p,q)

R _7 T Goal is to identify kinematics relations between
3 (r) =4 (r)+ 3 (r) correlations functions of same order
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\7/ Kinematic relations for third order correlation

For incompressible flow: V.-u=0

bR (L), 1= l(L) (PR =2(°T), R () =(uwwn )0

’r ’r

L —rL, ... 2L +rL
3 37,;.rjrk_|_ 3 3

i L .
0, (r)= (76, +rj5kl.)—73rk5..

y

Relations between
correlation functions

Correlation tensor in
terms of correlations

For constant divergence flow: V-u=6  Reduced to incompressible flow with ©=0

R ()or=1 (L), ()0 =Ry,
<u2> ~ 3<uz> R, +é(r2R3l),r = %(r‘l3 )’r

For irrotational flow: Vxu=0

1 2

(rR3 ),,, FR - r_g(’”4L3 ),,, 3L~ R, = 2(7”T3) 3R, —R, = r—3(r47§ )J

N




:‘7?:/ Scaling laws for two-point third order velocity

Northwest Structure function (review)

AAAAAAAAAAAAAAAAAA

Structure functions as moments of pairwise velocity:
SP (r)= <(AuL )3> = <(uL —u, )3> =6L,(r) —2<uz> SP = <(AuL )m> = <(uL —u, )m>

Two-thirds law for even order (reduced) structure function:
SP (r)= Sk (0)oc (~g, )" ¥

&, - rate of energy cascade.

Generalized stable clustering hypothesis (GSCH)
Sy a(r)=(2n+1)SF (r)S? (r)

Sy o (r)=—(2n+1)HarS? (0)=-2"(2n+1)K,, (Au,,0) Haru™" o« r

K, (Au I 0) . Generalized kurtosis of the distribution of pairwise velocity
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Table 2. The velocity correlation functions of different order

plg=0 g=1 g="2 g=3 g=4 g=>
: Loy = <“JIE> . . .

or {Au,)/2 p independent correlation functions
2 L[M] = <HLHL

) Roy=(uwu) | _— / /
3 Lo = (g, )| Ry =(wpwen ) Ly = (uuy) / ]
> RHJ] = <y§u-u' > LHJI = <yzulu}_> RHJ] = <u2u-u' >

a4 O T _ {22 _ /.2 ' a4
S Lig = <HLHL> R, = <z¢Lu-u > L, = <u HLHL> R, = <u u;,u-u > L, = <u ul>

Kinematic
— , , ) . T relations
6 L{ﬁ-ﬂ} :<HLHL> RIﬁJ] = <y§u-u > L[M] — <uzui’ul> R{ﬁj] = <uzufu-u > L[M] = <H4HLHL> lef.__ﬁ} :<”4“'“ >« (for same
1 order p)
Dynamic relations /g p-g-1 _foa, a2, '\ _ [ q p-q-2 _
(for different order p) L(M) B <u Uy ”L> R(p,q+1) - <u "y uiui> B <u 4wt > (p.g+1) L(p,q) +2T(p,q)



7 Correlation functions in the limit of small and

Pacific

Northwest |grge scale

For odd order p = The collisionless nature has effects
on the limits of correlations functions
<uqul{"q‘1> » ' <uquf‘q‘1> D oat both small and large scales.
lim = m =
r—0 p—1 . F—>00 up_l —
<ML > P < : > pd = These results can be confirmed by
o o N-body simulation data
L(M) <uqu,{’ q luL> <uquf ' 1> P

rliIOl,loo L, B rl—i>1()1:loo <uf_1u'L> ) rlj)glw <uf_1> ) P9

For even order p

() pe
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-. 102 ik - i -’-‘-““n‘ E
. *-:___"" F‘-—#--"u “‘* -
10 f — _ -
ol T N\ . ]
] 10° ¢ \ ")
| WA
T 10t - . LI\
I Vi
| Ry = = ~<(uu)*> \1
: R Teol | 107§ R g
o) - = | S l
(—— g = = i<t > 5 1073 | I N
i i Ry | i i R | i i ia v aal i PR T -:-! _1 'D 1
107 107 10° 10° 10° 10 10 10 10 10°
r (Mpc/h) r (Mpc/h)
Two-point third order velocity correlation and Two-point fourth order velocity correlation and
structure functions (normalized by u3) at z=0 structure functions (normalized by u4) at z=0
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—— For incompressible flow: V.u=0 For constant divergence flow: V-u=6
3 _ 1 p—q+l 1£©=0 ( _ —I)R + <uqup_q_1>(97” — 1 (,,p—q+1L )
(P a DR = (7 L), (g DR P g
1/, If ® £0 and p is even: lim<1,t‘f’1,t;’?“1"1 =0
2(p-q-1)T =—(rL ) 0
= (paQ) 7 (p’q) NG 1 p—q+1
‘ , 2 (p_q_l)R(PaQ"‘l) - I,.p_q (7" L(p’q))r
=== (r R ) = (rp_qHT ) |
s (poat1) ), p=a-1 (p-a) ), |
—— -1 _ 2
<up >€7"—;(7" L(p,p—l) ),r h pre)ls?égdadnd
For irrotational flow: Vxu=0 1 (p-DR,,+ <u5-1>9,, _ rip(”pﬂL(p,o))r
(R(p»qﬂ)r),r T (p —4 _2)L(P»4+2) - ,,P_—fJ(rp_qHL(p,q) ),r 1 1 | 0
0=—(, :—(r2<Au >) - IO+
R 2)L _ 2 pg+l r’ (L0 ], 2?2 L and p=1:
(P—4) (p.a+1) -(P-q-2) (Pa+2) ™ .= (r (p-q) ),r
Kinematic relations for even order correlations of
p—q)l, . —(p—q-2)L = Z(rT ) constant divergence flow should be the same as
( ) (p.q) ( ) (p.a+2) (p-4) that of incompressible flow
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Original Kinematic relations

\ 4

= To validate kinematic relations with N-

On small scale, kinematic relations for even order (even p) body data, we need to construct
correlations are the same as those for incompressible flow: equivalent relations.
p—q—1) _
' H(i,q) (’”) = £p—q+1L ) IO R(p,q+1)”p dr =1 = Extract high order correlation functions
= (p-4) from N-body simulation data
—— On small scale, kinematic relations for odd order (odd p)
correlations are the same as those for incompressible flow: = Dark matter flow is of constant

divergence on small scale and
(r): (P—q—l) J-r 2 _L(p,p—l) a4 gy 1 .L(p,p_l) _1 irrotational on large scale
(p.q+1)
0 pP—q (p-9) L,,

"

= " (p.9) ppoatly

(p.q) = Check the equivalent kinematic
relations against simulation data

On large scale, kinematic relations for irrotational flow:

| r _
H(Lp,q) (I”) = 2rp_q+1].(, ) jO [(P—Q)R(p,qﬂ) —(p—q—Z)L(p,quz)]rp Tdr =1
p.q
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Northwest Kinematic relations validated by N-body simulations

kinematic relations.

S .L.. SR Cery e 1{]4: — - -
Hiy ) Hi ) '
g I
e T T
3 102 :
i:"‘-r e B - 107 B
1072
Even order Odd order
o FEEEE L baiid PR S R O PO I | ‘1{]“1- Liel 1ol il |
102 1071 10° 107 102 1072 107 10" 10’ 10
r (Mpc/h) N-body simulation data satisfy the r (Mpc/h)
226
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‘= " Kinematic relations are relations Self-closed adhesion approximation on large scale : Vxv =0

between correlation and structure ov ov
functions of the same order; ™ @ - > P c(a)v
! ()
D

: ) . Neglect .
= Dynamic relations are relations between amping A_rt'f'c'?l segond ZeIdQV|ch

correlation functions of different orders Using identity: VISCOSIty rqer  @PProximation
and can only be obtained from the self- 1 47Gp, 1
closed dynamic evolution of velocity. u-Vu =§V(“'“)+(V><“)><“ ( ):(Hf(Q )— J—E

= = However, closure problem is well known @JFLV(V.V) =c(a)v+v(a)Vy Matter dominant
for Jeans’ equations which are not self- ot 2a
closed. 8vj 1 8(vv ) 2 | |

_ =cv.+VW7v. XV. Index Eq. at location x

& = Self-closed dynamic equations of ot 2a ox / / :
velocity must be introduced on small and ov. 1 a( v, | . _ ,
large scale. + 8; + ST =cv, +Wy, XV, Index Eq. at location x

A Dynamic equations are subsequently B 8<VJ-V}>+ 1 <v' 0(vovi)

| e subs i\
converted into dynamic relations. PYRERIE TV _C<"j"i +V,-V,->+V <" Vit v, >

J ! 1
ox . Ox; s



F(V) _ 1 00 _ 1 : (F2R31),r « Real-space energy , 16V

. | T(k)==[ T (r)krsin(kr)dr  dm Spectral energy

o

Pacific ' : .
Northwest Dynamic relations from dynamics on large scale

NATIONAL LABORATORY

Time evolution of the second order correlation tensor Q;: L, , ()= Ry, (r) = —2av

ot 2a

l

00, 1/(00,, 0O
Q = L aQ"’“Jr fank’}chQy.JerVzQy X0, Density correlation:
r, v;
1

5 Dynamic relation
2 between 2nd and 3rd
Or correlation functions

= Time evolution of the second order correlation function R,: Cf(”) = —( Hf(Q ))2
a m

E » 1 o( . oR
+2€R2+2V —2—(7’ ] 2 vau’®
—— Ot re or or F(r):v(aHf(Qm)) E(r)=—2

2

Fourier transform: 3 E,: Energy spectrum  Third order correlation:

625; :+ 2eE, (k1) -2vK°E, (ki)  Ra=(0'u,)=—vHZ[(0,) (Au,)

|

1 a( 2(9sz
I/'_
r* Or or

2a or  2ar transfer function T (k)= ayu

transfer function



7 Modeling high order correlation functions

Pacific

Northwest o large scale

i= The same model can be generalized to high order

correlation functions:

Ly, =Ry = <u u > au’ exp(—i)[i—@j
EWAND!
= Rz = <u2u-u'> =au’ exp[—— [b4 _FL]
2

a
3
L(5,4) - <u4u'L> =au’ exp(—L) (L _bsj
o\ "

= Generalize to any order correlation functions:

L(q+1,q) = <”q”L> oc u’ <uL> oC (vHa2 )q/z L(I,O) oc gl73)/2

R

10% ¢ - -
5 NS
[ —6—b; —de—a(uu)) v(a) = —Q U,y a’?
10° £ b u)?
| Tl = 23 Mpc/h
[ : b
02 [| S W Uy = 354.61km/s
| —a—a,(vu ) —e—o,
107
.IDIII |
1071 F
102
p
1072 : - (302
v(a)=- s mi:_%"{r”z CRREIRE ( //) gV
2a,a 2ayu 3auat g,
1[]-4 P e | i i P e | i i
1072 107" 10° 10"

V(a) is artificial viscosity
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’1[]1: L T r1lrlr| L T r1-r|l| T T rl-r11| Li T |--|11| : '1.[]2: T T LI N | T el ey

—_—
—
—

100

107
— =) [} =50 —_—00) ——7=20
e ——7=0.3 —==--2=0.0
—z=1.0 - -~ z=1.
=10 -———7=2.0
—z=1.0 ---z=10 ,
,1[]—3 T PP P TR | : mrrwrarr | P i i -1.[]' i
102 10° 10° 10° 102 1072 107 10° 10 102
r (Mpc/h) r (Mpc/h)

Two-point third order velocity correlation L ,, Two-point fifth order velocity correlation L5 4 .,
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AAAAAAAAAAAAAAAAAA

1 Ki {1
(0)=(V-u)=z (" (Aw,)) @ =0 on

From pair conservation equation:

100
2 > 2H r
<AuL> ~ —gHarga (r,a)=- rza jo E(y)yidy
‘ Dynamic equation |
(0)=(V-u)=-Ha&(r) on large scale

0)=(V-u)=-aHy (2,)()) 4m5=n=-

T
|

\ 4
£(Q,)(8)=r1(Q,){5+8)/2=&(r)=(55")

On large scale, mean density at two locations 1s
proportional to density correlation on the same scale

—{(r)=<00>

— <u”>/(3u%)-1|

&(r) <0

<d> < ()-
when |

102

10

100 101 102
r (Mpc/h)

1073
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Use dynamic equations at locations x and x’:

 On large scale: Iim <u2 > =3y’

r—>a0

the same scale

Dynamic relations from dynamlcs on Iarge scale

<>

E(r)==<66>

—<y®=/(3u°)-1

Reduced velocity dispersion is
proportional to density
correlation or mean density on

v, N 1 o(vv) — oy + Wiy xp | Unit vector —
ot 2a (&'cj’) / /- J  |between two
ov, 1 o\v,v, . oA particles b
> +2a 8;;J =cv, + W, X7 P —r/r 10
. o{u’
_ <’% ov, _ﬁj%>+lM=C<AuL>+2v@
ot ot a or or
2 e(a)i =l
rn——=cla)rv,=cla)u
N c(a)v O :
ot LoV, A
r—=c(a)rv,=c(a)u,
Ot
-10 AT
Use <6’>=<V u>=—Ha§(r) and f(Qm)<5>:§ P e 102

107" 10°

r(Mpc/h)

2vHa’é(r)  2vHa’
3u’ 3y

107 102

10°
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103 S S S — S
Kinematic relation (good for all scales): z=0 (div(w) from SILP) 2=0 (from (1))
; o ———7=0.3 (div(u) from S1LP) — — — z=0.3 (from £(r))
s 0l fomSIB 220 (femie
<9>:<V-u>=;(l” <AML>)J « ::1
From pair conservation equation:
(for large scale)
2Ha ¢r
(A, ) === &(v) vy
On large scale: ‘ Constant
10 =
divergence
(0)=(V-u)=-Ha&(r) ¢ .

10

1077 Velocity divergence: div{u)=-Haf(r)

Dynamic equation on large scale

‘ i
il
wall . PR | . e e {

.ﬁ N o 1 L 4 | I..
10 ; ; -
V- -u o) 10° 107" 10 10 10°

[}

— T () ~aH (@) Velocity divergence on different scales
(normalized by Ha) 233
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.. m L L]

= The exponential function was proposed for 100 e — :
second order transverse velocity correlation S ik ‘---l-“: " .
T, on large scale. | | \ N

& = Thisis not a coincidence and must be deeply | \
rooted in the dynamics and kinematics on !
large scale. '

|
|
|
|
-4
E
-
_ . g
J 0’ . -
e E
o

Velocity dispersion function for kinetic energy o}
= contained in all scales above r:

e ) (] .
A || o ==\
Wind 1 S J(z—ﬂa} —®, 4T, Y4 atz=03 N
3. x Indow )
W(x)=—3|:s1n —xcos( ] 3 , ———53(1—1:3) Ry 7T, )4 atz=10 .
X ﬁlIlCthIl .'T .' o 02 (z=2.0) —(R oD {21]:9 4 at z=2.0
B On large scale, velocity dlspersmn function ! 93 (5=5.0) — {R Vatz=5.0
can be approximated by: e L 1}. {liﬂ. T R . i
: Jﬁ e (r) . l |:R (r) 7 (r):| Relate. to Veloc%ty 102 10! B r&;i N 10" 102
oy, 098 " 4 (2.1) (2.0) correlatl.on fl.ll.lCtIOIlS
*' (Equipartition)

3 translational 1 rotational 234
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On large Scale VClOCity dispersion function From dynamic relation on large Scale:
can be approximated as, R
1 Relate to velocity L, (r)=—2av (&)
2 : . ’ or
o (I’) ~—| R (I”) + 1 (V) correlation functions
' 4 S (2. (Equipartition) ‘
= On large scale, the rate of energy cascade (m?/s3): OR
o et B[R ()47 ()]
. . . au 8}/ (2.1) (2,0)

o’ (I”) Kinetic energy in r
11 oc . scales above r From kinematic relation on large scale for

(C”” ) / U . Turnaround time for irrotational flow:

energy cascade
- R, = i(r?’T )

<u3 > L(3 ) (r) @n =~ 2\" fo),

I1 oc oc —= ‘
ar ar
Exponential second order transverse
‘ correlation function:
2
oC r , sva
L(3’2) (7’) uau (7") ]-('270) = Const - exp[__j with vy =———
r, ao.u 235
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= Similar idea can be applied to determine the power- Gl — 9, (r /r )n Power-law that can be
= law exponent of correlation functions on small scale 2 1 related to virial theorem
== = On small scale, velocity dispersion function can be From kinematic relations on small scale:
approximated as =

— i L(r)=u?—22=y 1_(Ljn See slides
Uj (’”) zg[R(z,l)(’”)"‘T(z,o)(’”)"“L(z,o)(’/)] o ) 2 d }
| | f \ 1 24n(r)
3 translational 1 internal 1 internal 2 , (_] :|
rotational (two-  |ongitudinal -

body is planar) relative motion 1, . , r)
2 7"2 ( 2 )’r ( ) ’/i

B ()= -0l () B ()i L] i) | L) [ seesies

n =0.27 = V4, the one-forth law on small scale 236
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small scale seems not exist.

for velocity on small scale.

s=—— =« These equations are subsequently applied to

derive the dynamic relations on small scale.

Jeans equation (not self-closed):

ov 1 1 V. 1
—+—V-Vv+ Hv=— P_ V¢
ot a a p a
2
p = po = y=1/2 for small scale
/ [ dynamic equation.
Velocity = y=1 for large scale
dispersion dynamic equation.

tensor

Self-closed equations for velocity evolution on

we will first formulate the self-close equations

Dynamic relations from dynamics on small scale

Decompose total velocity into halo velocity and

velocity in halos

v(x,t)=v,(x,,t)+V,(r,t)

Decompose velocity in halos into radial and

azimuthal flow

V, =V, + V(p Polar flow is neglected

Self-closed description of mean flow (derivation skipped):

V-v= Q(t) Four equations and four unknowns

8—V+lv.Vv+HV:—lV¢*+71(V><V)><Vh
ot a a a Y g
ov 1 ‘ 1

o —(1=y)V-Vv+LV(v-v)+ H = ——V§’

ot a
ov 1

2a a
‘ 1

ot a 2a a

v voms Ly H-La-polv=-Lvg

Centripetal
acceleration,
significant on
small scale

a a7
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-1[]5. R e R Rl R R S ey — g
Taking curl on both sides: ; An=1024: Ax=0234Mpc/h: il
1 1. 1 An=512; Ax=0 468Mpc/h s
VX %JF V-VV+HV=—=V¢ +y—(VxV)xv An=256: .ﬁx:ﬂ_QEﬁMic.-'h i
a a a - ~ V)

0% E e A ,
; An=128; Ax=1871Mpch

An=64; Ax=3.742Mpch

1

Equation for vorticity: @ =V xv
om 1

E_l_ VX(V VV)+H(D 7/ VX[OJXV] ‘ mﬂé

a

o J/

L
=
-
LHS RHS
s

= On large scale (large grid size Ax), y=1

On small scale (small grid size Ax), y=1/2.

Validation by N-body data |

= There is a transition between the two regimes. 10° o
10° 10 102 103 10* 10°
RHS/u,
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Northwest origin of effective viscosity
With the self-closed description of velocity, we can derive

_ _ Compare to dynamic equation on large sale:
the effective equations for mean flow

Similar to Reynolds decomposition, decompose velocity ov + I VvV (V : V) — c(a) V4V (a)vzv
and potential into mean and fluctuation in time, ot 2a
Averaging is essentially a filtering i l
= ek = process with a cutoff resolution o ( " ) — N2% — v -
V=V+V ¢ =¢ +¢ to separate variables into 2a VIV EW VV(V‘{SUbgnd mode!
resolved and unresolved parts I
1 Substitute into the self-closed description: Force as the gradient of _Force from Divergence

Newtonian law of  hronortional to

ov 1 y 1 kinetic energy in Viscosity for _
P + p (1 _ 7/) v-Vv+ _a VvV (V . V) + Hy = _ZV¢ unresolved fluctuation - f>llow overdensity d
‘ The artificial viscosity on large scale origins
o 1(1_7)V W+lv(v V)+HV=—1VE— I__merlm from the unresoll/ed veIOC|ty.quctuat|ons
ot a a a a ¢——]  Use 5—- V-V and integrate both
_ aHf (Q,,) sides of subgrid model
V¢ =-3Hav/2 and y=1 1 .

¥
v:=F(t)+2va’Hf (Q, )6
+ Vv (V -V)=—Hav——V (V Y ) The larger mean density (higher resolution),
2 2 the smaller unresolved velocity fluctuations %
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Taking curl on both sides of self-closed description:

ov 1 4 1

:'_'5__3_' — V x _+Z(1_7/)V.VV+ZV(V.V)+HV:_ZV¢

Ot
Equation for vorticity: @ =V xv
0 1

= _+Hm_z(7_1)Vx(v-VV)

Ot

1 Dynamic evolution of vorticity:

+1_7/V-Vm+{1+(1—7/)i}Hm:l_ym-VV
o a Ty Ha |=5~ —

s = 2 a 3

1: Transport 2: Destroy of 3: Generation
of vorticity vorticity on of vorticity on
large scale small scale

Dynamic evolution of enstrophy:

Taking scalar product on both sides:

\A @+lv-Vv+Hv:—lV¢*+7/1(va)xv
ot a a ~

a\
‘ 1
2
SN (R IRTIR .
Ot a 2 al\?2

Specific kinetic
energy:

KZJ‘%V-VCIIV

Total energy:  Virial relation:

Ezévz vgt [(2v 8 )Y =0

Dynamic evolution of energy E at different location:

V2E+Ha9(1+ 81n¢9j :(l—y)([v-(vzv—V9)+(o.co])

A 00’2 1-y Lo 07, ., 1-y
" Py PR V7+ L+(1- V)Fa Ho' = p f”'(")'vv) Decay on Velocity — Rotational
— ? large scale gradient contribution 240
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Self-closed dynamic equations at two locations x and x’:

ov. 1-y3(vv,) y d(v,) (1-7) 1 0g" | With self-closed dynamic
5 + 3 + o + 1——H@ Hv, = o XV, equations on small scale, we

Looa o @ o ¢ a4 / are ready to covert it into

v 1—y 5(@,}() y 5("}("}() (1_7/) | 104" - dynamic relations. _Same

B=—C . 4 — + — 4+ 1— 0 ij =——— XV, approach was applied for
e ot a  Ox 2a  Ox, at a 0x, irrotational flow on large scale.

ot aH a Or, a Or a

% +2{1_(1_7/) Q}HQZJ _2-27 %y | 7 1{a<¢*v'f‘>+a<¢*"’i>} XO..

Dynamic relations

" ~ OR between second and

Ot

or

, l—y 1 |0 2 *
CN 2{1 _( — ) 9} HR,, =— { (r2 [(2 =27) Ry + 7/L(3,2)])} + 56’<¢ > third order correlations

on small scale

1
3t

j =—Hau’r = <AuL>u2 = gguar
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Dynamic relations:

1 4
(R(3,1) +5L(3’2)j =—Hau’r = <AuL>u2 = 5%“’”

GSCH: ‘

((30,)') =5 v | ((00,)') =4

5
‘ For comparison, the
3 four-fifths law for
3 <(A“L) > incompressible flow

10% ¢ —r—rrrrr ———r - Ty
—|Rl[3 1}"{’ 5L{3q}| - = ‘Haru :
107 [<Au, =] {3:&111_]'3}|-'“5 F
107 3
107" i -
I L N 1 j
2 INIIEEAR A -
If ]
: 1' ]

1073

107

10°°

_1[]_5 . i b s saal i e
10 10°! 107 107 10°
II:MI}CI']:L) 242
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Third order velocity Vorticity, Energy and  Self-closed velocity
correlation tensor Enstrophy equation

Effective viscosity Kinematic relations Dynamic relations

Analogy between dark matter flow and homogeneous isotropic turbulence is established
for development of statistical theory in terms of correlation, structure, dispersion, and
spectrum functions;

General kinematic relations for two-point velocity statistics are developed on small and
large scales respectively;

On large scale, the redshift dependence of gth order velocity correlations follows
~al@*2)2for odd g and ~a%? for even q; The overdensity is proportional to density
correlation on the same scale, i.e. <0>=<80’>; (Negative) Effective viscosity in adhesion
model originates from velocity fluctuations.

On small scale, self-closed description for velocity is developed such that the dynamic
relation can be obtained, which can be validated by N-body simulation.
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Applications of dark
matter flow
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Dark matter particle mass and
properties from two-thirds law
and energy cascade in dark
matter flow

Xu Z., 2022, arXiv:2202.07240v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.07240
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o = The existence of dark matter (DM) is supported by It is often assumed to be a thermal relic, weakly

numerous astronomical observations: interacting massive particles (WIMPs)
» Rotation curves of spiral galaxies
= Motion of galaxies in galaxy clusters = However, no conclusive signals have been
= Gravitational lensing detected in searches for thermal WIMPs.
= Bullet clusters
= CMB ......
= Though the nature of dark matter is still unclear, dark " Direct detection by underground experiments
matter is believed to be cold (non-relativistic), ) XENO_N
= DarkSide

collisionless, dissipationless, non-baryonic, and barely

interacting with baryonic matter except through gravity. * LUX, SuperCDM

» |ndirect Astronomical observations like high
energy cosmic rays
» Pierre Auger Observatory
* Production by the accelerator such as LHC

2= Dark matter must be sufficiently smooth on large scales
with a fluid-like behavior that is best described by self-
gravitating collisionless flow dynamics (SG-CFD).

The null results from the detection of standard WIMP particles
suggest new perspectives maybe needed.
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What is the typical speed of electron?

At the scale of electron, we have three fundamental constants

Vacti;:lmt g ~st A ke om
permittivity Required by
Elementary Coulomb force
e~A-s
charge
Planck B~ m> -kg-s_l . Required by
constant quantum effect

Even if the detail of physics is unknown, we can use
simple dimensional analysis to predict the electron speed:

¥

: 2 -1
Electron speed: v, oce /goh ~m-s

\ 4

Goal: can we apply similar method (by identifying key
constants) to find dark matter particle properties ?7?

If we know the physics:

mvr =h Heisenberg's
© e uncertainty principle
e’ 2
=m,v, \Virial theorem
4re,r, [
Potential Kinetic

energy energy

2
More accurate - €

electron speed: ¢ Are h

\ g

Sommerfeld's interpretation of the fine

structure constant:

2
V e 1

e

a: = ~
c 4nghc 137

247
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What is the mass of dark matter particles?

At the scale of DM particle, Assumptions:

= Only gravity is present without any other known interactions involved;

= DM particles still exhibit the wave-particle duality on the quantum level;
Then we have at least two fundamental constants:

Required by
Newtonian gravity

Gravitational — ~ _ 3 2 kg
constant

Planck
constant

oo Required by
h~m"-kg-s quantum effect

Dimensional analysis points out: , "
= No matter how you combine two constants, you cannot get mass; This additional constant
= These two constants are not sufficient to solve problem; might come from the

properties of dark matter flow.

*" 4., #* Then what is the other constant besides these two?
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There exist an inertial range with a scale-
independent rate of energy cascade (¢ does not
depend on eddy size /) for eddy size n</<L. nis a
dissipative scale determined by viscosity v and €.

In inertial range, inertial force is dominant over
viscous force. A general scaling for velocity
structure functions S (r) for pairwise velocity Au, =
can be identified: E
o

Big whirls have little whirls, That feed on their velocity;
And little whirls have lesser whirls, And so on to viscosity.

large scale

Energy
Integral scale contained
scale

inertial
subrange

dissipation
/7] scale
/

/ €: dissipated

Length scale

y v Vi .
y viscosity v
_>into heat.
|

| - IJ"3 1/4
kp kgornm= (—)

log k Wavenumber £ »
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= Collisionless nature and long-range interaction. Little halos have big halos, That feed on their mass;
And big halos have greater halos, And so on to growth.

= Long-range gravity requires a broad spectrum of

= c Injection at
halos to be formed to maximize system entropy.

& u smallest scale

€

m?

-
— = Acontinuous cascade of mass/energy from E‘ q Propagation
smaller to larger mass scales with a scale- n_ é\q range
independent rate of mass transfer €,,and €, ina E 07:62/
certain range of mass scales (propagation range). 7 /—v Deposition
: : : S range
* The mass/energy cascade is an intermediate a
statistically steady state for non-equilibrium 3
systems to continuously maximize system entropy. S
% \\\ W/ Dissipated
B — = [he maximum entropy distribution of dark matter T to grow
k. flow. \ \\ halos.

Halo mass m,
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= Collisionless, no dissipation range in SG-CFD.
* The smallest length scale of inertial range is not limited by viscosity.

= This enable us to extend the scale-independent ¢, down to the smallest scale, where quantum
effects become important

= Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant
divergence flow on small scales and an irrotational flow on large scales.

= The constant divergence flow shares the same even order kinematic relations with those of
incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter.

s Mi'fac,‘;'ar‘ Cascade (inertial range €) Integral
= scale n scale L
= /\ Dark
e N T Y YR YA mater flow

@ Quantum - (n is not present for Cascade (propagation range €,,,€,) m,  deposition
scale dark matter flow) range 2’

X
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10° —— ——
. . _ | ==K (2
Power-law time evolution for energy interms [ |___ p @
. ¥
of rate of energy cascade ¢,;: | B, @K (2P, @
Power-law for 105 £ :
K, =—¢t Peculiar o 232
kinetic energy g |
< |
7 Power-law for
P =—& t . 104 F _
y.oogou potential energy
K 3 u; m’
g, =——"L=-="r-46x10"—
t 2 1, S
1[]32 i " --a--nl-1 i i ....,.J':| i .1
107 10 a 10 10

" Also see detail analysis for inverse kinetic

enerqy cascade. The time variation of specific kinetic and potential energies

from N-body simulation. 252
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Odd order moment (generalized stable clustering 10% T FDD — ED
| — hypothesis): :1:1-[: —:5-0 -
5 () =20+ ) ()L () o el L

= Even order (two-thirds law): | *

107

b — S2n( ) 2"u 2"KZn (AuL,O) IBZn (V/r) oc 17 ’: __
Second order (two-thirds law): r’/ ' Slope 2/3

N

1w E

Sl () —2y? = 17 Y o 23 Extend all the
? ( ) '82( / ) way to the _
= Introduce a velocity scale: smallest scale | |

2 ol 2/3 p* 3/2 :
v, =S, (r)/(2 ,a ) |

2‘}[2 2v12 “}_3“ . , ......|1 \ . ......|I:I

(_g ):—V - —_— 107 10° 10

u ” [ ” /Vl r (Mpc'h)
t "\ Turnaround Variation of normalized reduced longitudinal

Acceleration time structure function and two-thirds law 253
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the smallest scale, we have three fundamental constants: If we know the physics:
= Gravitational _ 13 2 Required by , _ Heisenberg's
constant G =0.67x10""m /(kg°S )«Newtonian qravity myVy Ly /2= yncertainty principle
. - — Energy cascade
Rate of . dy " Vy &, .
— _ -7 .2 /3 Required b (two-thirds law)
energy &, =—4.6x107m*[s’ 4a Req y ,
cascade dark matter flow Gm, I} =a, Acceleration
Planck _ 34 2 Required by Gm./l. =2V Virial theorem
constant h=1.05x10"" kg -m /S « quantum effect X/ X X
' 1
Even if the detail of physics is unknown, we can use my =(-256¢,1°/G* )’ =1.62x10""kg = 0.90x10" GeV’
simple dimensional analysis to predi?t ; !

! [, =(-2Gh/g, )3 =3.12x10 " m
Mass scale: m, oc (—EuhS/G4)9 ) ( ) !

1 t,=1,/v, =(—32G2h2/85)9 =7.51x107"s
Length scale: [, o (—Gh/s, ) 1
1 Velocity scale: Vy = (8571G/4)9 =4.16x10"" m/s
Time scale: ¢, « (G2h2/55)9 |

Acceleration scale: @y = (—455/(7‘;))5 =1.11m/s’
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~ Density scale: m, /l; ~5.33x10* kg/m3 =)  Nuclear density: 107 kg/m’

= = Power scale (Joule/s): .
| 2562, 1
G4

9
Uy =m,a, VvV, =F,-v, =—m,¢& =(— j =7.44x10 kg -m* /s> =0.0046 eV /s

L

' Energy scale: it [4=T/t, = EmXVX _087x10%eV Rydberg energy of 13.6 eV for the

lonization energy of the hydrogen atom

2 2 1/
m,c c he'™*
Particle lifetime: 7, = ——=—-—=2x10"5=6.2x10" yr ¥ ——
/LlX gu mXC
2 If instantons are responsible for the decay [1]:
B Ty = 5 = 6.2x107 yr » Fine structure constant: &, =~
. 224 m, C 136.85

[1] Anchordoqui, L.A., et al.,Astroparticle Physics, 2021. 132. 255
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lﬂ“ T T T T T T T T T T T T T T T
107 |
10" }
10" |
| e |
10" Q-ball f
| * Thiswork &
| is wor 3
m': f E
= wr neutrinos  WIMPs : o
S ot neutralino 2
E 10° | EK photon %
D W[ B — 'g‘
18 LTP
0™
e -
g ‘ i :
10+ axion 4 axino -
0% | SuperWIMPs :
10™ Huzzy COM l gravitino )
-l :"E KK graviton :
sl 1 )
:';" _ EI: arXiv:hep-ph/0404052

10 m‘m”m“m 10*10"10" 10" 10* 10" 10° 10’ 10* 10" 10" 10" 10"

mass (GeV) 256
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Dark matter flow Mass/energy cascade Dark matter particle mass
Two-thirds law Rate of energy cascade Fine structure constant

= Establish connections between dark matter flow and hydrodynamic turbulence.

= Review direct energy cascade from large to small scales in hydrodynamic turbulence
with the smallest length scale n determined by viscosity and the rate of cascade k.

= Review the inverse energy cascade in dark matter flow from small to large mass scales
with a constant rate of energy cascade.

= Two-thirds law for pairwise velocity dispersion on small scale r.

= The collisionless nature of dark matter flow enables us to extend constant rate of
cascade and two-thirds law down to the smallest scale where quantum effects are
dominant.

= Suggests a heavy dark matter scenario by combining rate of energy cascade, Planck
constant, and gravitational constant to predict dark matter particles with a mass
~0.9x1012 GeV and a size ~3x10-13 m.
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The origin of MOND acceleration
from mass and energy cascade
in dark matter flow

Xu Z., 2022, arXiv:2203.05606v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2203.05606
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The existence of dark matter (DM) is supported
by numerous astronomical observations:

= Flat rotation curves of spiral galaxies

= Motion of galaxies in galaxy clusters

= Gravitational lensing

= Bullet clusters, CMB ......

Though the nature of dark matter is still unclear,
dark matter is believed to be cold (non-
relativistic), collisionless, dissipationless, non-
baryonic, barely interacting with baryonic matter
except through gravity, and sufficiently smooth
with a fluid-like behavior.

However, no conclusive signals have been
detected in searches for dark matter particles.

Alternative theory of dark matter: Modified
Newtonian Dynamics (MOND)

Empirical Tully and Fisher relation:
Ve X M1/4 & observed baryonic mass
MOND (Milgrom) is a popular empirical

model to reproduce flat rotation curve
without invoking dark matter hypothesis.

a, ~1.2x 1071 m/s2 Critical MOND
acceleration
I'=ma a>>a, Newtonian

F=ma’la,ca®> a<<a, DeepMOND

» v, = (GMaO )1/4

What is the origin of MOND acceleration?
What is the origin of deep “MOND” behavior?
Could MOND be an intrinsic property of dark
matter flow?

Instead of falsifying, MOND supports the
existence of dark matter?

> m

GMm (ijv/’”)z
P a,
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Key attributes of hydrodynamic turbulence:

Key attributes of dark matter flow:

= Disorganized, chaotic, random;

= Nonrepeatability (sensitivity to initial cond.);=

= Multiscale in length and time scales;
= |ntermittency in space and time;

Disorganized, chaotic, random;
Nonrepeatability;

Multiscale in mass/length/time scales;
Intermittency in space and time;

= Dissipative and collisional
= No long-range interaction
= Velocity fluctuation
= Vortex as fundamental building block
* Maximum entropy distribution (Gaussian)
= |ncompressible on all scales
= Divergence-free V-v=0
= Constant density
= Energy cascade from large to small length
scales

Dissipationless and collisionless MOND.
/acceleratlon

Long-range gravity Dee
Velocity & acceleration fluctuation M ONFE)
Halos as fundamental building block /
Maximum entropy distribution? (the X dist.)
Flow behavior is scale-dependent
= Small scale: constant divergence V-.v=46
= Large scale: irrotational (curl-free) Vxv=0
Mass/energy cascade from small to large mass
scales
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=" There exist an inertial range with a scale-

independent rate of energy cascade (€ does not
depend on eddy size /) for eddy size n</<L.nis a
dissipative scale determined by viscosity v and €.

== |n this range, inertial force is dominant over

i viscous force. For eddies with a characteristic
velocity u and size |, the lifetime (turnaround time)
of eddy is l/u. The rate € can be computed as the
Kinetic energy passed per eddy lifetime.

2 2

u u
&~ ~—u W oy o]
[ [
(1)1,
/ acceleration

turnaround time

log E(k)

Big whirls have little whirls, That feed on their velocity;
And little whirls have lesser whirls, And so on to viscosity.

T large scale
\ Energy
i

Integral scale contained
scale

inertial
subrange

dissipation
/7] scale
/

/ €: dissipated

y by viscosity v
Length scale : in%o heat. ’
| i =8\
k; ki" kﬁ: ornnp=| —
log & Wavenumber £
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Little halos have big halos, That feed on their mass;
Collisionless nature and long-range interaction. And big halos have greater halos, And so on to growth.

Long-range gravity requires a broad spectrum of £ Injection at
halos to be formed to maximize system entropy. No m»=u smallest scale
halo structure for short-range forces.

myNy,

q Propagation
. T range
A continuous cascade of mass/energy from smaller E@ é;))@
to larger mass scales with a scale-independent rate <
of mass transfer € ,and €, in a certain range of 3 /_v Deposition
mass scales (propagation range). S range
Q
-
The mass/energy cascade is an intermediate %
statistically steady state for non-equilibrium systems 5 N~ o
- o e \ ¢ Dissipated
to continuously maximize system entropy. ©
I to grow
: e M\ halos.
The maximum entropy distribution of dark matter \

flow (the X distribution).

Halo mass m,
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= Collisionless, no dissipation range in SG-CFD.
* The smallest length scale of inertial range is not limited by viscosity.

= This enable us to extend the scale-independent ¢, down to the smallest scale, where quantum
effects become important

= Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant
divergence flow on small scales and an irrotational flow on large scales.

= The constant divergence flow shares the same even order kinematic relations with those of
incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter.

o~ NSNS N NN

e scale scale n scale L

PN Y YR YR Y

ol Quantum - (n is not present for Cascade (propagation range €,,€) my deposition
scale dark matter flow) range

X
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10° 1 ——— ————————
: . _ | ==K (2
Power-law time evolution for energy interms [ |___ p @
. ¥y
of rate of energy cascade ¢,;: | B, @K (2P, @
Power-law for 105 £ :
K,=-¢&1 Peculiar o 2302
kinetic energy g |
S
7 Power-law for
P = gé‘ut potential 104 b :
energy : ‘
K 3u, m’
g, =——"L=-="r-46x10"—
t 2 1, S
1[]3 i i M R i ; M i i
1[]_2 1[]_1 a '1[]0 101

" Also see detail analysis for inverse kinetic

enerqy cascade. The time variation of specific kinetic and potential energies

from N-body simulation. 264
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H

In dark matter flow, the maximum entropy Gaussian

;= distribution of velocity can be derived as 051 core
= the X distribution: o: shape parameter;
i e—\/a2+(V/vO)2 v,: velocity scale;
e X(V): 15
- 2av, K, (a)

1 _:-'_ The relation between particle energy and
. velocity can be obtained from X distribution: | =°|

Exponential
wings

-

= E
= ne?gly bet hoe(v)=— X(v)v 3.3 ——The X distribution
& particlewith  &{V)= oX/ov\ 2 n 25 —u, with ==0.1Mpc/h
£ aspeedofv:
) . . 2 uLff:r
(v)=3 AT v The X distribution with a unit variance compared with

the velocity distribution from N-body simulation 265
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1 e

_  X(v)v(3 3
| X(v)= 2av, K (a) £(v)=- 0X | Ov (EJFZJ

energy:

2

Gaussian core for M <V,

2
e(v)~ i(l+zj£av§ +V—j oc v
2 n 2a

Exponential wings for M >,

g(v) z%(l+%jvovocv

Particle e(v)= g(l_l_zjvg o> +(1] —>

Inner halo,
4=m Newtonian
behavior

Outer region of halo,
4=m on-Newtonian
behavior

\ 4

External field effects
and MOND??

0

w—T1=-1 5
—=-1.0
=03
m—p=-13
a5k == =N-hody simulation
—=-1.2

5 | | 1 I I
0 05 1 15 2 25

vl 7,

Comparison with N-body simulation
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* |n kinetic theory of gases, molecules undergo random
elastic collisions with a short-range of interaction. Only
velocity fluctuation and no fluctuation of acceleration.

= The long-range gravity in dark matter flow leads to
fluctuations in acceleration, in addition to the fluctuation
In velocity.

= This unique feature hints to the potential generalization
of standard Brownian/Langevin dynamics to include
acceleration fluctuation in dark matter flow.

= (Critical MOND acceleration can be related to the
fluctuation of acceleration.

- s
Y Y
\ -
1 \ -~ N ’ \\
\ I 123, i
~_7 1 1
\ ! ~_7

Short range: molecule
acceleration vanishes

_———

’ X N
- - - N - g
A= Saem—m e y~ N.
e “N / ~
’,—7—&\ 7z ~ ,___/f\‘ N\
// I/ | \< ) 7 \l \l\\
’ / v/ I 1 \
Vi 4 \/ ‘l - 1
, ] do Vy-"7 1!
1 -3 S < - / ~ ¢!
. < ’ e~
— =~ pv & - N *L 1
| -7 NSSOL 1 NS\ B Y N
\ Y y \l_g.’_ xT \‘7\ 7 1 \s y
\ 7 A N /\_:ls ;L\ N
% [N PR P LA ‘?\i'/’ 12
I\ S A 1 SN W -t \
[IEN - T ~ 3y, 14 1 1 1
N1 YR n - - =\ 1
I A~5-@-¢-7r v &
VL7 \ ATy ~ L A - 1 V. 1
/ v, I Sv, 7\ L N /
A Ny, NNy x oy 1.7 /
AN AN Ny . N T N
! / \\__,&," ' /A\ / ! x
1 SAY__ ! _ -
| ~J . _ \_1_ \ . - - 1
\ | :\‘__J—’ // ll
\ \ Sa 1 -, ,
\\ \ /7 \~4__¢’
\\ R >,
~ N - Z \\ pid

_____

Long range: nonvanishing
and fluctuating acceleration
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Fluctuation leads to distributions of acceleration il e e e g e e  [— 2200 —— 2705 —2z=20)
f ~==z=00 ---2z=05 =20
- AP 10 =01 ——z=10 ——z=30
Proper acceleration for particle i: e Tl g
G N o2 ESS2243353330500 =03 =13 z=30
m, X; =X, SEE4SSIINININY z=03 ---z=13 z=50
Q=" Z 3 e
a j#i Xi _X]‘ oM Y
.1{|1|:I

Halo-based non-projection approach for acceleration
distributions: 10°
= Halo particle acceleration: ay,

= Out-of-halo particles acceleration: a,, (Gaussian) o
= Acceleration decreases with time w07
= Along tail ~a, in halo core region
= MOND acceleration a is right in the middle 10°
= Analytical models of acceleration distribution?
(future work) o
107" 107" 107" 107 107 107

Acceleration a anda, (mfs )
hp 268
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Northwest The variation of acceleration with redshift
Halo-based non-projection approach " 34 —a—Std(ﬂhP)
Root-mean-square accelerations: ' —a—std(a )

. . 109 F d
= Acceleration of all particles: a : —u— St (ﬂnp)
= Halo particle acceleration: a,, ~ a/ —o—std(a )
= Out-of-halo particles acceleration: a,, ~ a2 ol |
= Halo acceleration: a,,~ a2 Hmm :

i
=
= All typical accelerations decrease with time 1011 ;
= The only exception a,, at z=0.3 requires further ; :
confirmation _
= Halos and out-of-halo particles have similar 10712 -
accelerations that are much smaller due to E
greater distance
= At z=0, the typical acceleration of halo particles 013 R IR S I A R A A R R
matches the critical MOND acceleration 10°2 10 100 107 102

d
The variation of typical (root-mean-square)
accelerations with scale factor a
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-||:|";': f T LB e s i ¥ ¥ LB B e R |
Acceleration decomposition:
(similar to velocity decomposition)
Intra-halo al —a a —q a 1070 | ;
acceleration: “hp — Thp [, Shp Ch
Hal RN
alo — _
oAy = <ahp >,, = Zahp -
acceleration n "
- p k=l 19 ;
(inter-halo): : T p
O = — — - e T \
Group average Inter-halo : R ks o o VSRS JUrieS P -
intra-halo acceleration ' i TRz, kg
- 2\ i \ 12 | T
_ 1 _ i _ . .
: [ 1 — . —
: ahf:' at z=1 ahg at z=1
g = Acceleration in halos increases with halo size [T g 03—y A 703 -
' and reaches about for large halos. a atz=0 ----a, atz=0 ': |
-13 . — ] — — e i P P
d _ _ _ _ " 107 10 .10t 10°
= Acceleration of halos is relatively independent of n, for halo size

halo size, much smaller than acceleration in halos. 270
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. Assume a, is the typical acceleration scale of fluctuation, B
u is the typical velocity scale of fluctuation, 8, is the angle of incidence}," s urJ 3

s = = The rate of energy cascade in terms of a,, u and 6,

= g, =—au, =—a,(a)cot(8, )u(a)cot(6,)

.
81 2H —oca_3/4
u

()= B (3

= 2 u u
s - The rate of energy cascade:
— : 2
2t 2 ¢, 4 JE

ay(a=1) % 200Hu, ~12x10 " m/s* 4@ ="'

= |deal gas pressure P o« temperature T
, ) V2 , ) .« velocity fluctuation
_ A 37 [(3”) gu] 3rayH,y 4 @ o (--0)= (A/3) DE density o a,2 o acceleration

0

B Potential connection with dark energy??

; 8S7G  2G 2 GH H 21 fluctuation (implies an entropic origin?).

U,
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dv

. _p
= Fluctuation of acceleration introduces a scale of a,=

acceleration a; x

Q-
O
=" Consider a one-dimensional dark matter flow with a ‘ ‘* ‘
Q-

°"

= Deep MOND for particles with acceleration a <<a,,.

velocity scale v, and acceleration scale a, ‘\
2
l dvp =V, dﬁ =a,v, =a\, =-¢, ‘ Constant rate of ‘ ‘ ‘
2 dt dt Energy cascade

Maximum entropy distribution:
« particle kinetic enerqgy is

proportional to velocity _ _
l Baryonic mass subject to external force
’ F . is suspended in and in equilibrium
Fv = dég Yo 4, 2 p with dark matter flow
pVp =My m) F =m,—a,=m,—~ca,
p 0
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Modified Newtonian Constant rate of energy  Maximum entropy
Dynamics cascade distribution
Critical MOND acceleration Mass/energy cascade Deep MOND

= Direct energy cascade from large to small scales in hydrodynamic turbulence

* |nverse energy cascade in dark matter flow from small to large mass scales with a constant rate
of cascade

= Long-range interaction of dark matter flow leads to a fluctuation in acceleration with a typical
scale a,

= The acceleration fluctuation in N-body simulation exactly matches the value of critical MOND
acceleration

= The acceleration fluctuation in dark matter flow as the origin of MOND acceleration that can be
related to the constant rate of energy flux.

= Suggest dark energy density might be also related to the acceleration fluctuation.

= Both Newtonian dynamics and "deep-MOND” behavior can be recovered based on the maximum
entropy distribution and energy cascade in dark matter flow.
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The baryonic-to-halo mass
relation from mass and energy
cascade in dark matter flow

Xu Z., 2022, arXiv:2203.06899v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2203.06899
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The existence of dark matter (DM) is supported by
numerous astronomical observations:

» Flat rotation curves of spiral galaxies

= Motion of galaxies in galaxy clusters

= Gravitational lensing, Bullet clusters, CMB ......

Though the nature of dark matter is still unclear, dark
matter is believed to be cold (non-relativistic),
collisionless, dissipationless, non-baryonic, barely
iInteracting with baryons except through gravity, and
sufficiently smooth with a fluid-like behavior.

Total galaxy baryonic mass = stellar mass + cold gas.

Stellar-to-halo mass relation (SHMR)
* halo abundance matching approach

Baryonic-to-halo mass relation (BHMR)

= Baryonic Tully and Fisher relation (BTFR):
vjp = Gmbao 4m observed baryonic mass

= Halo mass m;, can be related to the halo virial
radius r,Xarough constant density ratio A,

Gy~ () A7 (a)

= The BHMR (m, and m,) can be obtained only
if the relation between v;and r, is known.

* The BHMR from the mass and energy
cascade of dark matter flow?

* What is the average mass fraction of
baryons in all halos?

= What is the fraction of total baryons
residing in all galaxies?
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=" There exist an inertial range with a scale-

independent rate of energy cascade (€ does not
depend on eddy size /) for eddy size n</<L.nis a
dissipative scale determined by viscosity v and €.

== |n this range, inertial force is dominant over

i viscous force. For eddies with a characteristic
velocity u and size |, the lifetime (turnaround time)
of eddy is l/u. The rate € can be computed as the
Kinetic energy passed per eddy lifetime.

2
u

D RUS

/

turnaround time acceleration

log E(k)

Big whirls have little whirls, That feed on their velocity;
And little whirls have lesser whirls, And so on to viscosity.

T large scale
\ Energy
i

Integral scale contained
scale

inertial
subrange

dissipation
/7] scale
/

/ €: dissipated

y by viscosity v
Length scale : in%o heat. ’
| i =8\
k; ki" kﬁ: ornnp=| —
log & Wavenumber £
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Little halos have big halos, That feed on their mass;
Collisionless nature and long-range interaction. And big halos have greater halos, And so on to growth.

Long-range gravity requires a broad spectrum of £ Injection at
halos to be formed to maximize system entropy. No m=u / smallest scale
halo structure for short-range forces.

myNy,

q Propagation
. T range
A continuous cascade of mass/energy from smaller E@ é;))@
to larger mass scales with a scale-independent rate <
of mass transfer € ,and €, in a certain range of 3 /_v Deposition
mass scales (propagation range). S range
Q
-
The mass/energy cascade is an intermediate %
statistically steady state for non-equilibrium systems 5 N~ o
- o e \ ¢ Dissipated
to continuously maximize system entropy. ©
I to grow
: e M\ halos.
The maximum entropy distribution of dark matter \

flow (the X distribution).

Halo mass m,
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= Collisionless, no dissipation range in SG-CFD.
* The smallest length scale of inertial range is not limited by viscosity.

= This enable us to extend the scale-independent ¢, down to the smallest scale, where quantum
effects become important

= Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant
divergence flow on small scales and an irrotational flow on large scales.

= The constant divergence flow shares the same even order kinematic relations with those of
incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter.

o~ NSNS N NN

e scale scale n scale L

AN NN N,

o Quantum (i not present for Cascade (propagation range €,,€,) m, my* deposition
scale dark matter flow) range

N
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10° 1 ——— ————————
: . _ | ==K (2
Power-law time evolution for energy interms [ |___ p @
. ¥y
of rate of energy cascade ¢,;: | B, @K (2P, @
Power-law for 105 £ :
K,=-¢&1 Peculiar o 2302
kinetic energy g |
S
7 Power-law for
P = gé‘ut potential 104 b :
energy : ‘
K 3u, m’
g, =——"L=-="r-46x10"—
t 2 1, S
1[]3 i i M R i ; M i i
1[]_2 1[]_1 a '1[]0 101

" Also see detail analysis for inverse kinetic

enerqy cascade. The time variation of specific kinetic and potential energies

from N-body simulation. 279
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The largest mass scale (critical halo mass)

The smallest mass scale (dark matter particle mass)

= [\t the smallest scale, three fundamental constants:

Gravitational
constant

Rate of
energy gu — _4.6X 10_7 mz/S3

cascade

Planck h=1.05x10"" kg -m* /s
constant

G=6.67x10"m’/(kg-s’)

Simple dimensional analysis predicts:

Mass scale: :
my oc(—&,1° [G*)? ~8.7x10"" kg = 0.5GeV

1

Length scale: [, o (—Gh/e, )3

|
Time scale: £, € (Gzhz/gf )5

Three fundamental constants:

Gravitational
constant

Rate of
energy g =—4.6x107 m*/s’
cascade

Velocity
dispersion or U, EM(CZ =1)=35461km/s

Hubble constant H

G=6.67x10"m’/(kg-s*)

Simple dimensional analysis predicts:

Mass scale: m, oc —ug/(Ggu )=~ 9.14x10"° M

Length scale: [, oc —ug/gu ~3.14Mpc

Time scale: t, cu; /e, ~8.7x10°yr
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Baryonic Tully-Fisher

Halo mass and halo

= cascade

relation (BTFR): size relation:
4 4
v, =Gma, m, = gﬂ'rh ‘A pa”
Rate of 12 Small halos <m;:

eneray &, =—p,

q? Baryonic mass in
equilibrium with DM,
i.e. same kinetic energy u?

g

Baryonic Tully-Fisher

Halo mass and halo

relation (BTFR): size relation:
4 4
v, =Gma, m, —gmfh A _poa
VJZF Large halos >m;:

‘ Turnaround time

Baryonic mass and DM

are two miscible

rate of cascade.

C
\/ O‘f

4

v, =

2

sz

u’
N
Vy

f HMZ

9

2) 1/9 23 P13
(— (Gm,H)" ua™”
A

m, )1/3 e

a’ oc (mh )1/3 a

phases sharing same

o (m, )1/9 g
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Critical B i i Il halos:
I otation v, = ua(q p)/2 \/ ,Bf /af The baryonlc_ 1r/r;ass in ma alos . vy
g Speed: o m, :(M cl) (mh’ Mcl(a):( ) (Ba’) (7j (ng
= 3 '
Critical _ 4 A, 'Bf (3¢-p)/2 The baryonic mass in large halos:
— circular cc 9 2 a ua 5/9 9) _% 12 2 % uS
b= Speed: \ f mb :(Mc2) (mh) Mcz(a)=(§] (afap) 5 [A ] [Gg ]
= Critical 4 Ga-p)2 e
— halo Th :§a<3q o H lﬂf\/ﬁf/af
size: The baryonic-halo-mass ratio in critical halos:
3\¥2 5/24 2
= o _ 16 ,Bf A, a%(3q—p) y _m,, Mc2 B 81(2/AC) (5¢+p)/2
ass: he Q1 af 2 (Z) = m - M - 1/2 5/2
= ' Mass he cl 16(af) ('Bf)
Critical 2 (B i scale m,
® baryonic 7, = ( fj ( jcf(”) A(z=0)~0.076
. Al a
mass: c \¥f
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Table 2. Parameters for deriving baryonic-to-halo mass ratio

A 200 p  7/4 M, 3.01x10%a™"*M_

£ 4.6x107 m* /s> q ~1/2 M, 129x10°a**°M_
H, 1.62x107%1/s a, 05 m,  133x10%aM_

” 354.61km/s B, 0.16 m,  1.01x10"a "M,

a,(z=0) 1.2x107°m/s m. 4 A(z) 0.0761a*"

??D 076 QD 0556 m;; 4 X 1013 HE}FIMM{H [27]
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| o Halos with m, <m, from SPARC data -
o Halos with m, >m, from SPARC data "
-:“-':;: "{,-n"‘ - .
m: ) E -
= O
=108 | O o : .
> : a i Z. 1/3
= il _: = vCIIII
ﬁ g~ = ]
(7] " =
S b 2 102 '_
? 1 7. 2,73 E
= € =4.6x10 'm-/s =
S w7k . 1 ©
z a
% mhc E
. _
From Eq. (21)
= = ‘From Eq. (23)
_,m_a P R A A T M T PR R R "|[:|JI 1 : : : = Lg ' = |3 — ""4
1010 10M 1012 1013 1014 10 10, 1 10

: 0 .
Halo massm, (M_ ) Halo circular velocity Vo (km/s)
h S

Halos have different rate of energy cascade with an average
around g, (spatial intermittence in dark matter flow?) 284
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' | | © From SPARC data
. _ From Eq. (21)
) - _ = = :
;: 1) e , z | From Eq. (23) i
T . \ g;
> 1/3 =
= r E
=
2 102} 1 310°f ;
F :}
= 3
= =
~ oz
B =
= 0 FromSPARCdata|| =
. FromEq.(21)
h - = FromEq. (23)
,1[]1 i P I B | i PR R N | : T 1 -1.[]1 i L a i 1 P |
10' 102 103 10% 10° 10° Fral 1017 Y 10" 10
Halo size I (kpc) alo mass m, ( mm)
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Baryonic mass

~1/3 4/3
In small halos: m, = (Mcl) (mh)

Baryonic mass
in large halos:

Model incorporate two limits:

) )

= Dash line: the stellar-to-halo mass ratio obtained
from halo abundance matching approach (requirt
to match the stellar mass function)

m, m,

m,, (z)

m,

m,, (z)

2

L b l ass
Baryonic massm_ (M _ )

=2%A(z) [

m,

WA - The scaling 4/9 law for both SHMR and BHMR

SPARC data and model

1013 , . ; —
4/9
1{112;—
o __1_- o PR -
10" O S0 T o
.':-!;' %ﬂ“-
l‘,; > '=:r_‘“ I:i.:l.-'
10 ; ”~ ?
':::' '!..1' ﬁ:‘—;’ I::I
S O
10% & - 5O 4
D
E-g.i" /
/7
100 2
L0
ol / ©  From SPARC data
4 == =Stellar-to-halo mass at =0 [5]
— Baryonic-to-halo mass at z=0 (Eq. (37))
-1{]1'[:' -1{]11 -1{]12 -1{]13 -1{]14
Halo mass m, (Msuﬂ)
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Models for baryonic-to-halo mass ratio: W T T T
_ __ L [ —z=0.0
| - 22| | e 2=03
m — m : m ’
—b =Dm A(Z) h + h " —z=1.0
m, m,, (z) m,, (z) ~ —_—2=20
L . ol ITIh"”E
m is a parameter to adjust the transition; _ | /
=
E.D

= There exist a maximum BHMR ~0.076 at

o 102 [
critical halo mass m,.=1.33x10"2 M,
= The critical halo mass decreases with time
= The maximum BHMR increases with time
_1[]_3 — i | M i . i PR
1@ 1™ 1072 1012 104

Halo mass m_(M_ ) 087
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Overall cosmic baryonic-to-DM mass ratio (including P R e S
both halos and out-of-halo) is ~18.8% in ACDM model: : Fraction of ]
: M baryonic mass in
- - | V2 halos is ~7.6% |
Baryonic-to-DM mass Baryonic-to-halo mass . a _— siall
ratio in out-of-halos ratio in all halos E
/ 0.188— 4, (Z)Abh (Z) ) |
Aboh(Z): 1 4 ) 107 ?
dh (Z
N\
Fraction of DM mass in halos 10 F 3
Use double-A mass function to compute: —¢—I, for baryons in small halos from Eq. (33)
- | The b _ o F —l—fz for barvons in large halos from Eq. (34)
s . [~ 13 (32 #\I3 e baryonic-to- ——f,+f for BHMR in all halos
=] L () (M) (v ) v g messratlo | (0 for BEMR oot o emEq (3
in small halo
=—8—Fraction of barvons in all halos

;., ", . 5/9 s _5/9 The baryonIC-tO- 102 i 2 100 Tk
[, = L Y (V)(Mcz) (V / mh) dV halo mass ratio
S ‘ in large halos Redshift evolution of BHMR
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Halo mass function Mass/energy cascade Tully-Fisher relation
Modified Newtonian Stellar-to-halo mass Baryonic-to-halo mass

Dynamics relation relation

= Review direct energy cascade from large to small scales in hydrodynamic turbulence

= Reveal inverse mass and energy cascade that is unique for dark matter flow

= Present a fundamental theory for baryonic-to-halo mass ratio based on the mass/energy cascade in dark
matter flow (agrees well with SPARC data)

= Predict a maximum baryonic-to-halo mass ratio ~0.076 for halos with a critical mass (agrees with SPARC
data) and an average ratio ~0.024 for all halos

= Predict two distinct regimes for small and large halos, respectively, with critical halo mass and size
explicitly derived (agrees with observations of stellar-to-halo mass ratio).

= Predict the fraction of total baryons in all galaxies is ~7.6% and that fraction increases with time (agrees
very well with astronomical surveys including optical Sloan Digital Sky Survey and HIPASS). Most baryons
(~92.4%) are not in galaxies.
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