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1 Introduction

Cross-industry cross-country (CI/CC) models have proven useful for addressing a broad

array of questions in fields ranging from international and growth economics to financial and

industrial economics. They examine how the economic performance of industries in different

countries depends on the interaction between industry characteristics—reliance on external

finance or certain inputs for example—and country characteristics such as endowments,

institutions, or economic policies. CI/CC models are used widely because industry-country

interaction effects allow testing theoretical mechanisms and because they can account for

arbitrary determinants of economic performance at the industry and the country level.

For example, consider Rajan and Zingales’ (1998) influential work on financial develop-

ment and economic growth. They argue that if financial development matters for growth, it

should matter especially in industries that rely more on external finance. Rajan and Zingales

test this hypothesis using a CI/CC model that relates industry growth to the interaction

between industries’ reliance on external finance and countries’ financial development. This

industry-country interaction effect is significantly positive. Hence, industries that rely more

on external finance grow relatively faster in more financially developed countries.

Another influential contribution using a CI/CC model is Nunn’s (2007) work on insti-

tutions and comparative advantage. He relates industry exports to the interaction between

industries’ reliance on differentiated inputs and countries’ institutional quality. Nunn finds

this industry-country interaction effect to be significantly positive. Hence, industries that

rely more on differentiated inputs export relatively more in countries with better institutions.
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A challenge in the literature employing CI/CC models is that the theoretically relevant

industry characteristics are generally unobservable in almost all countries. These are there-

fore approximated by the corresponding industry characteristics in a benchmark country. For

example, both Rajan and Zingales (1998) and Nunn (2007) approximate the theoretically

relevant industry characteristics in all countries using US industry characteristics.

We make two contributions to the literature. First, we examine the consequences of using

benchmark industry characteristics for estimation of the industry-country interaction effect

in CI/CC models. We do so in a framework that allows for cross-country heterogeneity in

industry technology. Such heterogeneity is well documented—see, for example, Bernard and

Jones (1996), Acemoglu and Zilibotti (2001), Schott (2004), and Caselli (2005). As we find

that the benchmarking estimator generally yields biased results, we propose an alternative

estimation approach. Our approach draws on insights from the generalized least squares

literature to estimate how the technological similarity of countries correlates with other

country characteristics. We illustrate the approach by applying it to Nunn (2007).1

The bias of the benchmarking estimator used in the CI/CC literature depends on how the

technological similarity of countries varies with other country characteristics. Suppose that

technologically more similar countries are not more similar in other characteristics. In this

case, using industry characteristics in a benchmark country as a proxy for the technological

industry characteristics of all other countries gives rise to classical measurement error bias.

As a result, the benchmarking estimator yields attenuated estimates of the industry-country

interaction effect. This possibility is recognised in the literature since Rajan and Zingales

(1998), who also point out that attenuated estimates imply a bias against the hypothesis

1We have chosen Nunn because the number of industries is relatively large compared to earlier
applications of CI/CC models.
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being tested. We show that there is another possibility. If technologically more similar coun-

tries are more similar in other dimensions, the benchmarking estimator can yield amplified

or entirely spurious estimates of the industry-country interaction effect.

To understand the benchmarking estimator used in the CI/CC literature, it is useful to

break down estimation of the industry-country interaction effect into two steps. The first step

is a cross-industry regression: economic outcomes across industries in a country are regressed

on the industry characteristics in the benchmark country. This yields a country-specific

regression slope that reflects the relationship between industry outcomes in the country

and the benchmark industry characteristics. The second step is a cross-country regression:

the country-specific slopes from the first step are regressed on the country characteristic of

interest. The regression slope of this second step is the benchmarking estimator.

Consider Nunn’s analysis of the effect of institutional quality on exports in industries

that rely on differentiated inputs. The first step is to regress industry exports in a country

on the differentiated-input intensity of the industry in the US. The second step is to regress

the country-specific slopes from the first step on the institutional quality of countries. The

regression slope of the second step is positive if the country-specific slopes from the first step

are larger for countries with greater institutional quality. This, in turn, is the case if the

relationship between industry exports in a country and the reliance on differentiated inputs

of the industry in the US is stronger for countries with better institutions. In this case,

the conclusion using the benchmarking estimator would be that better institutions promote

comparative advantage in more differentiated-input intensive industries.
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To see that this conclusion may be misleading, consider the following example. The

technology used in an industry depends on the country’s human capital. In high-human-

capital countries, industries use the same technologies as in the US. Hence, the relationship

between industry exports and the differentiated-input intensity of the industry in these

countries is the same as in the US. Suppose the relationship is positive. In low-human-capital

countries, industries use different technologies than in the US. As a result, industry exports

in low-human-capital countries are less closely related to the differentiated-input intensity

of US industries than industry exports in high-human-capital countries. Now suppose that

countries with more human capital have better institutions. The benchmarking estimator

would then lead to the conclusion that better institutions promote comparative advantage

in differentiated-input intensive industries. This would be misleading as institutions do not

play a role for comparative advantage in this example. In particular, it is not because of

institutional quality that the differentiated-input intensity of US industries is more closely

related to industry exports in countries with good institutions than in countries with bad

institutions. Instead, countries with better institutions have more human capital and this

leads to them using technologies that are more similar to US technologies.

Our analysis of the benchmarking estimator in the CI/CC literature can be seen as

reevaluating the bias introduced by using US (benchmark) industry characteristics as a proxy

for industry characteristics elsewhere. The literature implicitly assumes that this proxy

introduces measurement error that is independent of all country characteristics (classical

measurement error) and that industry-country interaction effects are therefore biased towards

zero. That is, using US industry characteristics as a proxy for industry characteristics

elsewhere leads to an attenuation bias and hence a bias against the hypothesis being tested.
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We add that—because technology is endogenous—US industry characteristics are likely to

be a relatively worse proxy for countries that differ from the US in various dimensions. This

heterogeneity in the measurement error counteracts the attenuation bias considered in the

CI/CC literature and can flip the sign of the bias of the benchmarking estimator. Therefore,

using US industry characteristics as a proxy for industry characteristics elsewhere can lead

to amplified or entirely spurious industry-country interaction effects.

As the benchmarking estimator used in the CI/CC literature generally yields biased re-

sults for the industry-country interaction effects of interest, we propose an alternative. Our

approach builds on the assumption in the literature that each industry has some (global)

technological characteristics that do not depend on the country where it is located. But

we also allow industries to have country-specific technological characteristics. We show how

these can be used to capture that industry technologies are more similar for some country

pairs than others. We first examine the estimation of the industry-country interaction effect

for an arbitrary but known pattern of technological similarity across country pairs. Then we

discuss estimation when the pattern is unknown and show that this requires restrictions on

technological similarity across country pairs. The restriction we impose is that the techno-

logical similarity of countries is unrelated to other country characteristics for countries that

are sufficiently apart in terms of the theoretically relevant country characteristic. On the

other hand, if countries are sufficiently close in terms of the theoretically relevant country

characteristic, their technological similarity is completely unrestricted. This approach allows

us to relax the implicit restriction in the CI/CC literature step by step.

The rest of the paper is structured as follows. Section 2 discusses some applications

of CI/CC models in the literature. Supplementary Appendix A contains a longer list of
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almost 90 applications. Section 3 examines the benchmarking estimator used in the CI/CC

literature. Sections 4 and 5 introduce our estimation approach and apply it to Nunn (2007).

Section 6 concludes. The proofs of our results are in Supplementary Appendix B.

2 Economic Applications of CI/CC Models

We now discuss some economic applications of CI/CC models in the literature. We provide

a more exhaustive list of almost 90 applications in Supplementary Appendix A.

The Economic Effects of Financial Markets. Starting with the work of Rajan and

Zingales (1998), CI/CC models have been applied extensively to investigate the effects of

financial markets on economic growth, firm entry and exit, investment, and innovation.

Fisman and Love (2003) document that financial underdevelopment benefits industries that

rely more on trade credit and Fisman and Love (2007) show that financial development allows

industries to react more rapidly to global growth opportunities. Claessens and Laeven (2003)

and Braun and Larrain (2005) examine how financial development interacts with the share of

intangible assets of industries, while Acharya and Xu (2017) and Moshirian et al. (2021) look

at the interplay between financial development and the R&D intensity of industries. The

empirical finance literature employs CI/CC models to examine the impact of specific financial

market policies and institutions, such as bank recapitalizations (Laeven and Valencia, 2013),

insider trading legislation (Edmans et al., 2017), stock market concentration (Bae et al.,

2021), and collateral laws (Calomiris et al., 2017). CI/CC models are also used to study

financial crises (e.g., Dell’Ariccia et al., 2008; Larrain and Stumpner, 2017; Iacovone et al.,

2019).
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International Specialization and Trade. Research in international economics employs

CI/CC models to examine the impact of institutional quality (e.g., Levchenko, 2007; Nunn,

2007), human and physical capital (e.g., Romalis, 2004; Ciccone and Papaioannou, 2009),

and natural resources (Debaere, 2014) on international specialization. Manova (2008) links

financial development to the patterns of international trade. Cuñat and Melitz (2012),

Mueller and Philippon (2011), Tang (2012), and Cingano and Pinotti (2016) use CI/CC

models to examine the effect of cross-country differences in labour market and employment

regulation as well as levels of trust in others on comparative advantage.

CI/CC models have proven useful for examining a wide variety of additional economic

questions. For example, Alfaro and Charlton (2009), Basco (2013), Blyde and Molina (2015),

Paunov (2016), and Fort (2017) analyse the determinants of outsourcing, foreign investment,

and the fragmentation of production. Pagano and Schivardi (2003), Klapper et al. (2006),

Acemoglu et al. (2009), Cingano et al. (2010), Michelacci and Schivardi (2013), and Aghion

et al. (2015) examine the economic consequences of cross-country differences in firm size

distributions, entry and employment regulation, transaction costs, risk sharing possibilities,

and skill dispersion. Rajan and Subramanian (2011) and Chauvet and Ehrhart (2018) use

CI/CC models to understand the economic effects of foreign aid and Pierce and Snyder

(2018) to examine the legacy of slave trade. Cecchetti and Kharroubi (2018) and Avdjiev

et al. (2019) analyze economic consequences of fiscal and monetary policy as well as exchange

rate volatility, and Erman and te Kaat (2019) the effect of inequality on growth.
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3 The Benchmarking Estimator

3.1 The Model

The basis of CI/CC models are theories linking industry outcomes in different countries

to an interaction between country characteristics and technological industry characteristics.

For example, in Rajan and Zingales (1998), the outcome variable is industry growth and

the interaction is between financial development and the external-finance dependence of

industries. In Nunn (2007), the outcome is industry exports and the interaction is between

institutional quality and the intensity with which industries use differentiated inputs. As

the main hypothesis concerns the effect of the interaction between country and industry

characteristics, CI/CC models allow controlling for country and industry fixed effects. An

empirical framework that encompasses the models in the literature is

yin = (α+ βxn)zin + νin (1)

where yin is the outcome in I industries indexed by i and N countries indexed by n; xn is

the relevant country characteristic; zin denotes the relevant industry technological charac-

teristic in different countries; and νin captures country and industry fixed effects as well as

any unobserved determinants of industry outcomes that are independent of zin. The param-

eter of interest is β. The parameter α captures direct effects of industry characteristics on

outcomes.2 We take the relevant country characteristic xn to be non-stochastic.

2For example, Rajan and Zingales use the external-finance dependence of industries to capture the extent
to which technological shocks raise an industry’s investment opportunities beyond what internal funds can
support. In this application, the parameter β in (1) allows testing RZ’s hypothesis that financial development
fosters growth disproportionally in industries with greater demand for external finance. The parameter α
allows to capture direct effects of the technological shocks raising an industry’s investment opportunities on
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Estimation of β in (1) would be straightforward if there was data on the relevant tech-

nological industry characteristics zin for all countries. However, there is little industry

data for most countries. As a result, the CI/CC literature approximates the relevant tech-

nological industry characteristics of all countries with the industry characteristics from a

highly-developed benchmark country with relatively undistorted markets, usually the USA.

We want to understand the implications of the benchmarking approach in the CI/CC

literature when the optimal technology in an industry depends on a range of country char-

acteristics. For example, suppose that—in addition to the country characteristic xn in

(1)—there is a second country characteristic hn. Suppose also that this second country

characteristic enters the model in (1) solely through its effect on the optimal technology

used in industry i in country n. A straightforward way to capture this dependence is to

assume that the technological industry characteristic zin in industry i and country n is given

by zin = zi+g(i, hn) for some g(·). zi capture technological industry characteristics that are

independent of the characteristics of the country where the industry is located. We refer to

zi as global technological industry characteristics. The function g(i, hn) captures that the

optimal technology in industry i in country n depends on hn.

Clearly, in this case, the technological industry characteristics in the benchmark country

zib will generally constitute an imperfect proxy for the technological industry characteristics

zin in other countries. This possibility is acknowledged in the CI/CC literature since Rajan

and Zingales (1998). They argue that this generates an attenuation bias and therefore a bias

against finding the industry-country interaction effect that they focus on (p.567). Our point

is that the technological industry characteristics in the benchmark country will generally

industry growth. Technological shocks may affect industry growth directly in several ways, for example by
changing the marginal productivity of labour, and hence equilibrium employment, across industries.
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be a better proxy for the technological industry characteristics of countries that are more

similar to the benchmark country. For example, if zin = zi + g(i, hn), the technological

industry characteristics in the benchmark country will be a better proxy for the industry

characteristics in countries with a level of hn that is similar to hb. This may yield upward

biased estimates of the industry-country interaction effect.

Consider the study of Nunn (2007). The relevant technological industry characteristic

is the reliance on differentiated inputs and the relevant country characteristic is institu-

tional quality. Nunn points out that differentiated inputs are often customised and that

this requires relationship-specific investments. Such investments are less profitable when

intermediate-input suppliers operate in a country with low institutional quality. Hence, sup-

pliers will invest less in customising differentiated inputs in countries with worse institutions

and the limited supply of customised inputs lowers the productivity of the industry. Nunn

approximates the technological differentiated-input intensity of industries in all countries by

the differentiated-input intensity of industries in the US. This is the natural starting point.

However, the approach could result in amplified or spurious industry-country interac-

tion effects. This may be the case if the differentiated-input intensity of industries in the

US is a better proxy for the technological differentiated-input intensity of industries in sim-

ilar countries. Nunn’s study illustrates why this could be the case. He documents that

differentiated-input intensive industries also use human capital more intensively. Hence, the

level of human capital of a country may affect the optimal technology—and hence the tech-

nological differentiated-input intensity—of industries producing in the country. As a result,

the differentiated-input intensity of industries in the US could be similar to the technological
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differentiated-input intensity of industries in countries with high human capital but different

from the technological differentiated-input intensity in countries with low human capital.

We want a framework that allows us to capture the possibility that technological industry

characteristics may be more similar for some country pairs than others. The first step is to

take the technological industry characteristics zin in (1) to be the sum of a country-specific

component zn, the global industry-specific component zi, and a country-specific industry

component εin

zin = zn + zi + εin. (2)

zn captures country-specific factors that shift the distribution of technological industry

characteristics. We treat this component as non-stochastic. The global industry component

zi captures technological industry characteristics that do not depend on the country where

the industry is located. We treat this component as independent draws from a random

variable with V ar(zi) > 0. For the εin we choose a model that allows us to capture that

some country pairs may be more similar technologically than others.

To do so we take the εin in (2) to be jointly normally distributed for all i and n. For any

pair of countries n 6= m, the correlation of the εin across industries is an arbitrary function

of country characteristics

Corr(εin, εim) = ρnm. (3)

As ρnm can be different for each country pair, (3) yields a flexible model of the relationship

between the characteristics of any pair of countries and their technological similarity. Our

analysis of the bias of the estimation approach in the CI/CC literature will show that,

whether the bias is upwards or downwards is partly determined by how ρnm changes as
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country n and country m become more dissimilar in terms of their x-characteristics. Across

industries, the εin are taken to be independent and

E(εin) = 0 and E(ε2in) = σ2. (4)

The variance across industries of zin is V ar(zin) = V ar(zi) + σ2. Hence, if σ2 = 0,

differences in technological industry characteristics within countries are entirely driven by

the global component. As (2) allows for a country-specific component, technological industry

characteristics could still vary across countries. However, such cross-country differences do

not play an important role in our analysis, as they are absorbed by the country fixed effects

always present in CI/CC models.

If σ2 > 0, differences in technological industry characteristics within countries will be

country specific. To understand the implications it is useful to relate the difference between

the technological industry characteristic of two industries i and j in a country n, zin−zjn, to

differences in US industry characteristics, ziUS − zjUS, and differences in the global industry

component, zi − zj . This yields

zin − zjn = ρnUS(ziUS − zjUS) + (1− ρnUS)(zi − zj) + uijnUS (5)

where ρnUS refers to the correlation in (3) between the specific industry characteristics of

country n and the US, and uijnUS is a random variable with zero mean that is independent

of zi and zUS .3 Hence, the difference between the technological characteristics of any two

industries in country n can be thought of as a weighted average of industry differences in

3This holds for any pair of countries n and m. It follows from (2)–(4) and joint normality of the
distribution of εin for all i and n.
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the US and global industry differences plus random noise. The weight on the US industry

characteristics is the correlation coefficient ρnUS between the specific industry characteristics

of country n and the US. As the ρnUS can be arbitrary functions of country characteristics,

our model of technological industry characteristics allows for a flexible relationship between

the x-characteristics of countries and their technological similarity with the US.

It is useful to see what the model in (2), and its implication in (5), allows us to capture

in the context of Rajan and Zingales (1998) and of Nunn (2007). In Nunn, (5) allows us to

capture that even if all countries had the US level of institutional quality, the technological

differentiated-input intensity of industries may vary with the country’s human capital. As a

result, industries in countries with high human capital may be more similar to US industries.

In this case, ρnUS would be positive and larger for countries with high human capital than

for countries with low human capital.4 The estimation approach in the CI/CC literature

fails to take this possibility into account. As a result, estimates of the effect of institutional

quality on industry outcomes could be biased upward or downward. The sign of the bias

depends on how ρnUS changes as country n and the US become more dissimilar in terms

of their x-characteristics. In Rajan and Zingales (1998), the key industry characteristic is

external-finance intensity. This variable is seen as capturing technological shocks that raise

an industry’s investment opportunities beyond what internal funds support. The external-

finance intensity of industries in all countries is approximated by that of US industries.

The model in (2), and its implication in (5), allows us to capture that the technological

shocks affecting US industries could be more similar to shocks in countries with high levels

of economic development.

4As an aside, a country’s human capital could also affect industry outcomes through the technological
human-capital intensity of industries of course.
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It is interesting to note that (5) does not determine whether the difference between the

technological characteristics of any two industries in country n increases or decreases relative

to the US as ρnUS increases. This gives the model additional flexibility. For example, consider

the effect of a country’s human capital on the differentiated-input intensity of its industries

discussed above in the context of Nunn (2007). Compared to the US, industries might be

less relation-specific-input intensive in countries with low human capital. However, there is

no reason to suppose that this effect is stronger in some industries than others. Hence, the

difference in the reliance on differentiated inputs between two industries i and j in a country

with low human capital may be greater or smaller than in the US.

3.2 Characterizing the Benchmarking Estimator

We now apply the estimation approach used in the CI/CC literature to the model in (1)

and (2). This yields what we refer to as the (standard) benchmarking estimator. We then

discuss the forces shaping the bias of this estimator.

3.2.1 The Benchmarking Estimator

The estimating equation in the cross-industry cross-country literature is

yin = ai + an + bxnziUS + residualin (6)

where ai and an are industry and country fixed effects, and ziUS denotes the industry char-

acteristics of the benchmark country (we use the subscript US as the benchmark country is
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usually the US). The effect of interest is captured by the coefficient b on the industry-country

interaction, and the method of estimation is least squares.5

It is useful to write the least-squares estimator of b in (6) in terms of demeaned variables

(e.g. Baltagi, 2008)

b̂ =

1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zUS)(xn − x) (yin − yn − yi + y)

1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zUS)2(xn − x)2

(7)

where y is the average of yin across industries and countries; yi is the cross-country average

of yin for industry i, yn is the cross-industry average of yin for country n, zUS is the cross-

industry average of ziUS, and x is the cross-country average of xn.

To see when the standard benchmarking estimator identifies the main parameter of in-

terest β, we consider the probability limit of b̂ as the number of industries goes to infinity.

Substituting (1) in (7) and taking the probability limit—see the Supplementary Appendix

for details—yields

b = plim
I→∞

b̂ =

(
1− σ2

V ar(zUS)

)
β +

(
σ2

V ar(zUS)

)
(αA+ βB) (8)

where σ2 is the variance of εin and V ar(zUS) is the variance of the US industry charac-

teristic ziUS, with σ2/V ar(zUS) < 1; α captures direct effects of industry characteristics on

industry outcomes; and A and B capture the relationship between the characteristic xn of

5We assume xn to be exogenous. In some applications in the literature, exogeneity is an issue and xn is
therefore instrumented. In these applications, our analysis applies to the reduced-form equation. We always
include the US (benchmark country) as one of the countries in our analysis. The literature sometimes drops
the benchmark country but, given the relatively large number of countries included, this generally makes
very little difference for the estimates.
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country n and how similar the country is technologically to the US (as measured by ρnUS)

A =
Cov(xn, ρnUS)

V ar(xn)
=

N∑
n=1

(xn − x)ρnUS

N∑
n=1

(xn − x)2

(9)

and

B =
Cov(xn, ρnUSxn)

V ar(xn)
=

N∑
n=1

(xn − x)xnρnUS

N∑
n=1

(xn − x)2

. (10)

For example, suppose that the US is a high-x country, i.e., the US has a high level of financial

development, institutional quality, or human capital. Then A is positive if countries that

are similar technologically to the US are also similar in terms of the x-characteristic. In the

typical application of CI/CC models in the literature, B would also be positive in this case.6

An implication of (8) is that the benchmarking estimator identifies β when there is no

cross-country heterogeneity in technological industry characteristics, σ2 = 0. In this case,

the technological differences between US (benchmark country) industries are identical to

the technological differences between industries of all other countries. Using US industry

characteristics as a proxy for the technological industry characteristics of all other countries

does therefore not involve any measurement error.7

When there is cross-country heterogeneity in technological industry characteristics, σ2 >

0, the benchmarking estimator in (8) is biased and the bias is shaped by two main forces.

6Theoretically, the sign of B could depend on the distribution of the x-characteristics across countries
even if A is positive.

7As already mentioned, our model for zin in (2) allows for a country-specific component zn and the
levels of technological industry characteristics could therefore vary across countries even if σ2 = 0. But such
cross-country heterogeneity does not play an important role in our analysis, as it is absorbed by the country
fixed effects always present in CI/CC models.
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First, how much country-specific heterogeneity there is in technological industry characteris-

tics (captured by σ2/V ar(zUS)). Second, how the technological similarity of countries with

the US (captured by ρnUS) covaries with their characteristics xn (captured by A and B). We

now discuss these forces in some interesting special cases and show that the benchmarking

estimator may be attenuated, biased away from zero (amplified), or entirely spurious.

3.2.2 The Bias of the Standard Benchmarking Estimator: a First Approach

Attenuation Bias. We start with the case that we see as corresponding to the implicit

assumption in the CI/CC literature. In this case, differences between the technological indus-

try characteristics of a country and global technological industry characteristics are assumed

to be completely idiosyncratic to the country. Put differently, the technological industry

characteristics of different countries are related through global industry characteristics only.

Formally, this assumption amounts to ρnm = 0 for all country pairs n 6= m. In this case,

(9) and (10) imply A = B = 0 and the expression for the standard benchmarking estimator

in (8) simplifies to b = β(1 − σ2/V ar(zUS)). As σ2/V ar(zUS) < 1, the benchmarking

estimator b has the same sign as the parameter of interest β but is biased towards zero.8

This possibility is generally understood in the CI/CC literature and explained in terms of a

classical measurement error bias due to US (benchmark) industry characteristics measuring

the technological industry characteristics of other countries with some error (e.g. Rajan

and Zingales, 1998). In fact, the expression for the probability limit of the benchmarking

estimator when ρnm = 0 is analogous to that of the least-squares estimator in the presence of

8As already mentioned, the assumption V ar(zi) > 0 implies σ2/V ar(zUS) < 1 as at least some of the
variation in technological industry characteristics in each country, including the US, is due to the global
component.
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classical measurement error, with 1−σ2/V ar(zUS) playing the role of the reliability or signal-

to-total-variance ratio (e.g., Wooldridge, 2002). Intuitively, when ρnm = 0, US industry

characteristics are an equally imperfect proxy for the technological industry characteristics

of all other countries and become a uniformly worse proxy for the technological industry

characteristics of all other countries as σ2/V ar(zUS) increases.

Spurious Interaction Effect. When there is cross-country heterogeneity in technolog-

ical industry characteristics, the standard benchmarking estimator can indicate a positive

effect of the country characteristic xn on industry outcomes even though xn does not actu-

ally enter the true model at all. To see this, suppose that β = 0, which implies that the

country characteristic xn drops out from the true model in (1). Suppose also that there is

cross-country heterogeneity in technological industry characteristics, σ2 > 0. In this case,

the standard benchmarking estimator in (8) is b = αAσ2/V ar(zUS). Hence, if αA > 0, the

standard benchmarking estimator indicates a positive effect of the industry-country inter-

action xnziUS on industry outcomes, although the country characteristic is in fact irrelevant

for industry outcomes. This is because αA > 0 implies that cross-country heterogeneity in

technology is such that industry outcomes in high-x countries are more closely correlated

with US industry characteristics than industry outcomes in low-x countries.9 The standard

9This could be because the technological industry characteristics of high-x countries are more similar
to US industry characteristics and there is a positive direct effect of technological industry characteristics
on industry outcomes (A > 0 and α > 0). Alternatively, technological industry characteristics of high-x
countries could be less similar to US industry characteristics and there could be a negative direct effect of
technological industry characteristics on industry outcomes (A < 0 and α < 0).
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benchmarking estimator misinterprets this as a positive effect of the industry-country inter-

action xnziUS on industry outcomes, and therefore leads to the erroneous conclusion that the

country characteristic xn has an effect on industry outcomes.10

The size of the spurious effect generated by the standard benchmarking estimator depends

on A in (9). A is the slope of a least-squares regression of ρnUS, which measures technological

similarity of country n with the US, on the x-characteristic of countries. As a result, the

bias of the standard benchmarking estimator could be sizeable although countries that are

similar to the US in the x-characteristic are also similar technologically, if there is a drop-off

in technological similarity with the US as countries become less similar in the x-characteristic.

In fact, if (i) countries similar to the US in the x-characteristic are also similar technologically;

(ii) countries are on average similar to the US in the x-characteristic; and (iii) there is

a drop-off in technological similarity as countries become less similar to the US in the x-

characteristic, then the bias of the standard benchmarking estimator can be sizeable although

the average country is technologically quite similar to the US.

Amplification Bias. The benchmarking estimator can also result in an amplification bias.

To see this in the simplest case, assume there is no direct effect of industry characteristics

on outcomes, α = 0. In this case, (8) simplifies to b = β
[
1 + (B − 1)σ2/V ar(zUS)

]
. If

B > 1 and there is cross-country heterogeneity in technological industry characteristics

(σ2 > 0), the benchmarking estimator b will be an amplified version of β, |b| > |β| and

sign(b) = sign(β).

10More formally, when β = 0, the benchmarking estimator solely reflects the covariation between the direct
effect of country-specific industry characteristics on industry outcomes αεin and the interaction xnziUS . This
covariation is α 1

N

∑N
n=1(xn − x)Eεin(ziUS − zi) = α 1

N

∑N
i=1(xn − x)σ2ρnUS = ασ2Cov(xn, ρnUS) where

we made use of the definition of ρnUS . Hence, as long as there is cross-country heterogeneity in technological
industry characteristics, the covariation is positive if and only if αCov(xn, ρnUS) > 0. Using the definition of
A, this is equivalent to αA > 0.
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The amplification bias of the standard benchmarking estimator is the most difficult bias

to understand intuitively. At the most general level, for there to be an amplification bias,

US industry characteristics must be a better proxy for the technological industry character-

istics of countries that have x-characteristics similar to the US. To see the sources of the

amplification bias of the standard benchmarking estimator in detail, it is useful to rewrite

the model in (1) as

yin = γnzin + νin (11)

γn = βxn (12)

where we continue to assume α = 0. We simplify further by treating the disturbance νin

as an independent and identically distributed random variable. The parameters γn in (11)

capture the effect of industry characteristics on outcomes in different countries. We refer

to these parameters as country-specific slopes. The parameter β in (12) captures how these

country-specific slopes covary with the country characteristic xn.

Now imagine estimating the country-specific slopes γn in (11) separately for each country.

As we only observe the technological industry characteristics of the US, we use US industry

characteristics ziUS as a proxy for the technological industry characteristics zin of each coun-

try. We denote the least-squares slope estimates of γn by ĝn. Clearly, ĝn will generally be

biased. To see the factors shaping the bias we take the probability limit of ĝn as the number

of industries I goes to infinity. This yields

gn = plim
I→∞

ĝn = γn

[(
1− σ2

V ar(zUS)

)
+

(
σ2

V ar(zUS)

)
ρnUS

]
(13)
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where σ2/V ar(zUS) < 1. The term in square brackets turns out to be the correlation

coefficient between the technological industry characteristics of country n and the US,

corr(zin, ziUS). Hence, the bias of the least-squares slopes, gn− γn, reflects the technological

similarity between country n and the US as captured by corr(zin, ziUS). This yields two

insights: (i) the more similar a country is technologically to the US (the closer corr(zin, ziUS)

to 1), the smaller the bias of the least-squares slopes in (13); and (ii) the least-squares slopes

in (13) are biased towards zero (attenuated) for all countries n, as long as the technolog-

ical industry characteristics of all countries are positively correlated with those of the US

(corr(zin, ziUS) ≥ 0 for all n).

Hence, as long as corr(zin, ziUS) ≥ 0 for all countries n, the term in square brackets in

(13) can be thought of as the so-called attenuation factor in the classical measurement error

literature. This attenuation factor is larger—and hence the attenuation bias is smaller—for

countries that are more similar technologically to the US.

That the country-specific least-squares slope estimates in (13) might be attenuated for

all countries is not difficult to understand from the perspective of the classical measurement

error literature, as US industry characteristics will generally proxy for industry characteristics

of other countries with error. It is harder to see why, if all the slope estimates in (13)

are attenuated, the standard benchmarking estimator may be subject to an amplification

bias. This is possible because the attenuation bias of the least-squares slope estimates is

heterogeneous across countries, with a smaller attenuation bias for countries that are more

similar technologically to the US.

To see this, it is useful to express the standard benchmarking estimator in (8) as a

slope of slopes. We start from the least-squares slopes gn in (13) obtained by regressing
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outcomes across industries on US industry characteristics separately for each country n.

These country-specific slopes gn are then regressed on the country characteristics xn. The

least-squares slope of the second, cross-country regression is the standard benchmarking

estimator in (8). To see this, note that

N∑
n=1

gn(xn − x)

N∑
n=1

(xn − x)2

= β


N∑
n=1

[(
1− σ2

V ar(zUS)

)
+
(

σ2

V ar(zUS)

)
ρnUS

]
γn(xn − x)

N∑
n=1

(xn − x)2

 (14)

= β

[(
1− σ2

V ar(zUS)

)
+

(
σ2

V ar(zUS)

)
B

]
= b.

The left-most expression in (14) is the standard expression for the slope of a least-squares

regression, in this case of gn on xn. The first equality follows from substituting the least-

squares slopes in (13) for gn. The second equality uses (12) and the definition of B in (10),

and the last equality uses the expression for b in (8) for the case α = 0. The key message of

the slope-of-slopes expression for the standard benchmarking estimator in (14) is that the

bias of the estimator reflects how the attenuation factor of the country-specific least-squares

slopes in (13) covaries with the country characteristics xn. The amplification bias can emerge

when the attenuation factor (bias) is larger (smaller) for countries with greater xn.

We now illustrate the amplification bias in the simplest version of our framework.

The Amplification Bias in a Simple Setting. The source of the amplification bias

emerges most clearly when there are two groups of countries and countries in the same

group are identical. In this two-group setting, the formula for the benchmarking estimator
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in (14) simplifies to

b =
gS − gD

xS − xD

(15)

where gS and gD are the country-specific slope estimates in (13) for countries in group S and

group D, and xS and xD are the x-characteristics in the two country group.

Suppose that the US is part of group S. As countries in the same group are identical,

all countries n in group S are identical technologically to the US, ρnUS = 1. As a result,

(13) implies that the estimated and the true country slopes are the same for all countries in

group S: gS = γS. This is unsurprising as using US technological industry characteristics as

a proxy for the technological industry characteristics of other countries in group S does not

involve any measurement error.

Suppose that countries in group D are technologically somewhat different from the US.

The simplest approach is to think of these countries as having specific industry characteristics

that are uncorrelated with US-specific industry characteristics, ρnUS = 0 for all n in group

D. Then (13) implies that the estimated country slopes for countries in group D are biased

towards zero: gD = (1− σ2/V ar(zUS))γD. This is because US industry characteristics are a

noisy proxy for the technological industry characteristics of countries in group D.

Substituting the expressions for gS and gD into (15) and using (12) yields

b = β

[
1 +

(
σ2

V ar(zUS)

)
xD

xS − xD

]
. (16)

Hence, there will be an amplification bias, |b| > |β| and sign(b) = sign(β), if xS > xD > 0.

The bias can be large if the two groups of countries have very similar x-characteristics
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because, in this case, there is a strong positive association between the country characteristic

xn and technological similarity with the US.

Figure 1: The amplification bias in a simple setting.

xn

gn, γn

γD

gS = γS

gD

xD xS

β

b

Figure 1 gives a graphical illustration of the amplification bias in the two-group setting

for β > 0. The two circles mark the true country-specific slopes γS and γD for xS and xD

respectively. The parameter β is the slope of the dashed line connecting the circles as (12)

implies β = (γS − γD)/(xS − xD). The two solid dots mark the least-squares estimates gS

and gD for xS and xD respectively. Equation (15) implies that the benchmarking estimator

b is the slope of the solid line connecting the solid dots, b = (gS − gD)/(xS − xD). The

amplification bias b > β > 0 emerges because:

(i) Countries in group S with high x-values have the same technological industry character-

istics as the US. Hence, there is no measurement error when the US is used to proxy for

the industry characteristics of these countries. This implies that the least-squares slope
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estimates for these countries are equal to the true slopes, gS = γS. That is, the circle and

the solid dot lie on top of each other.

(ii) Countries in group D with low x-values have technological industry characteristics that

are somewhat different from those of the US, and US industry characteristics therefore

proxy for the technological industry characteristics of all low-x countries with some error.

Hence, the least-squares slopes estimates gD for these countries underestimates the true

slopes, gD < γD. That is, the solid dot lies below the circle.

Hence, cross-country heterogeneity in technological industry characteristics implies that us-

ing the US industry proxy yields a consistent estimate of γS for high-x countries that are

technologically identical to the US, but a downwards biased estimate of γD for low-x coun-

tries that are technologically different from the US. Because the standard benchmarking

estimator b is the slope of the solid line connecting the solid dots while the parameter of

interest β is the slope of the dashed line connecting the circles, this leads to an amplification

bias, 0 < β < b. More generally, the amplification bias of the standard benchmarking esti-

mator arises when greater technological similarity between high-x countries and the US leads

to a sufficiently smaller attenuation bias for the country-specific slope estimates of high-x

countries.

The size of the amplification bias in the two-group example does not depend on the

relative number of countries in the two groups. But the more countries there are in group

S with high x-values relative to group D with low x-values, the more similar the average

country becomes technologically to the US. Hence, the amplification bias could be sizeable

although the average country is quite similar technologically to the US.
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3.2.3 The Bias of the Standard Benchmarking Estimator: the General Case

To characterize the bias of the standard benchmarking estimator more generally, it is useful

to distinguish between β = 0 and β 6= 0.

If β = 0, (8) simplifies to b = αAσ2/V ar(zUS) with σ2/V ar(zUS) < 1. Hence, with cross-

country heterogeneity in technological industry characteristics, σ2 > 0, the benchmarking

estimator is biased upwards if αA > 0 and downwards if αA < 0.

If β 6= 0, the benchmarking estimator in (8) can be written as

b = β

[(
1− σ2

V ar(zUS)

)
+

(
σ2

V ar(zUS)

)
δ

]
(17)

where σ2/V ar(zUS) < 1 and δ is a function of A and B in (9) and (10)

δ = θA+B (18)

with

θ =
α

β
. (19)

Hence, when there is cross-country heterogeneity in technological industry characteristics,

σ2 > 0, the bias of the benchmarking estimator depends on δ. If δ = 0, the benchmarking

estimator is attenuated. For example, our framework yields δ = 0 when country-specific

industry characteristics are uncorrelated across countries. The expression for the probability

limit of the benchmarking estimator in (17) with δ = 0 is analogous to that of the least-

squares estimator in the presence of classical measurement error, with 1 − σ2/V ar(zUS)

playing the role of the reliability or signal-to-total-variance ratio (e.g., Wooldridge, 2002). If
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δ > 0, there is a (counteracting) force that weakens the attenuation bias and can result in

an amplification bias. If δ < 0, the benchmarking estimates may have the wrong sign.

We now summarise how the bias of the standard benchmarking estimator depends on δ.

Proposition 1 (Bias of standard benchmarking estimator when β 6= 0).

1. If 0 ≤ δ ≤ 1, the standard benchmarking estimator is subject to an attenuation bias: b

has the same sign as β but is biased towards zero, sign(b) = sign(β) and |b| ≤ |β|.

2. If δ > 1, the standard benchmarking estimator is subject to an amplification bias: b

has the same sign as β but is biased away from zero, sign(b) = sign(β) and |b| > |β|.

3. If δ < 0, the standard benchmarking estimator may be subject to an attenuation bias,

an amplification bias, or may have a different sign than β, depending on σ2/V ar(zUS).

4 Identification of β

To get a first idea how the effect of interest might be identified and where the challenges

lie, we return to the expression for the benchmarking estimator in (17). Inverting it yields

β = b/[1+(δ−1)σ2/V ar(zUS)]. The right-hand-side parameter b can be identified using the

benchmarking approach in the literature, and the variance of the US industry characteristics

V ar(zUS) is observable. If we can identify δ and σ2, we can therefore identify β. As we

will show, δ can be identified from the variances and covariances of industry outcomes for

different country pairs. If these variances and covariances would also identify the variance

of country-specific industry characteristics σ2, identification of β would be straightforward.

But the variances and covariances of industry outcomes do not identify σ2.
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To see how the variances and covariances of industry outcomes for different country pairs

help to identify β, we rewrite the model in (1) as

yin = vi + vn + γixn + uin (20)

where

γi = βzi (21)

and

uin = (α+ βxn)εin (22)

and vi and vn denote industry and country fixed effects.11 The industry-specific slopes γi

capture the effect of the country characteristic on outcomes in different industries.

The effect of (unobservable) country-specific technological industry characteristics εin on

industry outcomes is captured by uin in (22). As a result, E(uinuim), the variances and

covariances of uin for industry i and countries n, m, play a central role for the identification.

To see this, note that (3) and (22) imply

E(uinuim) = (ασ + βσxn)(ασ + βσxm)ρnm = ωnm. (23)

The ωnm are useful for identifing δ in (18) as they reflect the ρnm, how similar any two

countries are technologically, and α/β, the direct effect of technological industry character-

istics on industry outcomes relative to the industry-country-interaction effect. However, the

ωnm will not allow us to identify the variance of country-specific industry characteristics σ2.

11These industry and country fixed effects capture the industry and country fixed effects in vin and absorb
αzi in the industry fixed effect and zn in the country fixed effect.
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This is because the ωnm solely reflect σ2 through its effects on outcomes, which is why σ

appears multiplied by either α or β. This is what makes the identification of β challenging.

To see when and how identification is possible, we proceed in two steps. We first examine

the identification of β for known ωnm. Then we discuss how the ωnm can be identified.

4.1 Identification for Known Ω

It is convenient to collect the variances and covariances ωnm in (23) for all countries n, m in

the N ×N variance-covariance matrix Ω. The straightforward part is determining whether

or not β = 0. The elements on the diagonal of Ω are equal to ωnn = (ασ + βσxn)2. As

long as there is some cross-country heterogeneity in technological industry characteristics,

σ2 > 0, the ωnn are independent of country characteristics if and only if β = 0. Hence, we

obtain that β = 0 if the ωnn are independent of xn.

The next question is how to identify β if the ωnn depend on the country characteristics

xn. We first explain how Ω can be used to obtain two key parameters, δ and (βσ)2. Then

we show how δ and (βσ)2 can be used to identify β.

We start by determining ασ and βσ from the variances ωnn = (ασ + βσxn)2. This is

possible if there are at least two countries with different x-values, so that we have at least

two equations in the two unknowns ασ and βσ.12 Then we invert the expression for the

covariances ωnm for n 6= m in (23) to get ρnm = ωnm/[(ασ + βσxn)(ασ + βσxm)]. This

allows us to obtain the ρnm by combining the ωnm with ασ and βσ. Once we have obtained

ασ, βσ, and ρnm, it is straightforward to obtain A and B in (9)–(10), θ in (19), and δ in

(18).

12Using more than two ωnn equations leaves results unchanged. When we use our identification results
for estimation, we use all ωnn equations.



Estimating industry-country interactions 31

To see when and how δ and (βσ)2 allow us to identify β, we start from the expression for

the bias of the benchmarking estimator b−β = β(δ−1)σ2/V ar(zUS) obtained by rearranging

(17). Multiplying both sides by β yields (b− β)β = (δ− 1)(βσ)2/V ar(zUS). The right-hand

side parameters δ and (βσ)2 can be obtained from Ω and V ar(zUS) is the observable variance

of US industry characteristics. The parameter b is identified by the standard benchmarking

approach in the literature. Hence, β is the only unknown of the quadratic equation

(b− β)β = η(δ − 1) (24)

where we defined

η =
(βσ)2

V ar(zUS)
. (25)

This establishes a key result: β is one of the solutions for q of the quadratic equation

(b− q)q = η(δ − 1). (26)

In addition to the solution q1 = β, (26) has a second solution q2 = β(δ−1)σ2/V ar(zUS).

We therefore need to analyze which solution identifies β. We start with the case where δ is

positive and smaller than 2. This implies (δ−1)σ2/V ar(zUS) ∈ (−1, 1) and hence |q1| > |q2|.

As a result, β can be identified as β = max(|q1|, |q2|).

This expression for β does not generalize to other cases where β is exactly identified. An

alternative expression that holds for all cases where β is exactly identified is β = κb, where
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b is the benchmarking estimator and κ is a function of the two solutions for q in (26)

κ = max

(
q1

q1 + q2
,

q2
q1 + q2

)
. (27)

The next proposition, proven in the Supplementary Appendix, summarizes this result.

Proposition 2 (Identifying β: sufficient condition in terms of identifiable δ). If δ ∈ [0, 2],

β can be identified as β = κb where b is the probability limit of the standard benchmarking

estimator and κ is defined in (27).

The next proposition gives a necessary and sufficient condition for the exact identification

of β for known Ω.

Proposition 3 (Identifying β: necessary and sufficient condition in terms of identifiable δ

and κ). β can be exactly identified if and only if

either δ ≥ 0 and κ ≥ δ−1
δ

or δ < 0 and κ ≤ δ−1
δ

(28)

where δ is defined in (18) and κ is defined in (27). If this condition is not satisfied, β is

equal to one of the two solutions for q in (26), but it cannot be determined which.

When β is exactly identified, it can be obtained as

β = κb (29)

where b is the probability limit of the standard benchmarking estimator.

The proposition is proven in the Supplementary Appendix. The idea is the following. The

two solutions of the quadratic equation in (26) yield two candidate solutions for β. Each can
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be combined with the variance of US industry characteristics and the identifiable parameter

η in (25) to yield two candidate solutions for the country-specific technological heterogeneity

parameter σ2. As at least some of the variation in technological industry characteristics

reflects a global component, it must be that 0 ≤ σ2 < V ar(zUS). This restriction is only

satisfied by one of the two candidate solutions for σ2 if (28) holds. Hence, only one of the

two solutions of (26) is consistent with the model and this solution is β = κb. On the other

hand, if condition (28) fails, both solutions of (26) imply candidate solutions for σ2 that are

consistent with the model and it is impossible to say which identifies β.

The next proposition gives the necessary and sufficient condition for identification in

terms of σ2 and δ.

Proposition 4 (Identifying β: necessary and sufficient condition in terms of model param-

eters). β can be exactly identified if and only if

(δ − 1)2
(

σ2

V ar(zUS)

)
≤ 1. (30)

If this condition is not satisfied, β is one of the two solutions for q in (26), but it cannot be

determined which.

Intuitively, Proposition 4 implies that β can be identified exactly if cross-country hetero-

geneity in technological industry characteristics is not too large (σ2/V ar(zUS) not too large)

and/or if the association between countries’ technological similarity with the US and their

x-characteristics is not too strong (δ not too large in absolute value).

When exact identification of β is impossible, one could report both solutions for q in

(26) as possible values for β. An alternative is to establish bounds on β in terms of the
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standard benchmarking estimator b. For δ > 2, we have already established upper and lower

bounds in Proposition 1. The next proposition establishes somewhat tighter bounds under

the condition that δ > 2 and that exact identification of β is impossible. For completeness,

the proposition also gives bounds for the case δ < 0 even though these are less useful. The

proof of the proposition is in the Supplementary Appendix.

Proposition 5 (Bounds on β). If the condition in (28) does not hold and exact identification

of β is impossible, then

if δ > 2 then
β

b
∈
(1

δ
,
δ − 1

δ

)
(31)

if δ < 0 then
β

b
/∈
[1

δ
,
δ − 1

δ

]
.

For example, suppose that δ = 2.5, b is positive, and (28) does not hold. Proposition

5 implies that β is between 0.4b and 0.6b. Hence, we can infer the range and the sign of

the parameter of interest β from the standard benchmark estimator b. As another example,

suppose that δ = −2.5, b is positive, and (28) does not hold. Proposition 5 implies that β is

smaller than −0.4b or larger than 0.6b. Hence, we cannot establish an upper or lower bound

for β, nor can we infer the sign of β from the sign of b.

4.2 Identification of Ω

Now we turn to the identification of Ω. Our approach is closely related to the identification

of variance-covariance matrices in general least squares theory. The first step consists of

least-squares estimation and the second step involves understanding when and how the least-

squares residuals can be used to identify Ω.
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The starting point to identify Ω is least-squares estimation of (20). The residuals

ûin = yin − v̂i − v̂n − γ̂ixn, with hats denoting least-squares estimates, allow us to esti-

mate 1
I

∑I
i=1 ûinûim for all country pairs n, m. These depend on the ωnm we collected in

the variance-covariance matrix Ω and can therefore be used to identify Ω.

Relating Ω to the variances and covariances of the residuals across industries.

We now derive the relationship between the variances and covariances across industries of

the residuals ûin for all pairs of countries n, m, 1
I

∑I
i=1 ûinûim, and the elements ωnm of Ω.

The first step is to express the least-squares residuals ûin in terms of the underlying

disturbances uin in (20)

ûin = υin − (xn − x)

N∑
k=1

ψkυik (32)

where the υin are the demeaned versions of uin

υin = uin −
1

N

N∑
m=1

uim −
1

I

I∑
j=1

ujn +
1

N

1

I

N∑
m=1

I∑
j=1

ujm (33)

and the ψk are the least-squares regression weights

ψk =
xk − x

N∑
p=1

(xp − x)2
. (34)

The second step is to calculate the probability limit as the number of industries goes

to infinity of the variances and covariances of the residuals across industries for all country
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pairs, which we refer to as πnm

πnm = plim
I→∞

1

I

I∑
i=1

ûinûim. (35)

We show in the Supplementary Appendix that using (32)-(33) in (35) yields the following

equations linking πnm and the elements ωnm of Ω

πnm = ωnm − µn − µm − (xn − x)λm − (xm − x)λn (36)

where µn and λn are functions of the ωnm and

0 =

N∑
n=1

λn. (37)

These equations are the basis for the identification of the variance-covariance matrix Ω.

A structure for Ω. It is well understood that the identification of the variance-covariance

matrix Ω is impossible for an arbitrary matrix, as (36) and (37) has more unknowns than

linearly independent equations (e.g., Amemiya, 1985).13 For identification to be possible, the

empirical framework must put some structure on Ω. The structures used in the literature

depend on the application (e.g., Amemiya, 1985; Wooldridge, 2002; Conley, 2010).

We choose a structure for Ω that has the implicit structure in the CI/CC literature as

a special case and at the same time allows us to examine the limits of identification. The

implicit structure for Ω in the cross-industry cross-country literature is that differences be-

tween the technological industry characteristics of a country and global technological industry

13We show this in the Supplementary Appendix.



Estimating industry-country interactions 37

characteristics are completely idiosyncratic. This implies that the technological industry

characteristics of different countries are related through the global component only. As we

have seen above, the benchmarking estimator is attenuated in this case. Our structure for Ω

follows the CI/CC literature in that the technological industry characteristics of some coun-

try pairs are related through the global component only. But for all other country pairs, we

allow for an entirely arbitrary correlation between the country-specific technological industry

characteristics.

Specifically, our structure for Ω:

(i) Allows for an arbitrary correlation ρnm with n 6= m between the country-specific tech-

nological industry characteristics of two countries if they are sufficiently similar. Two

countries are taken to be sufficiently similar if the distance between their x-characteristics

is below a threshold τ . When we set large values for the threshold τ , many country pairs

satisfy |xn − xm| ≤ τ , and our structure for Ω allows for arbitrary correlations ρnm be-

tween the country-specific technological industry characteristics of many country pairs.

Formally, for these country pairs, technological similarity as measured by corr(zin, zim)

is [V ar(zi) + σ2ρnm]/(V ar(zi) + σ2). Hence, the technological industry characteristics

of these country pairs are not related through the global component only and can be

related in arbitrary ways to all country characteristics.

(ii) When the distance between the x-characteristics of a country pair exceeds the threshold

τ , their country-specific industry characteristics are taken to be uncorrelated, ρnm = 0.14

This implies that the technological industry characteristics of these country pairs are

related through the global technological component only (as implicitly assumed for all

14The approach can be thought of as a cross-country analogue of so-called K-dependence in time-series
econometrics, which allows for any correlation between random variables at t and T if |t−T | ≤ τ but assumes
independence if |t− T | > τ (e.g., Amemiya, 1985).
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country pairs in the CI/CC literature). Formally, technological similarity as measured by

corr(zin, zim) for country pairs with ρnm = 0 is V ar(zi)/(V ar(zi)+σ2). By increasing τ ,

we reduce the number of country pairs with ρnm = 0 and therefore deviate substantially

from the implicit assumption in the CI/CC literature.

We refer to this structure for the variance-covariance matrix Ω as Ωτ to capture that

it depends on the threshold τ . Ωτ corresponds to the implicit structure in the CI/CC

literature for τ = 0. We can move away from this baseline quite continuously by increasing

τ . Moreover, the structure does not impose any functional form on how the technological

similarity of country pairs with |xn − xm| ≤ τ depends on country characteristics. On the

other hand, the number of parameters to be estimated increases very rapidly with τ and this

could lead to noisy estimation results.

The threshold τ must be interpreted relative to the distribution of the x-characteristic

across countries. It is therefore easier to think about the fraction of unrestricted ρnm with

n 6= m implied by a threshold τ . When τ is very small, the fraction of unrestricted ρnm

will be small as few country pairs will satisfy |xn − xm| ≤ τ . Hence, the assumed structure

for Ω will be similar to the implicit structure in the CI/CC literature and relatively few

parameters will have to be estimated. On the other hand, when τ is large, the fraction of

unrestricted ρnm will be large and a large number of parameters need to be estimated. (If

the threshold τ is so large that all country pairs can have different ρnm, we are not imposing

any structure on Ω and identification is impossible.)

As the choice is difficult in practice, we vary the threshold τ over the range that permits

identification of Ω. Put differently, we allow the fraction of unrestricted ρnm to vary between

zero and the maximum that still permits identification of Ω. As this maximum can be large,
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our structure for Ω can deviate substantially from the implicit structure in the CI/CC. By

varying the fraction of the unrestricted ρnm between zero and the maximum that permits

identification, we examine how sensitive the results for β are to the restrictions put on Ω.

Summarizing, we assume that if countries have sufficiently similar x-characteristics |xn−

xm| < τ , ρnm with n 6= m is unrestricted. On the other hand, ρnm = 0 if |xn−xm| ≥ τ . We

present results for the range of τ allowing for the identification of Ω.

In many economic applications of CI/CC models more parsimonious structures for Ω

could be chosen. For example, the structures used in spatial econometrics for spatial depen-

dence can be adapted to capture the technological similarity of countries as a function of

their x-characteristics and other country characteristics (e.g., Conley, 2010). The advantage

of more parsimonious structures is that many fewer parameters need to be estimated.

A condition for identification of Ω. The structure Ωτ for the variance-covariance ma-

trix Ω assumes ρnm = 0 and hence ωnm = 0 in (23) for all country pairs with relatively

different x-characteristics, |xn − xm| ≥ τ . We denote the number of such country pairs by

Q. For these Q country pairs, (36) simplifies to

πnm = −µτn − µτm − (xn − x)λτm − (xm − x)λτn. (38)

These equations are the starting point for the identification of Ωτ from the πnm. In partic-

ular, we use these equations to try and determine the µτn and λτn for all n. Then we use (36)

to determine the ωτnm for all other country pairs.
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It is useful write the Q equations in (38) and the restriction in (37) in normal form

π = Gτ

 µτ

λτ

 (39)

where µτ = (µτ1 , . . . , µ
τ
N )′ and λτ = (λτ1 , . . . , λ

τ
N )′ collect the 2N unknowns; π is a column

vector of length Q+1 that collects the values on the left-hand side of equations (37) and (38);

and Gτ is a (Q+ 1)× 2N matrix of coefficients implied by the right-hand side of equations

(37) and (38). By writing the equations in (37) and (38) in normal form, it becomes clear

that µτ and λτ can be determined if the matrix Gτ has full rank.

An illustration of the identification condition. We can identify the variance-

covariance matrix Ωτ if the matrix Gτ has full rank. This depends on the distance

threshold τ and the distribution of the x-values across countries.

Table 1 illustrates this for three types of distributions for the x-values. For each distri-

bution, we draw x-values for 150 countries.15 We repeat this 50 times. For each draw we

calculate the value for the maximum threshold τmax such that Gτ has full rank. As this

value is somewhat difficult to interpret, we:

(i) We calculate the average distance |xn − xm| across all possible country pairs for each

draw. This allows comparing τmax with the average distance in the x-characteristics

across all country pairs and get a sense whether τmax is relatively large or small.

(ii) We calculate the number of countries with unrestricted ρnm with n 6= m that are implied

by τmax. We then report this number relative to the total number of country pairs.

15This is approximately the number of countries in our application of the new benchmarking estimator
below. We obtain similar results for 75, 250, and 500 countries.
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Table 1: Identification of the variance-covariance matrix.

Distribution Average distance

between xn across

all country pairs

Maximum

threshold τ

allowing

identification

(τmax)

Country pairs

n 6= m with

unrestricted ρnm
relative to total

number of

country pairs at

τmax

Uniform on [0, 1] 0.33 0.48 0.74

Standard normal 1.13 2.43 0.91

Exp. with λ = 1 1.00 2.31 0.89

Table 1 presents our results. We start with the case where country characteristics are

uniformly distributed between 0 and 1. The distance |xn − xm| averaged across all country

pairs is 0.33. The maximum value of the distance threshold τ that permits identification

(τmax) is 0.48. The share of country pairs with unrestricted ρnm with n 6= m at τmax is 74%.

The statistics in the last two columns remain nearly unchanged when we vary the support

of the uniform distribution (not in the table).

Table 1 also shows results when the country characteristics are drawn from a standard

normal distribution. The distance |xn − xm| averaged across all country pairs is 1.13. τmax

is 2.43. The share of country pairs with unrestricted ρnm with n 6= m at τmax is 91%. The

statistics in the last two columns do not vary with the mean of the normal distribution and

remain nearly unchanged when we vary the standard deviation (not in the table). The third

case has country characteristics drawn from an exponential distribution and yields results

similar to the normal distribution.
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5 An Application

We now apply our identification results. We start by explaining how to go from identification

to estimation. Then we use the approach to reestimate Nunn (2007).

5.1 From Identification to Estimation

We first explain how our identification results can be used to obtain consistent estimates of

q in (26) in five steps.

Step 1: Estimate (20) with least squares and then use the residuals to estimate the

variances and covariances across industries of the residuals for all country pairs

π̂nm =
1

I

I∑
i=1

ûinûim. (40)

These variances and covariances are consistent estimators of the πnm in (35) as the number

of industries I goes to infinity.

Step 2: Estimate µτ and λτ on the basis of (39). We start by obtaining the matrix Gτ

for different distance cutoffs τ . We begin with very small values of τ . If all countries have

different x-characteristics (as in our application below), the ρnm = 0 condition is imposed

for all country pairs n 6= m and that Ω is a diagonal matrix (as implicitly assumed in the

CI/CC literature). The implied matrix Gτ is of full rank. We then increase τ up to the

maximum value still yielding a matrix Gτ of full rank. To estimate µτ and λτ , we also

need an estimator of the column vector π. We obtain this estimator by replacing the πnm

collected in the vector π with the estimates π̂nm in (40). Of course, we cannot estimate
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µτ and λτ by simply replacing π with π̂ in (39). This is because generally π̂ 6= π due to

sampling error and the equation system in (39) would therefore be overdetermined. Instead,

µτ and λτ are estimated by applying least squares to

π̂ = Gτ

 µτ

λτ

+ v (41)

where v is a column vector of length Q+1 that captures the sampling error π̂−π. Because π̂

is a consistent estimator of π as the number of industries I goes to infinity, the least-squares

estimators µ̂ τ and λ̂ τ are consistent estimators of µτ and λτ .

Step 3: Estimate the non-zero elements ωτnm of Ωτ by combining (36) with µ̂ τ , λ̂ τ , and

π̂. This yields

ω̂ τ
nm = µ̂ τn + µ̂ τm + (xn − x)λ̂ τm + (xm − x)λ̂ τn + π̂nm. (42)

Consistency of the ω̂ τ
nm follows from the consistency of µ̂ τ , λ̂ τ , and π̂. The estimates

of ωτnm allow us to estimate θ, βσ, and ρnm. The estimates of θ and βσ are obtained by

combining the expressions for the variances ωnn = (θ + xn)2(βσ)2 in (23) with ω̂ τ
nn. This

yields

ω̂ τ
nn = (θ + xn)2(βσ)2 + υnn (43)

where υnn captures sampling error. The nonlinear least-squares estimates of θ and βσ are

then combined with ωτnm and the expression for the covariances in (23) to estimate the

nonzero ρτnm using that ρτnm = ωτnm/[(θ+xn)(θ+xm)(βσ)2]. Moreover, βσ can be combined
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with the variance of the industry characteristics in the benchmark country V ar(zUS) to

estimate η̂ using (25). Consistency follows from the consistency of the ω̂ τ
nm.

Step 4: Use the ρ̂ τnm to estimate Â τ and B̂ τ using (9)-(10) and δ̂ τ using (18)

δ̂ τ = θ̂Â τ + B̂ τ . (44)

Step 5: Replace δ and η in (26) by δ̂ τ and η̂ and obtain estimates of q by solving

(̂b− q)q = η̂ τ (δ̂ τ − 1) (45)

where b̂ is the standard benchmarking estimator.

The estimates of q based on (45) can be used to estimate β as explained in Proposition 2

and Proposition 3 or to obtain bounds on β as explained in Proposition 5. Confidence bands

of all our estimates are obtained by bootstrapping.16

5.2 Reestimating Nunn (2007)

Nunn employs export data for up to 222 industries in 146 countries to show that institutional

quality has a positive effect on comparative advantage in industries that depend more on

differentiated inputs.17 In terms of the model in (1), the institutional quality of countries

16Bootstrapping the confidence intervals of our estimates of δ and β involves reshuffling the uin in (20)
across industries for each country 100 times and each time reestimating π, µ, λ, ωnm, θ, βσ, A, B, ρnm, δ,
η, q1, q2, and β. Confidence intervals are based on the standard deviations of the bootstrapped distributions.

17See Levchenko (2007) and Costinot (2009) for related work on institutions and comparative advantage.
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takes the place of xn and log exports in industry i the place of yin. The relevant indus-

try characteristic zin is the differentiated-input intensity of production and the benchmark

country is the US. We now apply our estimation approach using Nunn’s setting and data.

Figure 2: Estimates of δ for Nunn’s baseline specification.
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Figure 2 summarises our results for δ for Nunn’s baseline specification. Estimates are

shown as dots and 95% confidence intervals as bracketed lines. The area shaded in light

grey marks values of δ that according to Proposition 1 result in an attenuation bias of the

standard benchmarking estimator (0 ≤ δ < 1). The area shaded in darker grey marks values

of δ that result in an amplification bias of the standard benchmarking estimator (δ > 1). For

very small values of τ , we obtain δ = 0. This is unsurprising as the condition ρnm = 0 for

n 6= m is assumed for all country pairs in this case. Hence, A = B = 0 in (9)–(10) and δ = 0

in (18). Estimates of δ remain very small for values of τ smaller than 0.02. Point estimates
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are between −0.01 and +0.01 and 95% confidence intervals include 0. Hence, we cannot

reject δ = 0. According to Proposition 1, δ = 0 implies that the benchmarking estimator

is subject to an attenuation bias. According to Proposition 2, δ = 0 implies that we can

estimate β as β = κb with κ given in (27). Figure 3 shows our point estimates of β as dots

and 95% confidence intervals as bracketed lines. Point estimates are around 7.2, 10% larger

than Nunn’s estimate of 6.6 obtained with the standard benchmarking estimator (marked

by the horizontal black line).18

Figure 3: Estimates of β for Nunn’s baseline specification.
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For values of τ between 0.03 and 0.21, point estimates of δ in Figure 2 are between 0.04

and 0.49. The 95% confidence bands are strictly between 0 and 1, except for τ = 0.19. The

data therefore support values of δ greater than 0 but below 1. Proposition 1 implies that

18The estimate reported by Nunn differs because it is standardised.
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for 0 ≤ δ ≤ 1, the standard benchmarking estimator is subject to an attenuation bias and

Proposition 2 implies that we can estimate β as β = κb. Figure 3 shows our estimates of

β. Point estimates are between 7.2 and 6.8. Hence, the difference with Nunn’s estimate is

smaller than what we obtained for very small τ . This is because very small values for τ

imply that the bias of the standard benchmarking estimator is solely shaped by the force

generating an attenuation bias. When δ increases, the bias of the standard benchmarking

estimator is also shaped by a force counteracting the attenuation bias.

For values of τ between 0.22 and 0.32, estimates of δ in Figure 2 are mostly negative.

As a result, we cannot use Proposition 2 to estimate β. However, we can still estimate β as

β = κb in most cases as our point estimates of κ satisfy the condition for exact identification

in Proposition 3.19 Figure 3 shows our estimates of β, which are up to 25% larger than

Nunn’s estimate.

For values of τ between 0.33 and 0.4, our estimates of δ in Figure 2 become very noisy.

Point estimates are mostly negative. As the necessary and sufficient condition for exact

identification of β in Proposition 3 is not satisfied, we can only establish the bounds in

Proposition 5. Figure 3 illustrates the values of β consistent with these bounds as dashed

lines delimited by squares. For values of τ larger than 0.4, Gτ no longer has full rank and

Ωτ cannot be identified.

Building on Romalis (2004), Nunn also presents results controlling for the effect of capital

on comparative advantage. He does so by augmenting his baseline specification with an in-

teraction between country-level human capital and the human-capital-intensity of industries

19We are evaluating the condition based on the point estimates of δ and κ.
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as well as an interaction between country-level physical capital and the physical-capital-

intensity of industries. We apply our alternative estimation approach to Nunn’s model with

controls by following the same steps as above, except that estimation of (20) accounts for

the effect of human and physical capital.

Figure 4: Estimates of δ for Nunn’s specification with controls for human and physical
capital.
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Figure 4 summarises our results for δ. The area shaded in light grey continues to mark

values of δ that according to Proposition 1 result in an attenuation bias of the standard

benchmarking estimator (0 ≤ δ < 1). The area shaded in darker grey marks values of δ

that according to Proposition 1 result in an amplification bias of the standard benchmarking

estimator (δ > 1). For values of τ smaller than 0.02, point estimates of δ are between −0.01

and +0.01 and 95% confidence intervals include 0. According to Proposition 1, δ = 0 implies
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that the standard benchmarking estimator is attenuated. According to Proposition 2, δ = 0

implies that we can estimate β as β = κb. This yields estimates of β around 7, see Figure 5.

These estimates are about 10% larger than Nunn’s point estimate of 6.4 obtained with the

standard benchmarking estimator (marked by the horizontal black line).

For values of the threshold distance τ between 0.03 and 0.11, point estimates of δ in Figure

4 are between 0.09 and 1.3. The 95% confidence intervals are between 0 and 2. Hence, the

data support values of δ between 0 and 2. According to Proposition 2, 0 ≤ δ ≤ 2 implies

that we can estimate β as β = κb. This yields the estimates of β in Figure 5. These are

sometimes above Nunn’s estimate of 6.4 and sometimes below. This makes sense as according

to Proposition 1, the standard benchmarking estimator is subject to an attenuation bias when

δ is between 0 and 1 and subject to an amplification bias when δ is greater than 1.

When τ is between 0.12 and 0.19, estimates of δ in Figure 4 are between 1.6 and 2.3.

Hence, the benchmarking estimator is subject to an amplification bias according to Propo-

sition 1. The condition for identification in Proposition 3 is always satisfied and we can

estimate β as β = κb. Estimates of β in Figure 5 are between 5.9 and 4.9, up to 25% smaller

than Nunn’s estimate. For values of τ between 0.2 and 0.23, estimates of δ in Figure 4

are generally between 0 and 1. According to Proposition 2, we can therefore estimate β as

β = κb. Our point estimates of β in Figure 5 are between 6.5 and 6.7, slightly larger than

Nunn’s estimate. For values of τ between 0.24 and 0.31, our estimates of δ are very noisy.

For values of τ larger than 0.31, Gτ no longer has full rank and Ωτ cannot be identified.
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Figure 5: Estimates of β for Nunn’s specification with controls for human and physical
capital.
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6 Conclusion

Cross-industry cross-country models are used widely because industry-country interaction

effects allow testing theoretical mechanisms. We show that the estimation approach in

the literature can result in misleading answers to the research questions being asked. The

origin of the issue we analyse is straightforward. Cross-industry cross-country models must

specify the technological industry characteristics that, according to the theory being tested,

should interact with the relevant country characteristic. As these industry characteristics are

unobservable for most countries, they are approximated by the industry characteristics in a

benchmark country, usually the US. As a result, the technological industry characteristics

of all countries except the US are measured with error.
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The cross-industry cross-country literature implicitly assumes that this proxy introduces

measurement error that is independent of all country characteristics (classical measurement

error) and that industry-country interaction effects are therefore biased towards zero. That

is, using US industry characteristics as a proxy for industry characteristics elsewhere leads

to an attenuation bias and hence a bias against the hypothesis being tested. We add that—

because technology is endogenous—US industry characteristics are likely to be a relatively

worse proxy for countries that differ from the US in various dimensions. This heterogeneity

in the measurement error counteracts the attenuation bias considered in the CI/CC literature

and can flip the sign of the bias of the benchmarking estimator. Hence, using US industry

characteristics as a proxy for industry characteristics elsewhere can lead to amplified or

entirely spurious industry-country interaction effects when using the estimation approach in

the literature. We therefore propose an alternative estimation approach and illustrate the

approach by applying it to Nunn (2007).
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