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Abstract—Traffic sign recognition (TSR) is a key aspect in-
volved in the development of robust automated transportation
systems. It inherently involves the task of traffic sign detection
(TSD), which can be challenging due to traffic signs often
being subject to deterioration or occlusion, caused by various
environmental factors, or through actions of vandalism. Even
though, notable advancements have been achieved in the areas of
TSR and TSD, few studies have provided robust algorithms, able
to be generalized in real-world applications. This mostly stems
from the lack of an extensive traffic sign dataset, standardized
for benchmarking purposes. In light of the aforementioned, this
paper presents a novel traffic sign dataset, which consists of the
Carla Traffic Sign Detection (CTSD), and the Carla Traffic Sign
Recognition Dataset (CATERED), targeting the detection and
recognition processes respectively. Using the proposed dataset
for training and evaluation, a deep Auto-Encoder algorithm
is presented, demonstrating high accuracy in detecting and
recognizing the distorted traffic signs. Finally, the system is
further extended to a federated learning environment, exemplify-
ing its applicability in modern decentralized and interconnected
architectures.

Index Terms—Traffic Sign Recognition, Traffic Sign Detection,
Autoencoder, Federated Learning, Image synthesis, Image clas-
sification, Anomaly Detection

I. INTRODUCTION

n the modern age and with the technological advancements
Iin the fields of smart interconnection and smart systems,
such as, smart cities, smart-grids and other cyber-physical
systems, the fields encapsulating optical detection and further
classification of the key information they envelop are consti-
tuted as critical. Systems like self driving cars, localization
services and guidance platforms have been blooming in the
light of the advancement of artificial intelligence (AI) and the
accelerated hardware that support it, for tasks like scene recog-
nition and environmental analysis that help create a digital

understanding of the respective surrounding environment. In
particular, infrastructures like traffic sign recognition (TSR)
systems that undertake the real time detection and analysis
of traffic signs in public transport networks have started to
play a major role in automating transportation and localiza-
tion infrastructures, the lack of which can have catastrophic
consequences, like in the scenario of self-driving cars.

Traffic sign recognition systems are essential in many real-
world applications such as autonomous driving, traffic surveil-
lance, driver safety and assistance, road network maintenance,
and analysis of traffic scenes. Normally, a TSR system con-
cerns two related subjects which are traffic sign detection
(TSD) and traffic sign recognition. The former focuses on
the localization of the targets in the pictures while the latter
performs a fine-grained classification to identify the type of
targets detected.

These applications though, suffer from some basic draw-
backs. Firstly, the lack of established benchmark traffic sign
detection and recognition datasets [1] that redound in the
need for the generation of such custom data, which is an
arduous and rather time consuming process, that will not
necessarily procure the correct information to train TSD and
TSR algorithms, respectively. Another drawback is that, com-
monly, landmarks like traffic signs tend to never go unsullied,
either by the destructive forces of nature or the destructive
forces of vandalism. This constitutes the need for datasets that
incorporate not only clear images of the correlated traffic signs,
but also distorted, smudged or otherwise obstructed images of
those signs in order to train robust and generalized detection
and recognition algorithms. Moreover, modern systems are
slowly but steadily migrating to decentralized architectures,
keeping the security and privacy of the handled data as a
key factor of their subsequent implementations. Such systems



utilize the power of decentralized technologies, like Federated
Learning (FL), which is a field that focuses on remotely
training Machine Learning (ML) and Deep Learning (DL)
models on the edge, in a completely data-agnostic way. Due to
its decentralized span, the data of an FL environment can be
either statistically distributed or not. This, though, constitutes
the need for a versatile and flexible, but also robust, dataset and
accompanying algorithm to accommodate the decentralized
paradigm, that is steadily becoming the new Deep Learning
status quo. Finally, though a lot of work has been done in the
field to oblige to the aforementioned drawbacks, a benchmark
robust and easily adaptable algorithm has yet to be defined
and used in a general manner.

In response to the demand for a dataset that fulfils the
described preconditions, this work presents a traffic sign
recognition dataset to be used for training Machine Learning
and Deep Learning algorithms in successfully detecting and
interpreting roadside guidance traffic signs, both in a central
and decentralized environment. The contributions of this work
can be summarized as follows:

o Produces a novel traffic sign recognition dataset to be
used in training TSR ML and DL algorithms that includes
multiple classes and image deterioration as anomalies to
ensure model generalization

e Develops a DL model specifically for TSR that is evalu-
ated on vast testing data

o Presents a robust system and a methodology to train and
evaluate the aforementioned model

o Extents the methodology to a Federated Learning en-
vironment proving its utility to modern decentralized
interconnected systems

The rest of the paper is organized as follows. Section II in-
troduces some basic information about the techniques used in
this work as well as a review of similar work done in the TSD
and TSR fields. Section III presents the methodology, dataset
and the general workings of the presented contributions, while
section IV validates the results of this paper. Finally, section
V concludes this work.

II. BACKGROUND
A. Traffic Sign Detection and Recognition Data

Over the last decade, several traffic sign databases have
been released, targeting the tasks of traffic sign detection and
classification. One of the most distinctive publicly available
datasets, is The German Traffic Sign Recognition Benchmark
(GTSRB) [2], which consists of multi-class images, captured
in various locations in Germany. Likewise, the DFG Traffic
Sign Data Set [1], includes 7000 annotated images from
Slovenia province roads, intended primarily for Traffic Sign
Recognition, and incorporating additional augmented datasets.
In addition, the Mapping and Assessing the State of Traffic
Infrastructure (MASTIF) [3], [4] dataset includes up to 88
augmented sign categories, acquired from road maintenance
in Croatia, intended for traffic sign recognition as well.

Comprehensive datasets for both detection and recognition
of traffic signs are included inside the BelgiumTS dataset [5].

The detection dataset provides a total of 25634 images, with
5905 and 3101 annotated images used for training and testing
respectively. The included classification dataset consists of
4591 images used for training and 2534 images used for testing
purposes. Containing more than 20000 images, including both
highway and city road traffic signs, the Swedish Traffic Signs
(STS) [6] dataset has a total of 3488 annotated traffic signs,
and can be used for both tracking and detection techniques.

One of the most extensive benchmarking datasets, contain-
ing thousands of annotated signs, is the Tsinghua-Tencent
100K [7]. The included images are of very high resolution and
target realistic scenarios by covering different environmental
conditions, such as low luminance, or occlusion circumstances.
Additional datasets of interest include the LISA [8] dataset,
containing 6610 annotated traffic signs and the Stereopolis
Database [9] which involves signs from complex urban sites.
Finally, the European Traffic Sign Dataset (ETSD) [10], con-
tains annotated signs from six different countries, consisting of
more than 80000 images that are categorized into 164 classes.
Table I outlines some of the most important publicly available
datasets.

B. Traffic Sign Detection and Recognition Methods

The areas of traffic sign detection and recognition have
received significant attention by the research community in
recent years, in light of autonomous driving systems that have
risen, due to the proliferation of Al techniques that enable
their robust realization. In lack of extensive traffic sign datasets
established as a standard for benchmarking related approaches,
review studies mainly focus on identifying challenges associ-
ated with TSD and TSR, offering relative analyses that aim to
draw conclusions for prospective research [11], [12].

Common approaches for recognition of traffic signs include
the use of support vector machines (SVMs) [13], which are
linear classifiers based on supervised ML models. SVMs can
make use of histogram of oriented gradient (HOG) features
for training [14], demonstrating enhanced resilience in envi-
ronmental lighting fluctuations, which often affect the process
of TSR. Due to the generalization capabilities inherent in
Deep Learning architectures, other methods examine the use
of convolutional neural networks (CNNs) [15], [16] that offer

Dataset No. of classes No. of signs
GTSRB 43 >50000
DFG 200 13239
MASTIF 88 5184
BTSD 62 4627
BTSC 62 7125
STS 7 3488
TT 100K 45 30000
LISA 49 6610
Stereopolis 10 251
ETSD 164 82476

TABLE I: Publicly available traffic sign recognition and detection datasets.




enhanced feature extractions, and are able to produce a high
recognition accuracy. These networks however, often suffer
from high computational costs, which led to new approaches
that examine a combined solution, where a CNN is used for
feature extraction and a classifier such as an Extreme Learning
Machine (ELM) [17] is used for the classification.

C. Auto-Encoders

Concerning the implementation of the proposed algorithms,
this work relies heavily on the concept of Auto-Encoder
and their powerful utility in augmentative tasks. The core
design behind the Deep Auto-Encoder [18] architecture is
the assimilation of given data of space X into a compressed
manifold F' by a sub-portion of the model working as an
encoder and consequently the scaling of that manifold F' to
the predicted value P of those given data by a second sub-
portion acting as a decoder, where P ~ X. Equation 1 defines
the concept of the Auto-Encoder’s mapping of data space X
to manifold F' and its decompression to space P.

D : argminHX — (por)XH2
,p (D
r:X—F p:F—P

D. Federated Learning

Federated Learning is defined as a stochastic distributed
learning and privacy-preserving process that orchestrates the
distribution, organization, training and fusion of Deep Learn-
ing models across a distributed corpus of edge devices or
remote workers over distributed networks [19] [20]. FL works
by training locally DL models on edge devices with the local
on-device collected data, diminishing the need to communicate
that data to a centralized system, thus keeping the data private
and the nodes secure. The weights of the distributed locally
trained models are then retrieved by a central system and
are aggregated into one global model containing the merged
knowledge of the corpus of edge devices, using specified
fusion algorithms such as the commonly utilised Federated
Averaging [21]. Consequently, the models are send back to
the remote nodes and replace the local models with the fused
model. This way, the new models can perform better with
knowledge that does not necessarily exist on the respective
device, but on another, without the need for data sharing.

Specifically, the central server distributes a global model
W&y ,pe dlong with training instructions to a Federated pop-
ulation Py € [1,N] where N € N*, each holding local
dataset D;cn and local models w? The distributed models
are subsequently trained on the local data D; and then the
weights W, are send back to the central system to be
aggregated through a process like Federated Averaging (2), or
similar, in order to produce an updated global model wglobal
[22].
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Fig. 1: Histogram of the total samples in the proposed dataset.

Where wg is the global model at the kyj training iteration
and w’ denotes the Federated population i, model at that
iteration.

III. METHODOLOGY

This section overviews the summary of the developed
methodology, as well as the techniques used in this work.
The methodology is divided into four parts, a) the produced
dataset, b) the anomaly detection and mitigation strategies, c)
the training of the developed centralized algorithms and d) the
federated model training.

A. Produced Datasets

As mentioned previously, the core aspect of this work
focuses on producing a new TSD and a TSR dataset in order
to help train and validate ML and DL systems, for traffic
roadside landmark recognition. For the detection dataset, the
Carla Simulator [2] was used to generate a large dataset for
traffic sign detection purposes. The histogram of the total
samples in the proposed dataset is shown in Figure 1. The
Carla Traffic Sign Detection (CTSD) dataset contains:

e 55,323 images of 1920 x 1080 image pixel resolution

o Captured in various day time settings

o 43 different classes of traffic signs

o Highly accurate annotation performed automatically

e Various weather and lighting conditions (e.g., cloudy,

sunny, day, night, etc)

The produced traffic sign recognition dataset, i.e., the Carla
Traffic Sign Recognition Dataset (CATERED), incorporates
cropped traffic signs, generated also through the Carla simu-
lator. The dataset consists of:

e 94478 images with varying resolution of traffic signs

o 43 different traffic signs

o Highly accurate annotation, performed automatically

Figure 2 provides a sample preview of the 43 traffic sign
classes. For the purposes of detecting distorted traffic sign im-
ages, alterations have been augmented onto the images which
henceforth will be referred to as attacks. The augmentations
are documented bellow.
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Fig. 2: Sample preview of the 43 traffic sign classes.

B. Anomaly Detection and Mitigation Strategies

The attack detection model for synthetic traffic signs, is an
optimized version of the model developed for the real image
traffic attack detection model. The optimised model has been
updated according to the needs of the new dataset and the
requirements of anti-hacking devices. The new architecture is
simpler and layers such as Convolution Transpose, Leaky-
ReLU etc. are not considered in this version. Instead of
convolution Transpose, UP sampling and convolution strides
are utilized, while Leaky-ReLU was replaced by the classic
ReLU. These modifications achieve a good balance between
performance and complexity, especially for the embedded anti-
hacking devices.

The model consists of a total of 8,487,891 parameters.
Figure 3 and Table II show the architecture of the attack de-
tection model for synthetic traffic signs, and the corresponding
parameters respectively. The attack detection is carried out in
the same manner as the analyses for the real traffic signs.

C. Centralized Model Training

The centralized model is an Auto-Encoder DL model, devel-
oped in order to accumulate traffic sign images and reproduce
them in the best possible manner. For the model construction,
the Adam optimizer [23] was used as a gradient optimizer
with a standard decay over the training. Additionally, during
the training phase, various data augmentation techniques were
also applied to the data. The augmentation process aims to
increase the robustness of the attack detection and recognition
models, by producing new varieties on the input data. A list
of all the augmentation methods applied to the training data is
shown in Table IV, while the parameters of the produced DL
model are presented in Table III. The Auto-Encoder model is
trained over a specified number of iterations and is optimized
with the Mean Squared Error loss function, shown in equation
3:

1 ¢ _
MSE = n Z(yi - 0)%,

i=1

3)

where n represents the number of predictions, while Y and Y
are the samples and predicted values vector, respectively.

Layer Type Output | Strides | Activation | Filter
Input 48x48 1 ReLU 3
Conv2D- 1 48x48 1 ReLU 64
Conv2D- 2 24x24 2 ReLU 128
Conv2D- 3 24x24 1 ReLU 256
Conv2D- 4 12x12 2 ReLU 128
Conv2D- 5 12x12 1 ReLU 512
Conv2D- 6 6x6 2 ReLU 128
Dropout- 1 - - - -
Flatten 4608 - - -
Dense - 1 48 - ReLU -
Dense - 2 55584 - ReLU -
Reshape 12x12 - ReLU 386
Conv2D- 7 12x12 1 ReLU 512
Up sampling | 24x24 - - -
-1

Conv2D- 8 24x24 1 ReLU 256
Dropout- 2 - - - -
Conv2D- 9 24x24 1 ReLU 256
Up sampling | 48x48 - - -
-2

Conv2D- 10 48x48 1 ReLU 64
Dropout- 3 - - - -
Conv2D- 11 48x48 1 Tanh 3

TABLE II: The proposed architecture of anomaly detection used for real traffic
signs.

Layer Type Output Shape Parameters
Input Layer 48 x 48 x 3 0
Model 48 x 48 x 3 8,487,891

TABLE III: Spacial characteristics of the produced DL model

Moreover, since an Auto-Encoder presents an Augmentative
architecture, meaning that it outputs an interpretable value with
the characteristics of the input, in this work an image, a way to
adapt it to the problem at hand has to be defined. In order for
the Auto-Encoder to output a value pointing at the probability
of the input sample to belong to an attack or not a distance
function was defined. In particular, the distance function takes
as input both the input given to the Auto-Encoder and the
output sample and finds the distance between them resulting
to an error €. € over a value 6 are found to belong to an
attack sample whilst the rest are benign. The value 6 is
found through an experimental process. Equation 4 denotes
the distance function utilized to find the aforementioned error,

“4)

€= llsr — s

where ¢ denotes the calculated error, s, the real input
sample and s, the Auto-Encoder’s output, resulting from the
knowledge that the model has accumulated.
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Type Parameters Description
. The training image i.e., GPS map
Rotation rang 0 - 20 degree is randomly rotated between O - 20 degrees.
Zooming is applied on the training
Zoom range 0-40 images by a random scaling factor in

the range of 0 - 40 percent.
The images are shifted left, right,
up or down in random combinations

Width and height 0 - 10 percent

shift range and magnitudes in the range of 0 - 10
percent.
The images are stretched randomly in
Shear 0'- 10 percent the range of 0 - 10 percent.
Fill Nearest mode Missing pixel values are filled with

nearby pixel values.

The images are flipped in a horizontal
and vertical direction randomly.

Only used for the GPS map

Horizontal and

Vertical Flip True

TABLE IV: All the augmentation methods that were applied on the training
data for the anomaly detection model.

D. Federated Model Training

The federated learning training methodology extents the
centralized training method and applies it in a distributed man-
ner. Specifically, multiple Auto-Encoder models are disbursed
at a number of remote edge devices in a distributed network.
A central FL server serves to orchestrate the federated process
for this implementation, as a could service. Figure 5 depicts
the architecture followed to realize the FL in this work. When
beginning the federated process, the remote workers register to
the FL server to signify their willingness for federation. Next,
the FL server sends the training information to the nodes and
they start to locally train their Auto-Encoder models on their
data. On the end of every FL round the weights of the local
Auto-Encoders are sent to the FL server where they are fused,
and subsequently sent back and synced to the old preexisting
model. This process is reiterated until the model is optimized.

1V. EVALUATION

This section provides the justification of the proposed
dataset and algorithms and establishes the experimental results
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Fig. 4: Attacked traffic sign images, for different area size and noise intensity

that prove this work’s contribution. Its main purpose is to
provide the experimental impact of the produced dataset of this
work on two benchmark applications, i.e., a standalone model
and a distributed Deep Learning platform. The experiments are
oriented in differentiating the attack augmented traffic sign
images from the real ones. The two deployments with their
respective experiments are described below.

A. Centralized Model Evaluation

The model was trained and evaluated on an NVIDIA GTX
2080Ti GPU, using the Keras-Tensorflow framework. For traf-
fic sign attack detection, extensive experiments were carried
out to validate the performance of the developed pipeline.
The traffic synthetic signs, were altered with a pattern attack,
consisting of six different types of patterns and three different
types of noise attacks. The attacks have further variants, such
as that pattern attacks can cover a large and small area,
whereas noise attacks can be of low or high intensity. The
synthetic traffic sign dataset contained 12,900 images, with
300 images selected for each of the 43 classes. Figure 4
displays the attacked traffic sign images, for different area size
and noise intensity.

Table V presents the results of the Auto-Encoder against
the different image alterations or attacks. As can be seen,
the accuracy of detection in most of the attacks cross the 0.9
threshold, with the exception of the Poisson alteration attack
as well as the Poisson Noise - High attack.



B. Federated Deployment Evaluation

Since the federated setting needs multiple nodes, a virtual
testbed was devised. The experiments ran on an Ubuntu 20.04
workstation consisting of an Intel Core i7, 64Gb of memory
and an NVIDIA RTX 3080 GPU/10Gb GPU memory. The
setting, which also can be seen in Figure 5, incorporated
four virtualized remote worker nodes enclosed in Docker
containers. The Docker containers were then connected to an
FL server running on the same machine.

The data used for the FL experiments were segmented
samples of the proposed dataset of this work. To be able
to evaluate correctly the performance of the Federated Auto-
Encoders on the proposed dataset, the intact data could not
be used. The data were segmented into four different con-
figurations to fairly produce trusted results. The segmentation
categories are a) Independent and Identically Distributed (IID),
b) Independent and Identically Distributed (IID - No Repeat),
¢) non-Independent and Identically Distributed (Non-IID) and
d) non-Independent and Identically Distributed (Non-IID- No
Repeat). In particular, the IID category describes data that
are balanced, fairly distribute and in whole statistically ho-
mogeneous, in extent IID - No Repeat are IID data without
reoccurring samples, i.e. each sample exists only once in the
whole FL environment dataset. On the other hand, Non-IID
and Non-IID- No Repeat reveal non identically distributed data
with heterogeneous statistical placements each, respectively.

The FL experiments ran for 3 federated rounds, each con-
sisting of 3 local training rounds and 100 steps each round,
using a batch size of 128 samples. After each round, the
distributed models were fused by the FL server and synced
to the remote devices.

As can be extrapolated by the results seen in Table VI, the
FL environment combined with the proposed data help the
Auto-Encoder model converge rather fast and perform well
on the test data.

V. CONCLUSION

With the advancement of smart infrastructures and auto-
matic recognition/response systems, the need for detailed data,

Attack Type Precision Recall Fl-score Model Accuracy
Pattern 1 - Larger 0.989 0.9961  0.9925 0.9919
Pattern 1 - Small 0.9424  0.9021 09218 0.945
Pattern 2 - Larger 0.9885  0.9196  0.9528 0.9537
Pattern 2 - Small 0.9655 0.8776  0.9195 0.9327
Pattern 3 - Larger 0.9891 0.9998  0.9944 0.9938
Pattern 3 - Small 0.989 0.9934  0.9912 0.9906
Pattern 4 - Larger 0.9658 0.932 0.9486 0.9599
Pattern 4 - Small 0.989 0.9979  0.9934 0.9928
Pattern 5 - Larger 0.9891 0.9998  0.9944 0.9938
Pattern 5 - Small 0.9658 0.932 0.9486 0.9599
Pattern 6 - Larger 0.989 0.9775  0.9832 0.9826
Pattern 6 - Small 0.9658  0.8893  0.9259 0.9385
Gaussian Noise - Low 0.9796  0.3928  0.5608 0.6903
Gaussian Noise - High 0.9891 1 0.9945 0.9939
Poisson - Low 0.9058 0.31 0.4626 0.6492
Poisson Noise - High 0.3464  0.0207  0.0392 0.5043
Speckle Noise - Low 0.9888 0.9645  0.9765 0.9762
Speckle Noise - High 09874  0.8961  0.9395 0.9419

TABLE V: Centralized anomaly detection results.

Experiment Precision Recall F1-Score Accuracy
11D 0.9459 09136  0.9289 0.9298
IID - No Repeat 0.9655 0.9228 0.9397 0.9403
Non-IID 0.991 0.899  0.9419 0.9404
Non-IID - No Repeat 0.9572 0.934  0.9428 0.9419

TABLE VI: FL Anomaly Detection Results

but also algorithms to take advantage of that data, has been
an increasing need in the latest years. Specifically, in the
field of auto-navigation, location and surveillance systems,
and with the introduction of Deep Learning and its distributed
extension Federated Learning, the need for benchmark traffic-
oriented information is ever-increasing. Undertaking the task
of producing data to tackle this demand, in this paper we
present a new Traffic Sign Data Collections and Recognition
Dataset, i.e., the CTSD and CATERED datasets for TSD and
TSR respectively. These data are augmented with targeted
deformations in order to simulate phenomena like naturally
distorted signs, smudged images or vandalism. To detect these
deformations a DL model following the Auto-Encoder archi-
tecture is proposed and tested in two separate scenarios, i) a
centralized detection system and ii) a decentralized (Federated)
system, aiming to simulate the dataset’s impact on modern
smart infrastructures. The produced results show that the
proposed data and techniques achieve a high percentage of
success in the detection of the aforementioned deformations
in both said settings, presenting over 90% in almost all cases
and in different data configurations, proving their utility in
general these systems.
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