intelcomp

European
Commission

INTELCOMP PROJECT

A COMPETITIVE INTELLIGENCE CLOUD/HPC PLATFORM FOR AI-BASED STI
POLICY MAKING

(GRANT AGREEMENT NUMBER 101004870)

D3.3. System for Subcorpus Generation

Deliverable information

Deliverable number and name D3.3. System for Subcorpus Generation
Work Package WP3
Lead Partner for deliverable Universidad Carlos Ill de Madrid

Jesus Cid-Sueiro, UC3M

Auth
uthor Lorena Calvo-Bartolomé, UC3M

Dietmar Lampert, ZSI

Revi i
eviewers loanna Grypari, ARC

Version 1.1

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

DISCLAIMER

This document contains a description of the IntelComp project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using
its content please contact the consortium coordinator for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a
representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any sort of responsibility that might occur as a result of using its content.

The content of this publication is the sole responsibility of IntelComp consortium and can in no
way be taken to reflect the views of the European Union.

The European Union is established in accordance with the Treaty on European Union
(Maastricht). There are currently 27 Member States
of the Union. It is based on the European * * *
Communities and the member states cooperation in
the fields of Common Foreign and Security Policy and
Justice and Home Affairs. The five main institutions of

the European Union are the European Parliament,
the Council of Ministers, the European Commission,
the Court of Justice and the Court of Auditors.

(http://europa.eu.int/)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 101004870.

http://europa.eu.int/

intelcomp

D3.3 System for Subcorpus Generation

CONTENTS

Disclaimer

Acronyms

Glossary

executive Summary

1. Introduction

2. Domain Classification

3. Processing Pipeline

3.1. Source data
3.2. Output
3.3. Document selection

3.4. PU learning
3.5. Active learning
3.6. Mixed label learning
4. Software
4.1. Software architecture
4.2. Software requirements
4.2.1. Python packages requirements
4.2.2. Data source requirements
4.3. Execution commands
4.4, Project folder structure
4.4.1. Configuration file
4.5, Application structure
4.5.1. Command line application
4.5.2. Graphical user interface
4.6. Dataset and metadata files
4.6.1. Datasets
4.6.2. Metadata file
5. Conclusions
4.5.2.4. References
4.5.2.5. Annexes

A. Default Configuration File.

0 00 N o U N

10
11
11
12
13
14
14
15
15
20
20
20
21
22
23
23
24
24
31
31
32
33
34
34
34

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

ACRONYMS

BERT Bidirectional Encoder Representation from Transformer
GUI Graphical User Interface

1/0 Input/Output

LDA Latent Dirichlet Allocation

NLP Natural Language Processing

SBERT Sentence BERT

PU Positive-unlabeled

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

GLOSSARY

CLASS / CATEGORY In the context of machine learning, each of the possible choices of a
classifier. A classifier for a specific TARGET DOMAIN has two CLASSES
only: CLASS 1 (for documents that belong to the TARGET DOMAIN)
and CLASS 0 (for those that do not). Class 1 and 0 are also named the
positive and negative CLASSES, respectively.

CORPUS A collection of text documents

DOMAIN A field or subfield of knowledge.

DOMAIN CLASSIFIER A computational system that, given any input document, determines
if it belongs to the TARGET DOMAIN or not.

LABEL An indicator of CLASS membership. It is used as a reference to train
or evaluate a classifier. In classification with two CLASSES only, the
possible LABEL values are 1 and 0, which are named the positive and
negative LABELS, respectively. Ideally, the LABEL is equal to the true
CLASS of the document, but if the labeling process is imperfect, some
LABELS in the CORPUS can indicate the wrong CLASS.

SUBCORPUS A subset of documents from a CORPUS.

TARGET DOMAIN The DOMAIN of interest to a user.

UNLABELED DOCUMENT A document that has no LABEL. The CLASS of the document is, thus,
unknown.

CLASS PREDICTION The CLASS assigned by a DOMAIN CLASSIFIER to a document.

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

EXECUTIVE SUMMARY

The system for subcorpus generation (domain classifier) is aimed at facilitating the classification
of all documents from a given corpus according to a category that is specified by the user (an
expert in the domain). Therefore, the software includes not only methods implementing
algorithms for the classification of documents, but also all the necessary tools to facilitate the
interaction with the users of the system.

The system provides facilities for the expert to (1) Specify the target category (the “domain”) for
classification, and (2) revise and correct the machine classifications through a tool for the
annotation of specific documents.

The software has been structured in a series of classes and methods to be integrated in the
Interactive Model Trainer from IntelComp. In addition, we have implemented a standalone
python application that can be used to test the behavior of the classifiers, the data flow and the
user interaction before the definite integration in the model trainer.

The core of the software consists of python modules structured as a collection of python classes
in charge of the main processing steps:

1. Pre-classification (document selection): The user can specify the target domain, by
means of one of the three methods provided by the system: (a) the name of the domain,
(b) A list of characteristic keywords from the domain or (c) a weighted list of topics from
a topic model previously computed from the corpus. The document selectors for (a) and
(b) apply pretrained models based on Transformers, a state-of-the-art Deep Learning
technology that has been successful in many NLP tasks.

2. Positive-unlabeled (PU) learning: the system trains a classifier applying a supervised
machine learning algorithm, trying to discriminate between the documents selected in
the first step and the rest of documents in the corpus.

3. Retraining: Since some of the non-selected documents may belong to the target domain
(because the pre-classifier system has been designed with limited supervision
information), the system needs some user interaction to improve the classification
performance. To do so, an active learning loop has been implemented: the system
selects a reduced set of documents and requests labels from the user through the
annotation interface. These labels are used to retrain the classification module based
on transformers..

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

1. INTRODUCTION

Some of the tools from the IntelComp project will facilitate the analysis of data sets from any
field. However, the machine learning models used, and specifically the topic-modeling-based
analysis, obtain more intuitive and potentially more useful results when their training is
restricted to documents belonging to a well-defined domain. For this reason, Task 3.3 proposes
to design a system that allows identifying the documents belonging to a target domain through
an expert-in-the-loop approach that allows integrating expert knowledge in the classification
model.

The aim of this document is to present the System for Subcorpus Generation, that is, the
software that will include the intelligence for the selection of the relevant documents for a
selected field, and a Graphic User Interface (GUI) tool to facilitate expert annotation.

2. DOMAIN CLASSIFICATION

The system for subcorpus generation is aimed at facilitating the classification of all documents
from a given corpus according to a category that is specified by the user (an expert in the
domain). The software includes not only methods implementing algorithms for the classification
of documents, but also all the necessary tools to facilitate the interaction with the users of the
system.

Since the categories are expected to represent specific domains of knowledge in a research field,
the subcorpus generator will also be denominated as a domain classifier. In this document,
“domain classification” and “subcorpus generation” will be used indistinctly.

The system provides facilities for the expert to:

e Specify the target domain for classification

e Revise and correct the machine classifications through a tool for the annotation of
specific documents.

All the software has been structured in a series of classes and methods aimed at facilitating the
integration in the IntelComp platform. The core of the software is a python library of classes and
methods for domain classification, but it is also a fully functional standalone python application
that can be executed to test the user interaction, the data flow and the system performance.
During the integration phase of the IntelComp project, a dockerized version will be created to
be used as part of the Interactive Model Trainer.

The sequence of steps involved in the process of classifying the documents of a given corpus can
be summarized as follows (see Figure 1):

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

Corpus Category Document PU Sample Annotation Re-
Selection specification selection learning Selection training
7 \

Figure 1: The process of domain classification. It involves a sequence of human (in orange)
and machine (in green) steps. The retraining step is carried out every time the expert user
annotates new documents.

1. Corpus selection: The user selects the input corpus

2. Category specification: The user specifies the target categories, by means of one of the
three methods currently provided by the system:

a. The name of the category: e.g., “Biotechnology”, “Artificial Intelligence”,
“Photonics”.

b. Alist of characteristic keywords from the target category.

c. A weighted list of topics. This option requires that a topic model had been
previously computed from the corpus. The user selects one or several topics of
interest, assigning a weight to each one of them that indicates the relevance of
the topic for the target domain.

3. Pre-classification (document selection): The system pre-classifies the documents in the
corpus according to the information provided by the user in step 2. To do so, the system
selects a portion of the corpus containing the documents that are the most relevant for
the target domain.

4. PU learning: the system trains a classifier applying a supervised machine learning
algorithm. To do so, a positive label is assigned to the pre-classified documents, and a
negative label to the rest of the documents for the negative, and these labels are used
to train the classifier.

Note that, ideally, the learning algorithm would be more efficient if all documents with
a positive label belong to the target domain, and all documents with a negative label do
not belong to the target domain. Unfortunately, the step 3 (document selection) will
provide a reduced subset of documents from the target domain only and many
documents from the target domain might have a negative label. Thus, the true class of
the documents with negative labels is uncertain. For this reason, this is usually called a
Positive-Unlabeled (PU) learning problem.

5. Sample selection: Since documents from the target domain may have negative labels,
the system needs some interaction with the user to improve the classification

9

H e
h I ntel co m p D3.3 System for Subcorpus Generation

performance. To do so, it enters into an active learning loop that could be repeated for
several interactions

In the first step of the loop, the system selects a reduced subset of documents to request
the user feedback.

6. Annotation (user feedback): the user examines the documents provided by the system
and reviews the category labels that had been incorrectly assigned by the classification
algorithm

7. Retraining: the system uses the labels provided by the user to update the classifier
model and improve the classification accuracy.

The retraining step will be repeated every time the user provides new labels through the
annotation interface.

3. PROCESSING PIPELINE

Figure 2 details the processing pipeline of the system. The input and outputs, and the
components of the system are described below.

2 =) ~

Corpus

Document Selection

Pasitive Classification
by Keywords Labels

Meta-data

PU learning BTN

by Topks Mied abe e
by Zero-Shot learning | Scores |

RF
classification (RF)

Topic
Models

Data Manager

Pretrained
Transformer
Models

Figure 2: Processing pipeline of the system for subcorpus generation.

The software has a modular structure and the main functionality of each component in the
pipeline has been encapsulated in specific python classes or methods. Thus, the design is flexible
enough to allow further improvements of specific comments. The system uses some specific
pretrained models based on transformers, but they are chosen through a configuration file, so
that different pretrained models can be easily tested.

10

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

3.1. Source data

Input corpus

The main input to the system is a database containing one or several corpora of text documents
and their associated information (metadata, topic models or pre-trained transformer models).

In the current version of the software, a data manager module contains methods to load two
specific corpora that have been used to test the system. After the integration in the IntelComp
platform, the data manager will be adapted to use the corpus utilities available in the Data
Catalog and in the Interactive Model Trainer.

The classification modules assume all documents in the corpus contain English text only.
Therefore, classification of documents from the IntelComp platform will be based on original
documents in English, or in the English versions produced by the machine translation system
(Deliverable 3.2).

For most modules, classification will be based on transformer models [Vaswani, 2017]. They do
not require any specific text preprocessing, so the raw text (without word tokenization) can be
directly applied to them. However, some of the text preprocessing tools from the NLP modules
available at IntelComp could be useful to improve the quality of the text sources (e.g., text
cleaning).

For the topic selection module, a topic model representation of documents must be available.
During our test, we used topic models based on the Latent Dirichlet Allocation (LDA), which will
be one of the models integrated in the IntelComp platform. However, the software can be
applied to any other model providing a vector representation of all documents in a common
vector space.

User data

The other source of information is the expert user, who must interact with the system through
a graphic user interface (GUI), to specify the target category and, also, to fine-tune the behavior
of the domain classifiers through an active learning mechanism. A task manager module is in
charge of attending the user requests by launching the appropriate processing tasks.

3.2. Output

The output of the system consists of a class prediction for every document in the input corpus,
in relation to the category specified by the user.

The software allows the user to specify several target categories for the given corpus. The
system will produce a data frame containing the predictions for each document and each of the
target categories.

11

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

3.3. Document selection

The first step in the process of domain classification is the pre-classification of documents
according to the category specified by the user. The system will select P documents with the
highest relevance score for the target category.

The number of selected documents, P, depends on two configurable parameters that control
the size and minimum relevance score of the set of selected documents.

There are three modules in the document selection system, which are described below:
Selection by Domain Name.

This module tries to classify the documents in the corpus using the name of the category only.
To do so, it runs a zero-shot classifier. A zero-shot is a classifier whose parameters are adjusted
without using any training data. Since the only information available is the name of the category,
such classifiers are the best suited for this type of document selection.

The module applies a specific type of zero-shot classifiers based on an entailment approach [Yin,
2019] using transformers [Vaswani, 2017]: for each input document, the classifier evaluates if it
entails a sentence (hypothesis) like “this document is about X”, where X is the domain name. If
so, the document is taken as relevant for the selected domain. Otherwise, it is considered
irrelevant. The top P documents with the highest entailment score are selected.

Using pre-trained transformer models, the zero-shot classifier does not need a specific training
for each domain name, which facilitates a quick system response. The selection of the
transformer model can be done through the configuration file.

Selection by Keywords.

When the selection is given by a list (of arbitrary size) of relevant keywords, the document
selection is based on the computation of a similarity measure between the input documents and
the comma-separated string of keywords.

Two similarity measures have been implemented:

e Cosine distance: a cosine distance between the embedding of both the input documents
and the keywords string using transformers. The current implementation uses
pretrained SBERT transformers [Reimers, 2019]. Our choice is based on the selection of
a computationally efficient model based on state-of-the-art transformer models like
BERT.

e Keyword count: the total number of occurrences of the keywords in the input
document.

The top P documents with the highest similarity scores are selected.
Selection by Topics.

Selection by topics is aimed at providing the user with the capability of defining a target category
using the topic descriptions of a topic model previously computed by the IntelComp platform.

12

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

By inspecting the top relevant words of each topic, the user can define a target category as a
weighted list of topics, i. e. a list of tuples in the form

(T(), WO)’ (Tl, Wl)a LR (Tn, Wn)

where T;is a topic and w;, its weight. If w= (wo, w1, ..., wn) is the weight vector and d is the topic
vector of the input document, the relevance score is computed as the weighted sum of topic
weights

score=w’-d

The top P documents with the highest similarity scores are selected.

3.4. PUlearning

As a result of pre-classification, the system obtains the set of P documents from the positive
class (the target category). Since the document selection process takes only the most relevant
documents for the target category, which may be a portion of the total number of documents
from the positive class only, the rest of the documents cannot be taken as documents from the
negative class. This states a PU (Positive vs Unlabeled) -learning problem, where the labeled
dataset contains documents from the positive class only.

Assuming that the target domain is sufficiently specific, we can assume that the classification
problem is unbalanced, and the prevalence of the positive class is small. Therefore, although the
unlabeled dataset is a mixture of the positive and negative class distributions, the weight of the
positive part in the mixture is small, and the marginal distribution approximates the negative
class distribution.

Thus, in a preliminary step, a binary classification is trained taking the documents in the
unlabeled dataset as from the negative class.

The PU classifier is based on the addition of an additional output layer to a transformer model:
documents are embedded into a vector space using BERT transformers [Devlin, 2018], and a
logistic regression model is adjusted using the embeddings as inputs (see Figure 4). More
complex models have been considered, but a single-layer model seems more adequate, due to
the high dimensionality of the embedding (typically, 768 dimensions) and the number of clean
labels, which can be expected to be small.

Supervised
classification
model

Doc BERT / SB.ERT
7 Embedding

Figure 3: Pre-classification system. Documents are mapped to a vector space using a
(pretrained) BERT transformer model. A single-layer classifier is added to the last layer of the
embedding model. The preliminary labels obtained from the document selection process are

used to pre-train the model through a supervised learning mechanism.

13

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

3.5. Active learning

The active learning module selects a pre-defined number of documents at random and shows
them to the expert user for labeling. The sample of documents can be taken at random, but this
is not usually a good choice for several reasons:

1. |If the target domain is a minority class, random sampling will provide documents from
the majority class with higher probability.

2. The user is mainly interested in documents from the target domain and, thus, the
sample should contain most documents from the target domain. By showing most
documents from the target domain, the annotation process can be integrated in a more
transparent way into the natural navigation of the user through the documents in the
domain.

3. From the point of view of the efficiency of the active learning process, the selection of
documents must depend on the scores of the classifier. During the initial learning
rounds, the quality of the classifier model is unknown and, thus, testing the validity of
the classification of documents with the highest or the lowest scores (which correspond
to documents classified into the positive or the negative class, respectively, with the
highest confidence values) should be prioritized. In later annotation rounds, other
documents with lower classification confidence will be more useful for model
refinement.

Given the above considerations, an active learning algorithm has been implemented that takes
as input the scores of all documents that have not been annotated before, and proceeds as
follows:

1. Documents are sorted from highest to lowest score.
Select M+ documents (without replacement), taking n-th document with probability
proportional to q".

3. Select M. documents (without replacement) from the positive class, taking n-th
document with probability proportional to (1-g)".

Parameters M+ and M. control the number of samples taken from the highest and the lowest
scores, respectively. Typically, M+ > M., in such a way that the annotator will likely receive more
samples from the target domain for annotation. Parameter g € [0, /] controls the randomness
of the document selection, ranging from q =0 (purely random sampling) to g =1
(deterministic sampling, taking the top M+ scores and the bottom M. scores).

3.6. Mixed label learning

The clean labels provided by the user must be combined with the PU labels (i.e. the labels
provided by the document selection system) in order to fine-tune the classifier model. Since the
number of clean labels after a few user interactions will be, in general, a small fraction of the
total number of PU labels, the mixed label learning module retrains the classifier module in

14

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

Figure 4 using a sample weighting mechanism. The weight assigned to the clean labels is a
configurable parameter of the application.

4. SOFTWARE

4.1. Software architecture

The software package can be downloaded from the IntelComp repository in GitHub®. It contains
all software modules and its documentation. The documentation has been generated using
Sphinx in ReadTheDocs format and it has been published in the GitHub page?. Fig. 4 shows a
snapshot of the main page of the documentation, and the page describing one of the main
classes.

domain_classification_doc

domain_classification_doc

» Domain Classifier Docs View page source # » Preprocessor View page source
- : Preprocessor
Domain Classifier Docs P
class

Contents:

src.domain_classifier.prepracessor. CorpusDFProcessoridf corpus,
path2embeddings=None, path2zeroshot=None]
« Menu Navigator Bases: object

A container of corpus processing methods. It assumes that a corpus is
given by a dataframe of documents,

« Base Task Manager

« Task Manager
Each dataframe must contain three columns: id: document identifiers

title: document titles description: body of the document text

« Data Manager

__init_{df corpus

« Query Manager

Initializes a prepracessor object
+ Classifier

Parameters: » df_corpus [pandas.dataFrame) - Input corpus.
+ pathZembeddings (str or pathib.Path or None,
optional (default=None)) - Path to the folder
containing the document embeddings. If
Nane, no embeddings will be used. Document

« Custom Madel
« Preprocessor

* Main Window
scores will be based in word counts

» path2zeroshot (str or pathlib.Path or None,
optional (default=None]} - Path to the folder
containing the pretrained zero-shot model If
None, zero-shot classification will not be
available.

Ourtput + Analyze Keywords Window

Uil « Constants

sl « Get Keywords Window

* Get Topics List Window

* Messages __weakref_

list of weak references to the object (if defined)
« Qutput Wrapper

« Util compute_keyword_stats{keywords, wi=2)

« Worker Signals Computes keyword statistics

Parameters: * corpus (dataframe) - Dataframe of corpus.

» Worker + keywords (list of str] - List of keywords

Retums:
i « df_stats (dict) - Dictionary of document

frequencies per keyword df stats[K] is the
number of docs contalning keyward k

+ kf_stats (dict) - Dictionary of keyword
frequencies df_stats[k] is the number of times
keyword k appers in the corpus

+ wit {float, optional (defoult=2)) - Weighting
factor for the title components, Keyword
matches with title words are weighted by this

Indices and tables
+ Index
= Module Index

« Search Page

Next ©

Figure 4: Snapshots of the software documentation. (Left): Main page. (Right) Sample page
of the documentation of one of the main classes.

L https://github.com/IntelCompH2020/domain _classification
2 https://intelcomph2020.github.io/domain_classification/index.html

15

https://github.com/IntelCompH2020/domain_classification
https://intelcomph2020.github.io/domain_classification/index.html

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

The main components of the folder structure in the software repository are:

e docs/: Documentation folder.

e src/: The python software package. Contains all classes and methods.

e Main scripts: two executable python scripts that can be used to test all software
modules through a terminal/command window (main_domain_classifier.py) or through
a PyQT5 GUI (main_gui.py).

The classes and methods in folder src/ are structured in several modules:

e domain_classifier/: It contains the main classes in charge of text processing and
classification. These are the classes that should be integrated in the IntelComp platform.
The diagram of these classes is shown in Figure 5. It contains the following classes:

O CorpusProcessor: contains all methods related to the document selection
process
O CorpusDFProcessor: extends CorpusProcessor methods to process data from
Pandas dataframes.
o CorpusClassifier: contains all methods related to the pre-classification, active
learning, and retraining using machine learning models.
o Finally, four custom classes have been used, that are adaptations of the code
for Roberta transformer model for sentence-level classification tasks
m CustomEncoderLayer: Custom encoder layer of transformer for
classification
CustomModel.
CustomClassificationHead .
CustomDataset:

16

D3.3 System for Subcorpus Generation

intelcomp

CorpusDFProcessor

df_corpus

pathZembedding : NoneType

path2embeddings : Path

path2zeroshot : NoneType. Path

prep

compute_keyword_stats(keywords, wt)
filter_by_keywords(keywords, wt, n_max, s_min)
filter_by_topics(T, doc_ids, topic_weights, n_max, s_min)
filter_by_zeroshot(keyword, n_max, s_min)
gel_lop_scores(scores, n_max, s_min)
make_PU_dataset(df_labels)
make_pos_labels_df(ids)
remove_does_from_topics(T, df_metadata, col_id)
score_by_keyword_count(keywords, wt)
score_by_keywords(keywords, wt)
score_by_topics(T, doc_ids, topic_weights)
score_by_zeroshot(keyword)

CorpusClassifier
config : NoneType, RobertaConfig
device CorpusProcessor
df_dataset

path2embedding : NoneType
path2embeddings : Path
path2zeroshot : NoneType, Path

model : NoneType
path2transformers : Path

AL _sample(n_samples)

annotate(idx, labels, col)

eval_model(tag_score)

load_model()

load_model_config()

retrain_model()

train_model(epochs, evaluate)

train_test_split{max_imbalance, nmax, train_size, random_state)

compute_keyword_stats(corpus, keywords)
get_top_scores(scores, n_max, s_min)
score_docs_by_keyword_count(corpus, keywords)
score_docs_by_keywords(corpus, keywords)
score_docs_by_zeroshot(corpus, keyword)

| P |

CustomModel

classifier

- classifier_dropout : float

config

T embeddings : RobertaEmbeddings
encoderTransform

hidden_act : str
hidden_dropout_prob : float
hidden_size : int

_| intermediate_size : int
layer_norm_eps : float
num_attention_heads : int

) num_hidden_layers : int
path_model

tokenizer : NoneType, RobertaTokenizerFast

create_data_loader(df, batch_size)
eval_model(df eval. device)
forward(features, mask)
freeze_encoder_layer()
load(load_path: Path)
load_embeddings()

_ load_tokenizer()

save(save_path: Path)
train_model(df_train, device)
unfreeze_encoder_layer()

:ncoderTransform

CustomClassificationHead

CustomEncoderLayer

classifier_dropout : float
dense : Linear

dropout : Dropout
hidden_dropout_prob : float
hidden_size : int
num_labels : int

out_proj : Linear

hidden_act : str

hidden_size : int

intermediate_size : int

layer_norm_eps : float

norm_layer : LayerNorm
num_attention_heads : int
num_hidden_layers : int
transformer_encoder : TransformerEncoder

CustomDataset

id : NoneType

labels : NoneType
sample_weight : NoneType
text : NoneType

forward(features)

forward(features , mask)

Figure 5: Diagram of classes related to text processing and classification.

17

D3.3 System for Subcorpus Generation

intelcomp

® menu_navigator/: Contains class MenuNavigator, which reads and interprets the menu
structure (defined in a configuration file) that will be used by the main scripts. See Figure
6.

MenuNavigator
path?menu
paths2data : NoneType
m
clear()

front_page(title)

navigate(option, active_options)

query_options(options, active_options, msg, zero_option)
request_confirmation(msg)

Figure 6: Attributes and methods of MenuNavigator class.

e graphical_user_interface/: contains all classes and methods related to the GUI. See
Figure 7

MainWindow

analyze_keywords_window
amimation
class_max_imbalance : int
cla: _imbalance_dft

corpus_selected_name : str
get_keywords_window
get_label_option : int

get_labels_radio_buttons
set_topics_list_window

1dx_docs_to_annotate : NoneType n_max : int T Nm?t'!' PL?
labels_docs_to_annotate : list n max_default df_metadata : NoneType
labels_does_to_annotate_dict : dict - - n_max : int

g Tl - Analy zeKeywordsWindow s_min : float -

labels_loaded : NoneType, str

GetKeywords Window

GetTopicsListWindow

n_max_default

Constants

BUTTONS_SCALE : float
LONG_TIME_SHOW_SB : int

s_min_default
selectedKeywords : NoneType
selectedTag : NoneType, str
tm

canvas : FigureCanvasQTAgg
: FigureCanvasQTAgg
NoneType

s_min : float
s_min_default
selectedTag : NoneType, str

figurel : NoneType MAX_N_DOCS : int L tm
resuli_evaluation_pu_model : NoneType um READ_LAST_LOGS : int wt: int tw : diet, NoneType
result_reevaluation_pu_model : NoneType UNUSED : inf_ wi
selected_does_to_annotate : NoneType center() center() center() o
:i:':ffr"m“ ?’;’\i‘ﬁ:‘;’“"“ clicked_select_keywords() f:‘:{‘ﬁ:’f“‘f“’p“f"“o
stdout init_params() init_params()
thread_pool init_uiQy show, topics()
™ show_suggested_keywords() ‘u date Arams()
widget update_params() peite_p:)

append_text_evaluate(text)
append_text_retrain_reval(text)
append_text_train(text)

center(
clicked_change_predicted_classicheckbox)
icked_evaluate_PU_model()
icked_get_labels()
icked_get_labels_option()
clicked_give_feedback()
clicked_load_corpus()
clicked_load_labels()
clicked_reevaluate_model()
clicked_reset_labels()
clicked_retrain_model()
clicked_train_PU_model()
clicked_update_ndocs_al()
do_after_evaluate_pu_model()
do_after_give_feedback()
do_after_import_labels()
do_after_load_corpus()
do_after_reevaluate_model()
do_after_retrain_model()
do_after_train_classifier()
execute_evaluate_pu_model()
execute, e_feedback()
execute_import_labels()
execute_load_corpus()
execute_reevaluate_model()
execute_retrain_model()
execute_train_classifier()
init_feedback_elements()
init_ndocs_al()
init_params_train_pu_model()
init_ui()
resel_params_train_pu_model()
show_corpora()

show_labels()
show_sampled_docs_for_labeling()
update_params_train_pu_model()

Figure 7: Classes, attributes and methods for the GUI

Messages

DC_MESSAGE : sir

INFO_ACTIVE_KEYWORDS : str

INFO_SELECT_CORPUS : str

NO_TAG_SELECTED : str
NO_TOPIC_LIST_SELECTED : str
WARNING_EVALUATION : s
WARNING_REEVALUATION : str
WARNING_RETRAINING : str
WARNING_TRAINING : str
WINDOW _TITLE : str

INFO_LOAD_RESET_LABELS : str
INFO_NO_ACTIVE_KEYWORDS :

NO_KEYWORDS_SELECTED : str

INCORRECT _INPUT_PARAM_SELECTION : sir
INCORRECT_NO_CORPUS_SELECTED : str
INCORRECT_NO_LABEL_OPTION_SELECTED : str

str

updated_topic_weighted_list()

OutputWrapper

outputWritten

write(text)

18

Worker WorkerSignals
args : tuple ermor
Iné- P finished
kwargs : dict | | PrOBIess
s 'nal; ' result

& started
run()

D3.3 System for Subcorpus Generation

intelcomp

e utils/: contains some useful auxiliary methods.
e Control and 1/0 classes: in charge of read/write operations, user interaction and task
execution, organized in different files:

o TaskManager. A class inherited from BaseTaskManager. It is in charge of
creating the objects and calling the methods required to carry out all of the
processing tasks. There are two subclasses inherited from it: TaskManagerCMD
(which includes methods required for user interaction through a terminal
window) and TaskManagerGUI (which includes methods required for user
interaction through the GUI.

o DataManager. Contains all read/write methods. It provides support to the task
managers to read the corpus data (texts and labels) and write the results. This
is a provisional method that can be used to test the software using a particular
test datasets. It should be replaced by the appropriate class to carry out all read
and write operations according to the IntelComp data structure in the
integration phase of the project.

O QueryManager: Contains all methods required to interact with the user through
a terminal window.

TaskManager DataManager

CorpusProc : NoneType
DM

class_name : str, NoneType
dc : NoneType

df_corpus : NoneType
df_labels : NoneType
f_struct : dict

global_parameters : NoneType
keywords : NoneType

logger : NoneType

metad NoneType

model_outputs : NoneType
path2config : NoneType
path2corpus : NoneType
path2dataset
path2embeddings
path2labels

path2metadata : NoneType
path2models

path2project : NoneType
path2source : NoneType
path2zeroshot : NoneType
ready2setup : NoneType
result : NoneType

set_logs : NoneType

state : NoneType

analyze_keywords(wt)
evaluate_PUmodel()
get_feedback()

get_labels_from_docs(n_docs)
import_labels()

load()
load_corpus(corpus_name)
load_labels(class_name)
reevaluate_model()
reset_labels(labelset)
retrain_model()

get_labels_by_keywords(wt, n_max, s_min, tag)
bels_by_topics(topic_weights, T, df_metadata, n_max, s_min, tag)
bels_by_zeroshot(n_max, s_min, tag)

train_PUmodel(max_imbalance, nmax)

i

TaskManagerCMD

|

TaskManagerGUI

oM

keywords : str

keywords

analyze_keywords()
get_labels_by_keywords()
get_labels_by_topics()
get_labels_by_zeroshot()
get_labels_from_docs(selected_docs)

get_feedback(idx, labels)
get_labels_by_keywords(keywords, _tag)
get_suggested_keywords()
get_topic_words(n_max, s_min)
train_PUmodel(max_imabalance, nmax)

train_PUmodel()

Figure 8: Classes, attributes and methods for the task and data and user query management

19

corpus_name : sir
path2corpus : NoneType
path2datasets : Path
path2embeddings : Path
path2labels : Path
path2models : Path
path2source : Path

gel_corpus_list()
gel_dataset_list()
get_keywords_list()
gel_labelset_list()
gel_model_list()
import_labels(ids_corpus, tag)
load_corpus(corpus_name)
load_dataset(tag)
load_labels(tag)

load_topics()

resel_labels(tag)
save_dataset(df_dataset, tag, save_csv)
save_labels(df_labels, tag)

QueryManager

ask_keywords(kw_library)
ask_label()

ask_label_tag()

ask_labels()

ask_topics(topic_words)
ask_value(query, convert_to, default)
confirm()

intelcomp

D3.3 System for Subcorpus Generation

4.2. Software requirements

4.2.1. Python packages requirements

The main libraries required to run the python application are listed below. The table also shows

the library versions integrated in the latest code version.

Table 1: Python package requirements.

matplotlib 334
numpy 1.20.1
pandas 1.2.4
PyQT5 5.15.4
PyYAML 6.0
scikit_learn 1.0.1
scipy 1.6.2
simpletransformers | 0.63.3
openpyxl 3.0.9
torch 1.10.2
torchaudio 0.10.2
torchvision 0.11.3

4.2.2. Data source requirements

All the corpora that can be utilized as a training corpus for the Domain classifier, together with

its associated keywords, labels, topic models and other additional metadata, must be provided

within a folder as one of the application’s inputs. With this purpose, such a folder must be

composed by one subfolder per corpus, each of them being organized into all or some of the

following directories:

1. corpus: A directory containing the actual corpora and additional data related to them.

2. labels: Directory containing the xlsx files which are composed of the IDs associated with

the documents that have been manually classified and that will be utilized for supervised

training. These labels define the category “imported”, i.e., the category acquired

through the importing of labels from a source file.

3. lemmatized_corpus: Directory holding the files which contain each of the lemmatized

corpora that are included in the corpus folder. For the time being, this folder is not

utilized, but it may be useful for a later deployment.

20

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

4. queries: Directory containing the files with the keywords that are going to be used as
suggestion for the selection of a subcorpus based on keywords.

5. topic_model: Directory containing the representation of the topic models that will be
used for the selection of a subcorpus based on a topic selection function.

6. zips: Original compressed files. They are not used in the application.

These folders are relevant when using this software as a standalone application. During the
integration phase, when the software will be embedded in the Interactive Model Trainer tool, it
will be necessary to reconsider this folder structure in the context of such application.

4.3. Execution commands

For the user to start any version of the application, the following command needs to be
executed:

$ python main_script
--p project folder
--source datasets folder

——zeroshot zero_shot folder
where:

- main_script refers to the script that relates to the version of the application to be
executed. Use
- main_domain_classifier.py for the command line application,
- main_gui.py, for the GUI.
- project_folder is the path to a new or an existing project in which the application’s
output will be saved.
- datasets_folder is the path to the source data folder.
- zero_shot_folder is the path to a folder containing a pre-trained zero-shot model
utilized for the selection of a subcorpus from a category name.

Note that for the case of the graphical user interface, the application can also be invoked without
parameters, being possible to select them from the application’s front page as follows:

$ python main gui.py

This command will open the start-up page from the GUI that is shown in Figure 9.

21

H e
h I ntel co m p D3.3 System for Subcorpus Generation

A binary domain classifier based on positive labels and an active learning algorithm.

../project_folder| Select project folder
../datasets Select source data folder
../zero_shot_model/Sciro-Shot Select zero-shot model

START

Figure 9: Graphical user interface start-up page.

If the application is invoked with parameters, the project folder, dataset folder and zero-shot
model paths are written on their respective text boxes (i.e. white spaces located at the left of
each selection button), as shown in Figure 9, being then possible to change the selection by
clicking on their respective associated button. In case the application is invoked without
parameters, the text boxes are shown empty, but the selection is approached in the same way,
as it can be seen in Figure 10. In each of the three cases, the user’s file system is popped-up so
it is possible to easily search for the project/dataset/zero-shot folder.

For the case of the command-line application, its main menu is shown immediately after the
invocation of the execution command. As for the graphical user interface, the user must first
click on the “Start” button in order to proceed to the application’s main window.

4.4. Project folder structure

If the project_folder does not exist, the application creates it, along with the file and folder
structure required to store the output files: the default structure consists of the following:

e datasets/: It will store a csv file for each dataset used by the application with the
selected corpus. Each csv file will contain all information that is relevant for the
processing, classification, labeling or evaluation of the classifier models.

® embeddings/: Contains the transformer-based embeddings of the selected documents
from the corpus.

e labels/: For each target category, a file containing the documents preclassified by the
document selection subsystem. The data from these files will be integrated into the
dataset files after training.

22

intelcomp

D3.3 System for Subcorpus Generation

o models/: it will contain one output subfolder per target category. Each subfolder will

contain the updated classifier model.

- Favorites

< M~ &~ = datasets Q
3 Googl... =
Ll 7 backup o> = AEI_projects
@ Recents [ClusterGPU o> = EU_projects @5
A Applicati... code_asen o>
5 | [D3.3backup o>
Google D...
:
System
© Downloads 7 domain_classification @ >
G jcid 77 domain_cl...tion copy @ >
2 figs °>
iCloud
A bina & iCloud Dri...
ry New Folder cancel IR
[= Desktop

../project_folder

)

../datasets Select source data folder

../zero_shot_model/Sciro-Shot Select zero-shot model

START

Figure 10: Graphical user interface start-up page with file system open after the clicking
of the “Select source data folder” button.

e output/: other output file (not used)
metadata.yaml: a file with metadata that stores the status of the project and some
metadata related to each of the target categories.
msgs.log: log file of the latest code execution with this project.
parameters.yaml: the configuration file of the project.

These folders are relevant when using this software as a standalone application. During the
integration phase, when the software will be embedded in the Interactive Model Trainer tool, it
will be necessary to reconsider this folder structure in the context of such application.

4.4.1. Configuration file

The first time the application is run, a copy of the configuration file is stored in the project folder
with name parameters.yaml. The list of parameters, its function, and the default values used for
application testing are shown in Annex A.

4.5. Application structure

The functionalities of both application’s versions are equivalent, the only difference between
them being the way in which the information is presented to and input is taken from the user.

23

H e
h l ntel co m p D3.3 System for Subcorpus Generation

4.5.1. Command line application

The application version is based on a menu, as shown in Figure 11. The user can navigate through

the application by writing the number associated with each functionality. When necessary, the

application will request input from the user.

e e e
*%x% MAIN MENLU.
Available options:

1.

2.
3.
4.
5.
6.
7.
8.
.

Activate configuration file

Load corpus (to be done only once. Corpus cannot be changed)
Select a preliminary subcorpus from the positive class

Load labels

Reset lahels

PU learning

Get relevance feedbhack from user

Update the classifier model with the latest relevance feedback
Exit the application

What would you like to do? [0-8]: I

Figure 11: Command-line application.

4.5.2. Graphical user interface

The GUI main window is composed of three main views, as depicted in Figures 12, 13 and 14. In

all of them, we can find informative tooltip buttons orienting the user through the actions to be

carried out at each view.

4.5.2.1. View for the corpus selection, the target domain specification, or the selection

of a subset of labels to be used for the training of a PU model.

The top part of this view refers to the corpus selected for the current working project.

Note that once a corpus has been selected for a project folder, such a corpus will be

shown directly as selected corpus in posterior executions of the application, and it will

not be possible to modify it. Therefore, to run the application with several corpora, the

application must be called once per corpus, specifying a different project folder.

The bottom part is divided into two subsections. The left one allows the user to select

one out of the four different available alternatives for the classification of documents,

thus defining a new category, which is immediately depicted on the bottom right box

once the pre-classification has been completed. From such a box the user can select

which is the category to be used for the training of a new PU model in the next view.

24

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

@ ® " Domain Classification

Select the corpus that you want to load:

AE|_projects
EU_projects

Load corpus

Corpus selected: EU_projects

Select an option to load a p y from the itive class: Load / reset labels

bio
Import labels from a source file ai_kwds

deep_learning_zs
Get subcorpus from a given list of keywords Alimported

Analyze the presence of selected keywords in the corpus

Get subcorpus from a topic selection function CadRien TRt

Get subcorpus from a category name
i Get labels Labels loaded

Figure 12: Graphical user interface main window - Load corpus / labels view

Regarding the different alternatives for the selection of a preliminary subcorpus from
the positive class, except for the importing of labels from a source file, a pop-up window
appears at the time the user clicks on the corresponding radio button. In all cases, after
the selection of one of the options, and when it applies, the specification of the inputs
asked in each case, the user must click the “Get labels” button for the pre-classification
to start.

a. Keywords based selection subwindow.

On the top, a list of suggested keywords is shown, from which the user can
select which one he wants to use for the selection of documents by writing them
on the middle white box.

By default, the selection based on the cosine distance between transformer
embeddings (see Sec. 3.3) is applied, but the keyword count similarity metric is
available through the configuration file... In addition, the user can decide which
tag is to be used for the naming of the category to which the documents to be
selected belong and can configure the three parameters that intervene in the
keywords-based selection, namely:

- wt: Weight of the title. A word in the title (if available) is equivalent to
the wt repetitions of the word in the description. This is used by the
keyword count measure only.

25

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

- n_max: Maximum number of elements in the output list.
- s_min: Minimum score. Only elements strictly above s _min are
selected.

Domain Classification

artificial neural network,deep belief net,deep belief network,deep decision tree fisher kernel,grassmann kernel,linear-time kernel,nonparametric
kernel,text processing,bagging, belief network,data clustering,decision lree,ensemble Iearmng ensembIe method,kernel method, pattern recognitio
regression tree,abductive logic programming,active learning,adab b ian samplir d classification,
adaptive clustering,adaptive gradient method,adaptive neuro fuzzy inference system,adaptive spectral regularization algorithm,adversarial net,
adversarial network,artificial intelli 1tion model, ional pooling,author profiling,at |coder theory, reasoning,
automatic summarizatior ic tr {{ car,autonomous robot,back pi ion,bayes net,bayesian decisio
theory,bayesian dyadic tree bayesian i model |, bayesian hierarchical model,bayesmn learning,b network,b ian neural
architecture bayesian nonparametric model, g ing, belief , belief- desnre intention software model, biomedical
text processing,boltzmann machine,brain computer |nterface,case based reasoning, based reasoning, chatbot, itive architecture,cogniti

i rnllahnratlve filtering, i learning theory,computational Iexu:ography,computatlonal linguistics,

{ ional ics, tational vision, aided learnii aided tr ion,comput

vision,conditional neural field,conditional random field,conditional random sampling, continuous dueling bandit,continuous-time diffusion network,
conversation agent,convolutional kernel network,convolutional network, ision support system,decision theory,declarative programming,

il Y and par

2 2000 1

Select keywords

Figure 13: GUI main window - Keywords based selection

b. Topic based selection subwindow.

The top tables shown in this view are interrelated, that is, while the right one is
unmodifiable and shows the id and chemical description of each of the topics
associated with the topic model provided for the selected corpus, the left table
is editable, and its purpose is the insertion by the user of the weights to be
assigned to each of the topics for topic based selection of documents.

As in the keywords-based selection, the user can specify here the tag to be used
for the naming of the category associated with the topic-based selection and
configure the parameters in it implied, namely:

- n_max: Maximum number of elements in the output list.
- s_min: Minimum score. Only elements strictly above s_min are
selected.

26

H e
h I ntel co m p D3.3 System for Subcorpus Generation

Domain Classification

Insert weights for each topic
O T
0 T market, SME, product, building, i
1 [1 service, daty i bility,...
2 I 2 geneprotein,cellgenome DNA, genetic, rna. mutatio.
3 | 3 theor algorithm e
\ 4 quamum,lmr physics, detector,beam, optical,electron,galaxy,photon, particle,spin, ...
5 policy,EU, rvice joint,funding, ..
6 political,cultural, migrant, discourse, historical,conflict,language, migration, heritage,...
Z skill, d science,academi mobility,european, lecture,young,
8 protein, ptide ligand,
9 device, i h ilicon, surface, 1 d

-
o

brain,neuron,neuronal,neural, mouse, cognitive, synaptic,memory,cortical, visual, sensory,
mouse,cell,tumor, cancer,gene, disease t_cell, therapeutic,receptor, protein, patient, tiss...
policy,EU,social,stakehold: A e i firm.i :

e E
R =

. Get labels by topics parameters

0 S N (5]t 1722224
2000
Tag: Topms

Select weighted topic list

e
Figure 14: Graphical user interface main window - Topic based selection

c. Domain name selection subwindow.

Like the keywords-based selection, the user can insert here the keywords to be
used for domain name selection, with the only difference that in this case no
suggested list of keywords is provided.

Again, both a tag to name the category and parameters configuration is
permitted, the parameters being in this case:

- n_max: Maximum number of documents to be selected.
- s_min: Minimum score. Only elements strictly above s_min are
selected.

27

H e
h I ntel co m p D3.3 System for Subcorpus Generation

Domain Classification

o Selected keywords to use for the zero-shot model and parameters configuration:

2000 0.6

0 Tag:

Select labels from zero shot

Figure 15: Graphical user interface main window - Domain name selection

In addition, there exists a fourth pop-up window, in which the user can analyze
the presence of the selected keywords in the corpus. In case the user has not
selected keywords (i.e. the keywords based selection has not been carried out),
the application forces the user to select first such keywords by displaying the
keywords based selection window.

Figure 16: Some keyword statistics

During the time the pre-classification is being performed, a loading bar is shown
in the middle of the view. Once any of the actions carried in this view are
completed, a pop-up window message is displayed informing the user about the
completion of the task and showing some additional information. Up to this
point, the GUI accepts further user selections.

28

o . e
| - I ntel co m p D3.3 System for Subcorpus Generation

4.5.2.2. View for the training and evaluation of a PU model for the selected category.

From this view, the user can train and evaluate a PU model for the set of documents
from the positive class associated with the target category selected in the previous view
by clicking the “Train PU model” button. While the model is being trained both a loading
bar and the logs associated with the training are shown to the user.

Once the model has been trained, a pop-up window informs the user about the training
completion, immediately after which the user can continue with its evaluation by
clicking the “Evaluate PU model” button. Again, a loading bar and the logs associated
with the evaluation are displayed while it is being performed and once completed its
results are displayed on the bottom right table of the view.

The parameters related with the classifier can be modified by means of the top left table,
these parameters being:

- max_imbalance: Maximum ratio of negative vs positive samples in the training

set.
- nmax: Maximum number of documents in the training set.

The values shown are the default parameters; by inserting a new value and clicking the
“Update parameters” button, the parameters are updated; they can also be restored to
their default value by clicking the “Reset parameters” button.

m Classifier parameters Trai model with

Train PU model
e e —
Epochs Of1.Running Loss: 0.770% 975 /(N | 29/30 [06:39<00:13,13 65s/it] [A

Egochs O, Auaning Loss: 0.478%: 97% N | 29/30 [06:43<00:13,73.68/1] (A

8 400
Epochs O/t Running Loss: 0.4791; 100% 30/30 [06:53<00:00,13 64s/1t] [A
Epochs . Running Loss: ~ 0.47891; 100%| 30/30 [06:53<00:00,13 77fi]
Epoch 1ot 1 ms;- 1 [06:54<00:00,414.265/1]
Epoch 1 of 1: 100%) 111 [06:54<00:00,414.26s1)
Update parameters ~ Reset parameters WFG' Training of i
Alimported/outputs.
INFO -- - Model trained in 421.96851801872253 seconds.
INFO il with 61011 samples saved in
Evaluate PU classifier model with the available labels (CLASSIFICATION RESULTS
Evaluate PU model
INFO - -- Tosting model with 160 documents... Correlation coefficient between the observed
INFO Converting 1o features started Cache s not used. and predicted binary classifications: it returns
@ value between —1 (total disagreement) and
Ol | OPe0 [00:00<7,7ifs]
T | 1180 [0D:02<07:55, 280s/it] +1 (perfect prediction).
1% 11160 [00:02<07:55, 2.88s/it]
INFO into cached file | Number of true pasitives.

cache_dirjeached_dey_oberta_128_2_2 Number of true negatives.
Number of false positives.
‘Number of false negatives.

Area under
Itis a performance metric for discrimination,as
itinforms about the model's abilitv to discriminate

Running Evaluation: O%] | 0/20 [00:00<2,itjs]
Running Evaluation: 5%l | 120 [00:04<01:25, 4.52s{lt]
Running Evaiuation: 10%(f§ |2/20 (00:08<0%20, 450s/it]

Figure 17: Graphical user interface main window - Train / evaluate PU model view.
At the time the picture was taken, the model was being evaluated.

29

D3.3 System for Subcorpus Generation

intelcomp

4.5.2.3.
the associated PU model based on the user’s feedback.

View for the annotation of documents and the retraining and reevaluation of

This view relates to the active learning loop. The user can select the number of
documents according to which a reduced subset of the documents will be sampled
documents belonging to the previously selected category will be sampled. The title (iv
available), content and predicted class from the resulting documents are displayed
within different boxes, the border of such a box being highlighted by the color that
defines each predicted class (purple when the predicted class is 1, and red when it is 0).
The user can change the category of each of the documents by just checking (predicted
class = 1) or unchecking (predicted class =0) the corresponding checkboxes located
under each of the documents.

Once the user has manually labeled the documents, the user must click the “Give
feedback” button for the feedback process to be completed. Then, the next step is to
retrain and reevaluate the model by clicking the buttons “Retrain model” and
“Reevaluate model”, respectively. Again, a loading bar where the associated logs are
displayed while the former tasks are being performed, pop-up windows are displayed

to notify each task’s completion, and once the reevaluation is completed, the results are
displayed on the bottom-right table.

[Predicted class = 1
Predicted class = 0

Number of documents: 8

Give feedback and update model based on it Resample

ID198939: GNSS/INS Low-cost
Attitude Determination and
navigation system - Phase 2

GLAD-2 is aimed at the

ID194925: Russia's strategic
narrative of the West: A study of
influence in Ukraine

This project investigates the

ID235226: An in vitro 3D
microfiuidic human
NeuroVascular Unit model for
identifying the cell-type-specific

ID98709: The Theatrical
Landscape of Bohemia and
Moravia as a Space of
Negotiating Cultural Identities

V]

1D222803: Migrant
Descendants’ Intercultural
Competence and their
Recognition in the English and

1D233097: A multi-parametric
Regulatory T cell Atlas in cancer
to predict immunotherapy
response, adverse autoimmune

Give feedback Retrain model Reevaluate model

ID187982: Towards Very Large
Scale Human-Robot Synergy

Hazardous work environment for

1D90344: Molecular Mechanism
for Primordial Germ Cell
Specification - The Role of

s

INFO -- -- Model tested in 208.2308406829834 seconds

INFO -- Classification results: {'tp": 1264.0, 'tn": 3236.0, 'fp': 1665.0, 'fn": 335.0, 'precision

‘recall': 0.7904940587867413, 'f1': 0.5709123757899629, 'accuracy': 0.703125}
INFO --

- tp: 1264.0
tn: 3236.0
: 1565.0
335.0

INFO --

== == recall: 0.7904940587867413
- == f1: 0.6709123757899629

..................

precision: 0.44680098974902777

Blimp1
humans, growing necessity for an
RECLASSIFICATION RESULTS
Number of true positives.
Number of true negatives. 1565.0
Number of false positives. 335.0
Number of false negatives. 0.4468009897490277,
Area under the receiver operating characteristic.
Itis ap metric for as
it informs about the model's ability to discriminate 0.7904940587867413

cases positive and negative

between examples.
Tha waret 81RO ie N & and tha hact AIIROC ie 10

Figure 18: Graphical user interface main window - Annotation, retraining and

reevaluation view. At the time the picture was taken, the model was being re-

evaluated.

30

intelcomp

4.6.

4.6.1.

Dataset and metadata files

Datasets

The dataset files are stored files stored in datasets/ folder. Each dataset will contain all relevant

information for the subcorpus used for classification, organized in the following columns:

Information about the input documents:
o Id: document identifier
O Text: text of the source documents. Typically, it is a string joining title and
abstract from the original documents
Information about labels:
o PUlabels: Labels returned by the selection model
o labels: last set of labels used by the learning models.
O annotations: manual labels introduced by users through the annotation tool
o date: date of each annotation
O learned: aflag that shows if the label has been already used to update the model
(1) or not (0).
Information from the classifiers:
O train_test: shows if the document has been used for training (1), test (0) or not
used (-99).
PUscore_0: score of the PU learning model for class 0.
PUscore_1: score of the PU learning model for class 1.
PNscore_0: score of the retrained model for class 0.
PNscore_1: score of the retrained model for class 1.
prediction: class prediction of the last model

O O O 0O 0O ©O

prob_pred: probabilistic prediction of the las model

A screenshot of the information in a dataset is shown in Fig. 19

id text PUlabels labels train_test PUscore_0 PUscore_1 prediction prob_pred annotations learned date PNscore_O PNscore_1
213608 Switcretie Sciasiyes. fon the 0 0 1 1821679 -2338257 1 0520913) 1 121052022 4 147483 -0.027688
robotics and hand.. 12:15:19
228560,)/ Pd ssvear;for diabetss dataction 0 0 1 -0192282 -0.016605 0 0290726 1 1 12/05/2022 4 508891 -0.592871
from exha... 12:17:05
Development of New 12/05/2022

228418 NBGBEhog) St et et 1 0 0 1 1698624 -2.198453 0 0021730 1 1 Tonsqg 1677105 2220988

229535 Etomeackcal Appiications of 0 0 1 -1600493 1911030 0 0131522 1 1 12052022 4 763766 -1123803
Radioactive ion Bea... 11:39:28

gsgosp: Sustwinable:50 denlovnt model 0 0 1 0859335 -1178330 0 0278345 o 1 12/05/2022 347598 -0.605086
for future mob... 12:18:08

225301 'he Political Economy of Distraction 0 0 1 -0132900 -0.060855 0 0066998 0 1 12/05/2022 4 591897 1541851
in Digiti... 12:12:56

216054 Bevelopment, and use ol an 1 1 1 0817406 -1113570 0 0462302 1 1 12052022 119912 -0.170991
integrated in silico.. 12:15:19

244606 RS G ananC e on [} 0 1 1081993 -1.488831 0 0140135 1 1 12/05/2022 4 730101 -1.084071
implant for... 12:18:08

Novel magnetic nanostructures for B 12/05/2022
207067 sl 1 1 1 -1630336 1948116 1 0657142 1 1 nog -0-372409 0278176

Figure 19: A dataset dataframe for domain “biomedicine” specified by the user
through a zero-shot classifier. It encompasses information about the source
documents, the labels obtained by the zero-shot classifier, data and metadata from
human annotations and information from the classifiers.

31

D3.3 System for Subcorpus Generation

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

4.6.2. Metadata file

The metadata file in project_folder/metadata.yaml records hierarchically structured
information about the project status. It is also a record of the main task carried out for the
current project, and the parameters used in the process. For instance, it registers information
about the method and parameters used to obtain a specific set of labels. At the top level of the
tree, the following entries can be found:

e corpus_name: |dentifier of the corpus used by the current project.

e state:

o configReady: true if the configuration file (parameters.yaml) has been loaded

o isProject: true if the input project_folder has the required folder structure

o selected_corpus: true if a corpus has been selected by the user

o trained_model: true if at least one document selection has been done, so that
a set of labels is available for the supervised classification algorithms.

e keyword_based_label_parameters: a dictionary containing the parameters used during
each execution of the keyword based selection mechanism. It contains one tree per
keyword, with the following schema

O tag: name assigned to the keyword set.
m List of keywords
m List of parameters used by the document selector.

e zeroshot_parameters: a dictionary containing the parameters used during each
execution of the zero-shot classifier. It contains one tree per keyword, with the
following schema

O tag: name assigned to the keyword set.
m List of keywords
m List of parameters used by the zero-shot classifier

e topic_based_label_parameters: a dictionary containing the parameters used during
each execution of the zero-shot classifier. It contains one tree per keyword, with the
following schema

O tag: name assigned to the keyword set.
m List of keywords
m List of parameters used by the zero-shot classifier

A sample of a metadata file can be shown in Fig. 20.

32

intelcomp

: EU_projects

Kwa

artificial neural network
deep belief net
deep belief network
deep decision tree
bagging
belief network
data clustering
decision tree
1x: 4000
(N H i

rd: biomedicine
: 4000
s 0.1

vord: Vdeeb learning
: 2000
n: 0.1

Figure 20: A sample metadata file. It records information about a project related to
the classification of a corpus related to EU projects. The “states” shows that at least
one model has been trained with this corpus. Also, three domains have been
already specified: one through a list of keywords, and two using the domain name
(“biomedicine” and “deep learning”). The parameter values used for each
document selection are also shown.

5. CONCLUSIONS

We developed a python module for subcorpus generation based on a user-driven
selection of documents based on categories specified through different mechanisms:
zero-shot classification, keywords, or weighted topics. Besides the required text
processing and classification modules, a complete python application has been
developed to facilitate the testing of the software functionality before its final
integration into the IntelComp platform. The application allows user interaction through
a command window or a graphical user interface. As part of the integration process, the
algorithms and models will be tested using data from the Datalake. Also, the usability
of the classification process will be tested based on user experience during the living
labs.

33

D3.3 System for Subcorpus Generation

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

REFERENCES

[Yin, 2019] Yin, W., Hay, J.,, & Roth, D. (2019, November). Benchmarking Zero-shot Text
Classification: Datasets, Evaluation and Entailment Approach. In Procs of the 2019 Conf.e
on Empirical Methods in Natural Language Processing and the 9th Int. Joint Conf. on
Natural Language Processing (EMNLP-IJCNLP) (pp. 3914-3923).

[Vaswani, 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N,, Kaise,
L. & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

[Devlin, 2018] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[Reimers, 2019] Reimers, N., & Gurevych, I. (2019, November). Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Procs of the 2019 Conf. on Empirical
Methods in Natural Language Processing and the 9th Int. Joint Conf. on Natural Language
Processing (EMINLP-IJCNLP) (pp. 3982-3992).

ANNEXES

A. Default Configuration File.

The first time the application is run, a copy of the configuration file is stored in the project folder
with name parameters.yaml. Table 2 shows the list of parameters, their function, and the default
values used for application testing.

Table 2: Default configuration file. Comments explain the meaning of each parameter

Parameters for the dataset selection

dataset:
Source file name
path2source: '../datasets'

Parameter for the keyword-based document selector
keywords:
Weight of the title. A word in the title is equivalent to wt
repetitions of the word in the description.
wt: 2
Maximum number of documents to be selected.
n_max: 2000
Minimum score. Only docs scored strictly above s_min are selected
s min: 1

Parameter for the zero-shot document selector
zeroshot:
Maximum number of documents to be selected.
n_max: 2000

34

o . e
| - I nte I co m p D3.3 System for Subcorpus Generation

Minimum score. Only docs scored strictly above s_min are selected
s min: 0.6

Parameter for the keyword-based document selector
topics:
Selection method: 'embedding' or 'count'
method: 'embedding'
Weight of the title. A word in the title is equivalent to wt
repetitions of the word in the description. (For method='count' only)

wt: 1

Maximum number of documents to be selected.

n_max: 2000

Minimum score. Only docs scored strictly above s min are
selected

s min: 0.2

Name of the SBERT model. Available pretrained models can be
found in https://www.sbert.net/docs/pretrained models.html
model name: all-MinilM-L6-v2

Maximum number of documents to be selected.

n_max: 2000

Minimum score. Only docs scored strictly above s min are selected

s min: 0.6 -

Name of the SBERT model. Available pretrained models can be found in
https://www.sbert.net/docs/pretrained models.html

model name: all-MinilM-L6-v2

Parameters for the classifier
classifier:
Maximum ratio neg vs positive samples in the training set
max_imbalance: 3
Maximum number of documents in the training set.
nmax: 400

Parameters for the active learning (AL)
active_ learning:
Number of docs to show each AL round
n_docs: 5
Sample selection algorithm: 'random' or 'extremes'
sampler: 'extremes'
Ratio of high-score samples. The rest will be low-score
samples. (Used for sampler='extremes' only)
p_ratio: 0.8

(Approximate) probability of selecting the doc with the
highest score in a single sampling. This parameter is used
to control the randomness of the randomness of the
stochastic sampling: if top_prob=1, the highest score
samples are taken deterministically. top_prob=0 is
equivalent to random sampling. (Used for sampler='extremes'
only)
top_prob: 0.1
Specify format for the log outputs
logformat:
filename: msgs. log
datefmt: '$m-%d %H:%M:%S'

file format: '%(asctime)s % (levelname)-8s % (message)s'
file level: INFO

cons_level: DEBUG

cons_format: '$%(levelname)-8s % (message)s'

35

