
Proceedings of the
2022 SIAM International
Meshing Roundtable

22-25 Feb, 2022
Virtual Conference

Proceedings of the 2022 SIAM International

Meshing Roundtable

Trevor Robinson

David Moxey

Vladimir Z. Tomov

2022 SIAM International Meshing Roundtable
Virtual Conference, February 22-25, 2022

Editors:

Trevor Robinson, Queen’s University Belfast
David Moxey, King’s College London
Vladimir Z. Tomov, Lawrence Livermore National Laboratory*

https://internationalmeshingroundtable.com

Cover art adapted from the winning “Meshing Maestro” entry by
Mike Park, Ray Gomez, and Bil Kleb of NASA.
Space Needle model from https://grabcad.com/library/seattle-space-needle-2

*Performed under the auspices of the U.S. Department of Energy under Contract
DE-AC52-07NA27344 (LLNL-PROC-835065)

Copyright c©2022 held by the authors of the individual papers.

Distribution of the material in this volume is permitted under the Creative Com-
mons Attribution 4.0 International License.

ISBN: 978-1-7334890-2-7 DOI: 10.5281/zenodo.6562462

Contents

High-Order Metric Interpolation for Curved R-Adaption by Distortion
Minimization

Guillermo Aparicio-Estrems, Abel Gargallo-Peiró, and Xevi Roca 1

An Efficient Solver to Approximate CAD Curves with Super-Convergent Rates
Julia Docampo-Sánchez, Eloi Ruiz-Gironés, and Xevi Roca 13

Automatic Generation of Load-Balancing-Aware Block-Structured Grids for
Complex Ocean Domains

Daniel Zint, Roberto Grosso, Vadym Aizinger, Sara Faghih-Naini, Sebastian
Kuckuk, and Harald Köstler 25

Local Decomposition of Hexahedral Singular Nodes into Singular Curves
Paul Zhang, Judy (Hsin-Hui) Chiang, Xinyi (Cynthia) Fan,
and Klara Mundilova 37

Incremental Decomposition for Hex-Meshing in CAD Using Virtual Topology
Benoit Lecallard, Trevor T. Robinson, Cecil G. Armstrong, Declan C. Nolan,
and Harsha Ramesh 49

Interactive Visualization of Large and Arbitrary Polygonal and Polyhedral
Meshes with OpenGL 4

Matthieu Maunoury, Rémi Feuillet, and Adrien Loseille 61

P 3 Beźier CAD Surrogates for Anisotropic Mesh Adaptation
Adrien Loseille and Lucien Rochery 74

Bisecting with Optimal Similarity Bound on 3D Unstructured Conformal
Meshes

Guillem Belda-Ferŕın, Eloi Ruiz-Gironés, and Xevi Roca 86

Parallel Four-Dimensional Anisotropic Mesh Adaptation
Philip Claude Caplan 98

Shrink Wrap Mesh Generation Using Morphological Operators with Selected
Applications

Vijai Kumar Suriyababu, Cornelis Vuik, and Matthias Möller 110

Smoothing of Shell Meshes on Faceted B-rep Geometry
Harold J. Fogg and Jonathan E. Makem 130

v

Preface

The papers in this volume were peer-reviewed and selected for presentation
at the SIAM International Meshing Roundtable Workshop (IMR), held Feb 22-25,
2022. The conference was originally planned to take place in Seattle, USA, but was
ultimately run as a virtual conference. This was the first IMR in collaboration with
the Society for Industrial and Applied Mathematics (SIAM).

The International Meshing Roundtable was started by Sandia National Labo-
ratories in 1992 as a small meeting of organizations striving to establish a common
focus for research and development in the field of mesh generation. Now after 30
years, it has become clear that the International Meshing Roundtable has become
the recognized international focal point for state-of-the-art meshing research col-
laboration spanning research and development from universities, commercial com-
panies, and government laboratories.

The SIAM International Meshing Roundtable 2022 consisted of presentations
of peer-reviewed technical papers, research notes, keynote and invited talks, short
course presentations, a poster session and competition, and a meshing contest.
This year we have made the proceedings openly accessible by hosting them on
Zenodo under a Creative Commons license. The Program Committee would like to
express our appreciation to all who participate in making the International Meshing
Roundtable a successful and enriching experience.

The papers in these proceedings present novel contributions that range from
the theoretical to practical. This year, the committee selected 11 papers based on
the input from peer reviewers. Reviewers assesed the papers based on quality, orig-
inality, and appropriateness to the theme of the International Meshing Roundtable.
We would like to thank all who submitted and participated in the IMR. We also
extend our appreciation to the colleagues who provided reviews of the submitted
papers. Their efforts were essential to the process of selecting papers for the IMR.
The names of the reviewers are acknowledged in the following pages.

We thank Siemens for providing the Microsoft Teams platform that was used
to manage the virtual conference, and to our awards sponsors Cadence and Design-
FOIL. We deeply acknowledge the support of the IMR Steering Committee, whose
primary goal is to determine the future directions of the International Meshing
Roundtable. The steering committee members are: Scott Canann (Siemens), Steve
Karman (Oak Ridge National Laboratory), Trevor Robinson (Queen’s University
Belfast), Suzanne Shontz (University of Kansas), and John Verdicchio (Siemens).
We extend special thanks to Kathy Loeppky of Sandia National Laboratories for
her time and effort to make the SIAM IMR 2022 a success.

May 2022,
SIAM IMR 2022 Program Committee

vii

List of Reviewers

David Bommes

Jean Cabello

Marcel Campen

Philip Caplan

Jean-Christophe Cuilliere

Julia Docampo-Sánchez

Daming Feng

Nicola Ferro

Harry Fogg

W. Randolph Franklin

Rao Garimella

Nancy Hitschfeld

Franck Ledoux

Weiyang Lin

Adrien Loseille

Ahmed Mahmoud

Löıc Maréchal

Matthieu Maunoury

David McLaurin

Erik Melin

Scott Mitchell

Ketan Mittal

Walter Nissen

Mike Park

Joaquim Peiró

Alexander Rand

Navamita Ray

Xevi Roca

Sergio Salinas

Robert Schneiders

Suzanne Shontz

Hang Si

Dmitry Sokolov

John Steinbrenner

José Pablo Suárez Rivero

Vijai Kumar Suriyababu

John Verdicchio

Nicholas Vining

Shawn Walker

Rui Wang

Jean-Christophe Weill

Soji Yamakawa

Jessica Zhang

Xiaopeng Zheng

Daniel Zint

ix

Committee Members

Trevor Robinson - Queen’s University Belfast - Committee Chair

David Moxey - King’s College London - Papers Chair

Vladimir Z. Tomov - Lawrence Livermore National Laboratory - Papers Chair

Eloi Ruiz-Gironés - Barcelona Supercomputing Center

Na Lei - Dalian University of Technology

Xianfeng Gu - Stony Brook University

Chaman Singh Verma - Avail MedSystems

Julian Marcon - NASA Ames Research Center

Jonathan Makem - Siemens PLM Software

Carolyn Woeber - Cadence

Braxton Osting - University of Utah

xi

HIGH-ORDER METRIC INTERPOLATION FOR CURVED
R-ADAPTION BY DISTORTION MINIMIZATION

Guillermo Aparicio-Estrems1 Abel Gargallo-Peiró2 Xevi Roca3

1Barcelona Supercomputing Center, 08034 Barcelona, Spain guillermo.aparicio@bsc.es
2Barcelona Supercomputing Center, 08034 Barcelona, Spain abel.gargallo@bsc.es

3Barcelona Supercomputing Center, 08034 Barcelona, Spain xevi.roca@bsc.es

ABSTRACT

We detail how to use Newton’s method for distortion-based curved r-adaption to a discrete high-order metric field. To this end, we
consider three existent ingredients. First, a specific-purpose solver for distortion minimization. Second, a log-Euclidean high-order
metric interpolation. Third, a point localization procedure for curved high-order meshes. We also extend to discrete metric fields
a distortion-based curved r-adaption framework. To extend the framework, we provide, for the log-Euclidean high-order metric
interpolation, the first and second derivatives in physical coordinates. These derivatives are required by Newton’s method to solve
the distortion minimization. The distortion minimization allows properly matching the anisotropic curved features of a discrete
high-order metric. This matching capability might be relevant in global and cavity-based curved (straight-edged) high-order mesh
adaption.

Keywords: Anisotropy, r-adaption, metric interpolation, curved high-order meshes

1. INTRODUCTION

The capability to relocate mesh nodes without changing the
mesh topology, referred to as r-adaptivity, is a key ingredi-
ent in many adaptive PDE-based applications [1–3]. In these
applications, to improve the solution accuracy, an error indi-
cator or estimator determines the target stretching and align-
ment of the mesh. Then, to match these target features, an
r-adaption procedure modifies the whole mesh (global) [4,5]
or a previously remeshed cavity (local) [6–8].

In either case, r-adaptivity contributes to increasing the so-
lution accuracy for a fixed number of degrees of freedom
supported on a straight-edged mesh [3, 4, 6, 9, 10]. However,
straight-edged meshes might not be an efficient support in
many applications. Especially in applications where addi-
tional straight-edged mesh elements are artificially required
to match highly curved solution features [11].

To efficiently match curved features, many practitioners have
recently started to exploit curved high-order meshes. These
meshes can be stretched and aligned in a pointwise vary-
ing fashion through anisotropic procedures [12], geodesic

approaches for curved edges [13, 14], shock-tracking meth-
ods [15–17], and deformation analogies [18, 19]. Alterna-
tively, the curved r-adaption can be driven, as for straight-
edged elements [4, 5], by distortion measures. These mea-
sures are defined point-wise and are aware of either a target
deformation matrix [20] or a target metric [21].

In adaptivity applications, the target deformations and met-
rics are not known a priori. These target fields are recon-
structed a posteriori from the solution on the last mesh.
Specifically, this mesh supports the resulting discrete rep-
resentation of the target field. This discrete representation
is key to interpolate the required field values in the adap-
tive procedure. Hence, to enable high-order adaptivity, we
need the capability to interpolate target fields on a high-order
mesh.

To match a deformation matrix, distortion optimization for
curved r-adaption to a discrete target field is detailed in [20].
The method is really well-suited for simulation-driven r-
adaption [22, 23]. It evaluates the distortion in a physical
point by interpolating the target matrix on a discrete field.
Although the derivatives of the target matrices are not zero,

1

the method assumes they are zero. Moreover, the second
derivatives are also assumed to be zero. Since non-null
derivatives are assumed to be zero although the approach
implements Newton’s method, the curved r-adaption mini-
mization corresponds to a quasi-Newton method.

To match a metric, distortion-based curved r-adaption to an
analytic field can be performed with Newton’s minimiza-
tion [21, 24, 25]. The formulation for an analytic metric is
derived in [21], while a specific-purpose globalization and a
pre-conditioned Netwon-CG method are proposed in [24,25]
to minimize the mesh distortion. Since the method deals with
an analytic metric, it does not specify the derivatives for a
metric represented by a discrete high-order field.

Regarding a discrete field representation, a convenient ap-
proach is to use a log-Euclidean [26] high-order metric in-
terpolation [27]. This metric interpolation drives a cavity-
based adaption approach, where the remeshed cavities are
improved by locally smoothing the curved quadratic edges.
To smooth these edges, the method optimizes the mid-node
position. The optimization only uses the first derivatives of
the log-Euclidean metric interpolation in terms of the curved
edge coordinates. Accordingly, the method does not provide
the first and second derivatives of the discrete metric field in
physical coordinates.

Considering the previous open issues, our main contribution
is to use Newton’s optimization for distortion-based curved
r-adaption to a discrete high-order metric field. We need
three existent ingredients. First, to minimize the distortion,
we use the specific-purpose solver in [24, 25]. Second, we
represent the metric field as a log-Euclidean high-order met-
ric interpolation [27] on a curved high-order mesh. Third,
we locate physical points in the curved background mesh
similar to the approach in [22]. We also need to extend to
discrete metric fields a distortion-based curved r-adaption
framework [21].

To extend the framework, the main novelty is to provide, for
the log-Euclidean high-order metric interpolation, the first
and second derivatives in physical coordinates. These deriva-
tives are critical to use Newton’s method for distortion mini-
mization. This minimization leads to unprecedented second-
order optimization results for curved r-adaption for a discrete
high-order metric representation on a curved (or straight-
edged) mesh.

The remainder of this paper is organized as follows. First, in
Section 2 we introduce the metric-aware measures for curved
high-order 2D elements. Next, in Section 3 we introduce
the high-order log-Euclidean metric interpolation framework
and we present the computation of its gradient and Hessian.
Following, we present several examples to illustrate the ca-
pabilities of the proposed framework, Section 4. To finalize,
in Section 5 we present the main conclusions and sum up the
future work to develop.

Figure 1: Mappings between the master, the ideal, and the
physical elements in the linear case.

2. PRELIMINARIES: METRIC-AWARE
MEASURES FOR CURVED
HIGH-ORDER ELEMENTS

In this section, we review the definition of the Jacobian-
based quality measure for high-order elements equipped
with a metric, presented in [21]. To define and compute a
Jacobian-based measure for simplices [5], three elements are
required: the master, the ideal, and the physical, see Figure
1 for the linear triangle case. The master (EM) is the ele-
ment from which the iso-parametric mapping is defined. The
equilateral element

�
E4�

represents the target configuration
in the isotropic case. The physical (EP) is the element to be
measured.

To summarize the results in [21], we present the expression
of the metric distortion measure in terms of the equilateral
element E4. First, we need to compute a mapping from the
master to the equilateral and physical elements, denoted as
f4 and f P, respectively. By means of these mappings, we
determine a mapping between the equilateral and physical
elements by the composition

f E : E4 f�1
4��! EM f P�! EP.

As detailed in [21], we define the point-wise distortion mea-
sure for a high-order element EP equipped with a point-wise
metric M, at a point y 2 E4 as

N f E(y) =
tr
⇣

Df E(y)T ·M(f E(y)) ·Df E(y)
⌘

d
⇣

det
⇣

Df E(y)T ·M(f E(y)) ·Df E(y)
⌘⌘1/d

,

(1)
where the Jacobian of the map f E is given by

Df E(y) := Df P(f�1
4 (y)) ·Df�1

4 (y).

Note that the distortion measure is independent of the com-
putation of the metric M(f E(y)), either using an analytical
or a discretized representation.

We regularize the determinant in the denominator of Eq. (1)
in order to detect inverted elements [28–31]. In particular,

2

we define
s0 =

1
2
(s + |s |),

where
s = det(Df E(y))

q
det(M(f E(y))).

Then, we define the point-wise regularized distortion mea-
sure of a physical element EP at a point y 2 E4 as

N0f E(y) :=
tr(Df E(y)T ·M(f E(y)) ·Df E(y))

ds2/d
0

, (2)

and its corresponding point-wise quality measure

Qf E(y) =
1

N0f E(y)
. (3)

Finally, we define the regularized elemental distortion by

h(EP,M) :=

⇣R
E4 (N0f E(y))2 dy

⌘1/2

(
R

E4 1 dy)1/2
(4)

and its corresponding quality

q(EP,M) =
1

h0,(EP,M)
. (5)

We can improve the mesh configuration by means of relo-
cating the nodes of the mesh according to a given distortion
measure [21, 24, 25, 32]. In [21] it is proposed an optimiza-
tion of the distortion (quality) of a mesh M equipped with
a target metric M that describes the desired alignment and
stretching of the mesh elements. To optimize a given mesh
M, first it is defined the mesh distortion by

F (M) := Â
EP2M

Z

E4
(N0f E(y))2 dy,

which allows to pose the following global minimization
problem

M⇤ := argmin
M

F (M) , (6)

to improve the mesh configuration according to F . In par-
ticular, herein, the degrees of freedom of the minimization
problem in Eq. (6) correspond to the spatial coordinates of
the mesh nodes.

To evaluate the distortion minimization formulation pre-
sented in Equation (6), an input metric is required. The re-
viewed r-adaption procedure has been applied for analytic
metrics in [21]. In the following section, we detail the in-
terpolation process that is required to extend the presented
framework to dicrete metrics.

3. LOG-EUCLIDEAN METRIC
INTERPOLATION

In this section, we formulate a metric interpolation process
that allows both the distortion evaluation, Eq. (2), and its op-
timization, Eq. (6). In Sec. 3.1 we detail the log-Euclidean

metric interpolation for linear and high-order elements first
presented in [26] and [27,33], respectively. Then, in Sec. 3.2
we present, as a contribution of this work, the gradient and
the Hessian of the log-Euclidean interpolation. Their compu-
tation will be used for the distortion minimization problem.

3.1 Metric Interpolation

In this section, we introduce the definition of the log-
Euclidean metric interpolation at the background mesh.
First, we introduce the required notation of the mappings and
their parameters with the corresponding diagram. Secondly,
we detail the interpolation procedure.

To evaluate the metric-aware distortion measure in Eq. (2)
featuring discrete metrics, two meshes are required. On the
one hand, the physical mesh M, Figure 2(a), is the domain
where the elements are deformed in order to solve the prob-
lem presented in Equation (6). On the other hand, the back-
ground mesh M̂, Figure 2(b), is a mesh that stores discrete
metric values as a nodal field.

To evaluate the point-wise metric-aware distortion measure,
we need to compute the interpolation of the point-wise met-
ric values. For this, the localization between both meshes is
required [22, 34, 35]. In particular, a physical point p 2 M
is located at the background mesh M̂ where the metric is
interpolated, see Figure 2(c). In what follows, we introduce
the elements and the mappings required for this localization
procedure.

We integrate the distortion measure presented in Equation
(2) over the equilateral element via the master element EM .
In particular, for the metric evaluation, we map via f P, each
integration point x 2 EM to a point p of the physical ele-
ment EP, see Figure 3. To compute the metric at p we need
to locate p in the background mesh, where the values of
the metric are stored, see the intersection between EP and
the background element EP̂ in Figure 3. In addition, Fig-
ure 3 shows the procedure to obtain the coordinate to in-
terpolate the metric from the quadrature points. In partic-
ular, we map a reference point x 2 EM to a physical point
p = f P (x) 2 EP, which we identify it with a point p̂ 2 EP̂

of the background mesh and its preimage is the background
reference point x̂ = f P̂

�1 (p̂) 2 EM̂ .

Given a physical point p, we find it convenient to denote by
y any mapping from a background element containing p that
provides the coordinates in the background master element
EM̂ . Using this notation, we understand that any projection
of a physical point p onto a point x̂ of the background master
element EM̂ corresponds to the evaluation of the non-linear
function x̂ = y(p).

To evaluate this non-linear function, we exploit that the ex-
pression of y|EP , defined in the intersection of a physical

3

(a) (b) (c)

Figure 2: Point localization: (a) physical mesh, (b) background mesh, and (c) a point p in the corresponding physical and back-
ground element (bold edges).

Figure 3: Mappings between the master and the physical
elements (below) and their background analogs (above).

element EP and a fixed background element EP̂, is given by

y|EP : EP \EP̂ ! EM̂

p 7! f�1
P̂

(p) .
(7)

Specifically, we solve the non-linear inverse expression in
the image term, Equation (7), by applying Newton’s mini-
mization to the squared distance. That is, we solve

x̂ = argmin
ẑ

����
����f P̂

⇣
ẑ
⌘
�p

����
����
2
.

The result is a numerical approximation of the point coor-
dinates in the background master element. An alternative
approach [22] is to seek the zeros of the vector equation

f P̂

⇣
x̂
⌘
�p = 0.

Once the background master coordinates associated to a
given physical point have been computed, it is necessary to
interpolate the metric supported by the background mesh at
the corresponding master coordinate. To do so, we use the
log-Euclidean interpolation proposed in [26, 27]:

M
�
N̂
�

:= exp
�
L(N̂)

�
, L(N̂) :=

n̂

Â
j=1

N̂ j logM j, (8)

where for the j-th node of the master element EM̂ , M j and
N̂ j are the corresponding metric value and shape function,
respectively. In addition, N̂ denotes all the shape functions,
n̂ =

(p̂+1)(p̂+2)
2 is the number of nodes and where p̂ is the in-

terpolation degree which corresponds to the polynomial de-
gree of the master element EM̂ . Finally, M(N̂) is character-
ized by the eigenvalue-based matrix exponential function

M
�
N̂
�

= U · expD ·UT, (9)

where D, U are given from the eigenvalue decomposition
of the matrix L(N̂) =: U · D · UT. Finally, for each physical
point p the metric interpolation is given by M

�
N̂(y (p))

�
.

3.2 Gradient and Hessian

This section gives formulas of the gradient and Hessian of
the metric interpolation over a background mesh in terms of
the physical coordinates. For this, we detail first the case for
the metric interpolation at a single element and then for the
background mesh. In particular, our approach uses the gradi-
ent and Hessian of the eigenvalue decomposition presented
in [36].

To compute the derivatives of the metric M we first differen-
tiate the eigenvalue-based exponential matrix function pre-
sented in Equation (9) and then we differentiate the L func-
tion presented in Equation (8). By denoting x j the coordi-
nates of p and ∂ j := ∂

∂x j
, ∂ jk := ∂ j∂k = ∂

∂x j

∂
∂xk

the partial
derivatives in terms of the physical coordinates of p, we can
compute the spatial derivatives of the metric interpolation
of Equation (8). In particular, the first-order derivatives are
given by

∂ jM(N̂) = ∂ j expL(N̂) = ∂ j

⇣
U · expD ·UT

⌘
=

�
∂ jU

�
· expD ·UT +U ·

�
∂ j expD

�
·UT +

U · expD ·
⇣

∂ jUT
⌘

,

4

and the second-order derivatives are given by

∂ jkM(N̂) = ∂ jk expL(N̂) = ∂ jk

⇣
U · expD ·UT

⌘
=

�
∂ jkU

�
· expD ·UT +∂kU ·

�
∂ j expD

�
·UT +

∂kU · expD ·
⇣

∂ jUT
⌘

+
�
∂ jU

�
·∂k expD ·UT +

U ·
�
∂ jk expD

�
·UT +U ·∂k expD ·

⇣
∂ jUT

⌘
+

�
∂ jU

�
· expD ·∂kUT +U ·

�
∂ j expD

�
·∂kUT +

U · expD ·
⇣

∂ jkUT
⌘

.

Note that, since the matrix D is diagonal, we have

∂ j expD = exp(D) ·∂ jD,

∂ jk expD = exp(D) ·
�
∂kD ·∂ jD+∂ jkD

�
.

The presented first and second-order derivatives of the met-
ric require the first and second-order spatial derivatives of the
eigenvalue decomposition (eigenvalues and eigenvectors),
respectively. Their computation is appended in Section 7.

In addition, the derivatives of the eigenvalues and eigenvec-
tors depend on the derivatives of the L function presented in
Equation (8). In particular, they are given by

—L = Â
j

�
logM j

�
—N̂ j, —2L = Â

j

�
logM j

�
—2N̂ j,

where — is the gradient with respect to physical coordi-
nates. Therefore, to differentiate the metric interpolation
M

�
N̂(y (p))

�
at a physical point p, the derivatives of the

map y presented in Equation (7) and of the shape functions
N̂ are required.

The derivatives of y|EP are given, at each patch EP \EP̂, by
the ones of the inverse of the physical map f�1

P̂
correspond-

ing to the background mesh. To obtain the derivatives of the
shape functions N̂ in terms of the physical coordinates p, we
consider the chain rule for the composition N̂�y|EP and the
restriction of the map y|EP at each patch EP\EP̂. We finally
obtain the gradient

—N̂ = —x̂ N̂ ·—f�1
P̂

, (10)

where —x̂ is the gradient with respect to x̂ coordinates, and
the Hessian

—2N̂ j =
⇣

—f�1
P̂

⌘T
·—2

x̂
N̂ j ·—f�1

P̂
+—x̂ N̂ j ·—2f�1

P̂
, (11)

where

—f�1
P̂

=
⇣

—x̂ f P̂

⌘�1
,

—2f�1
P̂

= —
✓⇣

—x̂ f P̂

⌘�1
◆

= �—f�1
P̂

·—2
x̂

f P̂ ·—f�1
P̂

.

4. RESULTS

In this section, we present a 2D and a 3D example to illus-
trate the applicability of our distortion minimization frame-
work for curved r-adaption to a high-order metric interpola-
tion. First, we generate a background mesh M̂ and we eval-
uate the analytical metric M at the background mesh nodes.
Second, we generate an initial physical mesh M and we
measure its distortion (quality) by interpolating the metric.
Finally, by relocating the nodes, we minimize the mesh dis-
tortion problem presented in Equation (6) using the frame-
work presented herein.

To summarize the results, we present a table of the qual-
ity statistics, and the figures for the initial and optimized
meshes, respectively. Specifically, we show the minimum
quality, the maximum quality, the mean quality and the stan-
dard deviation of the initial and optimized meshes. We high-
light that in all cases, the optimized mesh increases the min-
imum element quality and it does not include any inverted
element. In addition, the meshes resulting after the opti-
mization are composed of elements aligned and stretched
to match the target metric tensor. In all figures, the meshes
are colored according to the point-wise quality presented in
Equation (3).

As a proof of concept, a mesh optimizer has been devel-
oped in Julia 1.4.2 [37] with the additional packages: Arpack
v0.5.0, Einsum v0.4.1, EllipsisNotation v1.0.0, ILUZero
v0.1.0, JLD v0.12.1, Plots v1.9.0, Setfield v0.7.0, Spe-
cialFunctions v1.2.1, StatsBase v0.33.2, TensorOperations
v3.1.0 and WriteVTK v1.8.0. In addition, we have used
the MATLAB PDE Toolbox [38] to generate the initial
isotropic linear unstructured 2D and 3D meshes (the struc-
tured meshes are generated by subdivision).

The Julia prototyping code is multithreaded, it corresponds
to the implementation of the method presented in this work
and the one presented in [21,24,25]. In all the examples, the
optimization corresponds to finding a minimum of a nonlin-
ear unconstrained multi-variable function. In particular, the
mesh optimizer uses an unconstrained line-search globaliza-
tion with an iterative preconditioned conjugate gradients lin-
ear solver. The stopping condition is set to reach an absolute
root mean square residual, defined as k— f (x)k`2p

n for x 2 Rn,

smaller than 10�4 or a length-step smaller than 10�4. Each
optimization process has been performed in a single node of
a computing machine. Each node contains two Intel Xeon
Platinum 8160 CPU with 24 cores, each at 2.10 GHz, and 96
GB of RAM memory.

We regularize the objective function to ensure infinite val-
ues for inverted configurations. Furthermore, to globalize the
minimization, we equip Newton’s method with a backtrack-
ing line-search. Whenever the Newton’s update provides an
inverted configuration, the objective function becomes infin-
ity and thus, the backtracking line-search shortens the update
until a valid configuration is reached.

5

Following, we first present the target domains to be meshed,
and the considered metrics on the domain, Section 4.1. Next,
in Section 4.2 we present the optimization results comparing
both the proposed discrete based-interpolation procedure and
the analytical one from [21, 24, 25]. Finally, in Sections 4.3
and 4.4, we show the application of the discrete metric ap-
proach to optimize an anisotropic mesh adapted to a given
metric generated by the MMG algorithm presented in [39].

4.1 Domains and metrics

We consider the quadrilateral domain W = [� 1
2 , 1

2]2 for the
two-dimensional examples and the hexahedral domain W =
[� 1

2 , 1
2]3 for the three-dimensional ones. Each domain is

equipped with a metric matching a boundary layer. In par-
ticular, our target metric M is characterized by a diagonal
boundary layer metric D and a deformation map j by the
following expression

M = —jT ·D ·—j. (12)

In what follows, we first detail the boundary layer metric D
and then the deformation map j .

The boundary layer aligns with the x-axis (xy-plane) in the
2D case (3D case). It determines a constant unit element
size along the x-direction (xy-directions), and a non-constant
element size along the y-direction (z-direction). This vertical
element size grows linearly with the distance to the x-axis
(xy-plane), with a factor g = 2, and starts with the minimal
value hmin = 0.1. Thus, the stretching ratio blends from 1 :
10 to 1 : 1 between y = �0.5 and y = 0.5 (between z = �0.5
and z = 0.5). We define the metric for the 2D case as:

D :=
✓

1 0
0 1/h(y)2

◆
(13)

where the function h is defined by

h(x) := hmin + g|x|.

Similarly, the metric for the 3D case is

D :=

0
@

1 0 0
0 1 0
0 0 1/h(z)2

1
A . (14)

The deformation map j in Eq. (12) aligns the stretching of
D according to a given curve in the 2D examples and at a
given surface in the 3D examples. In the 2D case, we define
the map j by

j(x,y) =

✓
x,

10y� cos(2px)p
100+4p2

◆
,

and, in the 3D case by

j(x,y,z) =

✓
x,y,

10z� cos(2px)cos(2py)p
100+8p2

◆
.

Figure 4: Anisotropic quotient values in logarithmic scale
of the target metrics.

(a) (b) (c)

Figure 5: Background triangular meshes of polynomial de-
gree 1, 2 and 4.

Figure 4 shows the anisotropic quotient [40] of the met-
ric presented in Equations (13) and (14). Specifically, the
anisotropic quotient of a metric tensor M 2Rd⇥d is given by

quo = max
i=1,...,d

s
det(M)

l d
i

where li, i = 1, ...,d are the eigenvalues of M. The consid-
ered metric M attains the highest level of anisotropy, close
to the curve described by the points (x,y) 2 W such that
j(x,y) = (x,0) in 2D, and close the surface described by the
points (x,y,z) 2 W such that j(x,y,z) = (x,y,0) in 3D.

4.2 Distortion minimization: initial
isotropic straight-edged meshes

In this section, we present the optimization results for ini-
tially isotropic meshes on the domain equipped with the met-
rics presented in Section 4.1. We describe first the initial
meshes M together with the background meshes M̂ where
the metric is interpolated. Next, we present the optimized
meshes M⇤ and to conclude, we present the results obtained
from the optimization process. Herein, both the background
and physical meshes are meshes of the same polynomial de-
gree.

The initial meshes M are of polynomial degree 1, 2 and 4.

6

Table 1: Quality Statistics for the initial and optimized meshes with interpolated 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.2066 0.4481 0.9973 0.9853 0.6435 0.7558 0.2149 0.0890
2 0.2608 0.5609 0.9890 0.8647 0.6352 0.7706 0.2087 0.0708
4 0.3504 0.6834 0.9156 0.8268 0.6095 0.7661 0.1877 0.0450

Table 2: Quality Statistics for the initial and optimized meshes with analytical 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.2058 0.4510 0.9972 0.9846 0.6443 0.7556 0.2145 0.0823
2 0.2590 0.5648 0.9890 0.8734 0.6351 0.7703 0.2089 0.0715
4 0.3485 0.6838 0.9155 0.8417 0.6096 0.7735 0.1873 0.0530

Table 3: Quality Statistics for the initial and optimized meshes with interpolated 3D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.0875 0.2467 0.9841 0.9594 0.5636 0.6240 0.2199 0.1203
2 0.0980 0.4524 0.9810 0.9118 0.5739 0.6763 0.2214 0.0944
4 0.1929 0.5139 0.9228 0.8289 0.5847 0.7002 0.1998 0.0691

The three meshes feature the same number of nodes and they
have the same resolution over the domain. In particular, in
2D the three initial meshes are composed of 481 nodes and
224, 56, and 14 elements, respectively. In 3D, they are com-
posed of and 1577 nodes and 7296, 912, and 114 elements,
respectively. In Figures 6 and 8 we show the initial meshes,
they are colored according to the point-wise stretching and
alignment quality measure, presented in Equation (3). Points
in blue color have low quality and points with red color have
high quality. As we observe, the elements lying in the region
of highest stretching ratio have less quality than the elements
lying in the isotropic region.

We equip each mesh with the metric presented in Equation
(12). We obtain the metric values from the log-Euclidean
interpolation method presented in Section 3. In particular,
we interpolate the metrics from a background mesh M̂, see
Figure 5 for the 2D cases. The background meshes are of
polynomial degree 1, 2 and 4 according to the polynomial de-
gree of the initial meshes M. The three background meshes
feature the same number of nodes and they have the same
resolution over the domain. In particular, in 2D the three
background meshes are composed of 521 nodes and 960, 240
and 60 elements, respectively. In 3D the they are composed
of and 11411 nodes and 59456, 7432 and 929 elements, re-
spectively.

To obtain an optimal configuration M⇤ we minimize the
mesh distortion by relocating the mesh nodes while preserv-
ing their connectivity, as detailed in Section 2. The coordi-
nates of the inner nodes, and the coordinates tangent to the
boundary, are the design variables. Thus, the inner nodes
are free to move, the vertex nodes are fixed, while the rest
of boundary nodes are enforced to slide along the boundary
facets of the domain W. The total amount of degrees of free-
dom for the 2D and 3D meshes is 222 and 3957, respectively.
In Figure 6 we illustrate the optimized 2D meshes. In the 3D
case, Figure 8 shows the interior and exterior of the meshes.
We align the axes according to the ones of Figure 4. We
observe that the elements lying in the anisotropic region are
compressed to attain the stretching and alignment prescribed
by the metric.

Tables 1 and 3 show the quality statistics of both the ini-
tial and optimized meshes for the 2D and 3D cases, respec-
tively. In all the optimized meshes the minimum is improved
and the standard deviation of the element qualities is reduced
when compared with the initial configuration.

To validate the proposed method, we compare 2D curved r-
adaption results for the high-order metric interpolation with
the results corresponding to an analytic metric evaluation.
Considering the initial meshes presented in this section, we
optimize the distortion measure by evaluating the analyti-

7

(a) (b)

(c) (d)

(e) (f)

Figure 6: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-sided
isotropic meshes and optimized meshes from initial meshes
in columns. The interpolation of the metric has been used for
the distortion minimization. The sub-triangular elements are
the visualization elements. These element vertices are not
the high-order degrees of freedom.

cal metric expression, instead of interpolating it in the back-
ground mesh. In Figure 7 we show the initial and optimized
meshes. They colored according the point-wise quality mea-
sure of Equation (3) using the analytical metric expression.

To compare quantitatively both results, we compute the rel-
ative distance of the node coordinates of the optimized con-
figurations. The relative distance is around 10�2 for all the
tested cases, obtaining comparable nodal configurations, as
it can be observed when comparing Figures 6 and 7.

In Table 2 we present the quality statistics of the initial and
optimized meshes using the analytical metric evaluation. To
compare the quality improvement of both approaches, we
compute the difference between the analyzed quality statis-
tics, obtaining a value for all the statistics below 10�2. Thus,
the quality improvement driven by the optimization using
the proposed metric interpolation procedure is analogous to
the one given by the analytical metric, obtaining in all cases
high-quality configurations with a minimum quality over 0.4.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-sided
isotropic meshes and optimized meshes from initial meshes
in columns. The analytic evaluation of the metric has been
used for the distortion minimization.

4.3 Distortion minimization: initial
anisotropic straight-edged meshes

The results presented in Section 4.2 show the application
of the metric interpolation procedure to optimize isotropic
meshes in a domain equipped with a metric. However, in
practice, anisotropic meshes are generated combining topo-
logical mesh operations that modify the mesh connectivity
and mesh r-adaption procedures [6]. To illustrate a practical
example, we consider an initial straight-sided mesh adapted
by the MMG algorithm presented in [39]. Then, we apply
the anisotropic r-adaption method presented in this work.

First, we consider the target metric presented in Equation
(12) with hmin = 0.01. Second, we generate a linear isotropic
triangular mesh of input size hmin/2 = 0.005 with MATLAB.
Then, we couple such mesh with the target metric evaluated
at the mesh vertices and normalized according to different
sizes. These sizes are chosen in order to obtain a comparable
mesh resolution according to the mesh polynomial degree.
Specifically, they are given by 0.0625, 0.125 and 0.25 for
the linear, quadratic and quartic case, respectively. We ap-
ply the MMG algorithm to obtain a straight-sided anisotropic
mesh of polynomial degree 1, 2 and 4, see Figure 9. In par-
ticular, they are composed by 1161 nodes and 2137 triangles,

8

(a) (b)

(c) (d)

(e) (f)

Figure 8: Tetrahedral meshes of polynomial degree 1, 2 and
4 in rows. Initial straight-sided isotropic meshes and opti-
mized meshes from initial meshes in columns.

1333 nodes and 624 triangles and, 1525 nodes and 180 tri-
angles, respectively.

The generated meshes are then optimized using the metric
interpolation approach presented in this work. In Figure 9
we illustrate the optimized meshes. We observe that the el-
ements lying in the anisotropic region are compressed to at-
tain the stretching and alignment prescribed by the metric. In
Table 4 we show the quality statistics of both the initial and
optimized meshes. In all the optimized meshes the minimum
is improved and the standard deviation of the element quali-
ties is reduced when compared with the initial configuration.
We conclude that, with the same metric data and hence, the
same inputs, the r-adaption mesh post-processing improves
the quality of the meshes generated with the MMG algo-
rithm. In addition, for the straight-edged case, we have pre-
sented a global method to improve the stretching and align-
ment prescribed by the metric after applying an h-adaption
approach.

4.4 Distortion minimization: curved
boundaries

We following illustrate that our approach is compatible with
curved boundaries. To this end, we consider the holed do-

(a) (b)

(c) (d)

(e) (f)

Figure 9: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-
sided anisotropic meshes and optimized meshes from initial
meshes in columns.

main W = 1
2 [�1,1]2\C where C is the circle with radius

equal to 3
16 and centered at the origin. The domain W has

two boundaries, the one of the square 1
2 [�1,1]2 and the

one of the circle C. We equip it with the target metric pre-
sented in Equation (12) with hmin = 0.01. Then, we generate
with MMG a linear isotropic triangular mesh of input size
hmin/2 = 0.005 over 1

2 [�1,1]2. As before, we couple such
mesh with the target metric evaluated at the mesh vertices
and normalized according to size h = 0.2. Finally, we apply
the MMG algorithm to obtain a straight-sided anisotropic
mesh of polynomial degree 2 composed by 672 nodes and
290 triangles, see Figures 10 and 11.

To accommodate the curved boundaries we include, to the
presented functional, a boundary term that takes into account
the mesh approximation to the boundaries of the domain
(both the square and the circle). In addition, to approximate
the metric stretching, we optimize the mesh using the metric
interpolation approach presented in this work. Finally, when
optimizing the mesh functional all mesh nodes coordinates
are free that is, each mesh node moves in R2.

In Figures 10 and 11 we illustrate the optimized mesh. We
observe that the elements lying in the anisotropic region are

9

Table 4: Quality Statistics for the initial MMG and optimized meshes with interpolated 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.0365 0.1794 0.9988 0.9989 0.7806 0.7961 0.2273 0.2040
2 0.0624 0.6300 0.9982 0.9913 0.6966 0.8692 0.2558 0.0788
4 0.0424 0.6063 0.9774 0.9965 0.5677 0.9137 0.2681 0.0886

Table 5: Quality Statistics for the initial MMG and optimized mesh with interpolated 2D metric over the holed domain.

Mesh Minimum Maximum Mean Standard deviation

Initial 0.0489 0.9877 0.6058 0.2512
Optimized 0.3042 0.9927 0.7397 0.1821

(a) (b)

Figure 10: Point-wise distortion for triangular meshes of
polynomial degree 2. Initial straight-sided anisotropic mesh
(a) and optimized mesh (b).

(a) (b)

Figure 11: Zoom of the right region for the initial (a) and
optimized mesh (b).

compressed to attain the stretching and alignment prescribed
by the metric. Note that the boundary elements are curved
to match both the metric and the curved domain boundaries.
In Table 5 we show the quality statistics of both the initial
and optimized mesh. In the optimized mesh the minimum is
improved and the standard deviation of the element qualities
is reduced when compared with the initial configuration.

5. CONCLUDING REMARKS

In conclusion, we have obtained unique results in curved
r-adaption to a discrete high-order metric. We have rep-

resented the discrete metric in a curved background mesh
as a high-order log-Euclidean metric interpolation. For this
metric interpolation, we have detailed the first and second
derivatives in terms of the physical coordinates. These
derivatives have allowed minimizing with Newton’s method
a mesh distortion accounting for the discrete high-order met-
ric. The discrete metric results compare well with the an-
alytic metric results. In both cases, the method exploits
the non-constant Jacobian of curved high-order elements to
match curved anisotropic features properly.

In perspective, this capability to match curved anisotropic
features might be an attractive ingredient for curved high-
order goal-oriented or indicator-based adaption. In these
adaptive processes, one would have a high-order metric field
in the current curved mesh. This background field would
drive curved r-adaption to globally (locally) relocate the cur-
rent curved mesh (re-meshed cavity) according to the curved
anisotropic features of the solution.

6. ACKNOWLEDGEMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 715546. This work has also received funding from
the Generalitat de Catalunya under grant number 2017 SGR
1731. The work of X. Roca has been partially supported by
the Spanish Ministerio de Economı́a y Competitividad under
the personal grant agreement RYC-2015-01633.

7. APPENDIX: DERIVATIVES OF THE
EIGENVALUE DECOMPOSITION

In this Appendix, we detail the first and second-order spa-
tial derivatives of the eigenvalue decomposition (eigenvalues
and eigenvectors), first presented in [36] and rewritten herein
using our notation.

10

Let us consider, for ` = 1, ...,d, the eigenvalue equation for
the eigenvector u` with eigenvalue l`

L`u` := (L�l`I)u` = 0,

where L is a symmetric matrix and I is the identity matrix.
Then, by taking its first-order and second-order derivatives
we respectively obtain

0 = ∂ j (L`u`) =
�
∂ jL`

�
·u` +L` ·∂ ju`, (15)

0 = ∂ jk (L`u`) =
�
∂ jkL`

�
·u` +L` ·∂ jku` + (16)�

∂ jL`

�
·∂ku` +(∂kL`) ·∂ ju`.

For each ` one first computes the first-order derivative of
the eigenvalue l` by left-multiplying by u` to Equation (15).
Then, by solving the remaining unknown term of Equation
(15) one obtains the first-order derivatives of the eigenvector
u`. In particular, the first-order derivatives of the eigenvalues
and the eigenvectors are given by

∂ jl` = uT
` ·∂ jL ·u`, ∂ ju` = �L+

` ·∂ jL` ·u`,

where the operation L+
` is the Moore-Penrose pseudo-

inverse matrix for the matrix L`. We use the Moore-Penrose
pseudo-inverse matrix instead of the inverse matrix because
the matrix L` is singular. In addition, the redundant equa-
tions are satisfied automatically.

The second-order derivatives are obtained by applying a sim-
ilar procedure. For each ` one first computes the second-
order derivative of the eigenvalue l` by left-multiplying by
u` to Equation (16). Then, by solving the remaining un-
known term of Equation (16) one obtains the second-order
derivatives of the eigenvector u`. In particular, the second-
order derivatives of the eigenvalues are given by

∂ jkl` = uT
` ·

�
∂kL` ·∂ ju` +∂ jL` ·∂ku` +∂ jkL ·u`

�
,

∂ jku` = �L+
` ·

�
∂kL` ·∂ ju` +∂ jL` ·∂ku` +∂ jkL` ·u`

�
��

∂ ju` ·∂ku`

�
u`,

where the last term of the second-order derivative of the
eigenvector is obtained by imposing the second-order deriva-
tive of the imposed normalization condition uT

` ·u` = 1

0 = ∂ jk

⇣
uT
` ·u`

⌘
= 2∂ jkuT

` ·u` +2∂ juT
` ·∂ku`

Note that, for each differentiation order, the computation of
the eigenvectors derivatives requires the values of the eigen-
values derivatives.

References

[1] Yano M., Darmofal D.L. “An optimization-based
framework for anisotropic simplex mesh adaptation.”
Journal of Computational Physics, vol. 231, no. 22,
7626–7649, 2012

[2] Loseille A., Alauzet F. “Continuous mesh frame-
work part I: well-posed continuous interpolation error.”
SIAM Journal on Numerical Analysis, vol. 49, no. 1,
38–60, 2011

[3] Coupez T., Silva L., Hachem E. “Implicit boundary
and adaptive anisotropic meshing.” New Challenges in
Grid Generation and Adaptivity for Scientific Comput-
ing, pp. 1–18. Springer, 2015

[4] Huang W., Russell R.D. Adaptive Moving Mesh
Methods, vol. 174 of Applied Mathematical Sciences.
Springer, 2011

[5] Knupp P.M. “Algebraic mesh quality metrics.” SIAM
J. Numer. Anal., vol. 23, no. 1, 193–218, 2001

[6] Alauzet F., Loseille A. “A Decade of Progress on
Anisotropic Mesh Adaptation for Computational Fluid
Dynamics.” Computer-Aided Design, Elsevier, vol. 72,
no. 1, 13–39, 2016

[7] Gruau C., Coupez T. “3D tetrahedral, unstructured and
anisotropic mesh generation with adaptation to natural
and multidomain metric.” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 194, no. 48-49,
4951–4976, 2005

[8] Frey P., Alauzet F. “Anisotropic mesh adaptation for
CFD computations.” Computer methods in applied me-
chanics and engineering, vol. 194, no. 48-49, 5068–
5082, 2005

[9] Hecht F. “BAMG: bidimensional anisotropic mesh
generator.” User Guide. INRIA, Rocquencourt, 1998

[10] Coupez T. “Metric construction by length distribution
tensor and edge based error for anisotropic adaptive
meshing.” Journal of computational physics, vol. 230,
no. 7, 2391–2405, 2011

[11] Fidkowski K.J., Darmofal D.L. “Review of output-
based error estimation and mesh adaptation in compu-
tational fluid dynamics.” AIAA journal, vol. 49, no. 4,
673–694, 2011

[12] Coupez T. “On a Basis Framework for High Or-
der Anisotropic Mesh Adaptation.” vol. 203, 141–
153, 2017. Research Note 26th International Meshing
Roundtable

[13] Johnen A., Geuzaine C., Toulorge T., Remacle J.F.
“Quality Measures for Curvilinear Finite Elements.”
TILDA: Towards Industrial LES/DNS in Aeronautics,
p. 221, 2021

[14] Zhang R., Johnen A., Remacle J.F. “Curvilinear mesh
adaptation.” International Meshing Roundtable, pp.
57–69. Springer, 2018

11

[15] Zahr M.J., Persson P.O. “An optimization based dis-
continuous Galerkin approach for high-order accurate
shock tracking.” 2018 AIAA Aerospace Sciences Meet-
ing, p. 0063. 2018

[16] Zahr M.J., Shi A., Persson P.O. “Implicit shock track-
ing using an optimization-based high-order discontin-
uous Galerkin method.” Journal of Computational
Physics, vol. 410, 109385, 2020

[17] Zahr M.J., Persson P.O. “An r-adaptive, high-order
discontinuous Galerkin method for flows with attached
shocks.” AIAA Scitech 2020 Forum, p. 0537. 2020

[18] Marcon J., Turner M., Moxey D., Sherwin S.J., Peiró
J. “A variational approach to high-order r-adaptation.”
IMR26, 2017

[19] Marcon J., Castiglioni G., Moxey D., Sherwin S.J.,
Peiró J. “rp-adaptation for compressible flows.” Inter-
national Journal for Numerical Methods in Engineer-
ing, vol. 121, no. 23, 5405–5425, 2020

[20] Dobrev V., Knupp P., Kolev T., Mittal K., Tomov
V. “The target-matrix optimization paradigm for high-
order meshes.” SIAM Journal on Scientific Computing,
vol. 41, no. 1, B50–B68, 2019

[21] Aparicio-Estrems G., Gargallo-Peiró A., Roca X.
“Defining a Stretching and Alignment Aware Quality
Measure for Linear and Curved 2D Meshes.” Interna-
tional Meshing Roundtable, pp. 37–55. Springer, 2018

[22] Dobrev V., Knupp P., Kolev T., Tomov V. “Towards
simulation-driven optimization of high-order meshes
by the Target-Matrix Optimization Paradigm.” Inter-
national Meshing Roundtable, pp. 285–302. Springer,
2018

[23] Dobrev V., Knupp P., Kolev T., Mittal K., Rieben R.,
Tomov V. “Simulation-driven optimization of high-
order meshes in ALE hydrodynamics.” Computers &
Fluids, vol. 208, 104602, 2020

[24] Aparicio-Estrems G., Gargallo-Peiró A., Roca X.
“Anisotropic Optimization of curved meshes: specific-
purpose line-search and trust-region globalizations for
Newton’s method.” International Meshing Roundtable.
2019

[25] Aparicio-Estrems G., Gargallo-Peiró A., Roca X.
“Stretching and aligning piece-wise polynomial
meshes to match curved anisotropic features.” In-
ternational Conference on Spectral and High-Order
Methods. 2021

[26] Arsigny V., Fillard P., Pennec X., Ayache N. “Log-
Euclidean Metrics for Fast and Simple Calculus on
Diffusion Tensors.” Magnetic Resonance in Medicine,
vol. 56, 411–421, 2006

[27] Rochery L., Loseille A. “P2 cavity operator and Rie-
mannian curved edge length optimization: a path to
high-order mesh adaptation.” AIAA Scitech 2021 Fo-
rum, p. 1781. 2021

[28] Branets L.V., Garanzha V.A. “Distortion measure of
trilinear mapping. Application to 3-D grid generation.”
Numerical linear algebra with applications, vol. 9, no.
6-7, 511–526, 2002

[29] López E.J., Nigro N.M., Storti M.A. “Simultaneous
untangling and smoothing of moving grids.” Int. J. Nu-
mer. Meth. Eng., vol. 76, no. 7, 994–1019, 2008

[30] Escobar J.M., Rodrı́guez E., Montenegro R., Montero
G., González-Yuste J.M. “Simultaneous untangling
and smoothing of tetrahedral meshes.” Comput. Meth.
Appl. Mech. Eng., vol. 192, no. 25, 2775–2787, 2003

[31] Gargallo-Peiró A., Roca X., Peraire J., Sarrate J.
“Optimization of a regularized distortion measure to
generate curved high-order unstructured tetrahedral
meshes.” Int. J. Numer. Meth. Eng., vol. 103, 342–363,
2015

[32] Gargallo-Peiró A. Validation and generation of curved
meshes for high-order unstructured methods. Ph.D.
thesis, Universitat Politècnica de Catalunya, 2014

[33] Ekelschot D., Ceze M., Murman S.M., Garai A. “Paral-
lel high-order anisotropic meshing using discrete met-
ric tensors.” AIAA Scitech 2019 Forum, p. 1993. 2019

[34] Mittal K., Dutta S., Fischer P. “Nonconforming
Schwarz-spectral element methods for incompressible
flow.” Computers & Fluids, vol. 191, 104237, 2019

[35] Sitaraman J., Floros M., Wissink A., Potsdam M. “Par-
allel domain connectivity algorithm for unsteady flow
computations using overlapping and adaptive grids.”
Journal of Computational Physics, vol. 229, no. 12,
4703–4723, 2010

[36] Andrew A.L., Chu K.W.E., Lancaster P. “Deriva-
tives of eigenvalues and eigenvectors of matrix func-
tions.” SIAM journal on matrix analysis and applica-
tions, vol. 14, no. 4, 903–926, 1993

[37] Bezanson J., Edelman A., Karpinski S., Shah V.B. “Ju-
lia: A fresh approach to numerical computing.” SIAM
review, vol. 59, no. 1, 65–98, 2017

[38] MATLAB. version 9.3.0.713579 (R2017b). The Math-
Works Inc., Natick, Massachusetts, 2017

[39] Dobrzynski C. MMG3D: User guide. Ph.D. thesis,
INRIA, 2012

[40] Loseille A., Löhner R. “Anisotropic Adaptive Simula-
tions in Aerodynamics.” AIAA 2010-169, 2010. 49th
AIAA Aerospace Sciences Meeting, Fairfax, Va, USA

12

AN EFFICIENT SOLVER TO APPROXIMATE CAD
CURVES WITH SUPER-CONVERGENT RATES

Julia Docampo-Sánchez Eloi Ruiz-Gironés Xevi Roca

Barcelona Supercomputing Centre-Centro Nacional de Supercomputacin BSC-CNS, Spain.
julia.docampo@bsc.es, eloi.ruiz@bsc.es, xevi.roca@bsc.es

ABSTRACT

We present a specific-purpose solver to approximate curves with super-convergent rates. To obtain super-convergence,
we minimize a disparity measure in terms of a piece-wise polynomial approximation and a curve re-parametrization.
We have numerical evidence that the disparity converges with 2p order for planar curves and b 3

2
(p � 1)c + 2 for 3D

curves, p being the mesh polynomial degree. To meet these rates, we exploit the quadratic convergence of a globalized
Newton’s method with the help of three main ingredients. First, we employ a nonmonotone line search reducing the
number of nonlinear iterations. The second ingredient is to introduce a log barrier function preventing element
inversion in the curve re-parameterization. Third, we propose a constrained optimization of the disparity functional
where the element interfaces are fixed, improving the computational e�ciency whilst preserving super-convergence.
We approximate analytic curves as well as CAD models with meshes of several polynomial degrees. We conclude that
the solver is well-suited to obtain super-convergent approximations to curves at reasonable computational times.

Keywords: curve approximation, distance optimization, super-convergence, high-order meshes

1. INTRODUCTION AND MOTIVATION

Geometric accuracy plays a major role in the perfor-
mance of unstructured high-order methods [1], requir-
ing curved elements to meet the desired accuracy. The
geometric accuracy is measured as the distance be-
tween the mesh and the target geometry. Tradition-
ally, in computational geometry, this corresponded to
the Fréchet and Hausdor↵ distances [2]. More recently,
distance optimization techniques have been proposed.
For example, in [3, 4] an area and Taylor based dis-
tance optimizer are used respectively for 2D and 3D
geometry. The authors report significant mesh-CAD
distance reductions at adequate computational times.

In addition, a disparity measure for generating optimal
curved high-order meshes was proposed in [5]. The
optimization combines a distortion measure for mesh
quality and a geometric L2-disparity measure for geo-
metric error [6]. It produces optimal non-interpolative
meshes and it has been observed that this disparity
is 2p super-convergent [7]. This a↵ords a straightfor-

ward advantage: one can obtain the desired geometric
accuracy using smaller polynomial degrees than with
standard interpolation approaches.

As in many optimization problems, the original dispar-
ity was solved with a Newton method combined with
Armijo backtracking line search. The Armijo rule is
monotonic: the iteration is valid if the objective func-
tion decreases. For highly nonlinear problems, mono-
tonicity can trap the optimizer if it follows a narrow
curved valley (making very short steps or zigzagging)
and reduces the convergence rate [8]. This has moti-
vated the development of nonmonotone line searches.

The first nonmonotone line search was based on a max-
imum principle [9]. A step is considered valid if it im-
proves the objective function with respect to the max-
imum value of the objective functions corresponding
to the N previous iterations. Later, a family of non-
monotone line searches were proposed where a tuning
parameter shifts the search condition from maximum
to an average [10]. The authors prove global conver-

13

gence for this family of line search methods. In fact,
nonmonotone line searches have demonstrated an im-
provement in computational e�ciency, as well as like-
lihood of finding a global minimum [9, 11].

The work presented here focuses on improving the
computational performance during the optimization of
the disparity measure. Focusing on curves, we pro-
pose:

1. A reduction of the optimization dimension by fix-
ing the element interfaces.

2. A logarithmic barrier preventing curve tangling.

3. An average based (nonmonotone) line search.

Our results show that switching to a nonmonotone line
search consistently reduces the number of iterations.
Furthermore, by fixing the element interfaces we re-
duce the dimension of the optimization problem. Al-
though this constrained version is sub-optimal in terms
of the error compared to the original disparity (free
interfaces), we are able to preserve the same super-
convergent property. We have performed numerical
tests based on analytic curves as well as CAD geome-
try obtained through ESP [12].

This paper is organized as follows. In Section 2, we
define the disparity measure for curves and show the
super-convergent property through an example. In
Section 3, we discuss the disparity and constrained
optimization and the new solver features. Finally, in
Sections 4 and 5, we compare the errors and itera-
tions from the constrained and unconstrained prob-
lem studying several CAD geometries. The paper con-
cludes with Section 6 discussing main results.

2. DISPARITY MEASURE: CURVES

We begin by introducing the disparity formulation for
curves. We will discuss how it is defined, optimized
and implemented as well as show how it attains 2p
order. For more details, we refer the reader to [7].

2.1 Mathematical formulation

We define our mesh as a set of elements where for
each physical element eP there is a reference element
eR. The physical mesh MP can be defined in terms
of an element-wise parametrization �P :

�P |eR : eR ! eP ⇢ Rn (1)

⇠ ! x =

p+1X

i=1

xiN
p
i (⇠), (2)

where p+1 are the number of nodes for the high-order
element eP , xi the Rn-physical coordinates of the i-th
node and {Np

i }p+1
i=1 a Lagrangian basis of degree p.

Let C ⇢ Rn be a curve parametrized by ↵ : [a, b] ⇢
R! C and consider the family of mappings:

⇧ :=
n
⇡ 2 H1(MP , C), ⇡ di↵eomorphism

o
.

MP C

MR MQ

⇡⇠=

�P

'Q

↵

Figure 1: commutative diagram showing the ref-
erence mesh MR, the mappings to the physical
meshes: �P and �Q respectively, the curve C and its
parametrization ↵ and the projection ⇡.

The diagram in Figure 1 shows the reference mesh
MR, the physical mesh MP consisting of three ele-
ments, the target curve C and the di↵eomorphism ⇡.
The disparity measure between the high-order mesh
and the curve is the minimal projection error

d(MP , C) = inf
⇡2⇧

0
@

Z

MP

|x� ⇡(x)|2dx

1
A

1/2

, (3)

where |·| denotes the Euclidean norm of vectors. Defin-
ing the functional

E(x, ⇡) =

Z

MP

|x� ⇡(x)|2dx (4)

=

Z

MR

|�P (⇠)� ⇡ � �P (⇠)|2|�̇P (⇠)|d⇠ (5)

= ||�P � ⇡ � �P ||2�, (6)

we establish the following relation:

d(MP , C)2 = inf
⇡2⇧

E(x, ⇡). (7)

Notice that we use the sub-index � to denote that it
is integral with weight |�̇P |.
Consider any possible curve reparametrization: ↵ � s.
As in (1), we define a 1D mesh through the mapping:

'Q|eR : eR ! eQ ⇢ R (8)

⇠ ! s =

q+1X

i=1

si · Nq
i (⇠). (9)

Note 1 The mesh �P is in the physical space whereas
'Q is a mesh in the parametric space. Modifying 'Q

results in di↵erent curve parametrizations.

14

As shown in Figure 1, we have that ⇡ � �P = ↵ � 'Q.
Hence, we can reformulate the problem:

E(x, ⇡) = E(x, s) = ||x�↵ � s||2� (10)

=

Z

MR

|�P (⇠)�↵ � 'Q(⇠)|2|�̇P (⇠)|d⇠. (11)

Therefore, the mapping s : MR ! MQ needs to be
a di↵eomorphism, too. In Section 3, we show how to
enforce this numerically.

Optimizing E with respect to s gives the disparity be-
tween the mesh and the curve. If we optimize E with
respect to both x and s, we obtain the mesh with op-
timal geometric accuracy according to the disparity
measure. We define the optimal approximation as:

x?, s? = arg min
x,s

||x�↵ � s||2� (12)

= arg min
x,s

Z

MR

|x(⇠)�↵ � s(⇠)|2|ẋ(⇠)|d⇠. (13)

Remark 1 The optimal s? (with respect to x?) min-
imizes the error in the tangent direction. In Figure
2, we draw the point-wise errors starting with an in-
terpolative mesh. After optimization, we see that the
errors align with the curve normal direction.

Interpolation Optimization

x

↵ � s

x?

↵ � s?

Figure 2: a circle meshed with two p = 2 elements
showing the point-wise errors (solid deep blue lines).
The curve normal direction is denoted by dashed light
blue lines.

2.2 An example of super-convergence

Let us discuss the role played by the physical (x) and
parametric (s) meshes. Figure 3 shows several point-
wise errors: first, we approximate the circle with in-
terpolative meshes: (x0, s0). Then, we compute the
disparity measure of this mesh optimizing the para-
metric mesh, s? = arg min

s
||x � ↵ � s||2�. Finally, we

optimize both: x?, s? = arg min
x,s

||x � ↵ � s||2�. No-

tice that the optimal mesh significantly improves the
geometric error.

|x�↵|
|x�↵ � s?|
|x? �↵ � s?|

⇠

|er
ro

r|

Figure 3: point-wise errors approximating a circle
with two elements of degree p = 2 obtained with: di-
rect interpolation |x(⇠) � ↵(⇠)| (dashed green), the
disparity |x(⇠)�↵ � s?(⇠)| (dotted light blue) and the
optimized disparity |x?(⇠)�↵�s?(⇠)| (solid deep blue).

In Figure 4, we show convergence plots of the dis-
parity measure when approximating the same circle
using meshes of degree p = 2, 3, 4 and for several h-
refinements. The initial disparity gives to p + 1 or-
der. On the other hand, the slope of the optimal pair
(x?, s?) shows a convergence order of 2p.

CR=2p

||x�↵ � s?||�
||x? �↵ � s?||�

p = 2

p = 3

p = 4

||
·|

| �

Figure 4: slopes (log-log) of the disparity approxi-
mating a circle for several mesh refinements showing
the convergence rates (CR) before (x, s?) and after
(x?, s?) optimizing the disparity measure.

2.3 Optimization challenges

The solution (x?, s?) = arg min
x,s

E(x, s) is found with

a monotone backtracking line search:

(xn+1, sn+1) = (xn, sn) + ↵�n, (14)

where �n is a Newton step and ↵ 2 (0, 1] is such that

En+1 < En + ↵10�4�n · rEn (Armijo rule). (15)

This rule ensures that the objective function (dispar-
ity) decreases in every step. However, it has an impact
on the number of iterations. Furthermore, decreasing
En does not assure valid solutions; since s is uncon-
strained, ↵ � s can tangle during minimization.

In Figure 5, we show the optimization results for the
six edges of a simple CAD body obtained from ESP
[12]. We study the number of iterations (top) as well as
the point-wise errors (bottom). The point-wise error
is computed as |x�↵�s| (initial) and |x?�↵�s?| (op-
timal), respectively. Observe that although the error
improves, the number of iterations is large, reaching
almost 4000 in several cases.

15

Iterations

CAD model

6 edges

Elements

p = 2 p = 3

Point-wise errors (top view)

Initial Optimal |error|

p = 2

p = 3

Figure 5: optimal disparity using the Armijo rule
for the 6 edges of a CAD model and meshes consisting
of 8 elements (degrees p = 2, 3). The plots show the
iterations taken by the optimizer (top) and the initial
and optimal point-wise errors respectively (bottom).

This paper addresses these computational issues.
First, we propose reducing the dimension of the opti-
mization problem by defining a constrained disparity
functional with fixed element interfaces. Second, we
insert a logarithmic barrier preventing s? from tan-
gling. Last, we introduce the average line search in
[10] reducing the number of nonlinear iterations.

3. NEW SOLVER: CONSTRAINED
OPTIMIZATION, LOG BARRIER
AND AVERAGE LINE SEARCH

We now present a modified optimization approach for
the disparity. We give an analogous mathematical for-
mulation and highlight the di↵erences with respect to
the original method. Then, we focus on the solver de-
tails and introduce two major modifications: the log
barrier function which e↵ectively prevents curves from
tangling and the Zhang-Hager [10] line search.

3.1 Optimizing the constrained disparity

To optimize the geometric accuracy of a high-order
mesh, we solve the problem:

E(x?, s?) = min
x,s

||x�↵ � s||2�,

with x consisting of elements of degree p and s ele-
ments of degree q. Since we define our elements as

all possible mappings from the reference to the phys-
ical element: �P : eR ! eP , we are considering all
possible partitions along the curve. Thus, the optimal
mesh according to the disparity alters the initial ele-
ment partition. This is illustrated in Figure 6 where
we have optimized a spiral curve. The initial element
configuration both in x and s changes after optimiza-
tion, moving elements towards the spiral end.

Initial Optimal

Mesh x

Mesh s

Figure 6: a spiral approximated with 6 elements
(interfaces denoted by �, ?) showing the meshes x and
s before and after optimizing the disparity.

Assume now a fixed element configuration and, at each
element, define the meshes by

x̃(⇠) = x0N
p
0 (⇠) + xpNp

p+1(⇠)| {z }
xF (⇠)

+

pX

i=2

x̃i · Np
i (⇠), (16)

s̃(⇠) = s0N
q
0 (⇠) + sqN

q
q+1(⇠)| {z }

sF (⇠)

+

qX

i=2

s̃i · Nq
i (⇠), (17)

where x0, xp+1, s0, sq+1 are fixed throughout the
optimization. Note that the indices run from 2 to p
and 2 to q respectively, excluding the first and last
nodes. We define the optimal constrained mesh as

x̃?, s̃? = arg min
x̃,s̃

||x̃�↵ � s̃||2�. (18)

Note that the overall accuracy is dictated by the initial
element distribution. A uniform parametric partition
on the CAD may lead to a poor element distribution.
When a curvature-based mesher is not available, we
propose a pre-processing stage: first, optimize the un-
constrained disparity functional and obtain the linear
meshes (x?

1, s?1) with optimal (in the disparity sense)
element distribution. Then, we p-refine using s?1:

• For each element in the parametric mesh, we cre-
ate a high-order element in the physical mesh.

• For each element of the parametric mesh, the
nodes of the physical mesh are created as

xi = ↵ � s?1(⇠i), i = 1, . . . , p + 1,

where ⇠i is a distribution of high-order nodes in
the master element.

16

Finally, we fix the high-order element interfaces and
optimize the constrained disparity functional. In Sec-
tion 4, we show an example of how the initial inter-
polative meshes benefit from this pre-processing stage.

3.2 Logarithmic barrier

The commutative diagram shown in Figure 1 holds if
all mappings are di↵eomorphisms. Since there are no
constraints in formulation (12), in particular, di↵eo-
morphism s is not actively enforced. The curve will
tangle if elements in the parametric mesh s are in-
verted. A possible solution is to add a constraint on
s0 through the line search [13, 14]. Alternatively, we
can avoid curve tangling by introducing a log barrier
function.

log barrier [15, Ch.9]: consider the nonlinear pro-
gramming problem:

min f(x) subject to ci � 0, i = 1, . . . , m.

The logarithmic barrier is a penalty term that moves
the optimizer away from violating any of the con-
straints ci. For a given µ, one can solve instead

min
x

P (x; µ) = min
x

f(x)� µ

mX

i=1

log(ci(x)).

A suitable curve parametrization should follow the
curve either forward or backwards. When we compose
↵ � s, we can ensure that the reparametrization pre-
serves direction by fixing the sign of s0 (positive being
forward and negative backwards) at the beginning of
the optimization. For example, in Figure 7 we show a
NACA curve and the initial parametrization ↵�s = ↵.
Note that since s has not been optimized, it behaves
as a linear mapping with a constant derivative.

↵ � s

s0

Figure 7: initial parametrization of a NACA curve
and the s0 profile with respect to the zero axis (. . .).

Regarding the disparity (either constrained or uncon-
strained), we want to solve:

min
x,s

E(x, s) subject to s0(⇠) > 0 8⇠.

Remark 2 In this case, E can be used to obtain ei-
ther the original (x?, s?) or the constrained (x̃?, s̃?)
solutions. Both solutions benefit from this technique.

We need a continuous barrier function so we introduce:

P (x, s; µ) = E(x, s)� µ

Z

MR

log(s0(⇠))d⇠. (19)

For each µ, we optimize instead the following:

(x?, s?) = arg min
x,s

P (x, s; µ), (20)

and use that if s is not tangled, then

lim
µ!0

P (x, s; µ) = E(x, s).

Note 2 In practise, the log-barrier is activated only if
at a particular Newton step, the solver detects a change
in the sign of s0. This check is done oversampling s
at each element. At that point, it retrieves the previ-
ous valid pair (xn, sn) and solves instead the penalized
problem P (x, s; µk), k = 1, . . . , M .

In Figure 8 (left), we show the optimized NACA curve
↵ � s without a log barrier where the curve develops
artificial loops. Observe how the derivative profile s0

crosses the zero axis in several locations. On the right,
we show the same curve but optimized with the log-
barrier, resulting in a valid curve.

Unconstrained Log barrier
↵ � s

s0

Figure 8: untangling the NACA curve. Optimizing
with and without log barrier. (. . .) denotes s0 = 0.

3.3 Zhang-Hager line search

We find the solution to our minimization problem com-
bining Newton with backtracking line search:

(xn+1, sn+1) = (xn, sn) + ↵ndn. (21)

Let r(·) and H(·) denote the gradient and Hessian
operators respectively and �n a Newton step:

H(En)�n = �r(En). (22)

At each iteration, we ensure a descent direction using:

dn :=

8
<
:

�n, if �n · rEn < 0,

�
h
diag(H(En))

i�1

rEn, otherwise.

(23)

17

As mentioned before, the standard line search choice
is the Armijo (monotone) rule: ↵ 2 (0, 1] satisfies that

En+1 < En + ↵10�4dn · rEn. (24)

Instead, we use a type of Zhang-Hager nonmonotone
line search [10]. Let C0 = E0, Q0 = 1 and define:

Qn+1 = ⌘nQn + 1 Cn+1 =
⌘nQnCn + En+1

Qn+1
, (25)

Notice that ⌘ ⌘ 0 gives Armijo’s monotone line search.
On the other hand, ⌘ ⌘ 1 gives an average based rule:

Cn =
1

n

nX

i=1

En, (26)

which is the one that we will use in our experiments.
Finally, ↵n satisfies Wolfe conditions:

En+1  Cn + �1↵nrEn · dn (27)

rEn+1 · dn � �2rEn · dn (28)

with �1 = 10�4 and �2 = 0.9 as suggested in [15].

3.4 Algorithm

We provide the implementation details of the proposed
solver for the optimization of the constrained and un-
constrained disparity measure, see Algorithm 1.

For the constrained problem, we solve the nonlinear
optimization problem:

Ẽ(x̃?, s̃?) = min
x̃,s̃

||x̃�↵ � s̃||�, (29)

where x̃ and s̃ have the element interfaces fixed.

The main function is OPTIMIZE. It takes several ar-
guments: ↵ gives information about the curve. Pa-
rameters p and q denote the polynomial degrees in
x and s, respectively. M is the number of outer itera-
tions corresponding to the log barrier term µ and N the
maximum nonlinear iterations allowed. In our exper-
iments, we use M=6 with µ decreasing by a factor of
10�2 at each step. The parameter optimizePartitions
indicates whether or not the initial element partition
should be optimized (using the original disparity with
p = q = 1). Finally, freeInterfaces is a flag indicating
if the element interfaces are fixed or not.

At the start (lines 2-5), we check if the CAD model has
already an initial tessellation. Otherwise, we create
an element partition. Then, if optimizePartitions is
activated, we set p = q = 1 and call again the function
optimize with the flag freeInterfaces activated (lines 6-
7). In this case, the same routine follows but changes
Ẽ (constrained) to E (original disparity). Next (line

Algorithm 1 constrained disparity minimization

1: function Optimize(↵, p, q, M, N, optimizeParti-

tion, freeInterfaces)

2: if ↵.tess = true then

3: r = ↵.tess

4: else

5: r = divide(↵, n)

6: if optimizePartition = true then

7: r, Optimize(↵, 1, 1, M, N, false, true)

8: x̃0, s̃0 Refine(↵, r, p, q)

9: µ = 0; logBarrier = false;

10: for m = 1 :M do

11: if m =M then

12: µ = 0

13: else

14: µ = µ · 10�2

15: for n=1:N do

16: rEn, H(En) GradHess(↵, xn, sn,

freeInterfaces, µk)

17: if |r(En)| < tol then

18: break

19: � = �H(En)�1rEn

20: if � · rEn < 0 then

21: d = �

22: else

23: d = �
h
diag(H(En))

i�1

rEn

24: � = 1

25: repeat

26: (x̃n+1, s̃n+1) = (x̃n, s̃n) + �d

27: � = �/2

28: until ZhangHager(x̃n+1, s̃n+1) = true

29: if any(sign(s̃0n+1) 6= sign(s̃00)) then

30: (xn+1, sn+1) = (xn, sn)

31: µ = ||x̃n �↵ � s̃n||2�
32: logBarrier = true

33: break

34: if logBarrier = false then

35: break

36: return x̃n, s̃n

8), we generate the high-order interpolative meshes.
At each element, we set:

x̃(⇠) = x0(⇠) +

pX

i=2

x̃iN
p
i (⇠), (30)

s̃(⇠) = s0(⇠) +

qX

i=2

xiN
q
i (⇠), (31)

where x0, s0 are fixed (free) when optimizing Ẽ (E).

We then initialize the log barrier variable (line 9) and
enter the optimization loops. The outer loop (starting
at line 10) corresponds to the penalized problem (equa-

18

tion (19)). The inner loop (lines 15-34) is the back-
tracking Newton scheme minimizing Ẽ(x̃?, s̃?). We
compute the gradient and Hessian (line 16) and check
the stopping criteria (lines 17-19). In our experiments,
it corresponds to tol = 10�12. Then, a descent direc-
tion is chosen (lines 19-23) and the solver enters a loop
until the line search condition is met (lines 25-28). Fi-
nally, we sample s0 for any changes in its sign. If so,
we activate the log barrier (lines 29-32). The main
function returns the optimized pair (x̃n, s̃n).

4. EXPLOITING LOCAL HIGHER
ORDER ACCURACY

4.1 Constrained versus unconstrained op-
timization

Here we compare the convergence of the solution to the
target geometry for the constrained and unconstrained
optimization of the disparity. Then, we study the error
behaviour focusing on a single element and show that
it is possible to attain super-convergence optimizing
only the internal nodes.

In Figure 9, we show the point-wise errors of the orig-
inal (x?, s?) and constrained (x̃?, s̃?) optimization us-
ing the spiral from Section 3 as the target geometry
(Figure 6). The point-wise error |x̃?�↵ � s̃?| is larger
than |x? �↵ � s?|. Also, unlike x?, x̃? interpolates at
the element interfaces. We will see that despite having
larger errors, the constrained problem preserves the
super-convergent behavior from the original disparity.

|x? �↵ � s?|
|x̃? �↵ � s̃?|

|er
ro

r|

⇠

Figure 9: spatial error distribution showing element
interfaces (light blue) for the minimization arguments
(x?, s?) (solid green) and (x̃?, s̃?) (dashed deep blue)
of the original and constrained disparity, respectively.

Fixing element interfaces transforms the optimization
problem in R (total elements) independent copies.
This is illustrated in Figure 10 for a semi-circle succes-
sively split into 1,2 and 4 elements and the correspond-
ing errors after optimizing the constrained disparity.
Note that only the internal nodes are considered dur-
ing optimization, reducing the problem dimension.

In Figure 11, we show convergence plots for a circle
and a sphere arc for p = 2, 3, 4 and five mesh refine-
ments. For the 2D case, as for the original dispar-
ity, we attain 2p order. For the 3D case, we obtain
b 3

2
(p� 1)c+ 2 order. This means that the p = 2 leads

R=1

|x�↵ � s| |x̃? �↵ � s̃?|

R=2

R=4

Curves Point-wise errors

Figure 10: h-refinement (R=1,2, 4 elements) for
p = 2 meshes. Left: optimized curves x̃? (solid deep
blue) and ↵ � s̃? (dashed green). Right: error curves
featuring roots (dots) and interface points (solid dots).

to the usual third order. However, the errors are lower
than those resulting from direct interpolation. Later,
when we look at the error over a single element, we dis-
cuss why we attain respectively, 2p and b 3

2
(p�1)c+2.

Now, we use as the target geometry the edges of a CAD
model. Figure 12 shows convergence plots for the top
edge. Although the disparity values with fixed inter-
faces are slightly larger, the order of accuracy is the
same as freeing interfaces and both cases significantly
improve the initial approximation. In Figure 13, we
show the point-wise errors after optimizing all edges
for p = 2, 3 and 20 elements per edge. Concerning the
initial approximation, both the constrained and orig-
inal optimization decrease the errors with the same
magnitude.

4.2 Planar curves: error profile for a single
element.

Here, we study the local behaviour of the optimizer
focusing on a single element. We use a semi-circle as
the target geometry to make the plots clearer.

In Figure 14, we show the point-wise error plots when
approximating a semi-circle with a single element for

19

2D curve: circle

CR=2p

||x̃? �↵ � s̃?||�p=2

p=3

p=4

||
·|

| �

↵

3D curve: sphere arc

CR=b 3
2
(p�1)c+2

||x̃? �↵ � s̃?||�
p=2

p=3

p=4

||
·|

| �

↵

Figure 11: slopes (log-log) of the || · ||� norm for sev-
eral mesh refinements showing the convergence rates
(CR) for a 2D (top) and 3D (bottom) after optimizing
the constrained disparity (x̃?, s̃?).

||
·|

| �

p = 2

p = 3

p = 2

p = 3

||x�↵||�
||x̃? �↵ � s̃?||�
||x? �↵ � s?||�

Figure 12: slopes (log-log) of the || · ||� norm for
several mesh refinements for the top curve of the CAD
model (marked in blue) using direct interpolation (dot-
ted dark blue) vs. optimizing the constrained (solid
light blue) and the original (dashed green) disparities.

several polynomial degrees. The y-axis denotes the
magnitude of the error e = e(⇠) = |x(⇠) � ↵ � s(⇠)|.
The initial approximation (interpolation) is a polyno-
mial of degree p and the error curve has the expected
behaviour: p + 1 roots. The right plots show the re-
sults from both optimizations: fixed and free element
interfaces. Notice that although the fixing interfaces
produces slight larger errors, both solutions behave
similarly: the curves have 2p roots (instead of p + 1).

CAD Edges: 6

Initial Opt. fix Opt. free

p = 2

|error|

p = 3

|error|

Figure 13: point-wise errors |x � ↵ � s| (top view)
approximating the edges of a CAD model with meshes
made of 20 elements and p = 2, 3, respectively. From
left to right: direct interpolation, optimizing the con-
strained (fix) and original disparities .

e e? ẽ?

p
=

2
p
=

3
p
=

4

Initial Optimized

Figure 14: point-wise error plots e = |x � ↵ � s|
approximating a semi-circle with a single element be-
fore (left) and after optimizing (right) the constrained
(solid deep blue, (x̃?, s̃?)) and the original disparity
(dashed light blue, (x?, s?)).

In Section 2 (Figure 2) we showed with a circle that the
point-wise errors align with the curve normal direction

20

after optimization. Now we will discuss how this can
be related to the disparity super-convergent property.
Denote {t, n} the curve tangent and normal vectors
respectively. For planar curves, we can decompose the
error e = x�↵ � s along these directions:

e = (e · t)t + (e · n)n.

The parametric mesh s uses polynomials of degree q
so at each element, we have a total of q + 1 degrees of
freedom. On the other hand, since our physical mesh
uses polynomials of degree p in R2, it has 2(p + 1)
degrees of freedom per element. Since our problem is
constrained (fixed interfaces) we have a total of q +
1� 2 + 2(p + 1� 2) degrees of freedom (per element).
Hence, we can have (2p � 2) + (q � 1) equations that
will be optimizing the disparity.

During optimization, we impose zero tangent error
(weakly) in q� 1 equations. If we assume that solving
the nonlinear equations behaves similar to interpola-
tion, we would expect at least q + 1 roots in the error
function. Recall that the end-points are fixed, hence
why we go from q�1 to q +1. This is shown in Figure
12 for the q = 2p�1 case: the optimized tangent error
has 5 and 7 roots for p = 2, 3, respectively.

The 2p � 2 remaining equations are used to impose
the total error equal to zero. Assume we can make the
tangent error as small as desired by increasing q. At
the optimum, we can think of these 2p � 2 equations
essentially imposing zero normal error (weakly). With
the same reasoning as for s, we expect 2p roots along
the normal component. The +2 corresponds to the
interfaces which are interpolation points. This can be
appreciated in Figure 15 looking at the plots from the
optimized case. Also, provided q > 2p� 1, the normal
error dictates the overall accuracy. Note that in both
q = 2p� 1 and q = 10, the normal error is larger.

4.3 Discussion for 3D curves

We have just discussed the 2D case and how the opti-
mal error behaves in terms of the tangent and normal
component. We will now extend our results to the 3D
case. In this case, the error decomposition becomes:

e = (e · t)t + (e · n)n + (e · b)b, (32)

where e = x�↵�s and {t, n, b} are the curve tangent,
normal and binormal vectors, respectively. Our physi-
cal mesh uses polynomials of degree p in 3D space with
fixed end-points. So, at each element, we have 3(p�1)
degrees of freedom. As for the 2D case, we impose in
q � 1 equations zero tangent error (weakly). The rest
3(p� 1) equations impose total zero error (weakly).

As before, we assume that the tangent error decreases
as q increases. At the optimum, the combined solution

p = 2 p = 3

Initial

t

n

Optimal

q=2p�1

Optimal

q=10

Figure 15: tangent (t) and normal (n) error com-
ponents approximating a semi-circle with one element
before and after optimizing the internal nodes.

implies that we have 3(p� 1) equations imposing zero
along both the normal and binormal components. In
analogy with the 2D discussion, we now expect at least
b 3

2
(p�1)c interpolation points along each component:

{n, b}. Since end-points interpolate the curve, it gives
(b 3

2
(p� 1)c+ 2) roots per component.

In Figure 16, we show the error plots before and after
optimizing the constrained disparity approximating a
sphere arc with a single element. As for the 2D case, as
x̃ follows the image of ↵ � s̃, s̃ minimizes the tangent
error. Notice that when s is of degree q = 10, the
tangent error is negligible compared to the other two
components. Also, observe how we obtain both along
the normal and binormal directions: 5 = b 3

2
(3�1)c+2

roots for p = 3 and at least 6 = b 3
2
(4�1)c+2 for p = 4.

p = 3 p = 4

Initial

t

n
b

Optimal

q=10

Figure 16: tangent, normal and binormal {t, n, b}
errors approximating a sphere arc with one element
before and after minimizing the constrained disparity.

21

4.4 Mesh initialization

Here, we focus on the element partition. In Figure 17
(top), we show a p = 2 mesh approximating a spline-
based NACA curve with ESP [12] using direct interpo-
lation. In this case, the elements are equi-distributed
along the curve parametric space. Notice that the
leading edge is poorly resolved. We can improve the
element partition optimizing the original disparity us-
ing p = q = 1 meshes. Then, we save the partition in
s? and p-refine both meshes: s and x. The result is
shown at the bottom images from Figure 17. Notice
that now the leading edge is well approximated. Alter-
natively, we could have obtained the initial partition
performing an arc-length based optimization [16].

In Figure 18, we study the accuracy of the initial
meshes (before optimization) for p = 1, 2, 3 when ap-
proximating the NACA curve. We compare sampling
directly along the parametric space (s1 equi-par) with
the pre-processing step: optimizing the linear meshes
(s1 opt. all). Notice that the errors significantly im-
prove for the latter one. We also show the case where
only the coarser mesh is optimized (s1 opt. first).
Then, the finer meshes are obtained splitting directly
each element in two. In this case, the errors are compa-
rable to optimizing at every refinement. This approach
can be used to save computational time.

Equi-parametric elements

Leading
edge:

Optimized element sizes

Leading
edge:

Figure 17: interpolating a NACA curve with 10 el-
ements (p = 2) using an equi-parametric distribution
(top) vs. the proposed pre-processing step (bottom).

5. NUMERICAL RESULTS

Here, we perform several numerical experiments for
the solver performance in terms of the number of it-
erations. We start studying the impact of the line
search choice. Finally, we discuss the trade-o↵s be-
tween errors and iterations comparing the constrained
disparity to the original formulation.

Elements

||x
�

↵
�s

|| s1 equi-par

s1 opt. first

s1 opt. all

Figure 18: log-log error plots of the initial meshes
approximating a NACA curve for several refinements
comparing equi-parametric elements (dotted lines) to
optimizing only the coarser mesh (dashed lines) and
optimizing at every h-refinement (solid lines).

5.1 Zhang-Hager vs. Armijo line search

Here, we compare the performance between Armijo
and the average line search. In Figure 19, we show the
error contours for a CAD body to highlight that both
Armijo and Zhang search produce exactly the same so-
lution. In Figure 20, we compare iterations for three
di↵erent curves and polynomial degrees. Looking at
the number of nonlinear iterations, Zhang-Hager line
search is systematically faster than Armijo. On aver-
age, it is 76% faster (in terms of iterations).

Body Initial

Armijo Zhang

|error|

Figure 19: point-wise errors (top view) at the six
edges of a CAD body before and after optimizing the
original disparity using Armijo vs. Zhang-Hager rule.
Each edge consists of eight p = 2 elements.

5.2 Constrained optimization: errors vs.
iterations

Here, we focus on more complex bodies made of sev-
eral surfaces and study the trade-o↵s from fixing the
interfaces. We omit straight edges since they can be
represented exactly with linear elements and set a stop
criterion of |r(E)| < 10�12.

In Figure 21, we show a CAD model made of 54 edges
out of which 36 are curved. We use meshes consist-

22

p = 2

p = 3

p = 4

Armijo Zhang
E

le
m

en
ts

Iterations (log scale)

Figure 20: Armijo vs. Zhang line searches optimiz-
ing curves (analytic and CAD) for degrees p = 2, 3, 4.
The % in the bars indicate relative lesser iterations.

ing of p = 3, q = 9 elements and compare the results
from computing the constrained and original dispar-
ities. The optimal pair (x?, s?) (free interfaces) pro-
duces lower errors, although in some cases, the con-
strained solution (x̃?, s̃?) leads to a lower disparity
value. This is because, in that case, the optimization
of the original disparity converged to a local minimum
with a higher disparity value. Optimizing the disparity
with fixed interfaces took a maximum of 23 iterations
whereas the unconstrained problem took a maximum
of 808. On average, the constrained problem converges
in 9 iterations, and the original in 167.

Finally, in Figure 22 we present an aircraft model con-
sisting of 102 faces and 238 edges. Since the model is
symmetric, we study only its left half. This gives 51
curves that we approximate with p = 2 meshes. In
this case, optimizing the constrained disparity took
a maximum of 43 iterations whereas optimizing the
original disparity went, in many cases, beyond 500 it-
erations. In both cases, we have used the Zhang-Hager
line search. On average, the constrained problem takes
4 iterations to converge compared to 387 taken by the
unconstrained problem, becoming 87% faster.

6. CONCLUSIONS

We have developed a robust solver designed to min-
imize the disparity measure. We have introduced a
log barrier penalty term to avoid curve tangling. The
Zhang-Hager average line search is less restrictive, pro-
ducing the same results as the Armijo rule in signif-
icantly fewer iterations. On average, it reduces the
number of iterations by 76%.

The original disparity (free interfaces) gives optimal
errors. On the other hand, the constrained dispar-

CAD Model Model Edges

||x
�

↵
�

s
||

Edges

Initial

Opt. free

Opt. fix

It
e
ra

ti
o
n
s

Opt. free

Opt. fix

Edges

Figure 21: fix vs. free interfaces optimization for
p = 3 meshes approximating all the curved edges of a
CAD model. Total elements: 560.

ity (fixed interfaces) is sub-optimal in terms of the
error but still yields super-convergence. We have nu-
merically shown how both disparities are 2p super-
convergent for 2D curves and b 3

2
(p�1)c+2 for curves

in 3D space.

Initially, solving the original disparity with the Armijo
rule took, on average, around 2000 nonlinear itera-
tions. Our experiments for fixed element interfaces
show that optimizing the disparity with the Zhang-
Hager line-search, produces a residual less than 10�12

in less than 10 iterations. This corresponds to a re-
duction factor of 100 when compared to the original
optimization of the problem. In the future, we will
extend this methodology to surface mesh generation.

7. ACKNOWLEDGEMENTS

This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation
programme under the Marie Skodowska-Curie grant
agreement No 893378 as well as the European Re-
search Council (ERC) grant agreement No 715546.

23

CAD Model

Model Edges

||x
�

↵
�

s
||

Edges

Initial

Opt. free

Opt. fix

It
e
ra

ti
o
n
s

Opt. free

Opt. fix

Edges

Figure 22: fix vs. free element interfaces optimiza-
tion for p = 2 meshes approximating all the curved
edges of an aircraft model. Total elements: 1375.

References

[1] Slotnick J.P., Khodadoust A., Alonso J., Darmo-
fal D., Gropp W., Lurie E., Mavriplis D.J. “CFD
vision 2030 study: a path to revolutionary com-
putational aerosciences.” Tech. Rep. NASA/CR-
2014-218178, 2014

[2] Alt H., Godau M. “Computing the Fréchet dis-
tance between two polygonal curves.” Int. J.
Comput. Geom. Appl., vol. 5, 75–91, 1995

[3] Remacle J., Lambrechts J., Geuzaine C.,
Toulorge T. “Optimizing the geometrical accu-
racy of 2D curvilinear meshes.” Procedia Eng.,
vol. 82, 228–239, 2014. 23rd International Mesh-
ing Roundtable

[4] Toulorge T., Lambrechts J., Remacle J.F. “Op-
timizing the geometrical accuracy of curvilinear
meshes.” Journal of Computational Physics, vol.
310, 361–380, 2016

[5] Ruiz-Girons E., Sarrate J., Roca X. “Defin-
ing an L2-disparity measure to check and im-
prove the geometric accuracy of non-interpolating
curved high-order meshes.” Procedia Eng., vol.
124, 122–134, 2015. 24th International Meshing
Roundtable

[6] Ruiz-Girons E., Sarrate J., Roca X. “Generation
of curved high-order meshes with optimal qual-
ity and geometric accuracy.” Procedia Eng., vol.
163, 315–327, 2016. 25th International Meshing
Roundtable

[7] Ruiz-Girons E., Sarrate J., Roca X. “Measuring
and improving the geometric accuracy of piece-
wise polynomial boundary meshes.” J. Comput.
Phys.on, vol. 443, 110500, 2021

[8] Dai Y.H. “On the nonmonotone line search.”
Journal of Optimization Theory and Applica-
tions, vol. 112, no. 2, 315–330, 2002

[9] Grippo L., Lampariello F., Lucidi S. “A non-
monotone line search technique for Newtons
method.” SIAM Journal on Numerical Analysis,
vol. 23, no. 4, 707–716, 1986

[10] Zhang H., Hager W.W. “A nonmonotone line
search technique and its application to uncon-
strained optimization.” SIAM Journal on Opti-
mization, vol. 14, no. 4, 1043–1056, 2004

[11] Toint P.L. “An Assessment of nonmonotone
linesearch techniques for unconstrained optimiza-
tion.” SIAM Journal on Scientific Computing,
vol. 17, no. 3, 725–739, 1996

[12] Haimes R., Dannenho↵er J. “The engineer-
ing sketch pad: A solid-modeling, feature-based,
web-enabled system for building parametric ge-
ometry.” Sep. 2013. 21st AIAA Computational
Fluid Dynamics Conference

[13] Garimella R.V., Shashkov M.J., Knupp P.M.
“Triangular and quadrilateral surface mesh qual-
ity optimization using local parametrization.”
Computer Methods in Applied Mechanics and En-
gineering, vol. 193, no. 9, 913–928, 2004

[14] Dobrev V., Knupp P., Kolev T., Mittal K., Tomov
V. “The Target-Matrix Optimization Paradigm
for High-Order Meshes.” SIAM Journal on Sci-
entific Computing, vol. 41, no. 1, B50–B68, 2019

[15] Nocedal J., Wright S. Numerical Optimization.
Springer Science & Business Media, 2006

[16] McLaurin D., Shontz S.M. “Automated edge grid
generation based on arc-length optimization.”
Proceedings of the 22nd International Meshing
Roundtable, pp. 385–403. Springer International
Publishing, 2014

24

AUTOMATIC GENERATION OF
LOAD-BALANCING-AWARE BLOCK-STRUCTURED

GRIDS FOR COMPLEX OCEAN DOMAINS

Daniel Zint1,2 Roberto Grosso1 Vadym Aizinger3 Sara Faghih-Naini1,3

Sebastian Kuckuk1,4 Harald Köstler1

1Friedrich-Alexander-University Erlangen-Nuremberg, Germany, daniel.zint@fau.de
2INRIA Sophia-Antipolis, France, daniel.zint@inria.fr

3University of Bayreuth, Germany
4Erlangen National High Performance Computing Center (NHR@FAU)

ABSTRACT

Many high-performance computing applications involve sophisticated finite element simulations on complex domains
and, for this reason, often cannot use a single structured grid for the entire domain. A popular alternative are
block-structured grids (BSGs) that are more flexible geometrically but still o↵er a significant amount of structure.
However, the standard generation process for BSGs relies heavily on manual input to define the segmentation of the
computational domain – a rather di�cult task to perform for complex geometries. Ocean domains often contain
fractal boundary shapes and details such as islands and channels that cannot be accurately represented using BSGs.
We present a method to automatically generate BSGs with an exactly specified number of blocks for real-world
domains arising in 2D ocean simulations. Our BSGs consist of quad blocks refined via structured triangular grids and
employ masks to accurately represent small features. The performance of the proposed BSG generation method is
evaluated for realistic ocean domains and validated using simulations of the two-dimensional shallow water equations
discretized by the discontinuous Galerkin method.

Keywords: mesh generation, block-structured grids, high-performance computing, discontinuous
Galerkin method, ocean simulation, shallow water equations

1. INTRODUCTION

The accuracy and the computational performance of
finite element models is strongly a↵ected by the type
and the quality of the employed computational mesh.
Structured grids enable memory access in repeated
regular stencils and therefore o↵er nearly optimal
e�ciency [1]. Discretizations utilizing unstructured
meshes need to additionally load indexing data and
they access memory in irregular fashion resulting in
cache misses which reduce performance [2]. Never-
theless, unstructured meshes are often favored due to
their geometrical flexibility – many domains with com-
plex boundaries and varying element sizes cannot be

accurately represented by structured grids at all – and
the ability to adapt resolution in accordance with the
application requirements. Furthermore, the grid struc-
ture also plays an important role for load balance in
distributed computations. As pointed out in [3], the
grid should be adapted to the hardware that is used
for the simulation. In addition, the size of mesh ele-
ments determines the maximum admissible time step
in explicit simulations of time-dependent problems,
whereas the element shape critically a↵ects the sta-
bility of a finite element discretization. A triangular
element, for example, is considered optimal if it is equi-
lateral; the more it is distorted the worse its quality.
Element quality can be measured by the mean ratio

25

metric [4, 5],

qmrm = 4
p

3
AP3

i=0 l2i
, (1)

where A is the signed area of the triangle (the sign
indicates flipped triangles), and li are the lengths of
its edges. Numerical errors caused by low-quality ele-
ments degrade the results or may even cause a blow-up
of the simulation. Also, the element size has an influ-
ence on the discretization error.

A compromise between the performance of a struc-
tured grid and the flexibility of an unstructured one
is a block-structured grid (BSG). It consists of an
unstructured block-mesh where each block contains
a structured grid. BSGs certainly alleviate the prob-
lem with complex domains but do not solve it com-
pletely. Since BSGs are complicated to generate au-
tomatically they are mostly used for simple domains,
and the block structure is usually optimized for specific
applications (e.g. turbine blades). For ocean domains,
no such simple segmentation is possible; in addition,
real-world geometries often contain application-critical
small-scale features. This presents a major di�culty
for the BSG methodology: Given a certain minimum
block size, islands or other domain features smaller
than this size cannot be represented.

In the current work, we introduce and evaluate a mask-
ing approach aiming to solve this issue: Our BSGs
are generated for simplified geometries that do not
resolve features smaller than the given block size; in-
stead, the excessive elements (those outside of the cor-
rectly resolved geometry) are masked, i.e. excluded
from the simulation. Starting from a user-provided
unstructured triangular mesh, our method automati-
cally generates a BSG of a given density with a pre-
scribed number of topologically uniform blocks. Op-
timal load balance in a parallel simulation is achieved
by choosing the number of blocks to be a multiple
of the processing units. Complex boundaries and
small islands that usually cannot be represented with
BSGs are restored by masking elements and reposi-
tioning boundary vertices. The code is available at
https://github.com/DanielZint/hpmeshgen.

This paper is structured as follows. In Section 2, we
describe related work. The generation of the block
structure is presented in Section 3. The refinement
of blocks, the masking, and the adaptation to the do-
main are described in Section 4. BSGs for selected
real-world domains and simulation results used for val-
idation of our approach can be found in Section 5, and
a short Conclusions & Outlook section wraps up this
work.

2. RELATED WORK

Considering that BSGs are used in many high-
performance computing applications, e.g. [6, 7, 8, 9],
there is surprisingly little literature on generating such
grids. Armstrong et al. showed in [10] that meth-
ods for generating BSGs share the same di�culty,
namely the placement of mesh singularities. Fogg et
al. use cross-fields for generating a block structure
[11, 12]. Lim et al. propose an evolutionary algo-
rithm for block generation [13, 14]. Sánchez and Cruz
present a semi-automatic approach for parametrizing
polygonal regions [15], in which a polygonal region is
decomposed into quadrilateral blocks and refined via
structured quad grids. By enabling manual correction
of the decomposition, the blocks are large and results
look promising. A similar approach was presented in
[16]. However, these methods focus on rather sim-
ple domains which are decomposed into a small num-
ber of blocks. The ocean domains in the focus of the
current study are much more complex geometrically,
and we have additional constraints such as the exactly
prescribed number of blocks and the CFL condition,
Equation (2).

A method for generating BSGs for complex ocean do-
mains was presented in [17]. It takes into account
the CFL condition, but its performance is limited
by the domain geometry: Realistic coastal regions
with fractal shapes and small islands cannot be repre-
sented accurately. In addition, the method in [17] does
not produce an exact number of blocks and therefore
may cause load imbalances. Nevertheless, our current
scheme follows the same idea of generating blocks by
simplifying an unstructured triangular mesh.

BSG generation also appears in geometry processing
where blocks are used for e�ciently storing textures
and the grid itself. Boier-Martin et al. [18] and Carr
et al. [19] use clustering techniques for block creation.
Dong et al. [20] quadrangulate any manifold by ap-
plying a Morse-theoretic analysis to the eigenvectors
of the mesh Laplacian. Daniels et al. present an al-
gorithm for quadrilateral remeshing [21]. It requires
closed manifold meshes and is therefore not transfer-
able to 2D ocean meshes. None of the above methods
considers element quality as the meshes are not de-
signed for numerical simulations.

Campen [22] presented a survey of methods for parti-
tioning surfaces into quadrilateral patches. The meth-
ods presented there have a di↵erent objective. Blocks
do not have a prescribed size, and the number of blocks
is also not fixed. Therefore, these methods are not ap-
propriate for HPC.

26

3. GENERATION OF BLOCK
STRUCTURE

To generate a quad block structure with a prescribed
number of blocks, we first simplify the unstructured
triangular mesh, Figure 1a, to twice the prescribed
number of blocks, Figure 1b. The coarse triangles are
then merged into quads to form a quad block structure,
Figure 1c. The quad blocks are refined with structured
triangular grids, Figure 1d. Elements that are outside
the domain are masked, Figure 1e. Finally, bound-
ary vertices are mapped to the original contour, and
element size is restored, Figure 1f.

Quad blocks with structured triangular grids o↵er ad-
vantages and disadvantages: On the one hand, one
needs only half as many quad blocks as triangular ones,
and the communication topology between quad blocks
is simpler to optimize; on the other, it is easier to pro-
duce an accurate representation of complex boundaries
by masking triangular grids. In addition, the genera-
tion process for triangular meshes (used for partition-
ing into blocks) is robust and produces high-quality
partitions, whereas robustly generating unstructured
partitions into quads without degenerated elements is
a much more complex task. A triangular partition
can be converted into a quad one by combining tri-
angles [23, 24]. The resulting quad mesh might have
degenerated quads, e.g. the two quads in the top of
Figure 1c, but the triangles inside the quad blocks are
still valid, Figure 1d. Furthermore, our grid generator
was developed for the ExaStencils [25] code generation
framework with its python front-end GHODDESS [26]
currently limited to quad-type communication topolo-
gies.

Aside from complex boundary regions, also the ele-
ment size must be considered in the mesh generation
process. The CFL condition for shallow water equa-
tions contains a quotient that describes the relation
between element size �x and ocean depth H [27],

cm =
�xp

H
. (2)

The largest possible time step is proportional to cm,

�tmax ⇠ cm =
�xp

H
. (3)

Large elements allow large time steps and therefore
faster computation, but the simulation also becomes
less accurate. Thus, a compromise has to be found
between time step size and accuracy. The element
with the smallest cm determines the maximum time
step �tmax, whereas the discretization error (and thus
the accuracy) is largely controlled by �x. Therefore,
cm should be approximately the same for each element,
whereas the local mesh resolution should be chosen to
provide su�cient numerical accuracy.

3.1 Simplification

Our method for simplifying the triangular mesh is
based on the ideas of [17]. However, we use a di↵erent
error metric and vertex positioning method.

Quadric mesh simplification modifies a triangular
mesh by performing edge collapses using the quadric
error metric [28]. First, the error of all edge collapses
is computed. Simplification is then performed itera-
tively starting with the collapse that causes the small-
est error. After each edge collapse, the error of the
surrounding edges is recomputed. The simplification
terminates when the desired number of triangles is
reached or when no more edges can be collapsed.

Error Metric

Definition 1 The relative distance d̃(pi,pj) between
two points pi and pj is the quotient of the Euclidean
distance kpj�pik and the integral of the size function
h(x) between the two points divided by the Euclidean
distance:

d̃(pi,pj) =
kpj � pik
R pj
pi

h(x)dx

kpj�pik

=
kpj � pik2R pj

pi
h(x)dx

. (4)

A detailed explanation on generating the size function
h(x) from a triangular mesh is given in [17].

Definition 2 The relative length re of an edge e is
the relative distance of its incident vertices vi and vj

with positions pi and pj ,

re = d̃(pi,pj). (5)

Definition 3 The position error ⇢v(x) of a vertex v is
the squared relative distance between its initial position
p and its current position x,

⇢v(x) = d̃(p,x)2. (6)

We derive the simplification error from the position
error ⇢v(x). To ensure that the mesh is simplified uni-
formly we keep track of all vertices that were collapsed
into a single vertex v by storing them in a set Vc(v).
The simplification error Qv(x) of vertex v at position
x is the sum of all position errors of the vertices that
were collapsed into v

Qv(x) =
X

vc2Vc(v)

⇢vc(x). (7)

The error of an edge collapse is the sum of the simpli-
fication errors of its vertices vi and vj ,

Qe = Qvi + Qvj . (8)

27

(a) initial mesh (b) simplification (c) blocks (d) BSG topology (e) masking (f) optimized BSG

Figure 1: The BSG generation steps for the Bahamas domain.

When collapsing vj into vi, the set Vc(vj) is appended
to Vc(vi).

Several conditions have to be met for an edge before
it can be collapsed. An edge collapse is considered
invalid if

the collapsing edge connects two boundary ver-
tices but itself is in the interior, or

the resulting elements have poor quality.

The first condition ensures that the mesh is not cut
open. The second condition prohibits flipped and de-
formed triangles. We consider a triangle as low quality
if the mean ratio metric, Equation (1), is below 0.1.
Similar constraints, called link conditions, were formu-
lated by Dey et al. [29].

Once an interior boundary (usually an island) only
contains three edges, it is replaced by a triangle. Thus,
islands disappear if they are too small to be repre-
sented in the block structure. Additionally, we make
use of non-edge contractions introduced in [30]. Ver-
tices that are close but not connected by an edge are
collapsed along a virtual edge.

Vertex Positioning

The computation of vertex positions after an edge col-
lapse di↵ers for interior and boundary vertices. If both
vertices of the collapsed edge are in the interior or the
edge is virtual, the remaining vertex is positioned in
the middle. More elaborate approaches like optimiz-
ing the new vertex position were tested but did not
have any significant impact on quality. If an edge con-
nects an interior with a boundary vertex, the edge is
collapsed towards the boundary. This ensures that the
domain shape remains unchanged.

For boundary edges, we consider several cases depend-
ing on the local convexity of the boundary at the two
vertices. If the boundary is concave at both vertices,
the new vertex is positioned at the midpoint of the

edge, Figure 2a. If both vertices are convex we com-
pute the intersection point of the neighboring edges
and use it as the new vertex position, Figure 2b. If
one vertex is convex and the other is concave, the con-
vex vertex position is preserved, Figure 2c. This only
leads to a valid solution if these edges are not paral-
lel. Otherwise, the edge collapse is considered invalid.
The positioning of boundary vertices ensures that the
initial mesh is fully covered by the simplified mesh.

(a) (b) (c)

Figure 2: Vertex positioning at boundaries. The col-
lapsed edge is marked in red.

3.2 Remeshing

The simplified mesh is improved with standard post-
processing steps like smoothing and edge flipping. We
perform remeshing similarly to [31]. First, we compute
the average of the relative edge lengths r̄e. Then, the
mesh is iteratively improved with the following steps:

1. Split all edges whose relative length is larger than
4
3
r̄e.

2. Collapse all edges whose relative length is smaller
than 3

4
r̄e. Collapses are executed as described in

Section 3.1.

3. Flip edges whenever it reduces the number of ir-
regular vertices. A vertex is considered irregu-
lar if it has a valence unequal to 6. An edge
with the vertices v1, v2 and the incident triangles

28

(v1, v2, v3), (v2, v1, v4) is flipped if e0⌘ < e⌘, where

e⌘ = max{|⌘1 � 6|, |⌘2 � 6|}
+ max{|⌘3 � 6|, |⌘4 � 6|},

e0⌘ = max{|⌘1 � 7|, |⌘2 � 7|}
+ max{|⌘3 � 5|, |⌘4 � 5|},

and ⌘i is the valence of vertex vi (i.e. the num-
ber of vertices connected to vi by an edge). The
valence of a boundary vertex vb is increased de-
pending on the boundary angle ↵b,

⌘b ⌘b + floor(
2⇡ � ↵b

1
3
⇡

).

Flips that cause tangling, i.e. triangles with neg-
ative quality, Equation (1), are discarded.

4. Improve mesh quality by smoothing. We use the
DMO (Discrete Mesh Optimization) approach
from [32] with a vertex metric that combines the
mean ratio metric, Equation (1), with Laplace
smoothing

q
(v)
iso(xk) =

(
q
(v)
mrm(xk) , if q

(v)
mrm(xk) < 0.5

0.5 + q
(v)
lap(xk) , otherwise

q
(v)
lap(xk) =

1

klpk � xkk2 + 1
,

where xk is the position of vertex vk, and lpk de-
notes the center of gravity of the one-ring neigh-
borhood (vertices connected to vk by an edge).
The advantage of this metric over the pure mean
ratio is that the results are smoother, and ele-
ments tend to be locally of similar size. The mean
ratio metric can cause distortions if mesh topol-
ogy is not adequate for the domain.

Remeshing is stopped if either the number of trian-
gles does not change within two iterations or if a cer-
tain maximum number of iterations is reached (cur-
rently, we perform a maximum of 100 iterations). Af-
ter that, the number of triangles is not generally equal
to the number of blocks as prescribed by the user; thus,
the last remeshing iteration is carried out to produce
the exact number of blocks: We force edge splits if we
do not have enough triangles or we collapse them if
there are too many – independently of r̄e.

An example showing the e↵ectiveness of remeshing is
given in Figure 3. Low quality triangles and vertices
with high valence are removed by remeshing, improv-
ing the overall mesh quality. Both, the simplified and
the remeshed mesh consist of 4000 triangles.

3.3 Conversion to Quad Blocks

The triangles in the simplified mesh are merged us-
ing Blossom-Quad [23] which relies on Edmonds’ Al-
gorithm to find a perfect match for the dual graph of

(a) Simplified

(b) Remeshed

Figure 3: Remeshing for domain Mediterranean with
4000 triangles.

the triangular mesh. Unfortunately, not every graph
has a perfect match and therefore some triangles might
be left over. These triangles always appear pair-wise
along mesh boundaries. The solution proposed in [23]
duplicates the vertex between the two triangles. This
solution is not feasible for us because this increases the
number of quads. Instead, we perform triangle merg-
ing as proposed several times in literature [24, 33, 34].
This method moves one triangle towards another by
flipping edges until they can be merged into a quad.

The mesh must have an even number of triangles for
applying Blossom-Quad and triangle merging. The
simplification and remeshing might cause an uneven
number though. In that case, the relatively longest
boundary edge according to Equation (5) is split in
two increasing the total number of triangles by one.

Finally, the quad blocks are refined with structured
triangle meshes, giving the desired block-structured
topology. There are two possible orientations for a
triangle mesh within a quad block. We choose the
orientation which results in triangles of higher quality,
measured with the mean ratio metric, Equation (1).

4. GRID ADAPTATION TO DOMAIN

The grid adaptation consists of three main steps.
First, element size is adjusted by repositioning inte-
rior vertices. Second, the domain shape is restored
by masking triangles. Third, boundary vertices are
mapped onto the domain shape. Finally, interior ver-
tices are repositioned once more to improve quality

29

near boundaries.

4.1 Repositioning Interior Vertices

For finding optimal vertex positions in the interior of
the BSG, we define a quality metric and optimize ver-
tex positions with DMO [32]. We use the relative
edge length defined in Section 3.1 to adapt mesh den-
sity. Additionally, we set a minimal mean ratio quality
q̂
(v)
mrm to ensure numerical stability:

q
(v)
d,mrm(x) =

(
q
(v)
mrm(x) if q

(v)
mrm(x)  q̂

(v)
mrm

q̂
(v)
mrm + q

(v)
d (x) otherwise.

The density quality q
(v)
d (x) of vertex v at position x

depends on the longest and shortest relative length of
its incident edges:

q
(v)
d (x) =

1

re,max � re,min + 1
.

Optimizing for density quality sometimes generates
wiggly lines. We remove them by applying one itera-
tion of DMO with the mean ratio metric.

4.2 Masking

We trim the mesh such that it represents the domain
well by masking elements that are outside of the do-
main. For this, a signed distance function is utilized
to decide which vertices and edges give the best rep-
resentation of the boundaries. In the first sweep, we
mask all triangles that lie outside the domain. This is
determined by checking the signed distance of all inci-
dent vertices and the center point of the triangle. If all
distances are positive, the triangle is masked. Consid-
ering the center point of the triangle prevents masking
those triangles that have all vertices on the boundary
but should not be masked. Due to round-o↵ e↵ects,
boundary vertices may have positive signed distances
even though they lie on the contour.

In contrast to triangles that must be preserved, it
might also happen that triangles lie almost completely
outside the domain. For masking those triangles we
approximate the area fraction of the triangle that is
outside of the domain. If its major part (currently we
use a threshold of 85 %) lies outside, it is masked.

Next, we consider boundary vertices. We mask a ver-
tex and its incident triangles if the boundary is ap-
proximated better by the vertices on its one-ring. For
that we compare the distance of the vertex with all its
neighbors. If all neighbors are closer to the contour
than the vertex, it is masked.

One more special case must be accounted for before
mapping the boundary to the contour. Trimming
might cause a zigzag line at the boundary. If this line

is mapped to the contour, triangles might degenerate.
We avoid this by masking triangles that would be of
low quality when mapped to the contour.

4.3 Boundary Adaptation

Producing non-degenerate triangles is more important
than placing boundary vertices perfectly on the do-
main boundary. Thus, vertices are only mapped onto
the contour if the resulting triangles are not degener-
ated. Fortunately, this happens only rarely. Vertices
are mapped by moving them to the closest point on
the contour. Afterwards, all boundary vertices are
smoothed by positioning them in the midpoint be-
tween their neighbors.

5. RESULTS

In this section, we compare BSGs to the initial un-
structured triangular meshes. Element quality is mea-
sured with the mean ratio metric, Equation 1, element
size is evaluated by the CFL quotient, Equation 2. For
the BSG generation, we use a workstation with an In-
tel i7-6700k CPU with 4 cores and 4.0 GHz and an
NVIDIA GeForce GTX 1070 GPU. Vertex reposition-
ing is performed on GPU everything else on CPU. All
runtime measurements cover the whole generation pro-
cess including read and write operations.

The number of triangles |T | in a BSG is the product of
the number of blocks NB and the number of elements
per block U . The structured triangular grid is gener-
ated by refining each block uniformly. The number of
unmasked triangles is denoted by |F | and the relative
amount of masked triangles by µ

µ = (|T | � |F |)/|T |. (9)

5.1 BSG generation for real-world ocean
domains

The first example is called Graysharbor, Figure 4a,
and represents the geometry and topography of the
Grays Harbor in the State of Washington (USA). The
element size varies strongly throughout the domain.
We generate a BSG with NB = 250, U = 128, and
|F | = 27 898. The generation of the BSG took about
15 seconds. The BSG for Graysharbor contains 13%
masked triangles. The minimal mean ratio quality is
0.32. The CFL quotient varies between 83 and 4262. It
is similar to the range of the unstructured mesh that
is between 81 and 5547. The domain is represented
correctly by the BSG, Figure 4b.

The second example is an unstructured mesh repre-
senting the Gulf of Mexico with 14 269 triangles, Fig-
ure 5a. The generation of a BSG with NB = 300,
U = 128, and |F | = 32 635 took 8 seconds, Figure 5b.

30

(a) unstructured (b) BSG

Figure 4: Graysharbor with 34 406 triangles in the
unstructured mesh [35] and 27 898 in the BSG.

The minimal mean ratio quality for the BSG is 0.30.
Although the BSG has more than double the number
of elements, the CFL quotient is very similar for both
grids. The unstructured mesh has a CFL quotient be-
tween 36 and 11580 and the BSG between 34 and 7304.
In this BSG, 15% of the elements were masked.

(a) unstructured (b) BSG

Figure 5: The Gulf of Mexico with 14 269 triangles
in the unstructured mesh and 32 635 in the BSG.

5.2 Validation test: Mediterranean

The domain Mediterranean is our most complex ex-
ample; it contains fine-scale geometry features such
as small islands and channels which are only one ele-
ment wide, Figure 6. The unstructured mesh consists
of 112 962 triangles, and we generate BSGs with up
to 8 000 blocks and a higher resolution than the initial
unstructured mesh in order to represent details like the
Bosporus connecting the Black Sea with the Marmara
Sea correctly. Due to the increased number of ele-
ments, the CFL quotient is smaller for BSGs than for

the unstructured mesh. For NB = 4000 with 472 931
triangles, we have a minimal value of cm = 35.1. The
mean ratio metric has its minimal value at around 0.3
for all meshes. BSG generation for the Mediterranean
domain takes between 103 and 141 seconds.

For this domain, we clearly see the advantage of mask-
ing elements. Even small details can be captured by
BSGs with masks. In Figure 7 we illustrate some de-
tails of the BSG with NB = 8 000. Regions such as
the Bosporus, where the mesh must be connected, are
represented correctly, Figure 7a. In other regions such
as the Gulf of Corinth, the isthmus is also shown cor-
rectly in the BSG, Figure 7d. The small land bridge
connecting southern Greece with the Peloponnese can-
not be represented on the block level but is restored by
masking in the refined mesh. Sicily, on the other hand,
is correctly shown as disconnected from the mainland
of Italy, Figure 7h. Coastal regions are represented
substantially better by the refined and masked grid
than by the unmasked block grid, Figure 7f. Most of
these details could not be represented without mask-
ing as triangles would be highly distorted, e.g imagine
fitting whole blocks into the Bosporus, Figure 7a.

NB U |F | µ runtime/s

8 000 32 244 295 5 % 103
4 000 128 472 931 8 % 141
2 000 128 226 350 12 % 137

Table 1: BSG configurations for Mediterranean with
masks, where NB , U , and |F | are the number of blocks,
elements per block, and unmasked elements respec-
tively. µ is the relative amount of masked elements.

To validate the quality of the generated BSGs we
additionally simulate a circulation scenario for the
Mediterranean and compare results between the initial
unstructured mesh and various generated BSGs. The
simulations are performed using the 2D shallow water
equations solver UTBEST [27] based on the discontin-
uous Galerkin (DG) method. The tide-driven flow is
simulated for 5 days starting from the cold start condi-
tions (zero elevation and velocity) and uses piecewise
constant DG discretization combined with the forward
Euler time stepping. Since our BSGs for this test case
have somewhat higher resolution, the used time step
is between 4 and 6 seconds compared to the maximum
time step of 9 seconds for the original unstructured
mesh. The free surface elevation written out at 6 lo-
cations (recording stations), Figure 8, is compared to
the results produced by the unstructured mesh simu-
lation. For all stations – even at Station 6 in the Sea
of Azov and thus the farthest from the open boundary
located in the Straits of Gibraltar – the results match
well, with the largest di↵erence at Station 3 in the
Adriatic Sea. We attribute this di↵erence to a higher

31

Figure 6: Unstructured mesh for domain Mediterranean with 112 962 triangles.

resolution of our BSGs.

The relative number of masked triangles, Equation (9),
is low in all presented BSGs and varies between 5 %
and 15 %. A thorough study of the performance of
BSGs with masks in simulations, especially in com-
parison with unstructured meshes, is yet to come.

6. CONCLUSIONS & OUTLOOK

We presented a method for generating block-
structured grids which relies on an unstructured tri-
angular mesh as the sole input. The BSGs have a
prescribed number of quad blocks refined uniformly
into triangular elements. We make use of the Discrete
Mesh Optimization (DMO) method for repositioning
vertices as we have di↵erent quality metrics through-
out the method. Masking elements allows representing
features much smaller than the block size which is very
important when considering complex domain shapes.
We evaluate our block-structured grids by comparing
them to the unstructured triangular meshes. In future
work, we plan to improve the masking process to rep-
resent fine details like isthmuses and islands that are
even smaller than one element wide. Furthermore, au-
tomatic alignment of vertices to interior features will
be added.

Acknowledgements

The authors acknowledge financial support by the Ger-
man Research Foundation (DFG) through grants AI
117/6-1, KO 4641/1-1, and GR 1107/3-1 as well as
by the National Centre for High Performance Com-

puting (NHR) at the Friedrich-Alexander-University
Erlangen-Nuremberg. Furthermore, we acknowledge
the work of Jonathan Schmalfuß from the University
of Bayreuth who documented and refactored the code
for publication.

References

[1] Gropp W.D., Kaushik D.K., Keyes D.E., Smith
B.F. “Performance Modeling and Tuning of an
Unstructured Mesh CFD Application.” SC ’00:
Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, pp. 34–34. Nov. 2000

[2] White B.S., McKee S.A., de Supinski B.R., Miller
B., Quinlan D., Schulz M. “Improving the com-
putational intensity of unstructured mesh appli-
cations.” Proceedings of the 19th annual inter-
national conference on Supercomputing, ICS ’05,
pp. 341–350. Association for Computing Machin-
ery, New York, NY, USA, Jun. 2005

[3] Il’in V. “Integrated Computational Environment
for Grid Generation Parallel Technologies.” Par-
allel Computational Technologies, Communica-
tions in Computer and Information Science, pp.
58–68. Springer International Publishing, Cham,
2020

[4] Bank R.E., Smith R.K. “Mesh Smoothing Using
A Posteriori Error Estimates.” SIAM Journal on
Numerical Analysis, vol. 34, no. 3, 979–997, Jun.
1997

[5] Freitag L., Jones M., Plassmann P. “A Paral-
lel Algorithm for Mesh Smoothing.” SIAM Jour-

32

(a) Bosporus (b) Coast of Croatia

(c) Cyprus (d) Gulf of Corinth

(e) Malian Gulf (f) Mallorca

(g) Sardinia (h) Sicily

Figure 7: Detail views of the Mediterranean domain with NB = 8000. Red regions are covered by the block grid
but are not part of the masked BSG.

33

0 1 · 105 2 · 105 3 · 105 4 · 105

�
0
.1

0
0
.1

fr
ee

su
rf

a
ce

el
ev

a
ti

o
n
,
m

Station 1

0 1 · 105 2 · 105 3 · 105 4 · 105

�
5

·1
0
�

2
0

5
·1

0
�

2

Station 2

0 1 · 105 2 · 105 3 · 105 4 · 105

�
0
.1

0
0
.1

fr
ee

su
rf

a
ce

el
ev

a
ti

o
n
,
m

Station 3

0 1 · 105 2 · 105 3 · 105 4 · 105

�
0
.1

0
0
.1

Station 4

0 1 · 105 2 · 105 3 · 105 4 · 105

�
2

·1
0
�

3
0

2
·1

0
�

3

time, s

fr
ee

su
rf

a
ce

el
ev

a
ti

o
n
,
m

Station 5

0 1 · 105 2 · 105 3 · 105 4 · 105

�
1

·1
0
�

3
0

1
·1

0
�

3

time, s

Station 6

unstructured NB = 2000 NB = 4000 NB = 8000

Figure 8: Free surface elevation at recording stations on Mediterranean.

nal on Scientific Computing, vol. 20, no. 6, 2023–
2040, Jan. 1999

[6] Bergen B.K., Hülsemann F. “Hierarchical hybrid
grids: data structures and core algorithms for

multigrid.” Numerical Linear Algebra with Ap-
plications, vol. 11, no. 2-3, 279–291, 2004

[7] Kohl N., Thönnes D., Drzisga D., Bartuschat D.,
Rüde U. “The HyTeG finite-element software

34

framework for scalable multigrid solvers.” Inter-
national Journal of Parallel, Emergent and Dis-
tributed Systems, vol. 34, no. 5, 477–496, 2019

[8] Turek S., Göddeke D., Becker C., Buijssen S.H.,
Wobker H. “FEAST—realization of hardware-
oriented numerics for HPC simulations with finite
elements.” Concurrency and Computation: Prac-
tice and Experience, vol. 22, no. 16, 2247–2265,
2010

[9] Falgout R.D., Jones J.E., Yang U.M. “The design
and implementation of hypre, a library of paral-
lel high performance preconditioners.” Numerical
solution of partial di↵erential equations on paral-
lel computers, pp. 267–294. Springer, 2006

[10] Armstrong C.G., Fogg H.J., Tierney C.M.,
Robinson T.T. “Common themes in multi-block
structured quad/hex mesh generation.” Procedia
Engineering, vol. 124, 70–82, 2015

[11] Fogg H.J., Armstrong C., Robinson T.T.
“Multi Block Decomposition Using Cross-
Fields.” Proceedings of adaptive modelling and
simulation, Lisbon, pp. 254–267, 2013

[12] Fogg H.J., Armstrong C.G., Robinson T.T. “Au-
tomatic generation of multiblock decompositions
of surfaces.” International Journal for Numerical
Methods in Engineering, vol. 101, no. 13, 965–991,
2015

[13] Lim C.W., Yin X., Zhang T., Su Y., Goh C.K.,
Moreno A., Shahpar S. “Automatic Blocking
of Shapes Using Evolutionary Algorithm.” In-
ternational Meshing Roundtable, pp. 169–188.
Springer, 2018

[14] Lim C.W., Yin X., Zhang T., Selvaraj S.K., Su
Y., Goh C.K., Moreno A., Shahpar S. “Towards
Automatic Blocking of Shapes using Evolutionary
Algorithm.” Computer-Aided Design, vol. 120,
102798, Mar. 2020

[15] Barrera P., Méndez I. “Parametrization of plane
irregular regions: A semi-automatic approach I.”
Numerical Geometry, Grid Generation and Sci-
entific Computing, pp. 263–279. Springer Inter-
national Publishing, Cham, 2021

[16] Xu G., Li M., Mourrain B., Rabczuk T., Xu J.,
Bordas S.P.A. “Constructing IGA-suitable planar
parameterization from complex CAD boundary
by domain partition and global/local optimiza-
tion.” Computer Methods in Applied Mechanics
and Engineering, vol. 328, 175–200, Jan. 2018

[17] Zint D., Grosso R., Aizinger V., Köstler H.
“Generation of Block Structured Grids on Com-
plex Domains for High Performance Simulation.”

Computational Mathematics and Mathematical
Physics, vol. 59, no. 12, 2108–2123, Dec. 2019

[18] Boier-Martin I., Rushmeier H., Jin J. “Param-
eterization of triangle meshes over quadrilateral
domains.” Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry
processing, SGP ’04, pp. 193–203. Association for
Computing Machinery, New York, NY, USA, Jul.
2004

[19] Carr N.A., Hoberock J., Crane K., Hart J.C.
“Rectangular multi-chart geometry images.” Pro-
ceedings of the fourth Eurographics symposium on
Geometry processing, SGP ’06, pp. 181–190. Eu-
rographics Association, Goslar, DEU, Jun. 2006

[20] Dong S., Bremer P.T., Garland M., Pascucci V.,
Hart J.C. “Spectral surface quadrangulation.”
ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06,
pp. 1057–1066. Association for Computing Ma-
chinery, New York, NY, USA, Jul. 2006

[21] Daniels J., Silva C.T., Cohen E. “Semi-regular
Quadrilateral-only Remeshing from Simplified
Base Domains.” Computer Graphics Forum,
vol. 28, no. 5, 1427–1435, 2009

[22] Campen M. “Partitioning Surfaces Into Quadri-
lateral Patches: A Survey.” Computer Graphics
Forum, vol. 36, no. 8, 567–588, 2017

[23] Remacle J.F., Lambrechts J., Seny B., Marchan-
dise E., Johnen A., Geuzainet C. “Blossom-Quad:
A non-uniform quadrilateral mesh generator us-
ing a minimum-cost perfect-matching algorithm.”
International Journal for Numerical Methods in
Engineering, vol. 89, no. 9, 1102–1119, 2012

[24] Tarini M., Pietroni N., Cignoni P., Panozzo D.,
Puppo E. “Practical quad mesh simplification.”
Computer Graphics Forum, vol. 29, no. 2, 407–
418, 2010

[25] Lengauer C., Apel S., Bolten M., Chiba S., Rüde
U., Teich J., Größlinger A., Hannig F., Köstler
H., Claus L., Grebhahn A., Groth S., Kronawit-
ter S., Kuckuk S., Rittich H., Schmitt C., Schmitt
J. “ExaStencils: Advanced Multigrid Solver Gen-
eration.” Software for Exascale Computing -
SPPEXA 2016-2019, pp. 405–452. Springer In-
ternational Publishing, Cham, 2020

[26] Faghih-Naini S., Kuckuk S., Aizinger V., Zint D.,
Grosso R., Köstler H. “Quadrature-free discon-
tinuous Galerkin method with code generation
features for shallow water equations on automat-
ically generated block-structured meshes.” Ad-
vances in Water Resources, p. 103552, 2020

35

[27] Aizinger V., Dawson C. “A discontinuous
Galerkin method for two-dimensional flow and
transport in shallow water.” Advances in Water
Resources, vol. 25, no. 1, 67–84, 2002

[28] Garland M., Zhou Y. “Quadric-based simplifica-
tion in any dimension.” ACM Transactions on
Graphics, vol. 24, no. 2, 209–239, Apr. 2005

[29] Dey T.K., Edelsbrunner H., Guha S., Nekhayev
D.V. “Topology Preserving Edge Contraction.”
Publ. Inst. Math. (Beograd) (N.S, vol. 66, 23–45,
1998

[30] Garland M., Heckbert P.S. “Surface simplifica-
tion using quadric error metrics.” Proceedings of
the 24th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’97, pp.
209–216. ACM Press/Addison-Wesley Publishing
Co., USA, Aug. 1997

[31] Botsch M., Kobbelt L. “A remeshing approach
to multiresolution modeling.” Proceedings of
the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, SGP ’04, pp. 185–
192. Association for Computing Machinery, New
York, NY, USA, Jul. 2004

[32] Zint D., Grosso R. “Discrete Mesh Optimiza-
tion on GPU.” 27th International Meshing
Roundtable, Lecture Notes in Computational Sci-
ence and Engineering, pp. 445–460. Springer In-
ternational Publishing, Cham, 2019

[33] Bommes D., Lempfer T., Kobbelt L. “Global
Structure Optimization of Quadrilateral
Meshes.” Computer Graphics Forum, vol. 30,
no. 2, 375–384, 2011

[34] Zint D., Grosso R. “A Hybrid Approach to Fast
Indirect Quadrilateral Mesh Generation.” Nu-
merical Geometry, Grid Generation and Scien-
tific Computing, pp. 281–294. Springer Interna-
tional Publishing, Cham, 2021

[35] Cialone M.A., Militello A., Brown M.E., Kraus
N.C. COUPLING OF WAVE AND CIRCU-
LATION NUMERICAL MODELS AT GRAYS
HARBOR ENTRANCE, WASHINGTON, USA,
pp. 1279–1291. World Scientific Publishing Com-
pany, 2003

36

LOCAL DECOMPOSITION OF HEXAHEDRAL SINGULAR
NODES INTO SINGULAR CURVES

Paul Zhang1 Judy (Hsin-Hui) Chiang2 Xinyi (Cynthia) Fan3 Klara Mundilova4

1Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. pzpzpzp1@mit.edu
2Univeristy of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, U.S.A. hsinhui2@illinois.edu

3 Davidson College, Davidson, North Carolina, U.S.A. cyfan@davidson.edu
4Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A. kmundil@mit.edu

ABSTRACT

Hexahedral (hex) meshing is a long studied topic in geometry processing with many fascinating and challenging
associated problems. Hex meshes vary in complexity from structured to unstructured depending on application or
domain of interest. Fully structured meshes require that all interior mesh edges are adjacent to exactly four hexes.
Edges not satisfying this criteria are considered singular and indicate an unstructured hex mesh. Singular edges
join together into singular curves that either form closed cycles, end on the mesh boundary, or end at a singular
node, a complex junction of more than two singular curves. While all hex meshes with singularities are unstructured,
those with more complex singular nodes tend to have more distorted elements and smaller scaled Jacobian values. In
this work, we study the topology of singular nodes. We show that all eight of the most common singular nodes are
decomposable into just singular curves. We further show that all singular nodes, regardless of edge valence, are locally
decomposable. Finally we demonstrate these decompositions on hex meshes, thereby decreasing their distortion and
converting all singular nodes into singular curves. With this decomposition, the enigmatic complexity of 3D singular
nodes becomes e↵ectively 2D.

Keywords: hexahedral mesh, singular graph, computational geometry

1. INTRODUCTION

Hexahedral meshes are commonly used to model com-
plex geometries and to solve numerical PDEs. The
results they produce with tri-linear basis functions are
often superior to those produced with linear basis func-
tions on tetrahedral meshes [1, 2]. They can be prefer-
able to other types of meshes for their natural local
coordinate systems and have been shown to perform
better with quadratic basis functions in the context of
nonlinear elasto-plastic simulation [3]. Due to the per-
sistent demand for hex meshes, a variety of methods
have been developed to generate them.

Of particular relevance to our work are frame field
based methods, where a smooth boundary aligning co-
ordinate system is computed over the domain, followed

by parameterization and hex extraction [4, 5, 6, 7, 8].
Frame field based hex meshing has especially eluci-
dated the significance of singularities within a hex
mesh since frame fields inevitably contain singular
structures that are reflected in the resulting mesh. The
singularities of a frame field and hex mesh typically
consist of a set of singular curves that join up in space
at singular nodes. These nodes and curves form the
singular graph of a field or mesh as illustrated in Fig-
ure 1. Since hex meshable singularities are a subset of
frame field singularities, much attention has been de-
voted to the restriction and correction of singularities
in frame field computation [9, 10]. Other works have
derived conditions and algorithms to compute frame
fields obeying singular constraints [11, 12].

Various works have also targeted the enumeration or

37

simplification of hex mesh singularities. [13, 14, 15]
derive algorithms to simplify the singular structures
of hex meshes with collapse operations on a coarsened
mesh. [11] provide an enumeration algorithm for all
hex mesh singular nodes, as well as an exhaustive list
of the most practically relevant singular node types.
While this list only contains eight singular nodes, they
already form complex junctions that are challenging to
parse or manipulate.

In contrast to singular nodes, singular curves are sim-
pler to understand, since their local structure is only
a 2D singularity extruded into 3D. In the fully 2D
setting, cross field and quadrilateral (quad) mesh sin-
gularities are significantly easier to visualize, and in
the case of parameterized cross fields, singularities are
governed completely by a few simple conditions [16].
In quad meshes, singular vertex pairs are shown to
move almost fluidly within a quad mesh [17]. None
of these results obviously translates to hex meshes,
where 3D singular nodes exist as junctions of multiple
2D singularities.

In this paper, we investigate the structure of hex mesh
singular nodes. We uncover that singular nodes can be
simplified by pulling their constituent elements apart
into singular curves. Our results show theoretically
and empirically that singular nodes can be removed
from a hex mesh thus reducing the complexity of any
local neighborhood in a hex mesh. Our contributions
are as follows:

• We show by construction that all eight of the
most practically relevant singular nodes are de-
composable into just singular curves.

• We show that all singular nodes, regardless of va-
lence, are locally decomposable.

• We apply our decompositions to hex meshes
demonstrating that entire singular graphs can be
separated into independent singular curves.

2. PRELIMINARIES

Our work is motivated by the following question.
What if a singular node is formed when singular curves
just barely skim past each other? If that were the case,
then we could separate the curves with a sheet and
increase its thickness to force the curves away from
each other, thereby untangling the singular node. To
formalize this idea, we begin with the following defini-
tions.

2.1 Singular Vertices, Curves, and Nodes

We denote a hex mesh as {V, H} where V is a list of
vertices embedding the mesh and H is a list of hexes of

Singular node

Singular curve

Singular vertices

Figure 1: (Left) The singular graph of a hex mesh of a
sphere is shown. Singular edges are colored red, singu-
lar nodes are large black circles and singular vertices are
small blue vertices. (Right) A close-up view of a singular
node. Faces adjacent to the singular node are displayed
in purple. A yellow sphere is overlayed on top of the
singular node. Its intersection with the local hex mesh
partitions the sphere into triangular regions.

the mesh. Let F denote the quadrilateral faces of the
mesh, E denote the edges of the mesh, and deg(e 2 E)
denote the number of hexes adjacent to edge e, i.e., its
degree or valence. A singular edge is an interior edge
e satisfying deg(e) 6= 4. We will not treat cases where
deg(e)  2 since these are not typically accepted as
valid hex meshes. We will also not consider singular
boundary edges in this paper but refer the interested
reader to [11] for the corresponding definition. For
our purposes, one can ignore boundary singularities
or push them all to the interior by adding one layer of
padding to the hex mesh boundary. A singular vertex
is a vertex of the mesh that is adjacent to any singular
edge. A singular node is a vertex of the mesh that is
adjacent to more than two singular edges. A singu-
lar curve is an alternating sequence of singular edges
and singular vertices that either forms closed cycles
or, ends at a singular node or boundary vertex. Note
that we have chosen to deviate from the language of
[11] by distinguishing singular nodes from singular ver-
tices. Singular nodes are reserved for the junctions of
multiple singular curves and will be the primary fo-
cus of this work. Figure 1 depicts a summary of this
terminology.

For a singular node v 2 V, we denote T (v) as the
triangle mesh in bijection with that node according
to [6]. This bijection is formed by intersecting the
singular node of the hex mesh with an infinitesimally
small sphere. Since the intersection of a corner of a
hex with a sphere forms a triangle, the hexes adjacent
to the singular node partition the sphere into triangu-
lar regions thus forming a sphere triangulation. This
is depicted in Figure 1. The sphere triangulation en-
codes the singular node type. If two sphere triangula-
tions are isomorphic, then their singular nodes are of
the same type. The signature of a singular node is a

38

Figure 2: (Left) Red quads indicate a sheet inside of a
hex mesh of an ellipsoid. Red curves depict its singu-
lar graph. The sheet is manifold with boundary on the
boundary of the hex mesh. (Right) Blue quads indicate
all faces of the inflated sheet.

list of numbers indicating how many adjacent singular
edges are of each degree. Since singular edges have
degree 3 or higher, the signature of a node starts with
the number of edges with degree 3. For singular nodes
whose adjacent singular edges have only valence 3, 4,
or 5, the signature also uniquely encodes the singular
node type [11]. For this reason we will frequently iden-
tify singular nodes by their signature e.g. (4,0,0) is the
signature identifying the singular node type generated
by subdividing a single tetrahedron into four hexes as
illustrated in Figure 4.

2.2 Sheet Inflation

Let a sheet Q ⇢ F be a manifold quad mesh whose
boundary is a subset of the boundary of H. A sheet
inflation based on sheet Q is a mesh modifying oper-
ation by which each q 2 Q is thickened from a quad
face to a hex cell [18]. A sheet inflation operation is
depicted in Figure 2.

In the case that the inflated sheet passes through a sin-
gular node, the singular type of that node can change.
One can interpret this as the sheet passing an infinites-
imally small gap between singular curves and forcing
them apart, or as cutting a singular node into separate
pieces. As singular nodes are often more easily visu-
alized as sphere triangulations we describe here how
sheet inflation through a singular node corresponds to
a splitting of the sphere triangulation. This splitting
is illustrated by Figure 3.

Given a singular node v, and a sheet Q ⇢ F that
passes through v, the faces of Q map to edges of T (v).
These edges trace out a cycle in the graph of T (v)
e↵ectively partitioning the sphere into two disk trian-
gulations D1 and D2. When the sheet is thickened into
a layer of hexes, these two disk triangulations are cut
apart. Then the disks are patched into sphere trian-
gulations again by adding one new vertex to each disk
and attaching triangles from the boundary of each disk

Figure 3: (Left) The yellow sphere triangulation indi-
cates the structure of a singular node. Red quads indi-
cate a sheet intersecting the singular node. The sheet
intersects the sphere triangulation on a cycle of red
curves that divide the sphere triangulation into two disks.
(Right) Two singular nodes are visualized from inflation
of the red sheet on the left. Sphere triangulations of the
resulting two nodes are shown. Blue quad faces indicate
newly created faces from the inflation. Blue edges indi-
cate newly created edges in each sphere triangulation.

to their respective new vertex. This splitting opera-
tion is illustrated in Figure 3. The end result is two
sphere triangulations one built from D1 and one built
from D2.

3. SINGULAR NODE DECOMPOSITION
(VALENCE 3,4,5)

We are now equipped with the mechanism by which
all practically relevant singular nodes can be decom-
posed into singular curves. These nodes are enumer-
ated in [11, Figure 6] and will also be shown at the
beginning of each respective decomposition. Various
singular decompositions will be depicted throughout
the remainder of this paper. Valence 3 singular curves
will be red, valence 5 singular curves will be green
and higher valence singular curves will be blue. We
omit drawing interior regular edges to minimize clut-
ter. Since these operations can be challenging to un-
derstand from static images, we also include supple-
mental videos for many of the decompositions.

In the first column of Figure 4 we start with the (4,0,0)
singular node, which consists of four valence 3 singu-
lar curves joined at a junction. With a single sheet
inflation, this singular node is revealed to actually be
two valence 3 singular curves that pass each other or-
thogonally. A similar theme follows for (2,2,2) in the
second column which is revealed to be a valence 3 and
a valence 5 singular curve passing each other orthog-
onally. Finally in the third column, the (0,4,4) node
decomposes into two valence 5 singular curves passing
each other orthogonally.

From these three examples, it is tempting to think all
singular nodes may consist of singular curves glued to-

39

Figure 4: From left to right the (4,0,0), (2,2,2), and
(0,4,4) singular nodes are depicted. Top to bottom indi-
cates steps to decompose each singular node. Red quads
indicate the sheet to be inflated. Blue quads indicate
faces of the newly inflated hexes. Red(Green) edges are
valence 3(5) singularities. One sheet inflation is su�cient
to decompose each of these nodes.

gether orthogonally. One might conclude as well that
the number of singular curves of a particular valence
meeting at a singular node from this construction must
be even. The (1,3,3) singular node, shown in Figure 5,
presents a curious counterexample. Since it consists of
one valence 3 singular curve and three valence 5 sin-
gular curves, it is impossible to decompose these into
two singular curves passing each other orthogonally in
a valid hex mesh.

This conundrum is resolved by realizing that one of the
regular edges adjacent to this singular node is actually
a pair of valence 3 and valence 5 singular curves, glued
together in parallel. Another way to understand this
node is that one valence 5 singular curve has split an
otherwise parallel pair of valence 3 and 5 curves. The
decomposition of this node into one valence 3 and two
valence 5 singular curves is illustrated in Figure 5.

In Figure 6 we decompose the (0,3,6) singular node
into three valence 5 singular curves. It is also valuable
to think of the (0,3,6) node as a combination of two
(0,4,4) singular nodes. In this way, one only needs to
decompose a singular node into constituent nodes that
are already known to be decomposable. The fourth
image of Figure 6 shows exactly this decomposition
which we will notate as:

(0, 3, 6) = (0, 4, 4) +5 (0, 4, 4)

The subscript 5 on the plus symbol denotes that two
singular nodes are joined along a valence 5 edge, fol-
lowed by an inverse sheet inflation (sheet collapse).
This notation serves only as a shorthand and does
not uniquely encode how to glue two singular nodes
together. It serves more as a recipe than an equa-
tion with any algebraic properties. For completion, we
show the rest of the decomposition of the constituent
(0,4,4) nodes.

The (0,2,8) singular node is decomposed in Figure 7
into four valence 5 curves. In the fourth image, we see
that

(0, 2, 8) = (0, 3, 6) +5 (0, 4, 4)

and both constituent singular nodes have already been
shown to be decomposable. For completion, the rest
of the decomposition steps are also shown.

The (2,0,6) singular node is decomposed in Figure 8
into four valence 5 and two valence 3 curves. By the
fourth image we see

(2, 0, 6) = (1, 3, 3) +4 (1, 3, 3).

The rest of this decomposition is still interesting how-
ever as it introduces a valence 6 singularity in the fifth
image and a singular node with signature (1,3,3,1).
This valence 6 singular curve is removed in image 9 by
decomposing it into two valence 5 curves.

40

Figure 5: The (1,3,3) singular node is decomposed into two valence 5 and one valence 3 curve via two sheet inflations.

Figure 6: The (0,3,6) singular node is decomposed into three valence 5 curves via three sheet inflations.

Figure 7: The (0,2,8) singular node is decomposed into four valence 5 curves via five sheet inflations.

Figure 8: The (2,0,6) singular node is decomposed into four valence 5 and two valence 3 curves via seven sheet inflations.

41

Finally the (0,0,12) singular node decomposition is
shown in Figure 9 to become six valence 5 curves. This
singular node is especially interesting as we were un-
able to show a decomposition of the form

(0, 0, 12) = (0, 4, 4) +n (0, 2, 8).

Even though the number of singular curves present is
su�cient, we were not able to perform an inverse sheet
inflation between (0,4,4) and (0,2,8) to obtain (0,0,12).
This shows that the order in which singular curves are
combined matters. As this figure is especially complex
to comprehend, we o↵er the following roadmap of how
the decomposition is performed.

(0, 0, 12) = ((0, 3, 6) +5 (0, 3, 6))| {z }
(0,2,8,1)

+6 ((0, 4, 4) +5 (0, 4, 4))| {z }
(0,4,4,1)

4. DECOMPOSING GENERAL
SINGULAR NODES

Given that the eight singular nodes of valence 3, 4,
or 5 are decomposable into singular curves, a natu-
ral next question is whether decomposition extends to
higher valence singular nodes. In fact, the decomposi-
tion of the (0,0,12) and (2,0,6) both already required
decomposing singular nodes with valence 6: (0,4,4,1),
(0,2,8,1) and (1,3,3,1). We will refer to previously
known decomposable singular nodes and their associ-
ated sphere triangulations as base cases. To generalize
decomposability of singular nodes we o↵er the follow-
ing result.

Proposition 1. Given a sphere triangulation T with
some vertex u of degree larger than 5, there exists
a splitting such that either the number of vertices in
both resulting triangulations decreases or the resulting
triangulations are base cases.

Proof. The local neighborhood of u is an umbrella U of
at least 6 triangles. The boundary of this umbrella is a
cycle of at least 6 vertices denoted by C. To construct
a splitting of T into triangulations of fewer vertices,
we need a pair of vertices a and b adjacent to u that
are at least 3 edges apart from each other in C such
that there is path p from a to b through the interior of
T � U . This construction is illustrated in Figure 10.
The sequence of edges [(ua), p, (bu)] partitions T into
D1 and D2 where each disk triangulation has at least
2 interior vertices. Since splitting a sphere triangula-
tion replaces all vertices on the interior of either side
with just one new vertex each, both resulting triangu-
lations will have fewer vertices than T . For readability,
we leave more detailed construction of the splitting to
supplementary materials.

Algorithm 1 Decomposes all singular nodes of a hex
mesh into singular curves.

1: procedure Decompose-Singular-Graph(H)
2: do
3: N GetRandomSingularNode(H)
4: if OnlyHasValence345(H,N) then
5: C GetHardcodedCut(H, N)
6: else
7: C GetGeneralCut(H, N)
8: end if
9: S PropagateCut(H, C)

10: H SheetInflation(H, S)
11: while N 6= ;
12: return H
13: end procedure

Applying the splitting in Prop. 1 could result directly
in base cases, where the rest of the decomposition is
already known. If the splitting does not result in base
cases, then it produces triangulations with fewer ver-
tices. This can be repeated until there are not enough
vertices to have a degree 6 vertex. Since sheet inflation
at a singular node corresponds to splitting of a sphere
triangulation, Prop. 1 allows us to find a sequence of
sheets whose inflation results in singular nodes that
have lower than valence 6 singular edges. We have al-
ready enumerated singular decompositions for all sin-
gular nodes with valence lower than 6 and can there-
fore decompose any singular node into singular curves.

A limitation of Prop. 1 is that it restricts attention to
individual singular nodes while ignoring the full sin-
gular graph of the mesh. It can be challenging to ex-
tend a sheet known locally around a singular node to
the rest of the hex mesh while guaranteeing no self-
intersection occurs. We present our simplistic solution
to extending sheets in subsection 5.1 and leave more
careful consideration of how to avoid self-intersection
to future work.

5. RESULTS

5.1 Singular Graph Decomposition

We develop a procedure to perform singular mesh de-
compositions on general hex meshes. Pseudocode for
this procedure is given in Alg. 1 and Alg. 2 First,
we randomly select a singular node. For any singu-
lar node with valence restricted to 3, 4, or 5, we hard
code a subset of faces adjacent to the node to be in-
flated. If the node has valence 6 or higher, we use
Prop. 1 (denoted GetGeneralCut in Alg. 1) to select
these faces. These faces form a partial sheet that de-
composes the initially selected node, but need to be
extended through the rest of the mesh in order to be
inflatable.

42

Figure 9: The (0,0,12) singular node is decomposed into six valence 5 curves via seven sheet inflations.

b u a

p

D1

D2

Interior vertices

Interior vertices

Figure 10: Illustration of how to find a cycle such that
splitting along that cycle results in two sphere triangu-
lations, each with fewer vertices. The only requirement
is that there is a vertex u of degree � 6. The required
cycle is then [(ua), p, (bu)].

Next we propagate the partial sheet throughout the
hex mesh following Alg. 2. Let a face be parallel to
the partial sheet if they share a regular edge but share
no adjacent hexes. We greedily add parallel faces to
the partial sheet until no more parallel faces can be
found. Next we look for any interior singular vertices
on the boundary of the partial sheet. If such a vertex
is found, then we compute the smallest number of new
faces that need to be added to the partial sheet so that
its boundary excludes this singular vertex. This is
denoted by Put-v-In-S in Alg. 2 and is equivalent to a
graph shortest path computation on the triangulation
representing this singular vertex.

These two steps are repeated until no more parallel
faces can be found, and the boundary of the partial
sheet is entirely on the boundary of the hex mesh. If
at any stage of the algorithm, the partial sheet be-
came non-manifold then the sheet propagation algo-
rithm has failed. If the sheet is manifold then we in-

Algorithm 2 Propagates a partial sheet into a full
sheet recursively.

1: procedure PropagateCut(H, S)
2: Q GetFaces(H)
3: while 9f 2 Q :Parallel(H, S, f) do
4: S S [f
5: end while
6: V GetVertices(H)
7: VS GetInteriorSingularVertices(H)
8: if 9v 2 (@S \ VS) then
9: S Put-v-In-S(H, S, v)

10: else
11: if NonManifold(H, S) then
12: return ERROR
13: else
14: return S
15: end if
16: end if
17: return PropagateCut(H, S)
18: end procedure

flate it resulting in the decomposition of at least one
singular node. All results shown were generated by
Alg. 1.

Applying our decomposition to a hex mesh of a sphere
reveals that it has the same singular graph structure
as that of a padded tetrahedron. Figure 11 shows this
correspondence where inflating one sheet that passes
through seven singular nodes, simultaneously decom-
poses three of them. The end result is a singular graph
composed of four (4,0,0) singular nodes. One of these
nodes has singular curves that all connect directly to
the boundary. The other four of these nodes connect
to each other and the boundary via valence 3 singu-
lar curves in a tetrahedral arrangement. This singular
graph is exactly what one obtains by padding a hex
mesh of a regular tetrahedron i.e. padding a (4,0,0)
node.

Changing how the sheet cuts through the singular
graph produces di↵erent intermediate and final singu-

43

Figure 11: (Left) Hex mesh of sphere with singular
graph. (Mid-left) Blue hexes are newly inflated hexes.
(Mid-right) Hex mesh post-inflation. (Right) Singular
graph of a padded hex mesh of a tetrahedron. The last
two images have topologically equivalent singular graphs.

lar graphs. In Figure 12, we decompose a padded cube
in two di↵erent sequences and show the their interme-
diate singular graphs. To improve clarity, we provide
schematics of a subset of the singular graphs. The
ending singular graphs from both sequences are also
topologically distinct i.e. no purely geometric defor-
mation maps one singular graph into the other. They
do however appear to invariably contain a single sin-
gular cycle.

The first sheet inflation of the second sequence results
in the same singular graph as a padded hex mesh of a
triangular prism: a padded (2,3,0). Since the hex mesh
of a sphere has the same singular graph as the padded
cube, these results indicate that singular graphs for a
padded cube, padded tet, and padded triangular prism
are identical up to a series of sheet inflation and col-
lapses.

In Figure 13, we apply our decomposition to more
complex singular graphs. The first two rows depict
the decomposition of the G1 hex mesh. The start-
ing singular graph consists of 12 nodes connected by
36 singular curves. This graph is successfully decom-
posed into seven singular curves, one of which is a
closed cycle. The last two rows depict the decomposi-
tion of the G2 hex mesh. The starting singular graph
consists of 16 nodes connected by 40 singular curves.
This graph is successfully decomposed into 12 singular
curves, two of which are closed cycles. While the start-
ing singular graphs are di↵erent, both meshes are fully
decomposed with the same number of sheet inflations.

Finally, we apply our decomposition in Figure 14 to
the cactus mesh from [19]. While the mesh starts with
only singularities of valence 3, 4 and 5, the decomposi-
tion results in intermediate singular graphs with nodes
of signature (2,3,0,2). The final configuration is seen
to contain singular curves of valence 6. Since our goal
is only to remove singular nodes, we terminate with
valence 6 curves.

5.2 Scaled Jacobians

The minimum scaled Jacobian of a hex mesh is a com-
mon metric by which to evaluate distortion of the mesh

[20]. We maximize the minimum scaled Jacobian be-
fore and after singular decomposition of each singular
node with free boundaries and present the resulting
minimum scaled Jacobians in Table 1. Unsurprisingly,
singular nodes have lower scaled Jacobians than sin-
gular curves.

By symmetry, the minimum scaled Jacobian of any
hex mesh, regardless of resolution, containing a (4,0,0)
node is upper bounded by 4

3
p

3
= .7698. The same

bound for a hex mesh containing a (0,0,12) node isp
2(5+

p
5)

5
= .761. These bounds are exactly attained

in Table 1 for the (4,0,0) and (0,0,12) nodes. The same
upper bound computed for meshes containing valence
3 singular curves is sin(2⇡

3
) = .866 and for meshes

containing valence 5 singular curves is sin(2⇡
3

) = .951.

By performing a sheet inflation to split singular nodes
into singular curves, the minimum scaled Jacobian of
the (4,0,0) node is increased to .86, almost the theo-
retic upper bound. For (0,4,4) as well, decomposing
the singular node into two valence 5 curves brings the
minimum scaled Jacobian to almost the theoretic up-
per bound. Decomposing (0,0,12) node into six va-
lence 5 curves brings significant improvement to the
minimum scaled Jacobian, though it is not as close to
the theoretic upper bound due to interactions between
singular curves.

Moving towards full singular graphs, we perform the
same scaled Jacobian optimization for a sphere mesh.
Maximization of its minimum scaled Jacobian results
in a value of .768, close to the upper bound for any
mesh containing a (4,0,0) node. We apply our decom-
position to this mesh and re-optimize its scaled Ja-
cobian resulting in a significant improvement to .849.
We run the same optimizations on the padded tetra-
hedron, G1, and G2 resulting in similar increases in
the minimum scaled Jacobian. These results are sum-
marized in Table 1.

6. CONCLUSIONS AND FUTURE
WORK

This paper presents singular nodes as the result of glu-
ing singular curves together at a point and shows that
the reverse can be done via sheet inflation to untan-
gle singular nodes into simple singular curves. This
removes the 3D complexity of singular nodes leaving
meshes with lower distortion. We demonstrate this
procedure on a variety of meshes showing in all cases
that no singular nodes are left behind.

The main limitation of our work is that the local sheets
we prescribe for decomposing a singular node are not
guaranteed to propagate globally while avoiding self-
intersection. This can result in the inability to decom-
pose a singular graph by removing all of its singular

44

Figure 12: We show two sequences of singular graph decomposition starting from the same hex mesh on the left to a fully
decomposed singular graph on the right. The first row indicates select singular graph schematics for the first sequence.
The last row indicates select singular graph schematics for the second sequence. Even though both singular graphs start
out identical, the ending singular graphs are di↵erent due to di↵erent sheet inflations.

Figure 13: We apply singular decomposition to the G1 and G2 hex meshes. The first two rows correspond to the
sequence of singular graphs from decomposing G1. The last two rows correspond to the sequence of singular graphs from
decomposing G2. The number of singular nodes decreases each sheet inflation ultimately resulting in a singular graph with
no nodes at all.

45

Figure 14: We apply singular decomposition to the cactus mesh from [19]. The number of singular nodes decreases with
each sheet inflation ultimately resulting in a singular graph with no nodes at all. While the original singular graph consisted
of only valence 3, 4 and 5 nodes, intermediate singular graphs from this sequence contain singular nodes with signature
(2,3,0,2). The fully decomposed singular graph has valence 6 curves.

46

Mesh Original Decomposed UpperBound

(4,0,0) 0.769 0.86 0.866
(2,2,2) 0.807 0.862 0.866
(0,4,4) 0.896 0.943 0.951
(1,3,3) 0.822 0.865 0.866
(0,3,6) 0.863 0.939 0.951
(0,2,8) 0.82 0.937 0.951
(2,0,6) 0.745 0.856 0.866
(0,0,12) 0.761 0.926 0.951
Sphere 0.768 0.849 0.866

Padded Tet 0.715 0.812 0.866
G1 0.769 0.811 0.866
G2 0.757 0.820 0.866

Ellipsoid 0.767 0.825 0.866

Table 1: For various hex meshes, we indicate the maxi-
mized minimum scaled Jacobian before and after singular
decomposition. The first column indicates the mesh, the
second column indicates before singular decomposition,
and the third column indicates after. The fourth column
indicates a theoretic upper bound on the minimum scaled
Jacobian for the decomposed mesh. It essentially indi-
cates the presence of a valence 3 or 5 singular curve. The
maximized minimum scaled Jacobian is invariably higher
post singular decomposition.

nodes. We expect that a valid sheet inflation can al-
ways be found and leave its e�cient computation to
future work.

While our method decreases the number of singular
nodes in a mesh, its base complex [14] may increase in
size. This tradeo↵ should be considered by the user as
they may have to choose between a larger scaled Jaco-
bian or maintaining a small number of base complex
cells.

Our results can be extended to design new ways of
modifying the singular graph of a mesh. Instead of
only decomposing nodes into curves, one can rewire
singular curves by merging them at a node with sheet
collapse, and decomposing them in a di↵erent way
from how they were combined. For example, consider
the (4,0,0) node in Figure 4. It’s sphere triangulation
is a tetrahedron which contains three distinct cycles
of length four. Therefore, it is possible to bring two
valence 3 singular curves together to form a (4,0,0)
node and split them apart again in three distinct ways.
Each one results in a di↵erent singular graph, none of
which require introducing new singularities.

Many works aim to build minimal degree smooth
parameterizations of quad meshes with singularities
[21, 22]. These methods do not clearly generalize to
the volumetric case where singular nodes may suf-
fer decreased continuity from methods designed for
2D singularities. A promising approach following our
work is then to decompose any given singular graph

so that no singular nodes exist. We expect that it is
easier to adapt quad mesh singular parameterization
methods to singular curves that are just 2D singulari-
ties extruded into 3D than it is to adapt parameteriza-
tion methods for singular nodes. Even if one derived a
singular node parameterization method for a specific
singular node type, there is no guarantee that it ex-
tends to any other node type. This problem is made
easier by only needing to consider singular curves after
decomposition.

ACKNOWLEDGEMENTS

This project was launched at the Summer Geometry
Initiative (SGI) 2021, supported by National Science
Foundation grant DMS-2103933, Army Research Of-
fice grant W911NF2110095, and generous donations
from corporate partners. Paul Zhang acknowledges
the support of the Department of Energy Computer
Science Graduate Fellowship and the Mathworks Fel-
lowship. The authors thank Justin Solomon and David
Bommes for many valuable discussions.

References

[1] Weingarten V.I. “The controversy over hex or tet
meshing.” Machine design, vol. 66, no. 8, 74–76,
1994

[2] Cifuentes A., Kalbag A. “A performance study of
tetrahedral and hexahedral elements in 3-D finite
element structural analysis.” Finite Elements in
Analysis and Design, vol. 12, no. 3-4, 313–318,
1992

[3] Benzley S., Perry E., Merkley K., Clark B.,
Sjaardema G. “A Comparison of All Hexago-
nal and All Tetrahedral Finite Element Meshes
for Elastic and Elasto-Plastic Analysis.” Interna-
tional Meshing Roundtable, vol. 17, 01 1995

[4] Ray N., Sokolov D., Lévy B. “Practical
3D frame field generation.” ACM Transac-
tions on Graphics, vol. 35, no. 6, 1–9, Nov.
2016. URL http://dl.acm.org/citation.cfm?

doid=2980179.2982408

[5] Lyon M., Bommes D., Kobbelt L. “HexEx: Ro-
bust Hexahedral Mesh Extraction.” ACM Trans.
Graph., vol. 35, no. 4, 123:1–123:11, Jul. 2016

[6] Nieser M., Reitebuch U., Polthier K.
“CubeCover–Parameterization of 3D Vol-
umes.” Computer Graphics Forum, vol. 30, no. 5,
1397–1406, Aug. 2011. URL http://doi.wiley.

com/10.1111/j.1467-8659.2011.02014.x

[7] Huang J., Tong Y., Wei H., Bao H. “Bound-
ary aligned smooth 3D cross-frame field.”

47

SIGGRAPH Asia, p. 1. ACM Press, Hong
Kong, China, 2011. URL http://dl.acm.org/

citation.cfm?doid=2024156.2024177

[8] Solomon J., Vaxman A., Bommes D. “Boundary
Element Octahedral Fields in Volumes.” ACM
Transactions on Graphics, vol. 36, no. 3, 1–16,
May 2017. URL http://dl.acm.org/citation.

cfm?doid=3087678.3065254

[9] Li Y., Liu Y., Xu W., Wang W., Guo B. “All-hex
meshing using singularity-restricted field.” ACM
Trans. Graph., vol. 31, no. 6, 177, 2012

[10] Jiang T., Huang J., Wang Y., Tong Y., Bao H.
“Frame Field Singularity Correction for Auto-
matic Hexahedralization.” IEEE Trans. on Vi-
sualization & Computer Graphics, vol. 20, no. 8,
1189–1199, Aug. 2014

[11] Liu H., Zhang P., Chien E., Solomon J.,
Bommes D. “Singularity-constrained octahedral
fields for hexahedral meshing.” ACM Trans-
actions on Graphics, vol. 37, no. 4, 1–17, Jul.
2018. URL http://dl.acm.org/citation.cfm?

doid=3197517.3201344

[12] Corman E., Crane K. “Symmetric Moving
Frames.” ACM Trans. Graph., vol. 38, no. 4, Jul.
2019. URL https://doi.org/10.1145/3306346.

3323029

[13] Gao X., Panozzo D., Wang W., Deng Z., Chen
G. “Robust structure simplification for hex
re-meshing.” ACM Transactions on Graphics
(TOG), vol. 36, no. 6, 1–13, 2017

[14] Gao X., Deng Z., Chen G. “Hexahedral mesh
re-parameterization from aligned base-complex.”
ACM Transactions on Graphics (TOG), vol. 34,
no. 4, 1–10, 2015

[15] Xu G., Ling R., Zhang Y.J., Xiao Z., Ji Z.,
Rabczuk T. “Singularity Structure Simplifica-
tion of Hexahedral Meshes via Weighted Rank-
ing.” Computer-Aided Design, vol. 130, 102946,
2021

[16] Campen M., Shen H., Zhou J., Zorin D. “Seam-
less parametrization with arbitrary cones for ar-
bitrary genus.” ACM Transactions on Graphics
(TOG), vol. 39, no. 1, 1–19, 2019

[17] Peng C.H., Zhang E., Kobayashi Y., Wonka P.
“Connectivity editing for quadrilateral meshes.”
Proceedings of the 2011 SIGGRAPH Asia confer-
ence, pp. 1–12. 2011

[18] Ledoux F., Shepherd J. “Topological modifica-
tions of hexahedral meshes via sheet operations:
a theoretical study.” Engineering with Comput-
ers, vol. 26, no. 4, 433–447, 2010

[19] Bracci M., Tarini M., Pietroni N., Livesu
M., Cignoni P. “HexaLab.net: An online
viewer for hexahedral meshes.” Computer-
Aided Design, vol. 110, 24–36, 2019. URL
https://www.sciencedirect.com/science/

article/pii/S0010448518304238

[20] Quadros R. “The CUBIT Geometry and Meshing
Toolkit.” https://cubit.sandia.gov/, 2021

[21] Karčiauskas K., Peters J. “Minimal bi-6 G2 com-
pletion of bicubic spline surfaces.” Computer
Aided Geometric Design, vol. 41, 10–22, 2016

[22] Karčiauskas K., Peters J. “Refinable smooth sur-
faces for locally quad-dominant meshes with T-
gons.” Computers & graphics, vol. 82, 193–202,
2019

48

INCREMENTAL DECOMPOSITION FOR HEX-MESHING IN CAD USING
VIRTUAL TOPOLOGY

Benoit Lecallard1, Trevor T. Robinson1, Cecil G. Armstrong1, Declan C. Nolan1, Harsha
Ramesh2

1Queen’s University Belfast, Belfast, United Kingdom. b.lecallard@qub.ac.uk
2Rolls-Royce plc, Derby, United Kingdom Harsha.Ramesh@rolls-royce.com

ABSTRACT

This paper presents methods for preparing a geometry model for finite element mesh generation in a Mechanical Computer-Aided
Design (MCAD) environment. It works by creating a new representation of the model through the application of virtual topology
operators. The resulting “analysis topology” description is used to abstract the analysis model, enabling automated tools and experts
to apply an incremental strategy to decompose the model for meshing, without modifying the original CAD model. This work also
demonstrated how virtual topology enables the integration of multiple model decomposition tools to expand the capabilities of the
hosting CAD environment, providing support for more meshing strategies and more freedom in how they are applied, while
bridging the gap between the CAD and analysis models. Herein, the virtual topology operators used to decompose the model are
checked and propagated based on the required mesh constraints to ensure the resulting mesh is conformal at the interfaces. Finally,
the methods required to decompose the original CAD model using the analysis topology description and “virtual geometry curves”
are presented, enabling downstream automation of the mesh.

Keywords: mesh generation, analysis topology, virtual topology, CAD

1. INTRODUCTION AND RELATED WORK

Generating a good quality mesh is a major bottleneck in most
finite element analysis workflows. The generation of high-
quality hexahedral (Hex) element meshes remains a highly
skilled and user intensive task, which often requires the use
of dedicated CAE packages into which the original CAD
geometry needs to be transferred from the CAD
environment. Hex elements are preferred over alternatives
(e.g. tetrahedral elements) when simulating highly non-
linear events, using explicit analysis codes and for accurate
contact capture between deformable bodies. A
comprehensive survey by Sarrate et al. [1] highlights a wide
range of approaches to hex meshing, as well as the benefits
of using this element type. Decomposition-based approaches
are widely used and involve partitioning the geometry of the
model to be meshed into sub-regions with specific
topological and shape characteristics which can be meshed
using hex-meshing algorithms like mapping and sweeping.

With decomposition and meshing accounting for more than
50% of the time taken for the entire simulation task [2],
automating aspects of the hex meshing task is a well-
researched ambition. Whilst the push toward fully automated

hex-mesh generation for arbitrary domains has yet to yield a
generic solution, it has resulted in many automated tools that
are applicable to specific classes of geometry. These tools
use either divide and conquer paradigms to recursively
extract simple regions [3]–[6], or use intermediate constructs
to capture the flow of elements and identify partitions [7]–
[10]. An extension of this is to apply the same divide and
conquer paradigms in an integrated incremental
decomposition workflow, where simpler tools alleviate the
task of the more complex and computationally expensive
ones. While analysts would greatly benefit from combining
existing tools, their integration is challenging as standards
for geometry exchange are not tailored for analysis models.
Dedicated meshing packages such as CUBIT[11] already
integrate various automated methods, but still resort to the
judgment of the user to select the best partitioning strategy.
These packages are also limited by the need to transfer the
geometry from a CAD environment, and the difficulty to add
additional decomposition methods. The shortcomings of
fully automatic tools are also recognized in [12], where the
benefits of semi-automated decomposition workflows are
demonstrated using a manual sketch-based decomposition
method enhanced by geometric reasoning [13].

49

When a model is decomposed into sub-regions, a conformal
mesh is required at the interfaces to successfully connect
their respective meshes. The constraints of conformal hex
meshing and structured mesh implications are reviewed by
Blacker [14]. Previous work on generating conformal
meshes using sweeping is described in [15] and [16]. Even
though both are mesh-based methods tailored for one type of
decomposition, they highlight the importance of interface
management for conformal meshing.

The benefit of using virtual topology for pre-processing a
model for meshing has been presented by Sheffer et al. [17].
The concept involves creating virtual topology entities by
applying virtual topology operators to the entities in the
original CAD model, which are therefore based upon but do
not alter the underlying CAD definition. To date it has
mostly been used for correcting minor “defects” (e.g. to
merge a sliver face with a larger adjacent face), with
implementations focused on the final steps of the analysis
model preparation process. Extending the use of virtual
topology to the entire pre-processing stages would facilitate
the integration of different automated tools, as the need to
exchange geometry (e.g. decomposed CAD) and/or pre-
processing operations (e.g. split operation) is replaced by the
need to exchange virtual topology operations. White [4] used
virtual decomposition to automate hex mesh generation,
where surface nodes of an initial mesh are reassigned to a
virtual sub-region.

More recently, Tierney et al. used virtual topology operators
to generate an “analysis topology” based on the outputs of a
decomposition algorithm [18]. The concept of analysis
topology enables to streamline pre-processing tasks, by
adding flexibility to the decomposition while exposing all
the necessary information to manage interfaces and
automate decomposition and meshing. However, the
implementation in that work was limited by the need to edit
automated tools to work using virtual topology, and the a-
posteriori identification of meshing strategies preventing
further decomposition in the absence of a mechanism to
maintain a conformal mesh at interfaces. Finally, generating
a mesh from a virtually decomposed model requires either
new meshing tools or robust geometrical decomposition
capabilities for compatibility with existing meshing tools.

This work builds on the analysis topology concept to enable
incremental decomposition of CAD models for automatic
hex meshing. The main contributions include introducing a
method to integrate virtual topology with both existing tools
and manual operations and a method to manage and exploit
meshing strategies to propagate splits automatically. Finally,
a method to ensure that the virtual topology decomposition
can be applied geometrically for compatibility with
downstream meshing is presented.

2. INCREMENTAL DECOMPOSITION FOR
MESHING

Incrementally decomposing a model for meshing involves
identifying and extracting individual regions of the geometry
to which known meshing algorithms can be applied. Once a
meshing strategy has been identified for each sub-region of
the domain, each can be meshed in a piecewise manner.

2.1 Structured meshing requirements

The quality of a hex mesh is directly related to the geometry
of its elements and their connectivity. In a regular mesh each
interior node should connect exactly 4 quad elements or 8
hex elements. To accommodate complex shapes while
retaining the quality of individual elements, nodes must
sometimes connect an irregular number of elements, which
introduces “singularities” into the structure of the mesh.

Figure 1. Mesh singularities.

Definition: A mesh singularity is a collection of one or
more irregular nodes. It can be either positive (more than the
regular number of connected elements), or negative (less
than the regular number of connected elements), as shown in
Figure 1.

Quad (2D) and hex (3D) meshing algorithms impose strict
requirements on the presence of singularities, which in turn
impose constraints on the shapes that can be processed, as
the number of singularities is directly linked to the shape.
These requirements are as follows:

• Mapping (quad): The mesh is generated by mapping
the template of a unit square onto a local surface
parametrization [19]. As such, no singularities will
occur and the face must be 4-sided. It also implies that
opposite pairs of edges need to have the same number
of divisions. A sub-mapping variant is also possible
for non-rectangular faces where all the edges can be
grouped into two sets of opposite groups.

• Paving (quad): The mesh is generated by inserting
rows of quad elements from the boundaries towards
the interior [20]. There are no specific requirements
on the structure of the mesh and singularities can be
present. This means there is no constraint on the shape
of the face. However, the algorithm may introduce
pairs of singularities that cancel each other. It also
requires that the sum of division numbers on each loop
of edges must be even.

• Mapping (Hex): The mesh is generated by mapping
the template of a unit cube on the local i-j-k
parametrization. This requires the shape to have a
cube-like topology, with 6 logical faces and 12 logical
edges, and no singularities can be present. It implies
that all bounding faces are mapped meshed, with the
associated constraints on singularities and edges
divisions.

• Sweeping (hex): Hex elements are generated by
sweeping quad elements on a source face to a target
face. This means all lateral faces (so-called wall
faces) connecting the source and the target have
mapped mesh structures, and hence no singularities
can exist on wall faces. Also, corresponding edges at
opposite ends of the sweep must have the same
number of divisions. There is no mesh structure
requirement on the source face, which can be either

50

mapped or paved, and therefore singularities can be
channeled from the source to target face.

This work focuses on two types of shapes suitable for hex
meshing with these algorithms:

• Block shapes, with a cube-like topology that can be
map (Hex) meshed with 6 faces mappable (quad).

• Sweepable shapes, with a loop of mappable (quad)
wall faces in the sweep direction.

Directly identifying a block decomposition for an arbitrary
geometry is difficult, as there should be no singularities in
the blocks. This means all singularities need to be located at
the edges bounding the interfaces between blocks.
Sweepable regions are less constraining as they can
accommodate singularities along the sweep direction and are
therefore easier to identify. There is a strong correlation
between the two types, as a block can be swept meshed in
any of three directions, and sweepable regions can have a
mappable source face and therefore satisfy block constraints.
It is therefore easier to identify first a semi-structured mesh
by identifying sweepable regions, and then decomposing
their source faces to constrain the singularities and achieve a
more structured block decomposition.

2.2 Reasoners

Manually identifying and extracting block and sweepable
regions can be a very tedious task for geometries which
include many details. Various automated tools or reasoners
have been developed to facilitate this task by extracting
regions based on specific geometric and topological
characteristics. These characteristics define in turn a
meshing strategy which specifies how the regions should be
meshed. This information is required as the type of the shape
(block or sweepable) does not contain sizing information and
can change.

Definition: A decomposition reasoner refers to an
algorithm that queries the model to identify regions that can
be assigned a specific hex-meshing strategy and provides the
topological and geometrical information to create the
partitioning entities necessary to extract such regions.

Definition: A meshing strategy describes the type of
element (e.g. Hex or Mixed-Tet) along with sizing
information, symmetries and anisotropic element shape
metric properties of the region.

The simplest reasoners are tools that identify regions that are
already blocks or are sweepable, by checking that the
topology and geometry match the requirements of that
region type (described previously). Other reasoners use
shape properties such as concavities and symmetries to help
breaking down a model into simpler regions. For example,
aero-engine models are mostly axisymmetric with cyclic
patterns that repeat around the circumference. Using a
dedicated reasoner based on [21], axisymmetric regions and
regions that can be meshed using cyclic symmetries can be
identified. The associated meshing strategy stores any
repetition pattern, to ensure a compatible mesh between each
occurrence. Other reasoners exploit local anisotropy of the
shapes to identify sweepable regions. For example, thin-
walled regions with two large dimensions compared to the

third can be meshed by applying a mesh to a larger face and
sweeping through the small thickness. A thin-sheet reasoner
based on Sun’s implementation [22] identifies and extracts
thin regions by manipulating pairs of opposing faces from
the CAD geometry. The associated meshing strategy stores
the aspect ratio of the shape and the thickness, which can
then be used to infer a target element size as described in
[23]. Similarly, truss-like structures, or models which have
had their thin-sheet regions removed, can have many long
regions with a nearly constant cross-section topology, that
are also appropriate for hex-meshing by sweeping. These
can be identified by a long-slender reasoner that processes
loops of nearly parallel long edges, as described by Sun [5].
These reasoners can greatly reduce the number of DOFs of
the mesh, as the anisotropy of the region can be used to
stretch the hex elements and reduce their number. More
complex decomposition reasoners can also make use of other
types of information, such as temporary constructs (frame-
fields, medial-object), functional and adjacency information
if available, or AI methods.

Each reasoner has its strengths and weaknesses in terms of
speed, accuracy and class of shapes supported. More than
one may be required to achieve a full hex mesh for a complex
shape. Therefore, an efficient incremental decomposition
workflow requires the integration of a diverse range of
decomposition reasoners. To be of maximum benefit these
need to work in any order, without any dependencies on the
preceding reasoners or the package where the CAD model is
hosted. Preparing a CAD model for meshing can also include
de-featuring and dimensional reduction operations, which
can be identified and applied using dedicated automated
reasoners which are not covered in this paper.

2.3 Challenges

Since many meshing workflows start from a geometry that
has been created in a feature-based CAD environment, and
to maintain the associativity with the design history in the
model, the ability to decompose the model for meshing
within the CAD system is an attractive solution. However,
there are several challenges to doing so, primarily because
CAD packages have not been developed for the purposes of
decomposing a model for meshing.

First, creating a split operation in CAD may create
unexpected geometrical defects such as sliver faces and
result in non-watertight models due to trimming errors [24].
Secondly, automating the decomposition and downstream
meshing requires a robust tracking of B-Rep entities, which
is challenging due to persistent naming issues inherent to
CAD packages [25]. Then, incrementally decomposing the
CAD model will append a sequence of split operations to the
feature tree of the model, and any edit further up in the tree
may produce unexpected results further down, including the
splits. Finally, most commercial CAD environments rely on
a manifold boundary representation scheme, meaning that
two bodies cannot share a same face, edge or vertex. Hence,
two identical faces are created within the CAD system at the
interface between two bodies after a split operation.

Even when a CAD system is used to help prepare a geometry
model for meshing, a transfer to a dedicated CAE package is
usually still required for meshing. After doing so the

51

decomposition will be converted to a non-manifold
representation which ensures the resulting mesh is
conformal at interfaces between regions. It is therefore
important to ensure that incremental decomposition will
produce a usable collection of bodies that can be re-
assembled in a CAE package for meshing.

Another challenge comes from the incremental
decomposition principle itself. Identifying simple regions
first means all of the complexity of the meshing task will be
pushed to the last regions of the geometry to be processed.
This can become problematic as these regions may harbor
complex arrangements of singularities. Where these exit
through an interface, they make any hex meshing strategy in
connected regions invalid. Therefore, special care must be
taken when chaining reasoners, as structure modification can
propagate throughout the decomposition.

2.4 Proposed workflow

Since most of the challenges of incrementally decomposing
a model in CAD come from the application of the successive
split operations, the idea in this work is to identify regions to
which a known meshing strategy can be applied, store the
required partitioning strategy, and then query the
partitioning strategy to identify the next regions to process.
This is enabled by virtual topology split operators that will
topologically partition the model without altering the CAD
representation, as described in the next section. Each region
in the model for which a meshing strategy has not yet been
identified is classed a “residual region”. Eventually, once all
the reasoning is done and a suitable virtual topology
decomposition is available, the model can be decomposed
within the CAD system to be used for meshing. Should any
residual regions remain at the end of the process a tet-mesh
can be applied to them, with a layer of pyramid elements at
interfaces with hex-meshed regions, to produce a mixed
mesh. To be successful, this workflow requires a simple way
of integrating existing reasoners with virtual topology, so
they can identify suitable regions in presence of virtual
topology and define virtual topology splits. The meshing
strategies identified by the reasoners need to be robustly
managed to remain valid after further decomposition of
neighbor regions. Finally, the ability to robustly convert a
virtual decomposition into a CAD decomposition is required
to ensure the virtual decomposition is usable.

3. ANALYSIS TOPOLOGY

3.1 Virtual topology

Virtual topology uncouples the topological representation of
a model from its geometrical representation in the B-Rep
scheme [17], allowing manipulation of the topology without
having to alter the underlying geometry of the model. It
defines a set of entities and operators to carry out the
operations associated with model pre-processing for
meshing, and to formalize the relationships with the original
host model.

Virtual topology entities do not require an explicit geometric
definition and instead use a geometric definition inferred
from their host entities, or which can be related to simple

geometrical constructs (e.g. line between two points, least-
square fitted surface, etc.). These are illustrated in Figure 2
(a), and include:

• Parasite entities: entities that do not exist in the
topology of the original CAD model, but lie on an
entity from the original CAD model of higher
dimension (e.g., an edge lying on the face it splits).

• Subset entities: subsets of host entities that are split by
a topological entity of lower dimension (e.g., faces
obtained by partitioning a host face with a parasite
edge).

• Superset entities: a superset of host entities that are
merged together by ignoring their common boundary
entities.

• Orphan entities: an entity without a host one
dimension higher, and from which no geometry
description can be inherited (i.e., an edge through
volume).

Figure 2. (a) virtual topology entities created after
virtual decomposition and (b) equivalent geometric
decomposition and meshing strategies.

Virtual topology operators relevant for an incremental
decomposition workflow are the virtual topology split,
where a host entity is split into several subsets by parasite
entities, and the virtual topology merge where several
entities of the same dimension are merged into a single
superset by ignoring their common boundary entities.

3.2 Abstracting the analysis model

Definition: The analysis model is a transformed version of
the design model that exists within a CAE environment, to
which mesh, boundary conditions and loads are applied.

Implementing the decomposition in the CAD system using
virtual topology operators means that only a topological
description of the analysis model is created, known as the
analysis topology.

Definition: The analysis topology is a representation of the
boundary topology of the analysis model.

In this work, the analysis topology is a non-manifold cellular
model, which means that all interfaces between cells are
known and are considered cells in their own right. Meshing
strategies can be attached to cells. The analysis topology is
initialized by extracting the topological representation of the
B-Rep from the original design model. It is external to any
CAD package and can represent topological relationships
not supported in many CAD environments, but which are
required for conformal meshing. It is therefore capable of
acting as the interface between different CAD and CAE

52

packages. However, while the analysis topology can be used
to represent the topology of the model to be meshed, it does
not contain sufficient information to be used for reasoning.
To address this issue, “virtual geometry” is introduced.

Definition: virtual geometry entities are geometric
representations of virtual entities that co-exist in the
modelling space of the design model, but are not associated
with its B-Rep.

Virtual geometry entities are used to perform geometric tests
on the analysis topology and to visualize the virtual volume
cells. Virtual geometry curves (in red in Figure 2 (a)) are
combined with the existing edges of the CAD model that
have not been virtually edited to define a wireframe
representation of the volume cells. These curves help store
the partitioning intent of decomposition reasoners and avoid
deleting and re-creating curves. Whenever the actual CAD
decomposition is required, virtual geometry curves are used
to define virtual geometry surfaces that can partition the
CAD model to generate the equivalent analysis model,
Figure 2 (b).

3.3 Reasoning on the analysis topology

The use of an analysis topology implies that the current
decomposition state of a model is not explicitly available and
cannot be directly queried or decomposed. Additional steps
are required to adapt the decomposition reasoners, which
depend on the ability to integrate a reasoner. Figure 3 shows
the integration of 6 different types of reasoners to interact
with the analysis topology

 3.3.1 Queries

Reasoners that are fully integrated with virtual topology can
directly query the analysis topology. Geometrical queries are
achieved by inheriting the geometric definition of host
entities or by querying virtual geometry curves if no
geometry is linked. Reasoners for extracting thin-sheets,
long-slender and axisymmetric regions have been fully
integrated with virtual topology, as described in [26]. Other
reasoners that are not integrated with virtual topology
require an explicit geometry description to work with, as
modifying their implementation to work with virtual

topology might be tedious, or not even possible. In that case,
there is no need to commit the entire decomposition, only the
subset regions of interest can be temporarily extracted from
the CAD model, as detailed in section 5.1. The temporary
region can then be processed in either another CAD session
of the native CAD environment, or a different CAD
environment after STEP export.

In the situation where a user wants to manually insert
partitions by applying CAD split operations, an explicit
geometry is also extracted. It is then enriched with interface
and mesh singularity information from neighbors, to help the
user understand the flow of elements and constraints
stemming from the meshing strategies of neighbor regions.
(see Figure 13 (c)).

 3.3.2 Parasite wireframe

In the absence of any standard for exchanging virtual
topology partitions (though one could easily be defined), the
concept of a parasite wireframe is introduced to integrate the
output of different reasoners, or manual intervention, around
a common format. The purpose is to collect the minimal
information required for applying virtual topology split
operators that cannot be recovered by reasoning, to
accompany the transfer of the geometry as a STEP file.

Definition: A parasite wireframe is a collection of vertices,
curves and loops of curves that represent virtual topology
parasite vertices, parasite edges and parasite faces
respectively.

Additional information can also be included to reduce
processing time, such as host entity information for each
vertex and curve to establish the link with the model to
decompose, the bounded/bounding relationship between
vertices and curves and which operation can be used to re-
create a face from the loop of curves (e.g., swept surface, fill
surface). Since the objective is to apply a virtual topology
split, and the final position of the nodes on these faces may
eventually depend on a mesh smoothing algorithm, the exact
geometry of the partition is not required. Hence, transferring
the CAD curves only is sufficient and it is more flexible to
transfer the scaffold required to define the cut faces than the
cut faces themselves.

Figure 3. Integration of different reasoners with virtual topology.

53

 3.3.3 Output processing

Reasoners that are already fully integrated with virtual
topology directly define virtual topology splits and produce the
necessary virtual geometry curves. For other reasoners, with
some level of scripting available, defining a simple parasite
wireframe is straightforward. It can then be transferred back to
the CAD session of the original CAD model and processed to
define virtual topology splits. The curves contained in the
parasite wireframe can be used directly as virtual geometry
curves or can be reconstructed to get a better fitting with the
CAD model. A user can also directly specify a parasite
wireframe, although it can be tedious as the curves forming a
loop of a face need to be grouped manually.

For reasoners that only output a CAD decomposition, or after
the user is done splitting the region of interest, the dumb
blocking that results is converted into a parasite wireframe
using an automated routine. It first queries all the edges and
faces of each block, to identify and match coincident entities
stemming from the manifold nature of the splits. Then entities
are classified as existing, subset or parasite entities by
comparing them with the entities of the region of interest
before splitting, that are matching the analysis topology. Only
parasite entities are kept to define the parasite wireframe and
their host entity is also recorded. This parasite wireframe is
then transferred to the original CAD environment to define the
virtual topology splits.

4. SPLIT PROPAGATION

In the analysis topology, each face of each body has its own
meshing strategy assigned, which is inferred from the meshing
strategy of the parent body or bodies in the case of an interface.
Whenever the topology of a face is modified to accommodate
imprints, either to decompose the face or because of further
decomposing neighbor regions sharing the interface, the flow
of elements or the net number of singularities on the face may
change. This implies that decomposing a body to extract hex-
meshable regions can invalidate the meshing strategies
previously identified on adjacent regions. As a result, special
care must be taken to maintain meshing strategies as the model
is incrementally decomposed.

4.1 Imprints and interfaces

Each face of the analysis topology is assigned one of the
following meshing strategies:

• unstructured triangular mesh: this only exists on or

between residual regions.

• unstructured quad mesh (e.g., paved): on source and

target faces of sweepable regions.

• structured quad mesh (e.g., mapped): faces of block

regions, walls of sweepable regions.

Unless it is an interface with a hex meshed region, there is no

limitation on partitioning the faces of residual regions. In the

case of source and target faces, singularities can be channeled,

therefore there is no limitation on partitioning these faces.

However, doing so may transform a simple one-to-one sweep

into a many-to-many sweep that is not supported by many

meshing tools. The condition on mapped interfaces is the most

stringent, as it implies that the result of a split/imprint on the

face must be a collection of faces with the same mappable

properties. Otherwise, the sweepable/block strategy of the

bodies will become invalid and reprocessing will be needed.

The validity of an imprint on mapped interfaces is assessed by
checking how it modifies the flow of elements associated with
the interfaces. The direction of the flow of elements is only
modified by the introduction of negative or positive
singularities on the face, which either stem from a subset with
a non-null net singularity number, or from the topology of the
imprint itself. Figure 4 shows various imprints on a wall face
of a swept region (which must be 4 sided). The imprints in
Figure 4 (a), (b) and (c) do not perturb the flow of elements
from top to bottom and left to right, so they are valid, and the
body bounded by the face is still sweepable. The imprints in
Figure 4 (d) introduce two triangular faces that would require
negative singularities (in blue). In Figure 4 (e), while all the
subset faces are 4 sided, the connectivity of the imprints
introduce a negative singularity that redirects part of the top-
down flow of elements to the left. Figure 4 (f) is inconclusive
when considering the bottom subset as a logical rectangle, as
all the subsets have 4 corners and are mappable.

Figure 4. Valid imprints (a-c) do not modify the mesh
flow, (d-e) introduce singularities making the sweep
invalid, and (f) is inconclusive.

Even if all the imprints on all individual wall faces are valid
and only result in mappable faces, sweepable regions require
that the wall faces form a loop of mappable faces. This
introduces an additional constraint on the flow of elements,
which is assessed by solving the mapping constraint on the
number of elements. In Figure 5, two mappable faces forming
a loop receiving valid imprints are laid flat. In Figure 5 (a),
solving the equality constraint on opposite edges yields
Ne2=Ne5=0 (where Ne# is the number of element edges on
edge e#) which implies that the loop cannot be meshed unless
the imprints are moved. On the other hand, the configuration
in Figure 5 (b) is valid, but will result in elements being
stretched on e3 and compressed on e4.

Figure 5. Loop of mappable faces with (a) invalid and
(b) valid edge division balancing.

54

Block topology is a special case of sweepable regions with 3
pairs of opposite faces resulting in 3 possible sweeping axes,
and all faces mappable. Therefore, the same approach for
checking invalid imprints can be used. The only difference is
that some invalid imprints can be handled by reclassifying the
shape type from block to sweepable, provided there is still a
loop of valid mappable faces.

If the imprints are valid, the decomposition of the face or
volume can go ahead. If the face is an interface the question of
the propagation of the split arises. For single imprints on wall
faces aligned with the sweep as shown in Figure 4 (a), there is
no need to propagate the imprint as all the wall faces of the
sweep remain 4-sided.

4.2 Aligned split

The process of splitting a sweepable region by propagating
imprints along the sweep direction is illustrated in Figure 6 (a),
where a sweepable body has had its source face imprinted to
match quad meshing requirements (in this case, imprints have
been created by mid-point decomposition reasoner applied to
the face). A new parasite wireframe is created to store the split
information. The curves of the imprint are added along with
their host face, and vertices are processed to identify host
curves and merge coinciding ones. Wall edges are discretized
and are used to trace discretized curves aligned with the sweep
on wall faces and inside the volume, as shown in Figure 6 (b).
Curves that are lying on a wall face are re-projected if an
explicit surface is available, and all the curves are added to the
parasite wireframe. Finally, the curves matching the imprint
curves on the opposite target face are created by joining the
last points of the newly created curves to match the topology
of the imprint. This completes the parasite wireframe with one
loop of curves identified for each imprint, producing 3 parasite
faces, as shown in Figure 6 (c). The resulting analysis topology
after virtual topology split and the equivalent geometric
decomposition are shown in Figure 6 (d) and (e) respectively,
with three simple sweepable regions without imprint
generated.

Figure 6. Imprints on the source face are propagated
along the sweep direction to create virtual parasite
faces splitting the sweepable region into 3 parallel
sweepable regions.

4.3 Perpendicular split

Since sweepable regions are defined by a loop of mappable
wall faces around the sweep direction, the propagation of
imprints that are perpendicular to the sweep direction is
achieved by exploiting mapping constraints to trace loops of

curves. The resulting curves partition the loop of wall faces
into two or more loops of mappable faces, effectively splitting
the original sweep region into a chain of sweepable regions, as
described in Figure 7. As for the propagation of aligned splits,
a new parasite wireframe is first created and the imprint curves
on wall faces (Figure 7 (a)) are added. Then, all coincident
vertices are merged, and the parameter of each vertex lying on
a wall edge is extracted. These parametric values are clustered
within a tolerance range and new vertices are created for each
cluster on wall edges without a vertex using the mean value of
the cluster. In Figure 7 (b), vertices with parameters !" and !#
are clustered, and a new vertex with parameter !$ is created.
Once all vertices are created, the loop of wall edges is
traversed for each cluster, and vertices without existing
parasite curves are joined by tracing a new curve on the wall
face. The resulting loop of curves are added to the parasite
wireframe and used to define a parasite face, as shown in
Figure 7 (c). The resulting analysis topology after virtual
topology split and the equivalent geometric decomposition are
shown in Figure 7 (d) and (e) respectively, with a chain of two
simple sweepable regions without imprint generated. This
algorithm enables processing of multiple imprints on multiple
wall faces and to propagate cuts on wall edges only.

Figure 7. Perpendicular imprint on a wall face is
traced around the loop of mappable wall faces to
create a virtual parasite face splitting the sweepable
region into 2 stacked sweepable regions.

4.4 Identifying propagation order

As the model is incrementally decomposed, the number of hex
meshable regions increases throughout the process and their
interaction becomes more complex. Since propagating
imprints to partition sweepable bodies also produces new
imprints on adjacent bodies, special care must be taken when
propagating splits. If the meshing strategies assigned result in
a valid mesh, propagating the imprints following the meshing
constraints will also produce a valid mesh. As such, the order
in which imprints are propagated in the sweep direction and
perpendicular to it does not matter. However, since imprints
on source faces can modify the number or position of
singularity lines, it is better to propagate aligned splits first, to
ensure proper channeling of the singularities.

In Figure 8 (a), the model is decomposed into one thin region
and 4 sweeps. The source face of one sweepable region is
decomposed resulting in the imprints in Figure 8 (b), which are
first propagated to split the region (Figure 8 (c)) introducing
both perpendicular and aligned imprints on neighbor sweeps.
The imprints on the source faces are processed first (Figure 8
(d)), followed by the lateral propagation (Figure 8 (e)).

55

Eventually, the last sweep has compatible imprints on both its
wall face and source face, which are propagated in the sweep
direction, Figure 8 (f)).

Figure 8. Imprints on the source face (b) are first
propagated to the connected sweepable body (c)
resulting in new imprints on neighbor regions that
are recursively propagated (d-f) until no more splits
can be found on sweepable bodies.

In some cases, additional meshing constraints stemming from
symmetry properties and patterning can arise, where not only
the topology but also that actual geometry must be matching
between faces to reconnect everything. This is handled by
applying the symmetry/patterning transform to the imprint
curves before propagating them, to ensure they are correctly
located.

5. DECOMPOSITION IN CAD

Once the incremental decomposition is complete with all the
splits correctly propagated, and when no more hex meshable
regions can be identified, the virtual volume cells can be
extracted to generate a meshable analysis model. Rather than
trying to apply a sequence of split operations matching the
virtual topology operators applied, the model is decomposed
by querying and using all the interfaces between bodies as
cutting faces. This provides a more flexible way of partitioning
the model that does not rely on the history of the
decomposition process, while allowing a single region to be
extracted in the model without having to perform the entire
decomposition.

The final analysis model must be contained within a non-
manifold CAE environment to ensure a conformal mesh is
created at interfaces. The partitioning of the geometry can
either be applied in a CAD environment or a CAE
environment. In the first case, the virtual geometry curves are
used to create the cutting surfaces, and the final blocking is
exported to the destination meshing environment. In the
second, virtual geometry entities are exported, and the model
is decomposed by applying split operations through an API.

If the geometry decomposition is performed in a non-manifold
environment the process is straightforward, and the topology
of the resulting analysis model will exactly match the analysis
topology. If the decomposition is carried out in a manifold
CAD environment, the limitations from the manifold
representation and the split capabilities of the CAD engine
must be taken into consideration.

5.1 Split ordering

Extracting all the subset regions identified in a single split
operation has a high chance of failing in current tools, even for
reasonably simple splits such as decomposing a cube into 8
octants (Figure 9 (a) and (b)). For this reason, an incremental
decomposition approach is preferred, extracting regions of
interest one after the other. This however produces
intermediate bodies that can exhibit invalid non-manifold
touch configurations even though all the final extracted bodies
would be valid manifolds. In Figure 9 (c), if the green octant
is removed first, extracting the yellow octant would create a
non-manifold edge on the intermediate body (in translucent
grey), hence the extraction would fail. Similarly, in Figure 9
(d), extracting the green octant first followed by the blue would
create a non-manifold vertex on the intermediate volume.

Figure 9. Invalid manifold condition on the
intermediate body for different extraction order.

This issue is eliminated by prescribing a decomposition order
that avoids invalid intermediate volumes and maintains the
manifold condition at all times. The process starts by querying
all the internal vertex and concave edge neighborhoods to
initialize the list of connected volumes. If the neighborhood is
complete, e.g., a vertex is fully surrounded by geometry, any
touching body can be removed. If the neighborhood is
incomplete, e.g., a concave edge, the touching faces that are
not interfaces define a front, and only bodies bounded by faces
on that front are valid candidates for extraction. For each
volume to be removed, the relevant neighborhoods are
checked to ensure no touching condition will be created. If the
extraction is valid the body is added to the decomposition
sequence and the neighborhoods are updated. Else the
candidate bodies are re-ordered before the current bodies and
assessed in turn.

While this process results in a propagation of the partitioning
front from the boundary, it also enables the extraction of a
single region, by identifying the minimal number of regions
that must be extracted first where the extraction would create
an invalid intermediate volume. It also reduces the number of
intermediate bodies, as these are difficult to manipulate since
they do not match any volume cells in the analysis topology.

5.2 Cut definition

Once the order in which the regions need to be extracted is
known, the sequence of split operations and cutting geometry
required to perform the decomposition need to be generated.
The cutting geometry is inferred from the interfaces between
bodies recorded in the analysis topology. Virtual geometry
curves are combined with the existing edges bounding each
interface to generate a face by fitting a surface through the
curves (in effect a fill surface operation). The resulting cutting
faces are then clustered to match each successive split
operation. This is achieved by querying all the interfaces of the

56

body to extract and removing the ones that have already been
used. Adjacent faces with coincident edges are sewn together
within each cluster.

 shows the decomposition process for the model in Figure 9
(b). The first row shows the decomposition order identified,
while the second row shows the different clusters of cutting
faces generated for each split operation associated with this
order. The third row shows the anticipated results from the
incremental splitting, with all intermediate bodies being valid
manifold representation in CAD.

Figure 10. Cluster of faces identified for the
extraction sequence. The intermediate body at each
step is a valid manifold model.

5.3 Subset mapping

Figure 11. Persistent naming issue on edges.

When automatically applying the sequence of split operations
in a CAD package, special care must be taken at each step to
identify which bodies need to be split and to remap entities on
the subset corresponding to the region to extract. The
remapping consists in matching the B-Rep entities that have
been generated by the split operation with their topological
analogue that already exists in the analysis topology. This is
critical to ensure downstream automation of meshing but is
made difficult by the way many CAD modelers implement
split operations and how they suffer from the persistent naming
problem. In Figure 11 (b), a common CAD practice is to merge
faces that have the same underlying surface. As a result, the
bold edge e1 is extended to bound the merged face. When the
merged faces are split to recover imprints or to extract the next
region, one subset inherit the attributes of the parent, which
may not match the original entity. In Figure 11 (c), the edge e1
as moved to the right following the split.

When it comes to linking the representation in the CAD system
with the analysis topology description, since the topology of
the region being extracted matches the analysis topology it can
be identified by looking first for the CAD bodies that have the
same topology. If several CAD bodies are identified, the
coordinates of the mid-point of the edges can be used to match

the correct subset. The re-mapping of the new CAD edges and
faces is also recovered by matching the mid-point of edges.

When several intermediate bodies are created after a split, the
host entity information is used to identify which one needs to
be partitioned to extract the next region. All the faces and
edges of the region to extract, that are subsets, are queried to
get the list of host CAD entities. The intermediate CAD body
that has the most matching CAD entities is then identified as
the target for the splitting operation. If this test is not sufficient,
point in volume methods are used to differentiate the bodies

Once all the regions have been extracted and remapped, a
manifold collection of bodies will exist in the CAD
environment, with all the coincident entities (e.g., bodies
sharing a non-manifold interface in the analysis topology now
have coincident faces in CAD) identified and labelled to
automate the conversion to a non-manifold representation
once transferred to a CAE package.

6. RESULTS

The incremental decomposition workflow is demonstrated
within a virtual topology framework built around a relational
database used to store the analysis topology, and the Siemens
NX [27] CAD package, as described in [26]. In addition to
various decomposition reasoners, the framework includes a
meshing strategy reasoner to identify a meshing recipe from
the meshing strategies. It uses integer programming to resolve
mapping constraints and identify edge division numbers
directly on the analysis topology. After the geometric
decomposition is applied, another meshing reasoner is used to
transfer the model to the NX CAE environment, recover the
associativity with the analysis topology by merging coincident
faces, and transfer the meshing recipe to automatically
generate the mesh.

Within the current framework, fully automated workflows
from the CAD model of the design to the mesh are only limited
by the decomposition reasoners available and in identifying in
which order they must be applied. In this work, this decision
is left to the user, who applies the automated decomposition
reasoners one after the other, and can also manually
decompose the regions left by automated reasoners. Once
satisfied with the analysis topology obtained, the user can
adjust the meshing sizing parameters before the model is
automatically decomposed geometrically and meshed. Further
details on the virtual topology framework and automatic
meshing are available in [26], and will be presented in a future
paper.

6.1 Boss plate

Figure 12 presents different decompositions for a simple
model of a plate with a boss that has fillets that introduce mesh
singularities. All models are first processed using the thin-
sheet decomposition reasoner, followed by a reasoner that
identifies sweepable regions that are embedded in thin-sheets.
In Figure 12 (a), a mid-point subdivision [28] reasoner is
applied, resulting in a block decomposition but with all
singularities meeting at the body mid-point. In Figure 12 (b),
the residual is exported to CADFix [29] to use a reasoner based
on the medial object.

57

Figure 12. Different decompositions and meshes
obtained for various combinations of decomposition
reasoners and manual intervention.

Figure 13. (a) Crescendo vane model, (b) result of
automated decomposition, (c) residual for manual
processing, (d) manual split converted to virtual split
and (e-f) resulting automated mesh.

In Figure 12 (c), the user has specified a cutting plane to create
two sweepable regions that channel the two singularity lines.
In Figure 12 (d), 4 cutting planes are manually specified to
extract sweepable regions, followed by automatic mid-point
subdivision of the source faces to constrain the location of the
singularity lines. In Figure 12 (e), the same manual
decomposition is used but cube-shaped sweeps are re-
classified as blocks, resulting in a full blocking of the residual.

6.2 Crescendo vane

Figure 13 shows the manual processing of a vane geometry to
achieve a full hex mesh. After extracting symmetries and
applying thin-sheet and long-slender tools (Figure 13 (b)), a
complex residual region is left at the root of the leading edge.
This is extracted (Figure 13 (c)) and manually partitioned into
three sweepable regions, one to channel the singularity lines
from the left and right long-slender regions, one to channel the
singularity coming from the sharp leading edge, and one in
between to channel the singularity coming from the yellow
triangular face through the thickness. The operation is then
converted into virtual splits resulting in Figure 13 (d), and the
model can be automatically decomposed and meshed as seen
in Figure 13 (e) and (f).

7. DISCUSSION

The robustness of the incremental decomposition based on
virtual topology depends on several aspects. The robustness of
the decomposition reasoners is not critical, as checks are

carried out after the regions have been extracted to ensure they
are suitable for hex meshing. Failed reasoners can either be re-
applied with different parameters or another reasoner can be
used. As a result, prototype reasoners can be added without
jeopardizing the entire decomposition process. The variety of
decomposition reasoners available is more important, as some
reasoners might define hex-meshing strategies resulting in
poor element quality, and regions that are not covered by any
reasoner will either need manual decomposition or receive a
tet mesh. The current limitation comes from the ability to apply
virtual topology split operations, as the workflow requires the
application of many operations successively and any failed
operation will make any subsequent split invalid.

Beyond facilitating the integration of the different tools,
having a pre-processing workflow based on virtual topology
makes this approach compatible with traditional applications
of virtual topology for de-featuring and geometry clean-up.
The update of the decomposition is also made simpler. Sub-
regions can be recombined by the virtual topology merge
operator without rolling back the entire decomposition (e.g.
the decomposition in Figure 12 (a) can be obtained from the
one in Figure 12 (b)). The constraints associated with the
meshing strategies can also be used to automatically propagate
CAD design updates to the decomposition [30].

One can argue that using virtual geometry curves and
extracting explicit regions for some reasoners is incompatible
with the notion of virtual topology. Even simple geometries
can result in complex block decompositions (see Figure 14 (a))
and inferring cutting geometry solely from the topological

58

requirements would create skewed angles and potentially
inverted geometry that are easily avoided using virtual
geometry curves. Extracting temporary geometric regions is
the only realistic way currently available for a user to interact
with the analysis topology and allows integration of a wide
range of off-the-shelf tools within a given CAD environment.

Figure 14. (a) Fully blocked model and (b) mesh file
generated directly from CAD using virtual entities.

The analysis topology is essential to maintain the meshing
strategies at interfaces in manifold environment and ensure
that the final decomposition is suitable for meshing. Meshing
strategies translate downstream meshing constraints into
constraints on the decomposition that are available from within
a CAD environment. The process of propagating imprints and
decomposing source faces of sweepable regions may create
more subset regions than necessary for achieving a good
quality hex mesh, but this results in sub-regions that are
simpler to mesh and compatible with a wider range of meshing
tools. Eventually, a model that has been fully decomposed into
block regions is in itself a very coarse hex mesh. It can be
refined and meshed directly from the virtual decomposition in
CAD, without having to commit the geometric decomposition
and transfer to a CAE environment. In Figure 14 (b), all edges
are discretized as per the meshing recipe and nodal positions
on surface and inside the volume are identified using
transfinite interpolation [31], before being written to a Nastran
deck input file to define a mesh. On the other hand, sweepable
regions with paved source faces can accommodate pair of
singularities that cancel each other, redirecting the flow of the
elements. This offers more freedom for node location and
avoids the propagation of small element size from small details
to the entire mesh.

Automatically propagating imprints is also beneficial for semi-
automated decompositions workflows, as automatic partition
of neighbor regions reduces the amount of work for the
operator. Manual intervention can also unlock regions that are
suitable for automatic processing, hence the impact of user
input is maximized and no time is wasted carrying out
repetitive decomposition tasks.

8. CONCLUSION

A method to integrate various automated decomposition
reasoners in a single incremental decomposition workflow has
been presented. All the split operations are applied using

virtual topology to build an analysis topology that stores and
maintains interface information and meshing strategies. This
analysis topology along with virtual geometry curves are used
to abstract the actual analysis model, enabling reasoners and
manual users to operate on a model that is equivalent to the
analysis model before it is created. Each reasoner identifies
and extracts sweepable and block regions, and the meshing
strategies associated with each region are used to propagate
splits across interfaces to ensure everything remains hex-
meshable. With all the necessary information for mesh
automation available, the CAD model is decomposed to create
an analysis model that can be exported to a meshing tool.

9. FUTURE WORK

Future research directions include:

• Extending the range of decomposition reasoners, in
particular frame-field based methods that also focus on
the handling of singularity lines.

• Integrating automatic de-featuring reasoners to remove
small fillets and holes using virtual topology.

• Further investigating virtual topology meshing
capabilities, including sub-mapping and paving.

AKNOWLEDGMENTS

The authors wish to acknowledge the financial support
provided by Innovate UK through the COLIBRI (ref 113296)
project. We also thank Rolls-Royce for permission to publish
this paper.

REFERENCES

[1] J. Sarrate, E. Ruiz-Gironés, and X. Roca,
“Unstructured and Semi-Structured Hexahedral Mesh
Generation Methods,” Comput. Technol. Rev., vol.
10, pp. 35–64, 2014.

[2] S. J. Owen et al., “An Immersive Topology
Environment for Meshing,” in Proceedings of the
16th International Meshing Roundtable, Berlin,
Heidelberg: Springer, 2008, pp. 553–577.

[3] Y. Lu, R. Gadh, and T. J. Tautges, “Feature based hex
meshing methodology: feature recognition and
volume decomposition,” Comput. Des., vol. 33, no. 3,
pp. 221–232, Mar. 2001, doi: 10.1016/S0010-
4485(00)00122-6.

[4] D. White, L. Mingwu, and S. Benzley, “Automated
hexahedral mesh generation by virtual
decomposition,” in Proceedings of the 4th
International Meshing Roundtable, 1995, pp. 165–
176.

[5] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “An enhanced approach to automatic
decomposition of thin-walled components for
hexahedral-dominant meshing,” Eng. Comput., vol.
34, no. 3, pp. 431–447, Nov. 2018, doi:
10.1007/s00366-017-0550-x.

59

[6] H. Wu, S. Gao, R. Wang, and J. Chen, “Fuzzy
clustering based pseudo-swept volume
decomposition for hexahedral meshing,” Comput.
Des., vol. 96, pp. 42–58, Mar. 2018, doi:
10.1016/J.CAD.2017.10.001.

[7] X. Roca and J. Sarrate, “Local dual contributions:
Representing dual surfaces for block meshing,” Int. J.
Numer. Mehtods Eng., vol. 83, pp. 709–740, 2010,
doi: 10.1002/nme.2852.

[8] N. Kowalski, F. Ledoux, M. L. Staten, and S. J.
Owen, “Fun sheet matching: towards automatic block
decomposition for hexahedral meshes,” Eng.
Comput., vol. 28, no. 3, pp. 241–253, Jul. 2012, doi:
10.1007/s00366-010-0207-5.

[9] R. Wang, C. Shen, J. Chen, H. Wu, and S. Gao,
“Sheet operation based block decomposition of solid
models for hex meshing,” Comput. Des., vol. 85, pp.
123–137, Apr. 2017, doi:
10.1016/J.CAD.2016.07.016.

[10] M. A. Price and C. G. Armstrong, “Hexahedral Mesh
Generation by Medial Surface Subdivision: Part II.
Solids with Flat and Concave Edges,” Int. J. Numer.
Methods Eng., vol. 40, no. 1, pp. 111–136, 1997.

[11] “Sandia National Laboratories: index.”
https://cubit.sandia.gov/ (accessed Aug. 03, 2021).

[12] J. H.-C. Lu, W. R. Quadros, and K. Shimada,
“Evaluation of user-guided semi-automatic
decomposition tool for hexahedral mesh generation,”
J. Comput. Des. Eng., vol. 4, no. 4, pp. 330–338, Oct.
2017, doi: 10.1016/J.JCDE.2017.05.001.

[13] J. H.-C. Lu, I. Song, W. R. Quadros, and K. Shimada,
“Volumetric Decomposition via Medial Object and
Pen-Based User Interface for Hexahedral Mesh
Generation,” Proc. 20th Int. Meshing Roundtable,
IMR 2011, pp. 179–196, 2011, doi: 10.1007/978-3-
642-24734-7_10.

[14] T. Blacker, “Automated Conformal Hexahedral
Meshing Constraints, Challenges and Opportunities,”
Eng. Comput., vol. 17, no. 3, pp. 201–210, Oct. 2001,
doi: 10.1007/PL00013384.

[15] K. Miyoshi and T. Blacker, “Hexahedral Mesh
Generation Using Multi-Axis Cooper Algorithm
Cubit Mesh Generation,” in Proceedings of the 9th
International Meshing Roundtable, 2000, pp. 89–97.

[16] H. Wu, S. Gao, R. Wang, and M. Ding, “A global
approach to multi-axis swept mesh generation,”
Procedia Eng., vol. 203, pp. 414–426, Jan. 2017, doi:
10.1016/J.PROENG.2017.09.817.

[17] A. Sheffer, M. Bercovier, T. Blacker, and J. Clemets,
“Virtual Topology Operators for Meshing,” Int. J.
Comput. Geom. Appl., vol. 10, no. 03, pp. 309–331,
Jun. 2000, doi: 10.1142/s0218195900000188.

[18] C. M. Tierney, L. Sun, T. T. Robinson, and C. G.
Armstrong, “Using virtual topology operations to
generate analysis topology,” Comput. Des., vol. 85,

pp. 154–167, 2017, doi: 10.1016/j.cad.2016.07.015.

[19] K. Ho-Le, “Finite element mesh generation methods:
a review and classification,” Comput. Des., vol. 20,
no. 1, pp. 27–38, 1988, doi: 10.1016/0010-
4485(88)90138-8.

[20] T. D. Blacker and M. B. Stephenson, “Paving: A new
approach to automated quadrilateral mesh
generation,” Int. J. Numer. Methods Eng., vol. 32, no.
4, pp. 811–847, 1991, doi: 10.1002/nme.1620320410.

[21] C. M. Tierney et al., “Efficient Symmetry-Based
Decomposition for Meshing Quasi-Axisymmetric
Assemblies,” Comput. Des. Appl., vol. 16, no. 3, pp.
478–495, 2019, doi: 10.14733/cadaps.2019.478-495.

[22] L. Sun, C. M. Tierney, C. G. Armstrong, and T. T.
Robinson, “Decomposing complex thin-walled CAD
models for hexahedral-dominant meshing,” Comput.
Aided Des., vol. 103, pp. 118–131, Dec. 2018, doi:
10.1016/j.cad.2017.11.004.

[23] B. Lecallard et al., “Automatic Hexahedral-Dominant
Meshing for Decomposed Geometries of Complex
Components,” Comput. Des. Appl., vol. 16, no. 5, pp.
846–863, 2019, doi: 10.14733/cadaps.2019.846-863.

[24] N. J. Taylor and R. Haimes, “Geometry modelling:
Underlying concepts and requirements for
computational simulation (invited),” 2018 Fluid Dyn.
Conf., 2018, doi: 10.2514/6.2018-3402.

[25] J. Kripac, “A mechanism for persistently naming
topological entities in history-based parametric solid
models,” Comput. Des., vol. 29, no. 2, pp. 113–122,
Feb. 1997, doi: 10.1016/S0010-4485(96)00040-1.

[26] B. Lecallard, “Virtual topology based hex-dominant
meshing and re-meshing,” PhD thesis, Queen’s
University Belfast, 2020.

[27] “NX | Siemens Digital Industries Software.”
https://www.plm.automation.siemens.com/global/fr/
products/nx/ (accessed Aug. 03, 2021).

[28] T. S. Li, C. G. Armstrong, and R. M. McKeag, “Quad
mesh generation for k-sided faces and hex mesh
generation for trivalent polyhedra,” Finite Elem.
Anal. Des., vol. 26, no. 4, pp. 279–301, Aug. 1997,
doi: 10.1016/S0168-874X(96)00085-6.

[29] “ITI - International TechneGroup | CADfix.”
https://www.iti-global.com/cadfix (accessed Mar. 06,
2019).

[30] B. Lecallard, C. M. Tierney, T. T. Robinson, C. G.
Armstrong, D. C. Nolan, and A. E. Sansom,
“Updating and Re-meshing Virtually Decomposed
Models,” in Proceedings of the 28th International
Meshing Roundtable, 2019, pp. 50–67.

[31] L. E. Eriksson, “Generation of Boundary-
Conforming Grids Around Wing-Body
Configurations Using Transfinite Interpolation,”
Aiaa J., vol. 20, no. 10, pp. 1313–1320, 1982, doi:
10.2514/3.7980.

60

INTERACTIVE VISUALIZATION OF LARGE AND
ARBITRARY POLYGONAL AND POLYHEDRAL MESHES

WITH OPENGL 4

Matthieu Maunoury1 Rémi Feuillet2 Adrien Loseille3

Inria Saclay, Gamma Team, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France.
{matthieu.maunoury1, remi.feuillet2, adrien.loseille3}@inria.fr

ABSTRACT

This paper describes an e�cient strategy to visualize polygons and polyhedra using OpenGL 4 flexibility. Such
meshes o↵er flexibility as the number of vertices and faces are arbitrary. Dual meshes are examples of polygonal
and polyhedral meshes. We give explanations on how polygons and polyhedra can e�ciently be stored in mesh
files. Algorithms to tessellate polygons into triangles are described. Many examples and comparisons with another
visualization software show that our methodology is e�cient (about 40 times faster than ParaView). Interactivity is
also ensured with post-processing tools such as picking and cut planes.

Keywords: Visualization, Polygonal Meshes, Polyhedral Meshes, OpenGL 4, GLSL, Shaders

1. INTRODUCTION

The design of e�cient meshing techniques or the devel-
opments of new numerical schemes requires the ability
to quickly load, visualize and inspect meshes and so-
lutions. The e�ciency is bounded by what we can see
and should be possible on classic laptops and work-
stations. This process becomes critical when non lin-
ear elements are used. This is the case for polygonal
meshes where a few e↵ective rendering techniques ex-
ist.

The goal of numerical simulations is to predict the
behavior of physical phenomenons without using pro-
totypes or experimentations. Many domains are in-
volved such as Computational Fluid Dynamic, acous-
tics, electromagnetism, or biomedical. In general, the
numerical simulations pipeline is composed of a mesh
generation step [1], then a problem is numerically
solved with the help of this mesh and finally a nu-
merical solution is obtained. All along the process,
visualization is needed to check and validate the mesh
and the solution, and give tools to analyze the results.
The choice of the elements types in the mesh depends

on the type of equations studied or on the solver. The
most common elements are triangles and quadrilat-
erals for surfaces and tetrahedra and hexahedra for
volumes but prisms or pyramids are sometimes used,
especially when hybrid meshes are involved. Unlike
the latter elements, one interest to use polygonal (for
surfaces) and polyhedral (for volumes) meshes is the
flexibility as elements have an arbitrary number of ver-
tices. Figure 1 shows examples of such meshes.

Only a few commercial meshers and simulation pack-
ages such as Simcenter StarCCM+ [2] or OpenFOAM [3]
handle generic polygons and polyhedra. There has
been little works on generation of polygonal and poly-
hedral meshes [4, 5, 6], some of them are generated
as the dual of tetrahedral meshes. Other works focus
on the construction of finite element interpolants on
polygonal and polyhedral meshes [7, 8, 9, 10, 11, 12].

However, many visualization software programs do not
handle polygons and when it is the case, the interac-
tivity is often limited. It is also the case when high-
order elements and solutions are considered. There
are two main strategies: ray-casting with possibly

61

Figure 1: Examples of meshes composed of polygons
only (top) and polygons and polyhedra (bottom). The
number of vertices is not constant by element.

volume visualization and low-order remeshing. The
first approach is ray-casting with volume visualization
[13, 14]. A significant limitation of this technique is
the cost and as a consequence it does not compete
with the interactivity of the standard linear rendering
methods. Furthermore, in the case of polygons and
polyhedra, the cell-to-cell connectivity is required to
traverse the mesh and needs lots of memory that is a
limiting factor. The second approach is the low-order
remeshing: the idea is to tessellate each element into
triangles for surfaces or tetrahedra for volumes. Then,
any visualization software is able to render these ele-
ments. For instance, ParaView [15] or VisIt [16] use
this technique to represent polygons and polyhedra.
New mesh visualization software solutions have also
emerged [17, 18, 19, 20, 21, 22].

The goal of this paper is to explain how polygonal and
polyhedral meshes are visualized using OpenGL 4. For
this purpose, many points are detailed such as: stor-
age and I/O, how tessellation of polygons into trian-
gles is done, how post-processing tools like picking,
clip planes is done. The tessellation algorithms pre-
sented in this paper do not add extra vertices in the
tessellation as the aim is to minimize the number of
triangles to maximize the rendering performances. All
works presented in this paper have been developed in
ViZiR 4 that is freely available in its dedicated web

site http://vizir.inria.fr.

The paper is outlined as follows. Section 2 is devoted
to storage and I/O of polygons and polyhedra. Sec-
tion 3 gives a presentation of the OpenGL 4 graphic
pipeline. Section 4 tackles the problem of tessellation
of polygons. Section 5 deals with post-processing tools
and interactivity. Examples are given all along the pa-
per and more complex examples are described in Sec-
tion 6. Comparisons are done in this paper between
ParaView, VisiIt and the current approach.

2. STORAGE AND I/O OF POLYGONS
AND POLYHEDRA

All the results collected in this paper have been gen-
erated with the same laptop: a MacBook Pro with
details given in Table 1.

Hardware Details

CPU Intel Core i7 2.6 GHz 6-core

GPU AMD Radeon Pro Vega 20 4 Gb

Mem 32 Gb of RAM 2400 MHz DDR4

OS Mac

Table 1: Hardware used for testing.

A key to have an e�cient visualization is to be able
to quickly open mesh and solution files. Input and
output are handled by the libMeshb1 library. The
files follow the GMF format provided by this library.
For instance, the mesh of Lucy (see Fig. 2) with more
than 14 millions vertices and 28 millions triangles (642
Mb) is opened in less than 1.5 seconds.

Figure 2: Rendering of a large mesh of 14M vertices and
28M triangles in 7.5 seconds (total time) on a laptop.

One di�culty to define polygons and polyhedra is that
the number of vertices may be di↵erent for each ele-
ment. It means that the number of vertices and num-
ber of faces for polyhedra must be defined for each el-
ement. In the following, some vocabulary is given and
the storage of polygons and polyhedra is explained.

1https://github.com/LoicMarechal/libMeshb

62

• Boundary polygons: polygons that are displayed.
Each element is characterized by an arbitrary
number of vertices and the indices of these ver-
tices. In practice, a list of all boundary polygons
vertices is defined and for each element the begin-
ning index and a reference are given. The number
of vertices is deduced by looking at the index of
beginning of the next element (i.e. the ending in-
dex is the one prior the starting index of the next
element). It allows to access any element inde-
pendently of all the previous polygons and very
quickly.

• Inner polygons: polygons that are not displayed
but are useful to define polyhedra: these poly-
gons are faces of polyhedra. The definition of
these inner polygons is the same as for boundary
polygons: the beginning index of each inner poly-
gon and the list of indices of these inner polygons
vertices are given.

• Polyhedra: polyhedra that are displayed when
intersecting the clip plane. In practice, a list of
all polyhedra’s faces (i.e. inner polygons) is de-
fined and for each element the beginning index
and a reference are given. Following the same
idea than for polygons, the number of faces is de-
duced by looking at the index of beginning of the
next element (i.e. the ending index is the one pre-
ceding the beginning index of the next element)
and each element is accessed very quickly. Note
that in practice, the faces of volume elements are
rendering.

New keywords have been introduced to the libMeshb

library to define these polygons and polyhedra. Fur-
thermore, some functions have been introduced to ease
the access of these data. All vertices are stored only
once and are used to define boundary polygons, inner
polygons and polyhedra. Then, all these elements are
stored separately. This way, only boundary polygons
are taken into account to display surfaces whereas in-
ner polygons and polyhedra are only considered for
cut plane. Information are generally stored in binary
format to be more e�cient but can also be written
in ASCII format. The format follows the libMeshb

library.

3. PRESENTATION OF THE OPENGL 4
GRAPHIC PIPELINE

The OpenGL 4 rendering pipeline can be customized
with up to five di↵erent shader stages (see Fig. 3).
These shaders are GLSL source code files that replace
parts of the OpenGL pipeline. In general, a shader re-
ceives its input via developer-defined input variables,
and the data for those variables come either from the

main OpenGL application or previous pipeline stages
(other stages). Data can also be provided to any
shader using uniform variables or textures [23]. More
details on OpenGL 4 and in particular OpenGL Shad-
ing Language (GLSL) can be found in [23, 24].

Tessellation
Evaluation

Shader
xxx.tes

Tessellation
Control
Shader
xxx.tcs

Vertex
Shader
xxx.vs

Fragment
Shader
xxx.fs

Geometry
Shader
xxx.gs

If no xxx.tcs
and no xxx.gs

If no xxx.tcs

Figure 3: Shaders used for the OpenGL graphic pipeline.

Two shaders are enough to define a graphic pipeline,
the vertex shader and the fragment shader. The vertex
shader handles the vertices. The data corresponding
to the vertices positions are tranformed into clip co-
ordinates. The fragment shader determines the color
for each pixel. Many parameters a↵ect the color like
a shading, a solution, an isoline, or a wireframe ren-
dering. For the storage of raw data (like high-order
solutions), textures are used.

Besides these two shaders, a geometry shader can be
added to govern the processing of primitives. It al-
lows to create new geometries on the fly. With this
in mind, it can be preceded by the two tessellation
shaders: the tessellation control shader and the tessel-
lation evaluation shader. They are used to control the
tessellation of the primitives, in other words, in how
many sub-elements the elements should be divided.

OpenGL 4 graphic pipeline flexibility allows to com-
pute on the fly the solution. It leads to a pixel ex-
act rendering when flat elements (of degree one) are
considered regardless of the degree of the solution.
This recent language (GLSL) enables ViZiR 4 to cer-
tify a faithful and interactive depiction. High order
solutions are natively handled by ViZiR 4 on surface
and volume (tetrahedra, pyramids, prisms, hexahedra)
meshes which can naturally be hybrid.

When more complex geometries are considered, curved
elements perform a better approximation of the ge-
ometry. In this case, tessellation shaders occur in
OpenGL pipeline (see [20, 21] for more details on the
shaders pipeline) to tessellate all elements directly on
the GPU. For solutions on such curved elements, al-
most pixel exact rendering is ensured [21].

63

4. TESSELLATION OF POLYGONS
INTO TRIANGLES

4.1 Why tessellate polygons into triangles

As explained in Section 3, only the vertex and the frag-
ment shaders are mandatory. For instance, in the case
of triangles (of degree 1), the geometry shader could
be useful for example to compute and display normals
vectors but in many cases, this shader is avoided. The
reason is that the use of this shader is expensive. To
illustrate this cost, a comparison is done on the mesh
of Lucy (28M triangles, see Fig. 2) and is outlined in
Table 2. In the first case, only the vertex and frag-
ment shaders are used, and the number of Frames Per
Second is 28. In the second case, a geometry shader is
added, and does nothing more than pass data through
itself (i.e. the rendering is exactly the same than in
the first case) and the number of Frames Per Second
falls to 6. The rendering of triangles has good per-
formance because only vertex and fragment shaders
are used while additional shaders are necessary for
more complex elements. For this reason, polygons are
tessellated into triangles. However, when High Or-
der elements are displayed, Geometry and Tessellation
shaders should be used as it is the only way to have a
good rendering (done on the GPU) of them.

GLSL pipeline FPS

Vertex + Fragment Shaders 28

Vertex + Geometry + Fragment Shaders 6

Table 2: Comparisons on Lucy mesh (28M triangles) of
FPS when Geometry shader is used or not.

4.2 How to tessellate polygons

We consider only simple polygons, which means poly-
gons with no two non-consecutive edges intersecting,
these polygons are convex or concave. An example of
tessellation used for the rendering is shown in Fig. 4.

Polygons Tessellation

Figure 4: Rendering of polygons (left) and their tessel-
lation into triangles (right) used for the rendering.

4.2.1 Edge visibility

During the creation of the tessellation, the visibility
(i.e. a Boolean) of the 3 edges of each triangle is de-
fined. Indeed, some edges need to be visible as their
correspond to the boundary of a polygon while oth-
ers should not be visible as lying inside the polygon.
Textures are used to send the information on visibility
(booleans) to the fragment shader so that the appro-
priate color can be set according to the position (inside
or on the boundary of the polygon) of the edge.

4.2.2 Definitions of normal by polygon

Normals of elements are important because they are
used in the shading, for instance in Phong model [25].
Usually, the normal is computed for each element and
given to the shaders by textures. To have a smoother
shading, one normal npoly for each polygon is defined.
Let’s first define:

A =

d�2X

i=1

(Pi+2 � P1) ^ (Pi+1 � P1) (1)

where d is the number of vertices of the polygon, Pi

the points of the polygon and ^ the usual vector cross
product. Note that this definition of normal depends
on the choice of the first vertex. Actually, the choice of
the first vertex is not important as it can be modified,
the crucial thing is to keep this definition during the
whole process. Finally, the normal of polygon npoly is
obtained after normalization:

npoly =
A

kAk (2)

Fig. 5 shows a comparison of these two types of nor-
mals (by triangle and by polygon) and the definition of
normal by polygon given by (2) gives a better smooth-
ness of the shading.

4.2.3 A first naive tessellation algo-
rithm

A first naive tessellation algorithm is to create all tri-
angles from one vertex, for instance the first one. The
number of created triangles is d � 2 where d is the
number of vertices of the polygon. This algorithm is
described in Algorithm 1. Fig. 6 shows an example
of use of Algorithm 1 for a very simple 5-sides convex
polygon.

Note that if the polygon is a triangle (3-sides), all the
edges are set to visible. Now, let us consider another
5-sides polygon but which is concave. To do so, the
second point of Fig. 6 is simply moved to become a
concave point as shown in Fig. 7. Algorithm 1 is used,

64

Normals by triangle Normals by polygon

Figure 5: Comparison of normals by triangle (left) and
by polygon (right) with a Phong model as shading.

Algorithm 1: A first naive tessellation algorithm

Input: d, pol (list of vertices of size d).
Output: NmbTri (number of triangles), Tri (list

of indices of triangles), VisEdg (edges
visibility)

(1) NmbTri = d - 2 ;
if NmbTri < 1 then

return 0 ;
for i = 1 to NmbTri do

(2) Tri[i][1] = pol [1] ;
(3) Tri[i][2] = pol [i + 1] ;
(4) Tri[i][3] = pol [i + 2] ;
(5) VisEdg [i][1] = 1 ;
(6) VisEdg [i][2] = 0 ;
(7) VisEdg [i][3] = 0 ;

end
(8) VisEdg [1][3] = 1 ; //– First triangle
(9) VisEdg [NmbTri][2] = 1 ; //– Last triangle

//– If only 1 triangle, all edges are visible
if NmbTri == 1 then

(10) VisEdg [0][3] = 1 ;

Figure 6: A 5-sides convex polygon. The naive tessella-
tion algorithm 1 works.

and the same tessellation is constructed but this time
it fails as the polygon is concave. The tessellation does
not span the polygon as the triangle {1, 2, 3} is outside
the polygon.

Figure 7: A 5-sides concave polygon. The naive tessel-
lation algorithm 1 fails.

Fortunately, there is a very simple criterion to know if
a triangle is outside the polygon. Once the tessellation
has been created, it is su�cient to check if all dot
products between the normal of the polygon, defined
by (2), and the normals of triangles are positive. If
all these dot products are positive, no triangle will lie
outside the polygon and algorithm 1 is applied. For the
first case (Fig. 6), this criterion is true while it is false
for the second case (Fig. 7) as the dot product between
the normal of the polygon and the normal of triangle
{1, 2, 3} is negative. Thus, algorithm 1 can not be
applied and a more general tessellation algorithm is
needed.

4.2.4 Choosing a better a starting point
in the naive tessellation algorithm

Algorithm 2 sums up the process to check if algo-
rithm 1 should be used. If only one concave vertex
has been found, the idea is to generate the tessella-
tion from this point: Algorithm 1 is then used with
this point as a starting point. An example is shown in
Fig. 8 with the same concave polygon than for Fig. 7
but this time the tessellation is correct. Note that the
criterion of dot products positiveness is also checked
for every created triangles. Indeed, this new tessella-
tion could be incorrect and in this case, a more general
algorithm described in Section 4.2.5 should be used.

Figure 8: A 5-sides concave polygon. Following algo-
rithm 2, a concave vertex (here vertex 2) has been used
as a starting point to create the tessellation.

65

Algorithm 2: Check if the first naive tessellation
algorithm 1 can be used

Input: d, pol (list of vertices of size d).
Compute the normal polygon npoly with eq. (2) ;
Create the tessellation following algorithm 1 ;
NmbVerConcave = 0 ;
for i = 1 to NmbTri do

Compute normal ntri of triangle Tri[i] ;
if ntri · npoly < 0 then

Algorithm 1 can not be used. ;
Update the list of concave vertices ;
NmbVerConcave ++;

end
if NmbVerConcave = 0 then

Tessellation created with algo. 1 is correct.
else if NmbVerConcave = 1 then

Launch algorithm 1 with the concave point as
a starting point to create new tessellation
and check it with algorithm 2.;

else
Too much concave points, another algorithm
is needed (see algorithm 3). ;

end

4.2.5 A general tessellation algorithm

Triangulating a polygon, that is decomposing a poly-
gon into a set of triangles is a problem that have been
investigated for a long time. One of the most famous
method is the ear clipping theorem [26, 27, 28, 29].
The principle is that in each polygon, an ear can be
found and removed from the polygon. The result is a
polygon whose area is smaller. By doing this recur-
sively, a set of triangles is obtained and span all the
polygon. Note that most of ear-clipping algorithms
are for 2D (polygons in a plane) only whereas we are
considering 3D meshes.

Algorithm 3: General tessellation algorithm

Input: d, pol (list of vertices of size d).
(1) Compute the normal polygon npoly with eq. (2) ;
(2) Project all polygon vertices into an orthogonal

plane of the normal polygon ;
(3) while d > 3 do
(4) Find a triangle which is admissible. ;
(5) Update all the lists: add this triangle to the

tessellation, remove this triangle from the
polygon list ;

end
(6) Generate the last triangle with the 3 last points. ;

Algorithm 3 gives the general steps to create a tessel-
lation following the idea of the ear clipping theorem.
All details of this algorithm are described now:

(1) Normals computations. The normal of the
polygon is defined following eq. (2).

(2) Points projections. All vertices of the polygon
are projected on a same plane that is orthogonal to the
normal npoly of the polygon. These projected points
Pi are obtained following:

Pi = Pi � (Pi, npoly) npoly (3)

where Pi denotes the vertex i of the polygon and (., .)
is the usual dot product.

(3) Find an ear. Once a triangle has been found,
the polygon changes, its size becomes smaller as one
vertex is removed from the list of the polygon.

(4) Find an admissible triangle. To find a triangle
that is correct, the idea is to take three consecutive
vertices of the polygon and check if the dot product
between the normal polygon and the normal of the
triangle is positive and that no other projected point
of the polygon lies inside this projected triangle. To
do so, let’s note Pi1 , Pi2 and Pi3 the three consecutive
projected points and Pj another projected point of the
polygon, we define

u = (PjPi1 ^ PjPi2) · npoly

v = (PjPi2 ^ PjPi3) · npoly

w = (PjPi3 ^ PjPi1) · npoly

(4)

where (. ^ .) denotes the usual cross product. Then, if
u, v and w are all positive, the point is inside the trian-
gle. If none of the other projected points Pj lies inside
the triangle {Pi1 Pi2 Pi3}, this triangle is admissible.

(5) Updates. All the lists must be updated. One
more triangle is added in the tessellation, Tri is up-
dated with these three vertices. The visibility of edges
VisEdg is set by looking at the local index of the ver-
tices. Indeed, if the two points of the edge are consec-
utive (or are the first and last vertices of the original
polygon), VisEdg is set to 1, otherwise it is set to 0.
Then, the vertex Pi2 is removed from the list pol of
the polygon and d is decreased by one unit.

(6) Last triangle. Finally, a last triangle is created
with the last three vertices. Tri and VisEdg are up-
dated with the same way than (5).

Figure 9 shows an example of a 7-sides concave poly-
gon handled with algorithm 3.

If the element is ill-defined, for instance not a simple
polygon by with intersected edges, it is possible that
neither algorithm 2 nor algorithm 3 work. In this case,
algorithm 1 can still be applied to generate a tessella-
tion in order to at least be able to see the polygon.

To sum up the tessellation process, algorithm 1 is first
used. If the tessellation is correct according positive-
ness criterion, there is no need to use the other algo-
rithms. If there is only one concave vertex, this point is

66

Figure 9: A 3-dimensional 7-sides concave polygon.
With algorithm 3, even a polygon with two concave ver-
tices is handled.

used as a starting point in algorithm 1 and we check if
the tessellation is correct. Otherwise, the most general
tessellation algorithm, algorithm 3 is launched to cre-
ate the tessellation. All these tessellation algorithms
are done in the CPU before the rendering of these tri-
angles by the GPU.

4.3 Solution rendering with a tessellation
of triangles

If a solution has been computed on polygons, a repre-
sentation from a tessellation of triangles might be in-
accurate. For instance, let’s consider a mesh of quadri-
laterals and a solution defined at vertices. Thus, the
solution is Q1-solution on a Q1-quadrilaterals and is
therefore bi-linear as shown in Fig. 10. If a tessellation
of two triangles is generated with a�ne functions on
them is done, an approximation is created and the rep-
resentation in inaccurate (the tessellation in 2 triangles
can be guessed in Fig. 10). Note that the rendering in
both cases is pixel-exact and isolines are displayed to
highlight the linearity or non-linearity of the solution
plotted.

Linear approx. on tri. Q1-sol. on Q1-quad.

Figure 10: Rendering of Q1-solution on Q1-
quadrilaterals (right) and tessellation into triangles with
a�ne representation (left).

5. POST-PROCESSING TOOLS AND
INTERACTIVITY

Many post-processing tools are available to make the
analysis of results possible. Some of them are pre-

sented in this section. Such an interactivity is funda-
mental to develop and validate new algorithms.

5.1 Picking and hiding surfaces by refer-
ence

Any element can be picked to get information. When
an element is picked, it is colored in light blue and
the number of its vertices appear in red as shown
in Fig. 11. More information is printed on the ter-
minal, for example the element picked in Fig. 11:

Polygon (7� s i d e s) 19793 : [2863749
2863755 2863758 2863757 2863759
2863760 2863750] Ref 3

The printed information: the number of vertices
(sides), the index of element, the indices of all vertices
and the reference number of the polygon.

Figure 11: Picking a polygon (in lighe blue).

When a face of a volume element (here a polyhedron)
is picked, all the faces of this volume elements are also
set in light blue as shown in Fig. 12. In the same
way that for polygons, information are printed on the
terminal: the number of faces (inner polygons), the
index of the polyhedron, the list of indices of these
faces and the polyhedron reference. Then, for each
face, the number of vertices and the list of vertices
are printed. Here is an example for an hexahedron:

Polyhedron (6� f a c e s)
952607 : [385682647 385683053 385685045
385685051 385685052 385685053] Ref 0

Face (4� s i d e s) 1 : [69594081
69594078 69581014 69581016]

Face (4� s i d e s) 2 : [69594081
69559331 69559333 69594078]

Face (4� s i d e s) 3 : [69559331
69594081 69581016 69559334]

Face (4� s i d e s) 4 : [69559333
69594078 69581014 69559341]

Face (4� s i d e s) 5 : [69559331
69559333 69559341 69559334]

Face (4� s i d e s) 6 : [69581016
69559334 69559341 69581014]

To inspect meshes, it is interesting to hide some el-
ements. After an element is picked, it is possible to

67

Figure 12: Picking a polyhedron (in light blue). Left:
with all elements in the cut plane. Right: the polyhedron
alone.

hide all elements having the same reference id (cor-
responding typically to a patch or a specific part of
the object). An example is shown in Fig. 13 where
the green surface (tire) is hidden to show the elements
behind.

Figure 13: Example of picking (first picture) and hidding
by reference (second picture).

In practice, here are the steps to set the whole element
picked in light blue. A triangle has been picked. The
index of the polygon or polyhedron is known (previ-
ously stored). All triangles belonging to the same ele-
ment (polygon or polyhedron) are added to the picked
list. During the creation of the texture that gives the
rgba (red, green, blue and alpha) of the triangle to the
shaders, if the triangle is in the picked list, its rgb is set
to (0, 1, 1), that is light blue, instead of the color that

should be displayed (for example its reference color or
the usual signature grey). In the fragment shader, if
the color texture is (0, 1, 1), that is light blue, we
know that the triangle has been picked. If it is a poly-
gon (i.e. not a volume element), Fragcolor is set to
(0, 255, 255, 1), so that it will appear in light blue
independently of the shading. Otherwise, the color is
light blue but the shading can be seen as in Fig. 12.

5.2 Clip planes

To visualize polyhedra, clip planes are used. The clip
plane can be defined by its equation. Otherwise, the
clip plane can be translated or rotated with the mouse
from an initial state. Then, all polyhedra belonging
to this cut plane are displayed. In practice, the faces
of these volume elements are rendered. To find if a
polyhedron is intersected by the cut plane, one just
have to look at the sign of all the element vertices in
the cut plane equation ax+by+cz+d, where x, y and
z are the coordinates of the vertex and a, b, c and d the
parameters of the cut plane equation [20, 21]. If some
of them are positive and some others are negative, the
volume element lies in the cut plane. Fig. 14 shows an
example of clip plane.

Figure 14: Examples of rendering without (first picture)
and with (second picture) clip plane.

68

6. EXAMPLES AND COMPARISONS

6.1 Comparisons with other visualization
software

Some comparisons are made with ParaView and VisIt.
Several meshes of di↵erent sizes are studied where
the geometry is the car plotted in Fig. 14. The VTK

Unstructured Grid (vtu) format is used in ParaView

and in VisIt. Meshes were converted from CGNS (CFD
General Notation System) to vtu format. The ver-
sions 5.7 of ParaView and 3.2.1 of VisIt are used.
For ViZiR 4, meshes were converted from CGNS to
libMeshb format. Table 3 compares the total render-
ing time that is the time to open the mesh file, add
objects to the scene and render the mesh. Three cases,
similar than Fig. 14, are taken into account. The num-
ber of boundary polygons are 439 170, 1 101 804 and
2 649 542 and the number of triangles created by the
tessellation are respectively 1 705 918, 4 333 706 and
10 505 154 in ViZiR 4. It gives an average of 3.88,
3.93 and 3.96 triangles per polygons and show that
the number of vertices is truly arbitrary with an av-
erage of 6 for each boundary polygon. The ratio are
huge and is explained by the fact that the time to open
the mesh file in ParaView and in VisIt is long and be-
cause a surface reconstruction is done in ParaView and
in VisIt and this step is very expensive. In ViZiR 4,
the surface reconstruction is not done (even if it could
be called) as this information (boundary polygons) is
already in the mesh file. Otherwise, the surface re-
construction can be done in a pre-processing step, and
then should be saved in the mesh. Note that this step
can still be done in the visualization software but is
useless and time-consuming if it has already be stored
in the mesh file.

Case 1 Case 2 Case 3

vertices 9 600 780 24 551 880 61 321 116
polygons 439 170 1 101 804 2 649 542

polyhedra 2 652 618 6 603 843 15 055 285

ViZiR 4 (s) 1.93 4.48 10.98

ParaView (s) 81.7 204.0 505.8
Ratio / ParaView 42.3 45.5 46.1

VisIt (s) 86.9 219.3 582.8
Ratio / VisIt 45.0 48.9 53.1

Table 3: Comparison of total rendering wall time (s)
including mesh files opening.

Table 4 compares the time to generate cut planes. In
ParaView, these cut planes are crinkle clips. VisIt was
not able to generate crinkle clips with these meshes.
Again, the ratio are huge and mainly due to the slow
surface reconstruction done in ParaView.

Fig. 15 shows a comparison of rendering obtained from

Case 1 Case 2 Case 3

vertices 9 600 780 24 551 880 61 321 116
polygons 439 170 1 101 804 2 649 542

polyhedra 2 652 618 6 603 843 15 055 285
ViZiR 4 (s) 0.6 1.4 3.1
ParaView (s) 57.9 147.0 357.9

Ratio 98.1 106.5 114.0

Table 4: Comparison of wall time (s) to generate cut
planes (clip).

ParaView and ViZiR 4. It is clear that the shading in
ParaView is done by triangles while it is done by poly-
gon in ViZiR 4 as explained in Section 4.2.2 and gives
a better smoothness. Note that with VisIt, instead
of the polygons, the triangles (i.e the tessellation) are
displayed.

Figure 15: Comparison of rendering obtained from
ParaView (first picture) and ViZiR 4 (second picture).
In the first case, shading is done by triangle while it is
done by polygon in the second case.

Additional metrics, mesh file size, memory and video
memory used, and the number of frames per second
have been sum up in Table 5 for the 3 same cases
than the previous tables. For ViZiR 4, the format
meshb (binary) from libMeshb is used while the vtu

format is used in ParaView. The mesh size in cgns

format has also been added. Both software programs
have good FPS for all cases and therefore interactive
enough. ParaView needs much more memory espe-
cially during the preparation of the rendering however
requires much less video memory.

Finally, last comparisons have been done with another
CPU-GPU combo: Windows 11-Nvidia. The laptop is
a 6-core i7 3 Ghz with 32 GB of RAM and the graphic
card a Nvidia quadro T1000 (4Gb). Results are very

69

Case 1 Case 2 Case 3

Size .meshb (us) 753 M 1.9 G 4.6 G
.vtu ParaView 1.8 G 4.5 G 11 G

.cgns ParaView 1.0 G 2.6 G 6.4 G

FPS (us) 60 60 52
FPS ParaView 58 57 46

RAM (us) 1.59 G 3.91 G 9.47 G
RAM ParaView 2.14 G 4.98 G 12.03 G

Peak RAM ParaView 2.95 G 7.46 G 17.59 G

VRAM (us) 214 M 453 M 1.01 G
VRAM ParaView 182 M 250 M 435 M

Table 5: Comparisons of additional metrics: mesh sizes,
FPS (frames per second), memory RAM and VRAM
(video RAM) for ParaView and ViZiR 4.

similar than Table 3 which is not surprising as the
two laptops have similar features. For the first case,
ViZiR 4 has a total rendering wall time of 1.68 s and
1.37 Gb RAM while ParaView needs 50 s (ratio 30)
and 2.4 Gb of RAM. For the second case, ViZiR 4 has
a total rendering wall time of 4.92 s and 4.67 Gb RAM
while ParaView needs 2 min 17 (ratio 32) and 5.3 Gb
of RAM. In all cases, both programs have very good
frame rates.

6.2 Examples

Dual meshes are implicit supports for many CFD
solvers, for instance the ones based on finite volume
methods. Here we illustrate with Fig. 16, 17 and 18
some rendering to study the di↵erences between adap-
tive meshing techniques. Examples of Fig. 18 come
from the same airplane geometry than Fig. 17 with
a zoom on the wings. Classic mesh adaptation tech-
niques are based on a sequence of local mesh modifica-
tions. These techniques consist in an advancing-point
methods using metric fields. We can see that the dual
patterns are di↵erent.

7. CONCLUSIONS

In this paper, we presented how OpenGL 4 can be
used to visualize polygonal and polyhedral meshes. In
particular, we discussed how the storage in the mesh
file is done. We showed that the use of triangles in the
OpenGL graphic pipeline is the most e�cient as it is
the simplest. For this reason, polygons are tessellated
into triangles. Algorithms and criteria are given to cre-
ate a good tessellation. Many examples show the e�-
ciency of our method and comparisons with ParaView

and VisIt show that ViZiR 4 is much faster.

A first perspective of this work could be to use poly-
gons when capping is done. Indeed, when cut planes
are generated, two modes can be used: cut plane (or

Figure 16: Primal (left) and dual (right) meshes for stan-
dard adaptation (first line), and two metric-aligned tech-
niques (second and third lines).

Figure 17: An example of polyhedral mesh without (first
picture) and with (second picture) clip plane.

70

Figure 18: Primal (left) and dual (right) meshes for standard adaptation (top) and metric-aligned adaptation (bottom).

crinkle) when the faces of the volume elements are
shown or capping (or slice), when the intersection of
the volume element with the plane is computed. In
the latter case, when non simplicial elements such as
prisms, pyramids or hexahedra are considered, the in-
tersection is in fact a polygon. At the moment, trian-
gles are used to display the capped elements as shown
in Fig. 19 where the mesh is composed of quadrilater-
als and hexahedra. Another perspective would be to
handle solutions on polygonal and polyhedral meshes.
Finally, as OpenGL 4 is able to handle high-order
elements, one can imagine that high-order polygons,
when and if it will exist, could also be visualized with
OpenGL 4.

8. ACKNOWLEDGMENTS

This work was supported by the public grant ANR
Impacts, reference ANR-18-CE46-0003. The authors
are also grateful to Löıc Maréchal (Inria) for provid-
ing the libMeshb library and his help in testing, Lu-
cien Rochery (Inria) for fruitful discussions on tessel-
lation algorithms and Siemens for providing meshes
from Simcenter StarCCM+.

References

[1] Frey P.J., George P.L. Mesh generation: applica-
tion to finite elements. Iste, 2007

[2] “Simcenter STAR-CCM+.” https:

//www.plm.automation.siemens.com/global/

en/products/simcenter/STAR-CCM.html

[3] “OpenFOAM.” https://www.openfoam.com

[4] Oaks W., Paoletti S. “Polyhedral mesh genera-
tion.” Proceedings of the 9th International Mesh-
ing Roundtable, pp. 57–67. 2000

[5] Paoletti S. “Polyhedral mesh optimization us-
ing the interpolation tensor.” Proceedings of the
11th International Meshing Roundtable, pp. 19–
28. 2002

[6] Garimella R.V., Kim J., Berndt M. “Polyhe-
dral mesh generation and optimization for non-
manifold domains.” Proceedings of the 22nd
International Meshing Roundtable, pp. 313–330.
Springer, 2014

[7] Wachspress E.L., EL W. “A rational finite ele-
ment basis.” 1975

71

Figure 19: Example of clip plane (first picture) and cap-
ping (second picture) of a hexahedral mesh.

[8] Sukumar N. “Construction of polygonal inter-
polants: a maximum entropy approach.” Inter-
national journal for numerical methods in engi-
neering, vol. 61, no. 12, 2159–2181, 2004

[9] Sukumar N., Malsch E. “Recent advances in
the construction of polygonal finite element in-
terpolants.” Archives of Computational Methods
in Engineering, vol. 13, no. 1, 129, 2006

[10] Cangiani A., Georgoulis E.H., Houston P. “hp-
version discontinuous Galerkin methods on polyg-
onal and polyhedral meshes.” Mathematical Mod-
els and Methods in Applied Sciences, vol. 24,
no. 10, 2009–2041, 2014

[11] Manzini G., Russo A., Sukumar N. “New per-
spectives on polygonal and polyhedral finite ele-
ment methods.” Mathematical Models and Meth-
ods in Applied Sciences, vol. 24, no. 08, 1665–
1699, 2014

[12] Perumal L. “A brief review on polygonal/polyhe-
dral finite element methods.” Mathematical Prob-
lems in Engineering, vol. 2018, 2018

[13] Muigg P., Hadwiger M., Doleisch H., Hauser
H. “Scalable hybrid unstructured and structured

grid raycasting.” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 13, no. 6,
1592–1599, 2007

[14] Muigg P., Hadwiger M., Doleisch H., Groller E.
“Interactive volume visualization of general poly-
hedral grids.” IEEE transactions on visualization
and computer graphics, vol. 17, no. 12, 2115–2124,
2011

[15] KitWare Inc. “ParaView.” https://www.

paraview.org/

[16] Childs H., Brugger E., Whitlock B., Meredith
J., Ahern S., Pugmire D., Biagas K., Miller M.,
Harrison C., Weber G.H., Krishnan H., Fogal
T., Sanderson A., Garth C., Bethel E.W., Camp
D., Rübel O., Durant M., Favre J.M., Navrátil
P. “VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data.” High Perfor-
mance Visualization–Enabling Extreme-Scale Sci-
entific Insight, pp. 357–372. Oct 2012

[17] Musy M., Dalmasso G., Sullivan B. “marco-
musy/vtkplotter: vtkplotter.”, 2019

[18] Sullivan B., Kaszynski A. “PyVista: 3D plotting
and mesh analysis through a streamlined interface
for the Visualization Toolkit (VTK).” Journal of
Open Source Software, vol. 4, no. 37, 1450, 2019

[19] Canepa A., Infante G., Hitschfeld N., Lobos
C. “Camarón: An Open-source Visualization
Tool for the Quality Inspection of Polygonal and
Polyhedral Meshes.” International Conference
on Computer Graphics Theory and Applications,
vol. 2, pp. 130–137. SCITEPRESS, 2016

[20] Loseille A., Feuillet R. “Vizir: High-order mesh
and solution visualization using OpenGL 4.0
graphic pipeline.” 56th AIAA Aerospace Sciences
Meeting, AIAA Scitech, 2018

[21] Feuillet R., Maunoury M., Loseille A. “On pixel-
exact rendering for high-order mesh and solu-
tion.” Journal of Computational Physics, vol.
424, 109860, 2021

[22] Bracci M., Tarini M., Pietroni N., Livesu M.,
Cignoni P. “HexaLab. net: An online viewer
for hexahedral meshes.” Computer-Aided Design,
vol. 110, 24–36, 2019

[23] Wol↵ D. OpenGL 4.0 Shading Language Cook-
book. Packt Publishing, 2011

[24] Sellers G., Wright R., Haemel N. OpenGL Super-
Bible, Sixth Edition. Addison-Wiley, 2013

[25] Phong B.T. “Illumination for computer generated
pictures.” Communications of the ACM, vol. 18,
no. 6, 311–317, 1975

72

[26] Meisters G.H. “Polygons have ears.” The Amer-
ican Mathematical Monthly, vol. 82, no. 6, 648–
651, 1975

[27] Tarjan R.E., Van Wyk C.J. “An O(n log log n)-
time algorithm for triangulating a simple poly-
gon.” SIAM Journal on Computing, vol. 17, no. 1,
143–178, 1988

[28] Chazelle B. “Triangulating a simple polygon in
linear time.” Discrete & Computational Geome-
try, vol. 6, no. 3, 485–524, 1991

[29] ElGindy H., Everett H., Toussaint G. “Slicing an
ear using prune-and-search.” Pattern Recognition
Letters, vol. 14, no. 9, 719–722, 1993

73

P 3 BÉZIER CAD SURROGATES FOR ANISOTROPIC
MESH ADAPTATION

A. Loseille1 L. Rochery2

1Inria Saclay, 91120 Palaiseau, France, adrien.loseille@inria.fr
2Inria Saclay, 91120 Palaiseau, France, lucien.rochery@inria.fr

ABSTRACT

Mesh generation and adaptation rely heavily on BREPs created by proprietary CAD software, piecewise parametric
descriptions of geometry from which numerous problems arise: model continuity is only enforced up to a tolerance
often higher than required mesh sizes, projection is costly and prone to error, derivatives — thus normals and
curvature metrics — may not be well defined, unintended small features driving unnecessary mesh complexity may
be present... unlike discrete surface meshes, of which high-order ones o↵er advantageous convergence speed over
degree of freedom ratio relative to P 1 meshes. P 3 meshes, in particular, are the first degree for which G1 continuity
at the vertices may be enforced. In this paper, we compare two methods to construct P 3 meshes from a CAD model.
The resulting P 3 meshes are then used instead of the CAD model in a full converging adaptation loop on a complex
geometry, the HL-CRM wing with flaps with a highly anisotropic metric field.

Keywords: BREP, CAD surrogate, P 3 Bézier triangles, anisotropic mesh adaptation, surface mesh
generation

1. INTRODUCTION

Cost-e↵ective numerical resolution of PDEs — namely
of hyperbolic ones such as Navier-Stokes — is enabled
by anisotropic mesh adaptation. Using either generic
[1, 2] or PDE-tailored [3] error estimates, meshes are
locally modified [4, 5] or the degree of interpolation is
locally elevated (p-adaptation) [6, 7], sometimes both
(hp-adaptation) [8, 9], to match local features of the
solution and thus maximize the precision over degrees
of freedom (computational cost) ratio [10, 11]. This
places mesh generation and adaptation at the heart of
simulation, which becomes a loop that converges to an
optimal mesh-solution couple (Fig. 1).

Domain geometry is described in a continuous fashion
using a CAD file. The BREP (Boundary REPresen-
tation) model with rational Bézier patches and curves
[12, 13], in particular, is widely used and the focus of
this paper. In this framework, a surface is described
as a collection of connected trimmed patches. Global

Figure 1: Mesh adaptation loop

BREP topology is illustrated in Fig. 2. This descrip-
tion using Bézier and rational Bézier curves and sur-
faces is quite flexible and can represent a wide variety
of shapes with complex features, as well as represent
exactly a number of frequently used geometric prim-
itives such as sections of spheres, cylinders, cones...
Some of the more frequent operations on these ob-
jects include evaluating a point on the surface given
its parametric coordinates, projection of 3D points

74

onto CAD edges and faces and computing derivatives
(up to the second order, most frequently) at given
points on the surface. These operations are inten-
sively used both in initial mesh generation as well as in
subsequent adaptation steps, as illustrated in Fig. 1.
BREP models are a tool specialized in defining shapes
rather than manipulating them. For this reason, it
is not infrequent for CAD models to pose a number
of di�culties, such as by not being watertight, having
face lines that degenerate into single points, autointer-
secting faces, interpenetrating neighbouring faces, ill-
conditioned parameterizations, unintended small fea-
tures, etc... [14, 15] go over the reasons for these fea-
tures in detail. Furthermore, these errors are often
bound by tolerances too high for the purposes of mesh
adaptation where smaller edges may be required close
to or on the surface [16].

Figure 2: Trimmed BREP topology

Strategies to combat these issues operate at essentially
two levels: by correcting the CAD before it is used
in meshing, and by devising robust tessellation algo-
rithms. By tessellation, we designate any surface mesh
which will not necessarily be used as the support for
any volume mesh, but rather as a discrete surrogate
for the CAD geometry. Strategies of the first type in-
clude the use of virtual topology [17] and various CAD
correction procedures [15].

In this paper, we present our approach of the second
type, and illustrate the ability of P 3 surface meshes
to drive mesh adaptation as well as the CAD itself on
cases with high anisotropy close to the boundary. A
P 1 tessellation of the parametric surface is first gener-
ated, and then elevated to the third order. A discrete
tessellation o↵ers fast inverse evaluation through sim-
ple algorithms, it can be seen as a first order Taylor ex-
pansion of the surface. Therefore, projection on a P 1

mesh is similar to gradient descent on the original sur-
face with derivatives precomputed (Jacobians of sur-
face elements). In fewer words, it is much simpler and
stable, much of the burden being shifted to the tessel-
lation step. This is only possible at the expense of pre-
cision, a cost that can be reduced by replacing linear
elements by higher-order elements such as P 3 Bézier
triangles. Through simple benchmarks, the speed and
precision of projection on these meshes are exhibited.
They are then used as the geometric support for a full

adaptation loop using a highly anisotropic analytical
boundary layer metric.

1.1 The BREP

Let us go over, in little detail, the elements that con-
stitute a BREP-based CAD model. Further details
can be found in the reference [13]. A model is given
by a set of faces, loops, edges and corners. CAD edges
are mapped from 1D domains and grouped into loops.
These loops trim CAD faces which are mapped from
2D domains. In turn, faces sharing a loop portion
are neighbours. Edges are defined using a 1D do-
main D1 ⇢ R and a parameterization ⌧3 : D1 7! R3.
The parameterization ⌧3 is, typically, a rational Bézier
curve although it is not infrequent for CAD systems
to distinguish subcases such as particular conics and
circle arcs. Faces are defined much in the same way,
from a 2D domain D2 ⇢ R2 and a parameterization
� : D2 7! R3. Likewise, it is typical for � to be a
rational Bézier surface, but particular cases such as
sections of spheres and cylinders are sometimes dis-
tinguished. The face trimming is then defined using
another parameterized curve defined on D0

1 ⇢ R with
a mapping ⌧2 : D0

1 7! D2 that draws a 2D curve in the
face’s parameter domain.

Figure 3: Trimming curve definition tolerances: ⌧2 de-
fined in surface patch parameter space is mapped to the
black curve in R3 by �, ⌧3 maps a segment to the blue
curve. These curves di↵er by a tolerance set by the CAD
design tool (visible here as the exaggerated gap).

This curve is a representation in face parameter space
of the physical face-face intersection curve. Unfortu-
nately, one cannot assume that ��⌧2 = ⌧3. This is due
to the fact that these trimming curves are computed
from rational Bézier surface intersections which, in
the general case, are not rational Bézier curves. This
means that ⌧3 is, typically, already an approximation
of the desired curve. On top of this, ⌧2 is, again, an
approximation of the projection of ⌧3 onto the face
parameter space D2. As such, CAD software only
guarantees correspondence between the face-local and
global curves up to a tolerance, typically much higher
than desired mesh sizes. This means that despite the
fact that parametric surfaces and curves are abritrar-
ily precise, they can be very inaccurate in some regions
(junctions), where the geometry is actually ill-defined

75

under a threshold. Concretely, this means that there
can actually be gaps between faces meant to share an
edge, or that neighbouring faces may be interpenetrat-
ing at scales that cannot be neglected by the meshing
algorithm. The paper [16] goes over this issue in great
detail, illustrating the impact on mesh adaptation for
CFD problems. For instance, it is frequent for wing
and fuselage intersections to be given with a tolerance
several orders of magnitude higher than the smallest
prescribed mesh size in this area by the end of adap-
tation. Furthermore, derivatives of the parameteri-
zations are used to compute metric fields for surface
error approximation [18, 19] or surface normals and
tangent planes. Once more, the CAD description may
pose problems such as by having faces map portions of
edges onto points (degeneracy) or having unwanted lo-
cal features such as folds under the tolerance (another
issue pointed out in [16]). In particular, derivatives
are not defined at these points and unstable in their
vicinity. This also means that these situations call for
robust optimization algorithms when projecting points
close to these regions and that projection is slow (rel-
ative to on a discrete mesh) and prone to error.

2. THE PARAMETRIC P 3 MESHER

In this section we turn to the parametric meshing al-
gorithm. It takes a CAD object as input and outputs
a P 1 mesh adapted with regards to a geometric ap-
proximation metric. The P 3 mesh is then constructed
by elevating the degree of these P 1 elements and pro-
jecting control nodes.

2.1 Building the initial tessellation

In this section, we give a rough description of a para-
metric surface mesher. Let us consider a trimmed
CAD face F . It is defined by a rectangular para-
metric domain D ⇢ R2, a rational Bézier function
� : D 7! R3, and a set of connected rational Bézier
edges Ei ⇢ R3 forming a closed loop. These edges
Ei are constructed by the CAD system on path in-
tersections and are an approximation of the actual
intersection. Indeed, two rational surfaces need not
intersect at a rational curve. The projection of these
edges on D is also given by the CAD system as a two-
dimensional rational Bézier cuve lying in D. If we
denote ⌧i : [0, 1] 7! R3 the parametrization of Ei in

physical space and ⌧
(2)
i : [0, 1] 7! D the parametriza-

tion of the given projection of Ei onto D, the identity

�i � ⌧ (2)
i = ⌧i

does not hold in the general case.

The first step of our method is to produce a P 1 mesh
of the trimming loop

S
Ei in physical space. This

step proceeds on a per-edge basis and computes an

edge approximation error metric [18] to construct a
mesh with quasi-uniform geometric error under the
prescribed tolerance (user input). This mesh gives
a set of vertices Pi and edges ei = [Pi, Pi+1] in R3.

These vertices are then projected onto D, giving P
(2)
i

s.t. Pi = �(P
(2)
i). The edges between these projected

points form a closed loop in D. We use this as the
trimming curve instead of ⌧

(2)
i . In doing so we guaran-

tee that, if a given CAD edge is part of the trimming
loops of two edge faces, it will be mapped by both
parametrizations to the same physical line mesh.

A constrained Delaunay mesher in parametric domain
D is then called with this boundary as input. This
first tessellation is used to compute the surface approx-
imation error metric in low [18] or in high order [19].
When constructing the P 1 mesh as support for the P 3

surface mesh, a P 3 geometric approximation metric is
used to adapt the surface mesh. The trimmed patch
tessellation can then be adapted to this metric field
[20, 21].

2.2 The P 3 surface mesh

P 3 Bézier elements are defined by a set of control
nodes, either the Lagrange nodes which we denote
P `

ijk or the Bézier nodes Pijk, with (i, j, k) 2 bKd =
{(i, j, k) 2 N3, i + j + k = 3}. In the latter case, the

mapping from the reference triangle bK is given by

FK(⇠) =
X

↵2 bKd

B↵(⇠)P↵,

whereas in the former, FK is interpolated exactly by
the degree three Lagrange basis (�↵)↵2 bKd ,

FK(⇠) =
X

↵2 bKd

�↵(⇠)FK(bP↵) =
X

↵2 bKd

�↵(⇠)P `
↵

where the bP↵ are the control nodes of the reference
element, i.e. bPijk = (i/3, j/3, k/3). This also provides
the definition of the Lagrange control nodes. The B↵

are the Bernstein polynomials, defined by

Bi,j,k(u, v, w) =

✓
3
i

◆✓
3� i

j

◆
uivjwk

for every (i, j, k) 2 bKd and (u, v, w) 2 bK. When
choosing the control points at the thirds, i.e.

Pijk =
i

3
P300 +

j

3
P030 +

k

3
P003,

the Lagrange and Bézier control nodes coincide and
the mapping FK degenerates to become linear. This
is what we’ll naturally refer to as the straight P 3 el-
ement. Figure 4 illustrates a P 3 triangle with its La-
grange control nodes.

76

Figure 4: P 3 triangle with Lagrange nodes in red.

The P 1 mesh must now be brought to the third degree.
To do this, new edge and face high-order nodes must
be created for each triangle and have their positions
set. There are two approaches to this. The first is to
initialize the Lagrange nodes of each element at the
straight position in physical space. These points are
then projected onto the surface using the CAD model.
The second approach evaluates the Lagrange nodes on
CAD faces directly. This can be done easily since, for
every vertex P of the P 1 mesh, its coordinates in the
parametric domain of the host face are known from
the P 1 meshing step. Taking an edge of extremities
P30, P03 on a face with mapping � and with ⇠30 and
⇠03 known such that �(⇠i) = Pi, the Lagrange nodes
for the direct approach are given by

P dir
21 = �

✓
2

3
⇠30 +

1

3
⇠03

◆
and P dir

12 = �

✓
1

3
⇠30 +

2

3
⇠03

◆
,

whereas, denoting by ⇧� the surface projection oper-
ator, the Lagrange nodes for the inverse approach are

P proj
21 = ⇧�

✓
2

3
P30 +

1

3
P03

◆
, P proj

12 = ⇧�

✓
1

3
P30 +

2

3
P03

◆
.

The direct approach is faster than the inverse approach
due to CAD projections. However, we will see that
the indirect approach is more robust, since the ini-
tial position of the Lagrange nodes is not too far from
the straight element, which is valid in the sense that
it does not self-intersect and remains well-conditioned
for optimization (projection). In either case, boundary
edges are first brought to the high order and stored in
a hash table. Triangles are then looped over and new
control points created or recovered from the hash ta-
ble. At this stage, the mesh is fully P 3 with all control
points on the geometry. The last optional step is to
apply a Lagrange-to-Bézier transformation since the
Bézier representation is a more convenient and gen-
eralizable one. Using the definition of the Lagrange
control nodes, we have the following relations:

X
B3

ijk(i0/3, j0/3, k0/3)Pijw = P `
i0j0k0

for every (i0, j0, k0) 2 bKd. These equations degenerate
for any triplet where one of the indices is 3 (principal
vertices of the triangle), leaving 7 non-trivial equations
which correspond to two per edge and one for the face
control node. Equations relating to edge control nodes
are treated in pairs, yielding 6 of the Bézier control
nodes. The face Bézier node is finally computed using
these values. Taking as example the edge {w = 0},

12P210 + 6P120 = 27P `
210 � 8P300 � P030

6P210 + 12P120 = 27P `
120 � 8P030 � P300.

This leads to

�6P210 = 9P `
120 � 18P `

210 � 2P030 + 5P300

�6P120 = 9P `
210 � 18P `

120 � 2P300 + 5P030.

As for the face node, the case i = j = k = 1,

6P111 = 27P `
111 � P300 � 3P210 � 3P120 � P030

� 3P021 � 3P012 � P003 � 3P102 � 3P201,

which we compute using the previous.

Let us now compare the two approaches to construct-
ing the Lagrange nodes: the direct evaluation and the
projection. Fig. 5 illustrates the typical case of a
half sphere mapped to from a rectangle in parametric
space. It has two poles where quad edges have degen-
erated into a single point. This leads to points close
to each other on the surface to have very distant para-
metric coordinates. In particular, edges of triangles
close to these poles can be seen to be very curved (top
figure) when the Lagrange control nodes were evalu-
ated directly. Fortunately, this does not a↵ect the La-
grange nodes which were projected from the straight
positions as much. Indeed, this is less of a problem
of ill-definition than one of strong variations: this is
a region where points close in parametric space are
sent to positions far from each other in physical space.
This is not, however, truly a problem for projection,
especially for edge nodes that are well in the interior of
the face patch. However, in both cases but especially
in the second, it is now possible to compute a surface
normal and curvatures where the CAD previously did
not allow.

There is room for improvement in the choice of the
control points. For now, these are placed at the
straight positions (P `

ijk = i
3
P300 + j

3
P030 + k

3
P003) in

parametric space. It could be beneficial to optimize
this initial placement with regards to geometric de-
viation, G1 continuity or edge length in metric space
with the P 3 surface approximation metric in paramet-
ric space. Note that this P 3 mesh is not guaranteed to
be G1 continuous contrarily to those constructed us-
ing the tangent plane method [22]. However, as the
benchmarks in the following subsection show, this is
of little consequence in practice.

77

Figure 5: Comparison of P 3 meshes with Lagrange con-
trol nodes created using the direct evaluation approach
(top) and the projection of the straight element approach
(bottom) in the vicinity of the pole of a sphere.

2.3 Geometric primitives on the P 3 CAD
surrogate

This mesh has been constructed with the objective
of providing fast and robust projection on the sur-
face as well as evaluation of derivatives. Indeed, when
adapting the computational surface mesh, new ver-
tices are created which must lie on the geometry.
Likewise, surface optimization may call for normals
or curvatures which are linked to, respectively, first
and second derivatives of the surface parameteriza-
tion. These two steps commonly fail on CAD sys-
tems. One common cause of failure for projection is
the high tolerances present between patches: too close
to patch intersections, the geometry is ill-defined. An-
other problem comes from the fact that it is carried
out by gradient-based optimization — typically, New-
ton — in parameters space at the patch level. This
means that, to project point P on the face with map-

ping � over parametric domain D, it is the couple
(u, v) = minD{||��P ||} that is sought and the (up to
second) derivatives of � are used. Therefore, projec-
tions may fail because of degeneracies of the mapping
(such as � mapping a boundary edge of D to a single
point as for a cone) which lead to undefined behaviour
of the derivatives.

Given a P 3 element K and barycentric coordinates of
some point on the triangle, computing derivatives is
trivial due to the polynomial nature K. Projection
becomes slightly more algorithmic, and proceeds in
two steps. The lower level step consists in computing,
for a given triangle K, the barycentric coordinates of
the projected point onto K. The higher level strat-
egy uses this step to move around elements according
to the sign of these barycentric coordinates. Finding
the barycentric coordinates of a point on a P 3 element
is relatively costly, since it requires several steps of a
gradient-based optimization algorithm. P 1 triangles,
on the contrary, give exact barycentric coordinates in
a single step using ratios of triangle areas. Denoting
by barydeg(P, K) a function returning the barycentric
coordinates of point P in triangle K seen as a degree
deg triangle, the projection algorithm can be summa-
rized as follows:

Input: point P , initial guess K

While not found:

For deg = (1, 3):

While not found:

⇠ barydeg(P, K)

If ⇠1 > 0, ⇠2 > 0, ⇠3 > 0:

break

Else:

K i-th neighbour of K s.t. ⇠i <
0

The first iteration of the outer loop closes in on the
correct element, using only cheaper projections on lin-
ear elements, so that very few (often one) steps are
left to identify the correct P 3 triangle in the second
iteration. Some details were omitted for simplicity,
such as usual search logic (marking elements so as to
avoid repetition, stacking or sorting candidates when
two barycentric coordinates are negative) and the fact
that a guess for the normal is supplied to avoid finding
a local minimum on the wrong side of a thinly folded
surface and to distinguish the cases where the point
lies outside of an open surface.

78

3. NUMERICAL EXAMPLES

3.1 Benchmarks

We now turn to simple benchmarks of the P 3 projec-
tion operator and of the P 3 mesh construction. The
geometry used in this section is the High-Lift Common
Research wing Model (HL-CRM) with flaps used in the
4-th AIAA CFD High Lift Prediction Workshop. Fig-
ure 6 illustrates this geometry. The model contains 262
CAD faces and 700 CAD edges. This geometry is rel-
atively complex with a number of degenerate patches:
any triangular patches were originally mapped from a
rectangular domain (green, orange domains in bottom
figure).

3.1.1 Projection speed and accuracy

For the first test, we loop over elements and gener-
ate N random points on each P 3 triangle. We then
call the projection algorithm with no knowledge of
the solution and compare its return value to the ex-
pected point. Euclidean norm of the di↵erence is used
to compute `2 and `1 norms of the projection error.
This is compared to a similar test on the CAD sys-
tem, wherein points are generated on the geometry
and then projected using a reasonable first guess (clos-
est point in mesh). CAD projections are carried out
using EGADSlite [23] built-in tools. Two meshes of
48 and 92 thousand triangles obtained by tessellating
with surface error metrics for a geometric tolerance of
0.1 and 0.05 respectively are used. The only influence
mesh coarseness should have on the results is in mak-
ing the P 3 triangles slightly flatter. Indeed, we are not
measuring deviation from the P 3 mesh to the geome-
try but rather the ability of the projection algorithm
to recover a point that is exactly on the surface. Table
1 o↵ers a summary of the results on these two meshes
created from the same high-lift geometry. Both for the
CAD and P 3 tests and on either mesh, 1M test points
were generated to project. Projection errors are nor-
malized for wing length. The first thing that stands
out is that the P 3 projection is in the order of 3 times
faster than the projection on the CAD using EGAD-
Slite. Projection quality is better using the CAD on
average, with `2 errors for the P 3 projection in the
order of 1e � 8 and in the order of 1e � 11 for the
CAD projection. EGADSlite CAD projections there-
fore tend to yield results in the order of 3 orders of
magnitude times better than the P 3 projection in its
current state. However, looking at `1 errors, it ap-
pears that CAD projection is capable of more catas-
trophic failures, with a highest error of roughly 10% of
the model’s size on at least one point. This is not an
isolated result, as similar behaviour has been observed
on other cases. We believe the high average quality of
CAD projections is due to the fact that NURBS are

mostly regular, except on patch boundaries when sin-
gularities exist. A number of these singularities exist
on this model, such as on the bounding box (a half
sphere with two degenerate edges at the poles) and
on some triangular patches seen Fig. 6 with one de-
generate edge. The P 3 mesh, on the other hand, is
regular and unbothered by these singularities, except
potentially on construction. This explains that `1 er-
rors on P 3 projection remain more controlled. As for
its worse `2 accuracy, the algorithm implemented to
carry out P 3 projection is a very rudimentary New-
ton descent with a fixed iteration count, no line search
nor preconditioning. Using a more sophisticated algo-
rithm would yield better results, as the optimization
problem at hand is relatively simple.

Triangles 48k 92k

P 3 err. `2 4.2e�8 2.1e�8

P 3 err. `1 1.15e� 2 8.3e�3

P 3 CPU 1.15M p/sec 1.08M p/sec

CAD err. `2 6.7e�11 4.1e�11

CAD err. `1 1.1e�1 1.1e� 1

CAD CPU 366k p/sec 390k p/sec

Table 1: Results for the first benchmark: projection of
random points using the CAD system (EGADSlite) and
the P 3 CAD surrogate. CPU times given in projections
per second (p/sec). 106 points were generated in both
cases.

3.1.2 Surface approximation error

Now that the P 3 projection operator has been verified,
we can move onto the second test involving geomet-
ric approximation. Here, we seek to evaluate the gap
between the actual surface (CAD model) and the sur-
face meshes (P 1 and P 3). There are two approaches
to this. The first involves generating points on the P 3

and P 1 geometries and then projecting them onto the
CAD model. The second does the opposite: points
are generated on the CAD model and then projected
onto the P 1 and P 3 surfaces. We chose the second ap-
proach because it is stabler, in that the CAD model is
only used for evaluation and the mesh projection has
been validated by that point.

To follow this approach, we proceed on a per-face basis
and require a tessellation of the trimmed parametric
domain of each CAD face. This is accomplished eas-
ily at this stage. Indeed, the surface mesher keeps
records of which CAD faces and edges created which
mesh vertices and at which parameter values. In other
words, for any vertex Pi of the surface mesh, it is triv-
ial to retrieve the � and ⇠i for which �(⇠i) = Pi. Now,
given the set of triangles and vertices (Pi) that dis-
cretize a given CAD face, the desired tessellation of
the trimmed parameters domain is given by the mesh
with the same connectivity and vertices ⇠i. We denote

79

Figure 6: The high-lift wing model with flaps.

(Ki)1iN the N triangles of this tessellation and ⇧k

the projection operator on the degree k mesh. We seek
to evaluate the quantities

Ek
p = ||� �⇧k�||Lp(

SN
1=1 Ki)

(1)

for p either 2 or 1. In the case of p = 2,

Ek
2 =

NX

i=1

Z

Ki

||�(⇠)�⇧k(�(⇠))||d⇠

=

NX

i=1

|JKi |
Z

bK
||�(FK(b⇠))�⇧k(�(FK(b⇠)))||db⇠

(2)

where FK : bK 7! K is the reference-to-physical map-
ping of the triangle K and JK the determinant of its
Jacobian. Note that, since we are dealing with el-
ements defined in parametric space, this quantity is
well-defined since elements are in R2. Furthermore,
even in the case of a P 3 triangle, the Jacobian is con-
stant because we have constructed the P 3 triangles to

be straight in parametric space (their mapping degen-
erates into the linear one) and it is only in physical
space that they are curved. These individual integrals
are then evaluated by simple uniform quadrature. The
reason for this choice is that we seek to evaluate this
integral with a great degree of precision and such a
scheme is very simple to converge, though at a slower
pace. 45 quadrature points were used. As for the L1

error, we simply take the maximum absolute value at
the quadrature points, needing no further computa-
tions. Greater accuracy on the L1 error is another
advantage of a quadrature scheme using more points.
We also define the errors on the normal directions

@Ek
p = ||n�(u, v)� nk(⇧k�)||2,Lp(

SN
1=1 Ki)

(3)

where n�(u, v) = (@u� ^ @v�)/k@u� ^ @v�k is the nor-
malized normal vector computed using the CAD patch
and nk(X) is the normalized normal at point X on
the P k mesh. Furthermore, errors are the normalized
eEk

p = Ek
p Ck where Ck is the mesh complexity for a

given degree given by

C1 = 3NT + 3⇢N1
P

C3 = 10NT + 3⇢(NT + N1
P + 2NE)

(4)

where NT denotes the number of triangles in the mesh,
N1

P the number of vertices in the P 1 mesh, NE the
number of edges. ⇢ is the real to integer storage cost
ratio, with ⇢ = 2 in our case given that 32 bit integers
and 64 bit reals (double precision) were used. The

same goes for the errors on normals @ eEk
p . Finally, we

normalize by the total area of the surface, estimated
from the P 1 mesh.

Results are summarized in Tab. 2. Complexities for
the P 1 and P 3 meshes show that, in both cases, the
P 3 mesh was upwards of 6 times heavier in memory
than the P 1 mesh for the same number of triangles.
However, looking at the ratios of errors, the P 1 mesh
is clearly much worse than than the P 3 mesh for the
same number of degrees of freedom. On the coarser
mesh, the P 1 mesh was 72 times worse in L2 norm and
7.5 times worse in L1 norm. These figures jump to a
1900, resp. 83, times worse P 1 mesh at the same num-
ber of degrees of freedom with the finer mesh. This
alone heavily favours the P 3 CAD surrogate for geo-
metric projection. But looking at the errors on nor-
mals, it comes with no surprise that the P 3 mesh is
thousands of times more accurate than the P 1 mesh
at a given number of degrees of freedom. Even more
so on the coarser mesh, where the piece-wise constant
normals given by the P 1 mesh are no match for the
smooth normals of the P 3 mesh (factor ⇥20000 more
accurate on average and in the worst case).

80

NT /C1/C3 48k / 290k / 1.8M 92k / 550k / 3.4M
eE1
2 5.7e2 41

eE1
1 5.7e-1 4.5e-2

eE3
2 7.9 2.2e-2

eE3
1 7.7e-2 5.4e-4

eE1
2/ eE3

2 72 1.9e3
eE1
1/ eE3

1 7.5 83

@ eE1
2 9.0 2.2

@ eE1
1 5.9e-3 3.1e-3

@ eE3
2 4.7e-4 4.5e-4

@ eE3
1 3.7e-7 3.2e-7

@ eE1
2/@ eE3

2 1.9e4 4.9e3

@ eE1
1/@ eE3

1 1.6e4 9.8e3

Table 2: Normalized errors for the P 1 and P 3 meshes.
Errors are given for two coarseness levels: 48000 and
92000 triangles.

3.1.3 P 2 volume meshes

Finally, we present a minor (with regards to adap-
tation as a whole) use of these P 3 CAD surrogate
meshes, namely as a geometric support to curve
P 2 meshes. Acknowledgement of the importance of
curved volume meshes dates back to the 70s with the
proof that optimal convergence of high-order meth-
ods is only possible with a curved boundary in the
case of elliptic problems [24, 25] and later for hyper-
bolic problems, where physical features are lost on P 1

boundaries [26]. Unlike CAD surrogate meshes, these
curved surface meshes are constrained by the valid-
ity of inciding tetrahedra. Indeed, they are comprised
of triangles that are faces of volume elements whose
Jacobian determinants must remain positive. A vol-
ume mesh curving technique based on minimizing edge
lengths in the metric field [27] could be extended to
surface meshes by parameterizing Lagrange node po-
sition of P 2 edges as barycentric coordinates on P 3

CAD surrogate mesh elements. This takes the con-
straint that the Lagrange node must lie on the surface
into account at a lower level than by letting it be any
point in space that is later projected on the surface.
Not only does this reduce the dimension of the edge
length minimization problem from 3 to 2 variables,
it also makes for more accurate derivatives of the cost
function. This would be much more complicated to do
on the CAD, where the parameterizations are more so-
phisticated, not to mention the problems already cited
before.

Figure 7 illustrates results on the 3rd High-Lift CRM.
This is a whole-body model with fewer features. The
P 1 mesh was obtained as part of the high-lift drag
prediction workshop. It is the result of adaptation us-
ing AMG/feflo.a [28] for mesh modifications and the
solver Wolf [29]. The P 3 surface mesh was then cre-

ated and used to project Lagrange nodes of the P 2

surface mesh. P 2 volume edges were then curved using
the metric field by minimizing edge lengths. Without
too much surprise, the P 2 surface mesh inherits the
good properties of the P 3 CAD surrogate.

Figure 7: High-Lift CRM of the 3rd AIAA CFD High
Lift Prediction Workshop meshes of degrees 1, 2 and 3
from top to bottom. The P 1 mesh (top) is the result of
adaptation. The P 3 mesh (bottom) was elevated from it
using the method presented here. The P 2 mesh (middle)
was elevated from the P 1 mesh using projection on the
P 3 mesh rather than the CAD. Volume elements (visible
in the cut plane) have positive Jacobian determinants
despite the clearly curved surface.

3.2 Adaptation convergence

In the previous section, we have shown that the P 3

CAD surrogate mesh is accurate as desired and that
the geometric primitives are fast and robust. We now
present a more pragmatic test, based on exhibiting
convergence of the remeshing algorithm with an ana-
lytical boundary-layer metric while using the P 3 CAD
surrogate for point projections. This metric is of the
form:

M(P) = R⇤RT

81

with

⇤ = diag(h�2
M , h�2

M , min(h�2
m , max(exp(1/kP �⇧Pk), h�2

M)))

and R =
�
⌧1(⇧P) ⌧2(⇧P) n(⇧P)

�

where ⇧P denotes the projection of P onto the sur-
face, ⌧i are unit tangent vectors and n a unit normal
at the surface. Finally, hm and hM are, respectively,
the minimum and maximum metric sizes.This metric
field is anisotropic with the smallest size along the nor-
mal direction to the surface. This size converges to
the minimum admissible size as one goes closer to the
surface, leading to a mesh with that prescribed size
extruding from the surface. This metric field is illus-
trated in Fig. 8.

Figure 8: Analytical metric field used. Metrics are repre-
sented by their eigenvectors pondered by the square root
of the inverse of their eigenvalues (characteristic sizes).

This is a challenging case in that very small edges
are liable to appear in the vicinity of patch junc-
tions, where the geometry is ill-defined by the CAD
system. The converged adapted meshes must display
the proper anisotropy even close to the surface. Fur-
thermore, geometric approximation error must not in-
crease during adaptation. Otherwise, this would mean
that the surface mesh is converging to the wrong ge-
ometry. We will compare two adaptation runs: the
first uses the P 3 CAD surrogate, the second the CAD
model. Adaptation is carried out by the automatic
metric-based remesher AMG/feflo.a [28]. The overall
adaptation proceeds as follows:

While target mesh complexity not reached

Compute metric field with increased com-
plexity target

Adapt mesh to metric field

This is necessary because, despite the fact that the
chosen metric is analytical, the metric field is only

P 3 CAD surrogate CAD model

CPU time 9m18s 9m16s

Unit Edge % 91.4 91.5

Qmax 74 97

Final Geo. err. 3.9e-6 5.5e-6

Table 3: Adaptation metrics: CPU time for the entire
process, overall mesh quality (unit edges), maximum sur-
face quality, final geometric approximation error of the
adapted mesh.

known at the vertices of the input mesh and is there-
fore an approximation of the desired metric field. As
such, even starting at the correct complexity, several
iterations would be necessary. Starting from a lower
complexity target a↵ords faster convergence since indi-
vidual executions of the remeshing algorithm are faster
to execute. In our case, 13 iterations were carried out.

Fig. 9 illustrates the adapted results in both cases.
CPU times and mesh quality metrics are given in Tab.
3. Unit edges are those for which their length in the
metric field lies in [1/

p
2,
p

2]. The quality Q of a
triangle K is

Q(K) =
1

2
p

3

P
l2i

A(K)

where the li are the lengths of the edges, A(K) is
the area of K, and both quantities are computed in
the metric field. The scaling factor is such that the
minimum of Q over all possible triangles is 1. This
corresponds to unit triangles in the metric, whereas as
Q goes to infinity, triangles are flatter and less unit
in the metric. We then define Qmax as the maximum
quality over all triangles in the mesh. CPU times are
extremely close. This is simply a consequence of the
fact that surface projection is not very significant in
overall adaptation CPU time. Indeed, the majority
of mesh vertices lie in the volume and even for surface
points the projection times represent at most one tenth
of insertion time. As an order of comparison, our algo-
rithm inserts between 25 and 40 thousand points per
second depending on compilation flags, whereas point
projection proceeded at a rate of 300 thousand per sec-
ond even for the slowest case, direct CAD projection.
Proportion of unit edges in the mesh and maximum
surface element quality are within reasonable values.
This in itself is not enough to conclude that P 3 pro-
jection is su�cient. Indeed, we must now compare
geometric approximation errors and ensure that the
adapted surface mesh is not degraded with regards to
the initial mesh. Geometric error is reported in L1

norm as computed in (2). In both cases, the final
mesh exhibits an error under the prescribed geometric
error of 2e� 3 by a large margin.

82

Figure 9: Detail of resulting adapted meshes using the
P 3 CAD surrogate (top) and the CAD model (bottom)
for the analytical boundary layer metric.

4. CONCLUSION

In this paper, we have exhibited a very simple exten-
sion to a parametric meshing algorithm that produces
polynomial P 3 meshes from CAD objects, i.e. contin-
uous representations riddled with singularities, degen-
erating features and large tolerances at intersections.
These meshes are constructed in a preprocessing step
and are then taken as input instead of the CAD file on
each adaptation call. Tolerances at junctions between
NURBS patches were managed by treating the prob-
lem on a discrete level. To do this, physical CAD edges
are first discretized. This yields a set of vertices and
edges of R3 which are then projected onto the para-
metric patches of neighbouring NURBS faces. This
set of edges is then used to trim the NURBS patch in-
stead of the CAD supplied parametric trimming curve,
eliminating mismatches between points and edges gen-
erated by each NURBS face.

Two approaches for creating P 3 meshes from an ini-
tial P 1 surface and a CAD model were described. The
first only involved CAD evaluations, by setting the
parametric coordinates of the new control points at
the thirds of those of edge extremities (and triangle
vertices, in the case of face control nodes). The sec-
ond required CAD projections, since P 3 triangles were
first made straight in physical space and then pro-
jected onto parametric space. In the absence of further
optimization, the second approach is more stable, as
the first method easily produces bad high-order nodes
close to CAD discontinuities such as the poles of a
sphere. Resulting P 3 meshes are lightweight and al-
low for fast projection on the surface. They improve
greatly on geometric deviation over P 1 meshes as well
as derivative computations which can be in the or-
der of 104 times more accurate for the same storage
cost. Furthermore, derivatives are always defined on
a P 3 Bézier mesh, which they are not necessarily on
trimmed NURBS. Point projections are in the order
of 3 times faster on P 3 meshes as well, by using the
implicit P 1 mesh as an accelerator. Finally, the fact
that the CAD model is only used in the preprocess-
ing step reduces the frequency at which CAD errors
may occur in the adaptation process. One common
occurrence is a shock that spans parts of the geome-
try where NURBS meet. At these junctions, the CAD
object has large tolerances, essentially meaning these
interfaces are fuzzy under some scale. This scale tends
to be much larger than that of desired element size at
shocks, limiting potential anisotropy and robustness of
adaptation. This cannot possibly happen on the P 3

mesh which is watertight by construction.

These virtues of the P 3 geometric representation were
put to the test through a full adaptation run on the
High-Lift model. Comparing between adaptation us-
ing CAD projection and using P 3 projection, we have
shown that the P 3 surface mesh is su�ciently accu-
rate to carry out mesh adaptation (including surface
adaptation) on complex geometries with a strongly
anisotropic metric field. Another advantage of using
P 3 meshes for surface adaptation is that the CAD is
not necessary. Although the techniques shown here
involve a CAD, P 3 meshes can be constructed from
a straight mesh by estimating normals at the vertices
and enforcing G1 continuity [22].

The fidelity of the CAD surrogate meshes can be im-
proved in at least two ways. The first is by optimizing
the Lagrange node placement of P 3 triangles so as to
minimize surface approximation error. This has not
been done at all, Lagrange nodes are simply placed
on the straight element at the thirds and then pro-
jected onto the geometry. There is a direct link be-
tween Bézier nodes and tangent planes of P 3 triangles
(the tangent plane at P300 is the span of the vectors
P210 and P120, for instance) which could help devise

83

a procedure to fit the derivatives of the surface map-
ping up to the third order with little cost. An ap-
proach using the geometric approximation metric field
to seek geodesics in parameter space to avoid the phe-
nomenom illustrated in figure 5 is another possibility,
albeit perhaps more costly. Since the P 3 mesh creation
step is accomplished once per full adaptation, we ex-
pect such optimizations would not prove too costly in
the grand scheme of things, while possibly enabling
coarser P 3 meshes to approximate the surface under
the tolerance. Finally, these meshes could be improved
by increasing their degree. The main di�culty with
higher order meshes would be in extending the afore-
mentionned optimization strategies. The second way
these CAD surrogate meshes could be improved in-
volves replacing parts of the mesh with pieces of the
CAD, such as rational Bézier triangles. These could
be extracted from the CAD’s NURBs patches in such
a way that they would be exact representations of the
original parameterization, while being an intermediary
step towards a discrete mesh helping projection. This
could provide a discrete-exact description of the ge-
ometry, with CAD faces being exactly represented in
their interior, and approximated close to the trimming
curve by a discrete P 3 mesh. Likewise, it is possible
that some singularities arising from degenerating CAD
edges could be fixed this way.

References

[1] Loseille A., Alauzet F. “Continuous mesh frame-
work part I: well-posed continuous interpolation
error.” SIAM Journal on Numerical Analysis,
vol. 49, no. 1, 38–60, 2011

[2] Loseille A., Alauzet F. “Continuous mesh frame-
work part II: validations and applications.” SIAM
Journal on Numerical Analysis, vol. 49, no. 1, 61–
86, 2011

[3] Loseille A., Dervieux A., Alauzet F. “Fully
anisotropic goal-oriented mesh adaptation for 3D
steady Euler equations.” Journal of Computa-
tional Physics, vol. 229, no. 8, 2866 – 2897, 2010

[4] Loseille A., Menier V. “Serial and parallel mesh
modification through a unique cavity-based prim-
itive.” Proceedings of the 22nd International
Meshing Roundtable, pp. 541–558. Springer, 2014

[5] Löhner R., Baum J.D. “Adaptive h-refinement
on 3D unstructured grids for transient problems.”
International Journal for Numerical Methods in
Fluids, vol. 14, no. 12, 1407–1419, 1992

[6] Babuska I., Szabo B.A., Katz I.N. “The p-version
of the finite element method.” SIAM Journal on
Numerical Analysis, vol. 18, no. 3, 515–545, 1981

[7] Kompenhans M., Rubio G., Ferrer E., Valero E.
“Comparisons of p-adaptation strategies based on
truncation-and discretisation-errors for high or-
der discontinuous Galerkin methods.” Computers
& Fluids, vol. 139, 36–46, 2016

[8] Ceze M., Fidkowski K.J. “Anisotropic hp-
adaptation framework for functional prediction.”
AIAA Journal, vol. 51, no. 2, 492–509, 2013

[9] Dolejsi V., Ern A., Vohraĺık M. “hp-adaptation
driven by polynomial-degree-robust a posteriori
error estimates for elliptic problems.” SIAM
Journal on Scientific Computing, vol. 38, no. 5,
A3220–A3246, 2016

[10] Huerta A., Angeloski A., Roca X., Peraire J. “Ef-
ficiency of high-order elements for continuous and
discontinuous Galerkin methods.” International
Journal for Numerical Methods in Engineering,
vol. 96, no. 9, 529–560, 2013

[11] Vanharen J. High-order numerical methods for
unsteady flows around complex geometries. Ph.D.
Thesis, Université de Toulouse, 2017

[12] Farin G.E., Farin G. Curves and surfaces for
CAGD: a practical guide. Morgan Kaufmann,
2002

[13] Piegl L., Tiller W. The NURBS book. Springer
Science & Business Media, 1996

[14] Marussig B., Hughes T.J. “A review of trim-
ming in isogeometric analysis: Challenges, data
exchange and simulation aspects.” Archives of
Computational Methods in Engineering, vol. 25,
no. 4, 1059–1127, 2018

[15] Beall M.W., Walsh J., Shephard M.S. “Accessing
CAD Geometry for Mesh Generation.” Imr, pp.
33–42. 2003

[16] Park M.A., Haimes R., Wyman N.J., Baker P.A.,
Loseille A. “Boundary Representation Tolerance
Impacts on Mesh Generation and Adaptation.”
AIAA AVIATION 2021 FORUM, p. 2992. 2021

[17] She↵er A., Bercovier M., BLACKER T.,
Clements J. “Virtual topology operators for
meshing.” International Journal of Computa-
tional Geometry & Applications, vol. 10, no. 03,
309–331, 2000

[18] Frey P. “About Surface Remeshing.” 9th In-
ternational Meshing Roundtable. Sandia National
Laboratories, 2000

[19] Feuillet R., Coulaud O., Loseille A. “Anisotropic
error estimate for high-order parametric surface
mesh generation.”

84

[20] Loseille A., Alauzet F. “Optimal 3D highly
anisotropic mesh adaptation based on the contin-
uous mesh framework.” Proceedings of the 18th
International Meshing Roundtable, pp. 575–594.
Springer, 2009

[21] Frey P.J., Alauzet F. “Anisotropic mesh adapta-
tion for CFD computations.” Computer Methods
in Applied Mechanics and Engineering, vol. 194,
no. 48-49, 5068–5082, 2005

[22] Vlachos A., Peters J., Boyd C., Mitchell J.L.
“Curved PN triangles.” Proceedings of the 2001
Symposium on Interactive 3D Graphics, pp. 159–
166. 2001

[23] Haimes R., Dannenho↵er J. “EGADSlite: A
Lightweight Geometry Kernel for HPC.” 2018
AIAA Aerospace Sciences Meeting, p. 1401. 2018

[24] Ciarlet P.G., Raviart P.A. “The combined ef-
fect of curved boundaries and numerical integra-
tion in isoparametric finite element methods.”
The mathematical foundations of the finite ele-
ment method with applications to partial di↵eren-
tial equations, pp. 409–474. Elsevier, 1972

[25] Lenoir M. “Optimal isoparametric finite elements
and error estimates for domains involving curved
boundaries.” SIAM Journal on Numerical Anal-
ysis, vol. 23, no. 3, 562–580, 1986

[26] Bassi F., Rebay S. “High-order accurate discon-
tinuous finite element solution of the 2D Euler
equations.” Journal of Computational Physics,
vol. 138, no. 2, 251–285, 1997

[27] Loseille A., Rochery L. “Developments on the Pˆ
2 cavity operator and Bézier Jacobian correction
using the simplex algorithm.” AIAA SCITECH
2022 Forum, p. 0389. 2022

[28] Loseille A. “Chapter 10 - Unstructured Mesh
Generation and Adaptation.” Handbook of Nu-
merical Methods for Hyperbolic Problems, vol. 18
of Handbook of Numerical Analysis, pp. 263 – 302.
Elsevier, 2017

[29] Alauzet F., Frazza L. “3D RANS anisotropic
mesh adaptation on the high-lift version of
NASA’s Common Research Model (HL-CRM).”
AIAA Aviation 2019 Forum, p. 2947. 2019

85

BISECTING WITH OPTIMAL SIMILARITY BOUND ON
3D UNSTRUCTURED CONFORMAL MESHES

Guillem Belda-Ferŕın1 Eloi Ruiz-Gironés1 Xevi Roca1,2

1Computer Applications in Science and Engineering,
Barcelona Supercomputing Center - BSC, 08034 Barcelona, Spain

2Corresponding author: xevi.roca@bsc.es

ABSTRACT

We propose a new method to mark for bisection the edges of an arbitrary three-dimensional unstructured conformal
mesh. For these meshes, the approach conformingly marks all the tetrahedra with coplanar edge marks. To this
end, the method needs three key ingredients. First, we propose a specific edge ordering. Second, marking with this
ordering, we guarantee that the mesh becomes conformingly marked. Third, we also ensure that all the marks are
coplanar in each tetrahedron. To demonstrate the marking method, we implement an existent marked bisection
approach. Using this implementation, we mark and then locally refine three-dimensional unstructured conformal
meshes. We conclude that the resulting marked bisection features an optimal bound of 36 similarity classes per
tetrahedron.

Keywords: bisection, marked bisection, newest vertex bisection

1. INTRODUCTION

In adaptive finite element analysis, unstructured tetra-
hedral meshes have to be locally adapted. To this end,
one needs to perform local mesh modifications. One
successful modification is to bisect the required tetra-
hedra. This bisection operation splits a tetrahedron
by introducing a new vertex on the selected refinement
edge. Then, the vertices not lying on this refinement
edge are connected to the new vertex. These connec-
tions determine two new tetrahedra. The quality of
these tetrahedra depends on the criterion to select re-
finement edges. This edge selection is commonly based
on choosing either the longest edge [1, 2, 3, 4] or the
newest vertex [5, 6].

The self-similarity of the newest vertex bisection [5, 6]
has been favored over other bisection-based refine-
ments in many three-dimensional applications. Specif-
ically, in adaptive applications [7, 8, 9, 10] where it
is possible to start with a three-dimensional reflected
mesh [9, 10, 11, 12]. This preference is so since on re-

flected meshes local refinement with newest vertex bi-
section has the minimum mesh quality bounded. This
bound is a consequence of the bound in the num-
ber of similarity classes of mesh tetrahedra. That
is, for each initial tetrahedron, successive newest ver-
tex bisection does not generate more than 36 di↵erent
similarity classes [13]. This number of classes is the
smallest bound known for a three-dimensional bisec-
tion method.

Unfortunately, this optimal bound has not been met
in adaptive applications requiring complex three-
dimensional geometries. This lack is so since practical
methods to extract a reflection structure are limited to
specific meshes. For instance, meshes generated using
the Coxeter-Freudenthal-Kuhn algorithm [14, 15, 16]
or meshes where all the edges have an even number
of incident tetrahedra [9, 10]. Currently, there is no
method known to extract a strong reflection structure
from an arbitrary three-dimensional unstructured con-
formal mesh [8, 10, 13, 11, 12].

For three-dimensional unstructured conformal meshes,

86

there are alternative bisection methods with sub-
optimal similarity bound [17, 7, 18, 19, 13]. All these
methods lead to analogous locally refined conformal
meshes. Nevertheless, Arnold et al. [13] establish a
key connection between Maubach’s newest vertex bi-
section [8] and marked bisection [13]. Marked bisec-
tion leads at most to 72 similarity classes. This bound
is two times the number of similarity classes of newest
vertex bisection.

To meet this sub-optimal bound, marked bisection
[13] features one pre-process stage and two bisection
stages. In the pre-processing, for all the faces of the
initial mesh, the method conformingly marks the bi-
section edges. These edge marks determine a finite set
of marked tetrahedron types. For each type, there is a
specific bisection that leads to two children tetrahedra
of the next type. The first stage ensures that di↵erent
types of tetrahedra are all bisected to the planar type.
This type, independently for each tetrahedron, is the
beginning of the next bisection stage. In this second
stage, successive marked bisection cycles every three
bisection steps through a subset of the marked types
(unflagged planar, flagged planar, and adjacent). This
cyclic stage is equivalent to Maubach’s newest vertex
bisection [8] under specific conditions [13].

The previous overview allows reasoning about the
number of similarity classes. On the one hand, the
number potentially doubles the bound for the newest
vertex bisection due to the initial bisection stage.
On the other hand, the cyclic stage guarantees that
the rest of the generated similarity classes correspond
to those determined by the newest vertex bisection.
Accordingly, for some conformingly marked meshes,
marked bisection behaves as the newest vertex bisec-
tion [13]. Specifically, there are no more than 36 simi-
larity classes if the conformingly marked mesh is com-
posed only of unflagged planar or adjacent tetrahedra.

The question of whether there is a method to conform-
ingly mark as unflagged planar or as adjacent all the
tetrahedra of an arbitrary three-dimensional unstruc-
tured conformal mesh is still open [13]. A constructive
answer is of significant interest. It would lead to the
first marked bisection featuring an optimal similarity
bound for adaption in complex geometry. The main
goal of this work is to answer this question and imple-
ment the obtained method.

To meet the goal, our main contribution is to pro-
pose a new marking procedure for three-dimensional
unstructured conformal meshes. For these meshes, we
guarantee that all the tetrahedra become conformingly
marked as unflagged planar. To this end, we consider
three key ingredients. First, we propose a specific or-
dering of the global mesh edges. Second, relying on
this edge ordering, we deduce that all the mesh tetra-
hedra become marked as unflagged planar. Third, we

(a) (b)

Figure 1: Representations of a tetrahedron composed
of the vertices v1, v2, v3, and v4: (a) volumetric; and
(b) planar.

guarantee conformingly marked meshes by checking
that we fulfill the su�cient conditions for tetrahedral
meshes stated in [13]. To illustrate the application, we
implement the refine to conformity marked bisection
[13] but equipped with our planar marking method.
We use the implementation to locally refine three-
dimensional unstructured conformal meshes and check
the minimum mesh quality.

The rest of the paper is structured as follows. In Sec-
tion 2, we state the problem. In Section 3, we propose
a marking process and show that it generates conform-
ingly marked meshes. Next, in Section 4, we detail
the adaptation of Arnold’s bisection algorithm to our
proposed marking process. In Section 5, we present
several examples to show the features of the proposed
method. Finally, in Section 6, we detail the conclu-
sions and the future work.

2. PRELIMINARIES AND PROBLEM

We proceed to introduce the necessary notation and
concepts. Specifically, we introduce the preliminaries
related to conformal simplicial meshes and marked bi-
section. Finally, we state the problem of conformingly
marking unstructured simplicial meshes for bisection.

2.1 Preliminaries: definitions

A simplex is the convex hull of n+1 points p0, . . . , pn 2
Rn that do not lie in the same hyper-plane. We denote
it as � = conv(p0, p1, . . . , pn). We identify each point
pi with an unique integer identifier vi that we refer
as vertex. Thus, a simplex is composed of n + 1 ver-
tices and we denote it as � = (v0, v1, . . . , vn). We
have an application ⇧ that maps each identifier vi

to the corresponding point such that ⇧(vi) = pi. In
our application, we are interested in tetrahedra, three-
dimensional simplices. Herein, as in [13], we represent
volumetric tetrahedra composed of the vertices v1, v2,
v3, and v4, see Figure 1(a), in the plane by cutting

87

and unfolding the corresponding triangular faces, see
Figure 1(b).

A tetrahedron has three types of entities: triangles,
edges, and vertices, which are sub-simplices composed
of 3, 2, and 1 vertices of ⌧, respectively. We denote
the faces, edges and vertices with the letters , e and
v, respectively. We define the list of local edges of a
tetrahedron ⌧ = (v0, v1, v2, v3) as the following sorted
list of edges

(v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3), (v2, v3).

We associate each triangular face of a tetrahedron ⌧
with the opposite face to a vertex of ⌧. As an ex-
ample, for the tetrahedron ⌧ = (v0, v1, v2, v3), the
opposite face to the vertex v0 is the triangular face
0 = (v1, v2, v3).

A mesh, T, associated to an open set ⌦ 2 Rn is a finite
collection of mutually disjoint tetrahedra such that

⌦̄ =
[

⌧2T
⌧.

A tetrahedral mesh is conformal if, for any ⌧1, ⌧2 2 T,
⌧1\⌧2 is either empty, or a common edge, or a common
triangle. We say that two tetrahedra ⌧1 and ⌧2 are
neighbors if they share a common triangular face.

2.2 Preliminaries: marked bisection

Arnold et al. [13] presented a marked bisection algo-
rithm for unstructured conformal tetrahedral meshes
that ensure locally refined conformal meshes and qual-
ity stability. Following, we present the terminology
and results required to overview their marked bisec-
tion algorithm.

The refinement edge e⌧ is the edge of ⌧ to be bisected.
Since an edge is shared by two triangular faces of the
tetrahedron, the triangular faces that contain e⌧ are
the refinement faces of ⌧. The remaining two trian-
gular faces are defined as non-refinement faces. For
those faces, one edge, referred as marked edge, is as-
signed. We recall that each triangular face i has a
refinement edge ei . Particularly, the refinement edge
e⌧ is the same as the ei of the refinement faces.

Since the non-refinement edges are adjacent or either
opposite to the refinement edge, we can classify the
marked tetrahedra into four types, see Figure 2: adja-
cent A, planar P , mixed M , and opposite O.

• Planar, P : the refinement edge and the marked
edges are coplanar. A planar tetrahedron is fur-
ther classified as type Pu or type Pf , according
to a boolean flag, see Figures 2(a), and 2(b), re-
spectively.

Algorithm 1 Refining a subset of a mesh.

input: Mesh T, set of element S ⇢ T to refine
output: ConformalMarkedMesh T2

1: function refineMesh(T, S)
2: T1 = markMesh(T)
3: T2 = localRefine(T1, S)
4: return T2

5: end function

• Adjacent, A: the marked edges are adjacent to
the refinement edge but are not coplanar, see Fig-
ures 2(c).

• Mixed, M : one marked edge is adjacent to the
refinement edge, and the other is opposite, see
Figures 2(d).

• Opposite, O: both marked edges are opposite to
the refinement edge, see Figures 2(e).

These tetrahedron types are the nodes of the directed
graph determining the marked bisection sequence, see
Figure 3.

Now, we can introduce the definition of marked tetra-
hedron, which is a modification of the one detailed in
[13]. Herein, a marked tetrahedron is the 5-tuple

⇢ = (⌧, e⌧ , e1 , e2 , t),

where ⌧ is a tetrahedron, e⌧ is the refinement edge, e1

and e2 are the marked edges of the non-refinement
faces, and t is the tetrahedron type.

A mesh is marked if all its tetrahedra are marked. A
marked conformal mesh is conformingly marked if each
triangular face has a unique marked edge. That is, a
triangular face shared by two tetrahedra has the same
marked edge from both sides. Accordingly, shared tri-
angular faces are bisected in the same manner from
di↵erent tetrahedra.

Remark 2.1 (Conditions to conformingly mark). To
guarantee that a conformal mesh is conformingly
marked, Arnold et al. [13] state that it is su�cient
to combine a strict total order of the mesh edges with
their marking process for tetrahedra. For instance, the
mesh edges can be sorted according to their length us-
ing a tie-breaking rule when the lengths are equal.

The marked bisection method, Algorithm 1, starts by
marking the initial unstructured conformal mesh and
then applies a local refinement procedure to a subset
of tetrahedra of the marked mesh. The marking pre-
process is devised to ensure a conformingly marked
mesh. Using this marked mesh, the local refinement
procedure, Algorithm 2, first refines a set of tetra-
hedra and then calls a recursive refine-to-conformity
strategy. This strategy, Algorithm 3, terminates when

88

(a) (b) (c) (d) (e)

Figure 2: The five di↵erent type of marked tetrahedra of Arnold’s cycle: (a) unflagged planar tetrahedron, (b)
flagged planar tetrahedron, (c) adjacent tetrahedron, (d) mixed tetrahedron, and (e) opposite tetrahedron.

M O

Pu

A Pf

Figure 3: Directed graph of tetrahedron types for
marked bisection.

Algorithm 2 Local refinement of a marked mesh.

input: ConformalMarkedMesh T and S ⇢ T
output: ConformalMarkedMesh T0

1: function localRefine(T, S)
2: T̄ = bisectTetrahedra(T, S)
3: T0 = refineToConformity(T̄)
4: return T0

5: end function

Algorithm 3 Refine-to-conformity a marked mesh.

input: MarkedMesh T
output: MarkedMesh T 0 without hanging nodes
1: function refineToConformity(T)
2: S = getHangingNodes(T)
3: if S 6= ; then
4: T̄ = bisectTetrahedra(T, S)
5: T 0 = refineToConformity(T̄)
6: else
7: T 0 = T
8: end if
9: return T 0

10: end function

successive bisection leads to a conformal mesh. Both
algorithms use marked bisection to refine a set of ele-
ments, see Algorithm 4.

Remark 2.2 (Optimal similarity bound). If the con-
formingly marked mesh is composed only of unflagged

Algorithm 4 Bisect a set of tetrahedra.

input: MarkedMesh T, SetSimplices S
output: MarkedMesh T1

1: function bisectTetrahedra(T, S)
2: T1 = ;
3: for ⇢ 2 T do
4: if ⇢ 2 S then
5: ⇢1, ⇢2 = bisectTet(⇢)
6: T1 = T1 [⇢1

7: T1 = T1 [⇢2

8: else
9: T1 = T1 [⇢

10: end if
11: end for
12: return T1

13: end function

planar or adjacent tetrahedra, marked bisection does
not generate more than 36 similarity classes [13].

2.3 Problem

Our problem is to conformingly mark an unstructured
conformal tetrahedral mesh T1 exclusively with tetra-
hedra of type Pu. Thus, when applying successive
marked bisection, starting on the resulting marked
T1, we can guarantee an optimal number of similarity
classes, see Remark 2.2. Specifically, starting on the
unflagged planar mesh T1, if we locally refine a set of
elements S, we obtain a new conformal unstructured
marked tetrahedral mesh T2 with the corresponding
elements bisected. The marked mesh T2 is suitable for
a posterior local refinement. Furthermore, any succes-
sive local refinement process has the minimum element
quality bounded.

3. SOLUTION: CONFORMINGLY
MARKING AS UNFLAGGED PLANAR

Following, we detail our solution to conformingly mark
an unstructured conformal mesh with unflagged pla-
nar tetrahedra. To this end, we first introduce the
concept of consistent bisection edge. This concept

89

Algorithm 5 Marking as unflagged planar.

input: Tetrahedron ⌧
output: MarkedTetrahedron ⇢
1: function markTetrahedron(⌧)
2: e⌧ = consistentBisectionEdge(⌧)
3: (v0, v1) = e⌧
4: 1 = oppositeFace(⌧, v0)
5: 2 = oppositeFace(⌧, v1)
6: e1 = consistentBisectionEdge(1)
7: e2 = consistentBisectionEdge(2)
8: t = Pu . Initialize type of tetrahedron
9: ⇢ = (⌧, e⌧ , e1 , e2 , t)

10: return ⇢
11: end function

ensures that we can always select the same bisection
edge for a given simplex, independently of its dimen-
sion. Based on this selection, we propose an element-
based marking process that generates unflagged planar
tetrahedra. We also check that our marking process
is equivalent to the standard face-based marking pro-
cess proposed in [13]. Finally, we guarantee that our
marking process leads to a conformingly marked mesh.
Accordingly, if we use a restricted version of standard
marked bisection to refine the resulting marked mesh,
we obtain the optimal number of similarity classes.

3.1 Marking edges: strict total order

To mark the mesh edges, we propose a strict total
order of the mesh edges. To this end, we use a lexico-
graphic order for the mesh edges that is inherited from
the order of the vertices. Specifically, we say that the
mesh edge ei = (vi1 , vi2) has lower global index than
the mesh edge ej = (vj1 , vj2) if vi1 < vj1 , or vi1 = vj1

and vi2 < vj2 . Note that the proposed lexicographic
order is strict and total since it is straight-forward to
check that is irreflexive, transitive, asymmetric, and
connected. Using this lexicographic order, we identify
each mesh edge with a unique integer by sorting all
the existing edges of the mesh according to the global
index criterion.

The consistent bisection edge of a simplex (tetrahedron
or triangle) is the edge with the lowest integer assigned
in the edge ordering process. Note that the consistent
bisection edge of a simplex is unique because we use a
strict total order to characterize it.

3.2 Marking tetrahedra: unflagged planar

Using the consistent bisection edge, we propose a
marking process of a single tetrahedron that leads
to a marked tetrahedron of type Pu, see Algorithm
5. The input of the function is a tetrahedron ⌧ =
(v0, v1, v2, v3) and the output is the corresponding

(a) (b)

Figure 4: Marked tetrahedra with: (a) our element-
based marking method; and (b) the standard face-
based marking method.

marked tetrahedron ⇢. First, we obtain the consis-
tent bisection edge, e⌧ , of the tetrahedron, see Line 2.
Then, we obtain the opposite triangular faces of the
vertices of the bisection edge e⌧ , see Lines 4–5. After
that, we obtain the corresponding consistent bisection
edges e1 and e2 of 1 and 2, see Lines 6–7. Finally,
we initialize the tetrahedron type, Line 8, as t = Pu.

The proposed marking process always generates an un-
flagged planar tetrahedron. To check it, we need to
ensure that the consistent bisection edges selected in
Algorithm 5 define a triangle of the tetrahedron. Let
⌧ = (v0, v1, v2, v3) be a tetrahedron and let us reorder
the vertices to have vi0 < vi1 < vi2 < vi3 . The con-
sistent bisection edge is e⌧ = (vi0 , vi1) since this is
the edge with the lowest indices. The opposite faces
to e⌧ are 1 = (vi1 , vi2 , vi3) and 2 = (vi0 , vi2 , vi3),
respectively. For those faces, the consistent bisection
edges are e1 = (vi0 , vi2) and e2 = (vi1 , vi2), respec-
tively. Since e⌧ , e1 and e2 are connected generating
the triangle (vi0 , vi1 , vi2), they define a planar config-
uration. Figure 4(a) shows the obtained marked tetra-
hedron, where the red edge is the refinement edge and
the blue edges are the marked edges corresponding to
the non-refinement faces.

We can see that our element-based marking method
and the standard face-based one are equivalent, see
Figure 4. Note that they might not be equivalent since
our marking procedure does not exactly proceed as the
standard procedure. Specifically, we do not explicitly
mark all the triangular faces of a tetrahedron, see Fig-
ure 4(a). In the standard approach, each face of a
tetrahedron has a marked edge that indicates which
edge has to be bisected, see red edges in Figure 4(b).
The refinement edge of the tetrahedron is the only edge
that has been marked on both adjacent faces. Thus,
after marking all the faces, we obtain that the marked
edges of the faces

1 = (vi0 , vi1 , vi2), 2 = (vi0 , vi1 , vi3),
3 = (vi0 , vi2 , vi3), 4 = (vi1 , vi2 , vi3),

are e1 = (vi0 , vi1), e2 = (vi0 , vi1), e3 = (vi0 , vi2)

90

Algorithm 6 Conformingly marking a mesh.

input: ConformalMesh T
output: ConformalMarkedMesh T 0

1: function markMesh(T)
2: T 0 = ;
3: for ⌧ 2 T do
4: ⇢ = markTetrahedron(⌧)
5: T 0 = T 0 [⇢
6: end for
7: return T 0

8: end function

and e4 = (vi1 , vi2), respectively. Therefore, the re-
finement edge of ⌧ is e⌧ = e1 = e2 and the re-
finement faces are 1 and 2. The faces 3 and 4

are the non-refinement faces and their marked edges
are e3 and e4 , respectively. Thus, all the triangular
faces are also marked as an unflagged planar tetrahe-
dron. The edge that is marked from two triangular
faces corresponds to the refinement edge of the tetra-
hedron, see Figure 4(b). Thus, the refinement edge
and the marked edges obtained with our marking pro-
cess are equivalent to those obtained with the standard
marking process but equipped with our edge ordering.
That is, both marking methods generate an equivalent
unflagged planar tetrahedron.

3.3 Conformingly marking a mesh

To ensure that we obtain a conformingly marked mesh,
we need that our marking procedure fulfills the suf-
ficient conditions required in Remark 2.1. The first
condition is fulfilled since our ordering for mesh edges
is strict and total. Furthermore, we know that our
element-based marking process is equivalent to the
standard face-based marking process. Since both su�-
cient conditions are fulfilled, we can guarantee that the
marking process in Algorithm 5 leads to conformingly
marked meshes.

Now, we can detail the method to conformingly mark
an unstructured conformal tetrahedral mesh, see Al-
gorithm 6. The input is a conformal tetrahedral mesh,
T, and the output is a conformingly marked tetrahe-
dral mesh, T 0. We initialize an empty marked mesh
and generate a marked tetrahedron ⇢ for each tetra-
hedra ⌧ of the mesh T. Then, we insert the marked
tetrahedra into the marked mesh T 0. Finally, we re-
turn the conformingly marked mesh T 0 after marking
all the tetrahedra.

4. RESTRICTED MARKED BISECTION

To bisect our unflagged planar meshes, we consider a
restricted version of the standard marked bisection, see
Algorithm 7. The restricted method bisects a tetra-

Algorithm 7 Restriced marked bisection.

input: MarkedTetrahedron ⇢
output: MarkedTetrahedron ⇢1, MarkedTetrahedron

⇢2

1: function bisectTet(⇢)
2: t = type(⇢)
3: if t is Pu then
4: ⇢1, ⇢2 = bisectUnflaggedPlanar(⇢)
5: else if t is Pf then
6: ⇢1, ⇢2 = bisectFlaggedPlanar(⇢)
7: else if t is A then
8: ⇢1, ⇢2 = bisectAdjacent(⇢)
9: end if

10: return ⇢1, ⇢2

11: end function

Pu

A Pf

Figure 5: Restricted bisection cycle starting on un-
flagged planar type.

hedron according to its type. Moreover, it only needs
to consider the bisection cycle of length three for the
tetrahedron types Pu, Pf , and A, see Figure 5. In the
first case, Line 4, we bisect an unflagged planar tetra-
hedron. In the second case, Line 6, we bisect a flagged
planar tetrahedron. Finally, in the third case, Line 8,
we bisect an adjacent tetrahedron.

Figure 6 shows how to assign the refinement edge
and the marked edges of the children after bisecting
a marked tetrahedron of the proposed refinement cy-
cle, according to standard marked bisection. Without
loss of generality, we suppose that in all the cases the
refinement edge is e⌧ = (v0, v1). The vertex ⌫ is the
new vertex after the bisection of the edge e⌧ . We col-
ored the refinement edge and the marked edges with
red and blue, respectively. The first column corre-
sponds to a marked tetrahedron, and the second and
third columns correspond to the left and right chil-
dren, respectively. In rows, we have three di↵erent
cases. The first row corresponds to the bisection of
an unflagged planar tetrahedron to two flagged planar
tetrahedra. The second row corresponds to the bisec-
tion of a flagged planar tetrahedron to two adjacent
tetrahedra. Finally, the third row corresponds to the
bisection of an adjacent tetrahedron to two unflagged
planar tetrahedra.

91

(a)

(b)

(c)

Figure 6: Cases for restricted marked bisection: (a) from a Pu to two Pf ; (b) from a Pf to two A; and (c) from a
A to two Pu.

(a) (b) (c)

Figure 7: Evolution of the maximum (red line) and minimum (blue line) mesh quality through the mesh refinement
iteration: (a) equilateral tetrahedron; (b) cartesian tetrahedron; and (c) random tetrahedron.

5. EXAMPLES

We present several examples to illustrate that our
proposed algorithm refines unstructured tetrahedral
meshes, generates locally adapted conformal meshes,
a finite number of similarity classes, and has a lower-
bounded quality. For all the examples, we have com-
puted the shape quality [20] of the mesh elements.
Then, we plot the minimum and maximum shape qual-
ity of the mesh in each refinement step to check that

the minimum quality is lower bounded and cycles.
Moreover, in the examples where we locally refine the
mesh, our code asserts that the mesh is conformal by
faces and that Euler’s characteristic of the mesh re-
mains constant.

The results have been obtained on a MacBook Pro
with one dual-core Intel Core i5 CPU, at a clock
frequency of 2.7GHz, and with a total memory of
16GBytes. As a proof of concept, a mesh refiner has

92

(a) (b) (c)

Figure 8: Final mesh after twelve iterations of uniform refinement for: (a) equilateral tetrahedron; (b) cartesian
tetrahedron; and (c) random tetrahedron.

been fully developed in Julia 1.4. The Julia prototype
code is sequential (one execution thread), correspond-
ing to the implementation of the method presented in
this work.

5.1 Minimum quality is lower bounded and
cycles with uniform refinement

In this example, we show that the minimum quality is
lower bounded and cycles. To this end, we uniformly
refine a single tetrahedron several times. We denote
as Qkthe obtained mesh after k uniform refinements,

Qk = bisectTetrahedra(Qk�1, Qk�1),

where Q0 = ⌧. Thus, the mesh Qk is composed of 2k

tetrahedra and the accumulated number of generated
tetrahedra is 2k+1 � 1.

The method needs at least five iterations of uniform
refinement to generate 36, di↵erent similarity classes.
This number of iterations is so since the process only
accumulates 31 generated tetrahedra after four suc-
cessive uniform refinements. Assuming all of these
31 tetrahedra are of a di↵erent similarity class, the
pigeonhole principle ensures that they cannot corre-
spond to 36 di↵erent similarity classes. On the con-
trary, at the end of iteration five, the accumulated
number of generated tetrahedra is 63, greater than 36,
and thus, all the similarity classes might be generated.
After that iteration, further refinements do not gener-
ate new similarity classes, and therefore, the minimum
quality remains lower bounded. Moreover, if we per-
form three additional uniform refinements, we obtain
an entire cycle of the quality of length three. To il-
lustrate those quality cycles, we perform a series of
additional refinements.

Figure 7 plots the evolution of the minimum (blue line)
and maximum (red line) qualities during the uniform
refinement process. Figures 7(a), 7(b), and 7(c) illus-

trate the quality of an equilateral, cartesian and a per-
turbed tetrahedra, respectively. At most, we have to
perform five uniform refinements to generate all the
similarity classes. Thus, we perform 12 uniform re-
finements to see how the quality cycles. We can see in
Figure 7(a), for the most symmetric tetrahedron, how
the minimum quality achieves its minimum at itera-
tion five, and then it remains cycling. For the carte-
sian and perturbed tetrahedra, we can see in Figures
7(b) and 7(c) that we also have to perform five uni-
form refinements to generate all the similarity classes,
achieving the minimum quality of the mesh and start
to cycle. In Figures 8(a), 8(b), and 8(c) correspond
to the meshes Q12 of the equilateral, cartesian and
random tetrahedra after 12 uniform refinements.

We have generated all the similarity classes for the
three tetrahedra, and thus, the minimum mesh qual-
ity is achieved. Thus, this example illustrates that
the method is stable and the mesh quality does not
degenerate during successive refinement.

5.2 3D unstructured mesh: locally refining
a sphere

This example shows that the proposed refinement
scheme can be applied to locally refine unstructured
tetrahedral meshes. We recreate the first example
from Maubach [8] and Arnold et al. [13] but for a
sphere. Specifically, we generate an unstructured
three-dimensional mesh of a sphere of radius 2 and
centered at the origin. Let H be a hemisphere of a
sphere of radius one centered at (1/2, 1/2, 1/2) defined
by the equations

✓
x � 1

2

◆2

+

✓
y � 1

2

◆2

+

✓
z � 1

2

◆2

= 1, x � 1

2
.

We want to adapt the tetrahedral mesh T0 to the hemi-
sphere H. At each local refine iteration, we choose

93

(a) (b)

Figure 9: Slice of the mesh T40 with the plane: (a) x = 1/2; and (b) y = 1/2.

Figure 10: Quality of Example 5.2: Evolution of the
maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

the tetrahedra that intersect the hemisphere H as the
refinement set. After forty iterations the mesh T40

is composed by 5806615 tetrahedra and 1045175 ver-
tices. Figures 9(a) and 9(b) show the T40 sliced with
the planes x = 1/2 and y = 1/2. Figure 10 shows
how the maximum quality remains constant because
it is achieved in each iteration of the local refinement.
The minimum quality decreases until its minimum is
achieved and then remains constant.

The final mesh is conformal and captures the chosen
hemisphere with smaller elements, while it contains
larger elements at the exterior boundary.

5.3 3D space-time mesh: locally refining
a iso-potential surface

The main goal of this example is to capture a three-
dimensional manifold defined by the movement of a
two-dimensional object. We show the evolution of the
gravitational potential defined by two particles that

move along the y-axis. Let

V (x, t) = �G

✓
m1

kx � p1(t)k
+

m2

kx � p2(t)k

◆

p1(t) = p1 + (0, vt), t 2 [0, 1]
p2(t) = p2 � (0, vt), t 2 [0, 1]

the equation that defines the gravitational potential.
For a given iso-value V0, V (x, t) = V0 defines a two-
dimensional embedded manifold in three-dimensional
space. Let H be the hyper-cylinder with spherical ba-
sis defined by the equations

✓
x � 1

2

◆2

+

✓
y � 1

2

◆2

= 1, 0  t  1.

In this example, we choose the iso-value V0 = �10
and the parameters G = 1, m1 = 1, m2 = 1, p1 =
(1/2, 1/8), p2 = (1/2, 7/8) and v = 3/8.

We generate an adapted tetrahedral mesh by locally
refining an initial mesh around the manifold. The ini-
tial mesh, T0, is composed of 3781 tetrahedra and 712
vertices. We generate the set of tetrahedra that inter-
sect H, Fk = {⌧ 2 Tk�1 |� \ H 6= ;}. Then, for each
tetrahedron in Fk we compute the curvature of V (x, t)
at each simplex using the formula

e� =

3X

i=0

���hT
i r2V (xi, ti)hi

��� ,

where r2V (xi, ti) is the Hessian matrix of the poten-
tial V (x, t) evaluated at the vertices (xi, ti) of ⌧, and
hi = (xi, ti)� cM , where cM is the center of mass of ⌧.
After that, we choose as refinement set Sk the 10% of
the tetrahedra of Fk with more curvature. The idea is
to adapt the tetrahedral mesh not only to the elements
that intersect the iso-surface, but also to the areas of
the iso-surface with more curvature.

After 50 iterations of the local refinement process,
the generated mesh T50 has 8356894 tetrahedra and

94

(a) (b) (c)

Figure 11: Slices of T50 with the plane: (a) t = 0.0; (b) t = 0.5; and (c) t = 1.0.

(a) (b)

Figure 12: Slice of the T50 with the plane x = 1/2, (a) with, and (b) without the iso-surface.

Figure 13: Quality of Example 5.3: Evolution of the
maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

1504344 vertices. Figures 11(a), 11(b) and 11(c) show

a slice of the tetrahedral mesh with the planes t = 0,
t = 0.5 and t = 1, respectively. The mesh has been lo-
cally refined around the iso-surface and therefore, we
have smaller elements near the iso-surface and large
elements far from the iso-surface. Figure 12 shows a
slice of the tetrahedral mesh with the plane x = 0.5.
We can see how the mesh captures the time evolu-
tion of the iso-surface defined by V (x, t). Figure 12(b)
shows the iso-surface that is extracted from the space-
time mesh. Figure 13 shows how the maximum quality
remains constant because it is achieved in each itera-
tion of the local refinement. The minimum quality
decreases until its minimum is achieved and then re-
mains constant.

95

6. CONCLUDING REMARKS

In conclusion, we have shown the first bisection
method meeting the bound of 36 similarity classes
on three-dimensional unstructured conformal meshes.
For these meshes, we have guaranteed that our ap-
proach conformingly marks all the tetrahedra as un-
flagged planar. In this case, marked bisection behaves
as the newest vertex bisection, and thus, it features
the optimal bound. We have also checked, with our
implementation, that the minimum quality cycles for
three-dimensional unstructured conformal meshes.

We have answered an open question. Specifically,
we have proved that it is possible to mark as un-
flagged planar all the tetrahedra of an arbitrary three-
dimensional unstructured conformal mesh. To explore
alternative answers, we will study whether it is pos-
sible to mark all the tetrahedra as adjacent or as a
mixture of unflagged planar and adjacent elements.

In perspective, our marked bisection allows refining
with optimal similarity bound in adaptive applications
on three-dimensional complex geometry. The com-
plexity can be handled by the geometrical flexibility
of unstructured conformal meshes. On these meshes,
our marked bisection meets all the advantages of the
newest vertex bisection.

7. ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme un-
der grant agreement No 715546. This work has also
received funding from the Generalitat de Catalunya
under grant number 2017 SGR 1731. The work of
X. Roca has been partially supported by the Spanish
Ministerio de Economı́a y Competitividad under the
personal grant agreement RYC-2015-01633.

References

[1] Rivara M.C. “Algorithms for refining trian-
gular grids suitable for adaptive and multigrid
techniques.” International journal for numerical
methods in Engineering, vol. 20, no. 4, 745–756,
1984

[2] Rivara M.C. “Local modification of meshes for
adaptive and/or multigrid finite-element meth-
ods.” Journal of Computational and Applied
Mathematics, vol. 36, no. 1, 79–89, 1991

[3] Plaza A., Carey G.F. “Local refinement of simpli-
cial grids based on the skeleton.” Applied Numer-
ical Mathematics, vol. 32, no. 2, 195–218, 2000

[4] Plaza A., Rivara M.C. “Mesh Refinement Based
on the 8-Tetrahedra Longest-Edge Partition.”
IMR, pp. 67–78. 2003

[5] Mitchell W.F. “Adaptive refinement for arbitrary
finite-element spaces with hierarchical bases.”
Journal of computational and applied mathemat-
ics, vol. 36, no. 1, 65–78, 1991

[6] Mitchell W.F. “30 years of newest vertex bisec-
tion.” AIP Conference Proceedings, vol. 1738, p.
020011. AIP Publishing, 2016

[7] Kossaczký I. “A recursive approach to local mesh
refinement in two and three dimensions.” Jour-
nal of Computational and Applied Mathematics,
vol. 55, no. 3, 275–288, 1994

[8] Maubach J.M. “Local bisection refinement for n-
simplicial grids generated by reflection.” SIAM
Journal on Scientific Computing, vol. 16, no. 1,
210–227, 1995

[9] Maubach J.M. “The e�cient location of neigh-
bors for locally refined n-simplicial grids.” 5th
Int. Meshing Roundable, vol. 4, no. 6, 14, 1996

[10] Traxler C.T. “An algorithm for adaptive mesh
refinement in n dimensions.” Computing, vol. 59,
no. 2, 115–137, 1997

[11] Stevenson R. “The completion of locally refined
simplicial partitions created by bisection.” Math-
ematics of computation, vol. 77, no. 261, 227–241,
2008

[12] Alkämper M., Gaspoz F., Klöfkorn R. “A Weak
Compatibility Condition for Newest Vertex Bisec-
tion in Any Dimension.” SIAM Journal on Sci-
entific Computing, vol. 40, no. 6, A3853–A3872,
2018

[13] Arnold D.N., Mukherjee A., Pouly L. “Lo-
cally adapted tetrahedral meshes using bisec-
tion.” SIAM Journal on Scientific Computing,
vol. 22, no. 2, 431–448, 2000

[14] Coxeter H. “Discrete groups generated by reflec-
tions.” Ann. Math., pp. 588–621, 1934

[15] Freudenthal H. “Simplizialzerlegungen von
beschrankter flachheit.” Ann. Math., pp. 580–
582, 1942

[16] Kuhn H.W. “Some combinatorial lemmas in
topology.” IBM Journal of research and devel-
opment, vol. 4, no. 5, 518–524, 1960

[17] Bänsch E. “Local mesh refinement in 2 and 3
dimensions.” IMPACT of Computing in Science
and Engineering, vol. 3, no. 3, 181–191, 1991

96

[18] Liu A., Joe B. “On the shape of tetrahedra from
bisection.” Mathematics of computation, vol. 63,
no. 207, 141–154, 1994

[19] Liu A., Joe B. “Quality local refinement of tetra-
hedral meshes based on bisection.” SIAM Jour-
nal on Scientific Computing, vol. 16, no. 6, 1269–
1291, 1995

[20] Knupp P.M. “Algebraic mesh quality metrics.”
SIAM journal on scientific computing, vol. 23,
no. 1, 193–218, 2001

97

PARALLEL FOUR-DIMENSIONAL ANISOTROPIC
MESH ADAPTATION

Philip Claude Caplan

Middlebury College Department of Computer Science, Middlebury, VT, U.S.A.,
pcaplan@middlebury.edu

ABSTRACT

Anisotropic mesh adaptation is important for accurately predicting engineering quantities of interest with high-order
finite element discretizations. Spacetime approaches, whereby time is treated as an additional spatial dimension
and the mesh is fully coupled in space and time, have also shown to be e↵ective in reducing the number of degrees
of freedom needed to achieve a certain level of accuracy. Previous e↵orts have successfully demonstrated four-
dimensional mesh adaptation capabilities so as to support adaptive simulations in 3d + t. However, these algorithms
have been restricted to sequential implementations. Parallel mesh adaptation strategies have become increasingly
important in 3d numerical simulations. Therefore, the goal of this work is to extend those strategies to perform parallel
four-dimensional anisotropic mesh adaptation. We employ a functionality-first approach to parallelize an existing
sequential mesh adaptation tool. This approach iteratively adapts the mesh while keeping partition interfaces fixed,
and then migrates partition interfaces into the interior so they can be adapted during a subsequent pass within an
adaptation iteration. We demonstrate that the algorithm scales well as the number of processors increases while
maintaining good metric conformity for three- and four-dimensional problems.

Keywords: mesh adaptation, anisotropic, parallel, four-dimensional, pentatope, spacetime

1. INTRODUCTION

Anisotropic mesh adaptation is fundamental for ac-
curately predicting engineering quantities of interest
with high-order finite element discretizations [1, 2]. To
resolve unsteady physical phenomena in d dimensions,
space and time can be coupled and the problem can be
solved in a spacetime domain, whereby time is treated
as an additional spatial dimension. This approach re-
quires a (d + 1)-dimensional mesh, which means 4d
meshes are needed to solve unsteady 3d problems.

Adaptation strategies in this spacetime domain can
be categorized into (1) uniform, (2) tensor-product
[3, 4, 5, 6, 7, 8] or (3) unstructured anisotropic
approaches [9, 10, 11, 12, 13]. Yano [9] demon-
strated that tensor-product approaches are e↵ectively
isotropic and, whereas they o↵er a substantial degree-
of-freedom (DOF) savings over uniform refinement,
they are dramatically outperformed by a fully un-

structured anisotropic approach. In the context of
the one-dimensional problem of Figure 1 with a prop-
agating feature of characteristic size �, Yano [9] ex-
perimentally observes that uniform, tensor-product,
and unstructured anisotropic refinement approaches
respectively require O(��2), O(��1) and O(1) DOF to
achieve the same level of accuracy in the simulation.
This unstructured anisotropic spacetime approach has
been extended to 2d + t for convection-di↵usion [9],
wave equation [14] and oil reservoir simulations [11]
and to 3d + t for convection-di↵usion problems [13].
Jayasinghe also demonstrates that a spatiotemporal
approach scales very well with the number of paral-
lel processors when compared to time-marching ap-
proaches [12]. However, to fully realize the potential of
spacetime adaptive methods, large meshes, with mil-
lions or even billions of elements, are needed for practi-
cal engineering problems, thereby requiring a parallel
mesh adaptation algorithm.

98

x

t

;

d

Figure 1: Unstructured spacetime mesh adaptivity
can capture a feature with nominal size � using O(1)
elements, whereas tensor-product and uniform refine-
ment methods would require O(��1) and O(��2) ele-
ments, respectively, to achieve the same level of accu-
racy.

Chrisochoides describes a telescopic approach for par-
allel mesh generation and adaptation at various lev-
els of granularity [15]. Further, Tsolakis et al. give
an excellent overview of the goals and strategies for
parallel mesh adaptation [16]. The authors identify
five criteria which can be used to evaluate parallel
mesh adaptation codes: (1) stability, (2) reproducibil-
ity, (3) robustness, (4) scalability and (5) code reuse.
Similar to the work of Tsolakis, we aim for stability
and scalability. That is, we aim to maintain good
metric conformity while ensuring the algorithm scales
well as the number of processors is increased. Tso-
lakis also identifies two di↵erent approaches for par-
allel mesh generation and adaptation: functionality-
first and scalability-first approaches. Codes such as
EPIC [17] and Feflo.a [18] fit into the functionality-
first paradigm, whereby minimal changes are made to
existing sequential mesh adaptation software to extend
them to a parallel setting. Codes such as CDT3D [19]
and refine [20] are classified as scalability-first ap-
proaches, whereby functionalities are completed as
needed, but designed to be scalable across parallel pro-
cesses first.

The primary goal of this work is to parallelize a four-
dimensional mesh adaptation algorithm and demon-
strate that good metric conformity is obtained as the
number of processors increases. Our contribution is
an extension of existing techniques for 3d parallel mesh
adaptation to 4d, with a demonstration on benchmark
cases. We also show the algorithm scales well with
modest processor counts - we only present results for
up to 36 processors due to limitations on our computa-

tional resources. We use a functionality-first approach
whereby we maximize the code re-use of an existing
sequential mesh adaptation algorithm. We first elabo-
rate upon the sequential and parallel mesh adaptation
strategies. The latter builds from the idea of fixing
partition boundaries, and migrating the partition in-
terfaces into the interior. We then study the algorithm
on three- and four-dimensional problems and demon-
strate that the parallel algorithm scales well as the
number of processors increases, while also maintain-
ing good metric conformity.

2. SEQUENTIAL MESH ADAPTATION
STRATEGY

Our sequential mesh adaptation algorithm is based on
the local cavity operator approach, initially described
by Coupez [21, 22], later used by Loseille [23, 18] and
extended to 4d by Caplan [13, 24, 25]. The inputs to
the algorithm are (1) an initial mesh, (2) a metric field
described at the vertices of the mesh and (3) the ge-
ometry entity associated with each vertex of the mesh.
These entities could be geometry Nodes, Edges, Faces
or Volumes (for a 4d geometry) which can be speci-
fied via a geometry engine, such as EGADS [26, 27]
for 3d geometries. In our work, we study the geome-
try of a unit tesseract, which is bounded by 8 Cubes
(Volumes), 10 Faces, 32 Edges and 16 Nodes. The
topology of the tesseract is prescribed by traversing
the vertex-facet incidence relations of each geometry
entity [13]. Each vertex in the mesh is initially tagged
with the lowest-dimensional geometry entity on which
it lies, which is null for interior vertices that do not lie
on the geometry.

The local cavity operator approach iteratively modifies
the mesh T k by removing a set of cavity elements Ck

around a mesh facet f (such as a vertex, edge, triangle
or tetrahedron), and then selecting a re-insertion ver-
tex p to connect to the cavity boundary @Ck, thereby
creating new elements denoted by Bk:

T k+1 = T k \ Ck(f) [Bk(p, @Ck). (1)

The advantage of the cavity-based approach is that all
classical mesh modification operators (splits, collapses,
swaps and smoothing) can be reformulated in terms
of Eq. 1 by the appropriate selection of f and p, thus
simplifying the implementation in 4d.

To schedule the local mesh modification operators, a
metric field is specified at each vertex of the initial
mesh. That is, a symmetric, positive-definite d ⇥ d
tensor is prescribed at each vertex. The input mesh
is retained in the background of the adaptation pro-
cess - the metric at a new location in the mesh (either
through an edge split or a vertex relocation) is ob-

99

tained by the log-Euclidean weighted average of the
metrics from an element in this background mesh.

Following the conventions of the Unstructured Grid
Adaptation Working Group (UGAWG) [16, 28, 29],
the length of an edge between two vertices p and q is
computed as

`m(p,q) ⇡ `m(p)
r � 1

r log r
with r ⌘ `m(p)

`m(q)

, (2)

where `m(x) =
p

(q � p)tm(x)(q � p).

The quality of a d-simplex  (d = 2 for triangles, 3 for
tetrahedra and 4 for pentatopes) is computed as

qm() = �n
vm()2/d

P
e2E()

`2m(e)
(3)

where E is the set of d(d + 1)/2 edges of the simplex,
and vm() is the volume under the metric field:

vm() ⇡
p

detm⌫ v(), with ⌫ = arg max
⌫2

detm⌫ .

(4)

The goal of the mesh adaptation algorithm is to pro-
duce a metric-conforming mesh in which all edges of
the mesh have a length in the range [

p
2/2,

p
2] and all

elements have a quality greater than 0.8. To achieve
these goals, the algorithm begins by iteratively collaps-
ing all edges shorter than

p
2/2 and then performing

edge splits on edges longer than 2 without introducing
new short edges. Next, edge swaps are used to improve
the quality of the elements in two passes: first all edges
adjacent to an element with quality less than 0.4 are
targeted, then all elements with a quality less than
0.8 are targeted. A local vertex smoothing procedure
is then used to drive the edge lengths surrounding a
particular vertex to 1. This overall procedure is then
repeated using a target edge length of

p
2 for the split

operator. For further details on this algorithm, please
see the work of Caplan [13, 25].

3. PARALLEL MESH ADAPTATION
STRATEGY

We use a functionality-first approach to parallelize the
mesh adaptation algorithm and attempt to re-use as
much of the sequential mesh adaptation algorithm as
possible. This approach is similar to the work of
Digonnet [30, 31, 32] and Lachat [33, 34, 35, 36] in
which the mesh is divided into processing elements
to be remeshed by a third-party sequential remesher,
such as MMG3D [37]. Other coarse-grained par-
allel implementations which modify partition interi-
ors, while keeping interfaces fixed include refine [20],

pass

adapt

P = 1 P = 2 P = 3

A = 1

A = 2

A = 3

Figure 2: Parallel adaptation strategy. Each row cor-
responds to a single adaptation iteration (A), whereas
each column corresponds to a pass (P) within the
adaptation iteration. Each partition (three in this ex-
ample) is highlighted with a di↵erent color. The goal
of the repartitioner after each pass is to migrate the
interfaces between partitions into the partition interi-
ors.

EPIC [17] and Feflo.a [38, 39, 18]. CDT3D uses a
fine-grained approach to modifying the mesh, designed
for shared-memory parallel mesh adaptation [40].

The main idea behind the parallel mesh adaptation
algorithm is to decompose the initial mesh (or re-
ceive a decomposed mesh from a numerical simulator)
into partitions and adapt the interior of each partition
while keeping the partition boundaries fixed. As long
as the sequential mesh adaptation algorithm allows for
these partition boundaries to be frozen, then the se-
quential algorithm can be used within each partition
without requiring any intrusive changes to communi-
cate boundary modifications. Communicating these
boundary modifications would require special treat-
ment for each mesh modification operator and would
need to be directly incorporated into the sequential
mesh adaptation code [41], which we chose to avoid. In
our setting, however, the di�culty lies in the fact that
partition boundaries must be migrated to the partition
interiors so as to ensure the mesh is metric-conforming
after each adaptation iteration. In order to migrate
the partition boundaries into the interior, a series of
“passes” are used within a particular iteration of the
global mesh adaptation procedure - each pass is then
followed by a repartition of the mesh. Here we use
ParMETIS [42] to repartition the mesh, though other

100

tools such as PT-SCOTCH [43] or Zoltan [44] could
be used. The simplex-to-simplex adjacencies are used
to construct the graph that is passed to ParMETIS.
That is, each simplex is a vertex of the graph, and an
edge in the graph is created if two simplices share a
common (d � 1)-facet (i.e. a (d � 1)-simplex). The
primary goal of the repartitioning procedure is to mi-
grate existing partition boundaries into the interior
for subsequent passes. However, some (d�1)-facets in
the partition interfaces may not require modification,
therefore, it would be less necessary to migrate these
into the interior, when other areas in the mesh may
require more attention. As a result, we penalize edges
by imposing edge weights which are computed via the
“age” of the vertices of the elements in the mesh, an
idea inspired by refine [20]. The age of a vertex is
defined as the number of rejected mesh modifications
of any facet surrounding the vertex. Whenever a local
cavity operator is accepted, the age of any vertices in
the re-inserted ball become zero. Note that this proce-
dure is heuristic, and does not guarantee that partition
boundaries are migrated to interior.

An example of the parallel mesh adaptation strategy
in 2d is given in Fig. 2. Each row corresponds to a par-
ticular adaptation iteration (A), whereas each column
corresponds to a pass within the adaptation iteration
(P). To clarify, each adaptation iteration corresponds
to an iteration of the adaptive numerical simulation,
whereby a solution is obtained, the error is estimated
and an optimal metric field is computed. This met-
ric field, along with the current mesh, is then passed
to the mesher. Within this call to the mesher, multi-
ple passes are performed (with the same metric field)
with the goal of migrating the partition interfaces so
as to adapt any necessary regions of the domain before
returning the next mesh to the solver.

In Fig. 2, we can see that the boundaries of the parti-
tions are migrated to the partition interiors from one
pass to the next - however, in some cases it is not
possible to migrate every interface (d � 1)-facet. Also
observe that partitions may be divided across multi-
ple connected components, as in Fig. 2 for A = 2 and
P = 3. Furthermore, partition boundaries may exhibit
arbitrarily shaped geometries, especially in 3d and 4d.
The only modification required in our sequential mesh
adaptation algorithm was to allow for vertices to be
fixed during the adaptation. In particular, each par-
tition fixes any vertex along a partition interface. We
additionally needed to add checks for the non-manifold
vertices that are produced for arbitrarily shaped par-
titions.

One di�culty is that we would like all global indices
of the fixed vertices to remain the same across all pro-
cessors. This is not a problem when an edge is split,
swapped, or when a vertex is smoothed, however, spe-

cial care is required for the collapse operator. Since
the collapse requires the removal of a vertex, any ele-
ment that references a vertex with a higher index than
the removed vertex must have its vertex indices decre-
mented. This would require communication between
processors whenever a collapse is performed. There-
fore, all fixed vertices are initially moved to the front
of the global list of vertices in the mesh. Other syn-
chronization techniques are possible, but this was the
simplest to implement within our framework.

After each re-partitioning procedure, the processors
must communicate which elements are retained, which
are sent to other partitions, and which are received
from other processors. We use the Message Passing
Interface (MPI) to exchange this information between
processors [45]. The communication cost of this ex-
change operation can be expensive, which we study in
the following sections.

Similar to the example in Fig. 2, we use three passes
per adaptation iteration since we experimentally ob-
served that this achieved good metric conformity while
not being too costly.

4. NUMERICAL EXPERIMENTS

To evaluate the parallel mesh adaptation algorithm,
we follow an approach similar to the work of Tso-
lakis [16, 46]. Starting with an initial mesh, conform-
ing to a prescribed metric, we scale the metric and
call our parallel mesh adaptation algorithm using a
prescribed number of processors. The di↵erence be-
tween our work and the work of Tsolakis, however, is
that since our sequential mesh adaptation algorithm is
designed to make small changes in a mesh, we scale the
metric iteratively instead of scaling it to a desired com-
plexity all at once. Specifically, our sequential mesh
adaptation algorithm works best when the incoming
edge lengths are between [0.5, 2.0], motivated by the
MOESS algorithm [9, 47, 48].

We study two types of cases: (1) when the metric field
is analytic and (2) when the metric field is obtained
from the MOESS algorithm, and only available at the
discrete vertices of the initial mesh. When the metric
field is analytic, each iteration i of our scaling proce-
dure consists of evaluating the prescribed metric on
the current mesh and then scaling the metric by a fac-

tor s =
p

2
i
. When the metric field is discrete, we

simply use a scaling factor of s =
p

2 on the metric of
the current mesh in the scaling iteration. Each com-
ponent of the metric field is multiplied by the scaling
factor s, which amounts to a multiplication of each
eigenvalue of the metric field by s. Thus, the number
of elements increases by a factor of

p
s

d
after each it-

eration, while maintaining the same anisotropic ratios
as in the initial mesh.

101

scaleMeshParallel

input: initial mesh M, metric m
output: M

1 Mp partition(M, p)
2 for i = 1 to niter
3 mp = evaluateMetric(m, Mp)
4 fix partition boundary @Mp
5 for j = 1 to npass
6 Mp adapt(Mp, mp)
7 balance the mesh (repartition & exchange)
8 accumulate meshes from all processors into M

Algorithm 1: Scaling an initial mesh M according to
a metric field m (either discrete or analytic) in parallel.
The input mesh is initially partitioned and distributed
across all parallel processors. For each adaptation it-
eration, the metric is re-evaluated on the current mesh
and scaled to produce the next mesh in the adap-
tation sequence. Each adaptation iteration involves
npass passes of the parallel adaptation algorithm so as
to migrate partition interfaces to the interior. The fi-
nal mesh is then accumulated on the root processor in
order to evaluate metric conformity.

This procedure is outlined in Algorithm 1. After per-
forming an initial partitioning of the mesh (line 1),
each processor receives a subdomain mesh Mp. We
then iterate until the desired complexity is reached.
Each processor evaluates the metric on the current
mesh and scales it according to the scaling iteration
counter. Then the parallel mesh adaptation proce-
dure begins by computing the partition boundaries,
labelling vertices which should be fixed, and then mov-
ing fixed vertices to the beginning of the vertex list
(line 4). Each processor then performs 3 passes of
adapting the mesh, migrating partition interfaces to
the interior (with a penalty on the age of an element),
and then exchanging the elements (and discrete met-
rics at the vertices) with all other processors. When
the procedure is complete, all meshes are accumu-
lated into the final mesh M (line 8) which is then
used to evaluate metric conformity. The latter is sim-
ply needed as a post-processing procedure which does
not contribute to the analysis of the timing results.
In the following, we measure the time spent adapting
the mesh (line 6) and performing the load balancing,
which consists of repartitioning and exchanging ele-
ments across processors (line 7) since these are the
most costly operations. Adapting the mesh is clearly
the bottleneck we wish to parallelize, but a poor design
of the mesh exchange data structures and procedure
can cause a significant overhead that is counterpro-
ductive to the parallel mesh adaptation process.

In each of the following subsections, we will first assess
the ability of the parallel implementation to conform
to the scaled metric field, whether analytic or discrete.
We will then revisit the scalability of the algorithm in

Figure 3: Initial 61k tetrahedra mesh for the Cube-
Polar case.

the final subsection.

4.1 Cube Polar (CP)

Before delving into some 4d cases, let us first evaluate
the algorithm on a 3d benchmark case proposed by
the UGAWG. The initial mesh passed into Alg. 1 is
generated by adapting an initially structured mesh to
the analytic metric:

m(x) = q diag(h�2
r , h�2

✓ , h�2
z)qt (5)

where hz = 0.1, hr = 0.001 + 0.198|r � 0.5| and
h✓ = 0.1d+0.025(1�d) where d = min(10|r�0.5|, 1).
Note that r =

p
x2 + y2 and ✓ = arctan(y, x). The

eigenvectors q consists of the unit vectors representing
the cylindrical system unit vectors in a Cartesian sys-
tem. The initial mesh, consisting of 63,237 tetrahedra
and 12,242 vertices, is shown in Fig. 3. Alg. 1 is then
used to scale this initial mesh and analytic metric to a
mesh with approximately 6.5 million tetrahedra using
various numbers of processors. Specifically, Alg. 1 is
run with 1, 2, 4, 8, 16, 24 and 36 processors. The edge
length and quality histograms of Fig. 4 demonstrate
that the final meshes exhibit excellent metric confor-
mity, regardless of the number of processors that were
used to scale the mesh. Table 2 further shows that
about 97% of the edges are in the quasi-unit range
and the number of tetrahedra with a quality greater
than 0.8 is at least 87% for all cases. Furthermore,
the number of elements in the final mesh is almost
identical across each test case. Although this test case
is still relatively small in the context of a practical
engineering simulation, it is large enough such that
the processor interface elements can be e↵ectively mi-
grated to the interior so as to achieve good metric
conformity.

102

0.5 1 1.5 2 2.5

length

10-8

10-6

10-4

10-2

100
% edges

01 procs, 97 % unit
02 procs, 97 % unit
04 procs, 97 % unit
08 procs, 97 % unit
16 procs, 97 % unit
24 procs, 97 % unit
36 procs, 97 % unit

(a) Edge length

0.2 0.4 0.6 0.8 1

quality

10-8

10-6

10-4

10-2

100
% tetrahedra

01 procs, 88 % unit
02 procs, 88 % unit
04 procs, 88 % unit
08 procs, 87 % unit
16 procs, 87 % unit
24 procs, 87 % unit
36 procs, 87 % unit

(b) Tetrahedron quality

Figure 4: Edge length and pentatope quality distributions for the 3d Cube-Polar case.

Table 1: Metric conformity for the Cube-Polar case
running with p processors, generating nelem tetrahe-
dra: min. (`min) and max. (`max) edge lengths, per-
centage of edges in the quasi-unit range (%`unit), min.
quality (qmin) and percentage of tetrahedra with qual-
ity � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.41 2.11 97% 0.36 88% 6.46m
2 0.28 2.33 97% 0.25 88% 6.46m
4 0.22 2.10 97% 0.12 88% 6.45m
8 0.14 2.19 97% 0.17 87% 6.45m
16 0.18 2.21 97% 0.12 87% 6.45m
24 0.29 2.33 97% 0.14 87% 6.45m
36 0.36 2.73 97% 0.15 87% 6.45m

4.2 Tesseract Linear (TL)

Now, we will study some 4d problems. The initial
mesh for the Tesseract Linear (TL) case was generated
from our sequential 4d mesh adaptation code using
an analytic metric that emulates a moving boundary
layer, described by

m(x) = q diag(h�2
x , h�2

y , h�2
z , h�2

t)qt

where q is a rotation matrix of an angle ↵ =
arctan(0.25, 1) radians about the xy plane, hx =
hy = hz = 0.2 and hz = 0.002 + 0.396d with d =
|cos↵z�sin↵t�0.5 cos↵|), which is the distance to the
rotated plane of the boundary layer. The initial mesh
contains 120,054 pentatopes and 8,297 vertices. The
boundaries of this initial mesh, extracted at the t = 0,
t = 1 and x = 0 hyperplanes are shown in Fig. 5. Us-
ing Alg. 1 with this initial mesh, the analytic metric is
scaled to preserve the anisotropy ratios to eventually
produce meshes with 6-7 million pentatopes. Fig. 6

Table 2: Metric conformity for the Tesseract-Linear
case running with p processors, generating nelem pen-
tatopes: min. (`min) and max. (`max) edge lengths,
percentage of edges in the quasi-unit range (%`unit),
min. quality (qmin) and percentage of pentatopes with
quality � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.16 2.43 93% 0.25 52% 7.47m
2 0.23 2.53 93% 0.29 51% 7.42m
4 0.20 3.00 93% 0.27 51% 7.37m
8 0.16 4.60 92% 0.20 50% 7.32m
16 0.08 4.88 89% 0.11 45% 6.66m
24 0.11 5.37 86% 0.11 41% 5.95m
36 0.07 4.55 84% 0.07 37% 5.63m

shows the length and quality histograms, measured
under the scaled analytic metric, for the final meshes
produced using 1, 2, 4, 8, 16,, 24 and 36 proces-
sors. Overall, metric conformity is quite similar for
all numbers of processors, with a slight degradation
in the fraction of quasi-unit edges and quasi-unit pen-
tatopes as the number of processors increases. The
final meshes are still quite small - the added number
of processors for a small mesh produces more interface
elements that are frozen during the parallel adaptation
process. These metric conformity results are summa-
rized in Table 2. With 1�8 processors, over 90% of the
edges are in the quasi-unit range, and over 50% of the
pentatopes have a quality above 0.8. These results are
similar to initial ratios of the edges and pentatopes
within the quasi-unit ranges for the initial mesh of
120k pentatopes. These statistics, however, degrade to
89%, 86% and 84% in the fraction of quasi-unit edges,
and 45%, 41% and 37% in quasi-unit pentatopes for
16, 24 and 36 processors, respectively.

103

(a) t = 0 (b) t = 1 (c) x = 1

Figure 5: Boundaries of the initial 100k pentatope mesh for the Tesseract-Linear case.

0 1 2 3 4 5

length

10-8

10-6

10-4

10-2

100
% edges

01 procs, 93 % unit
02 procs, 93 % unit
04 procs, 93 % unit
08 procs, 92 % unit
16 procs, 89 % unit
24 procs, 86 % unit
36 procs, 84 % unit

(a) Edge length

0.2 0.4 0.6 0.8 1

quality

10-8

10-6

10-4

10-2

100
% pentatopes

01 procs, 52 % unit
02 procs, 51 % unit
04 procs, 51 % unit
08 procs, 50 % unit
16 procs, 45 % unit
24 procs, 41 % unit
36 procs, 37 % unit

(b) Pentatope quality

Figure 6: Edge length and pentatope quality distri-
butions for the 4d Tesseract Linear case.

4.3 Tesseract Wave (TW)

Next, we consider a case in which the initial mesh was
obtained from the Mesh Optimization via Error Sam-
pling and Synthesis (MOESS) algorithm. Specifically,
the mesh was obtained by adapting to the L2 error in
the function

u(x, t) = exp(�t) exp
�
�200 (r(t) � ||x||)2

�
,

with r(t) = 0.4 + 0.7t, using a linear discontinuous
Galerkin discretization. The initial mesh consists of
233,248 pentatopes and 14,515 vertices - the bound-
aries of this mesh, extracted at the t = 0, t = 1 and
x = 0 hyperplanes are shown in Fig. 7. Due to symme-
try, we are only modeling one eighth of the expand-
ing spherical wave. The sphere at it’s initial radius
is visible at t = 0 (Fig. 7a), and at it’s final radius
at t = 1 (Fig. 7b). Along hyperplanes with a non-
constant t, we should see the geometry of a 3d cone,
which is the projection of the expanding sphere in 4d
(a 4d hypercone). The final metric obtained from the
MOESS algorithm is then saved and used as the ini-
tial discrete metric, which is then scaled according to
Alg. 1 to achieve meshes with approximately 7 million
pentatopes.

As in the previous case, metric conformity is excellent
(90% of the edges have a length in the quasi-unit range,
and 40% of the pentatopes have a quality greater than
40%) when the number of processors is still quite low
- specifically up to 8 processors. The edge length
and pentatope quality histograms are shown in Fig. 8,
and the metric conformity statistics are summarized
in Fig. 3. Again, metric conformity slightly degrades
when the mesh is over decomposed.

4.4 Scalability

Finally, we analyze the scalability of our parallel mesh
adaptation implementation. Due to limitations on our

104

(a) t = 0 (b) t = 1 (c) x = 1

Figure 7: Boundaries of the initial 200k pentatope mesh for the Tesseract-Wave case.

0 1 2 3 4 5 6 7

length

10-8

10-6

10-4

10-2

100
% edges

01 procs, 92 % unit
02 procs, 91 % unit
04 procs, 91 % unit
08 procs, 91 % unit
16 procs, 89 % unit
24 procs, 88 % unit
36 procs, 88 % unit

(a) Edge length

0.2 0.4 0.6 0.8 1

quality

10-8

10-6

10-4

10-2

100
% pentatopes

01 procs, 42 % unit
02 procs, 41 % unit
04 procs, 40 % unit
08 procs, 40 % unit
16 procs, 38 % unit
24 procs, 37 % unit
36 procs, 36 % unit

(b) Pentatope quality

Figure 8: Edge length and pentatope quality distri-
butions for the 4d Tesseract Wave case.

Table 3: Metric conformity for the Tesseract-Wave
case running with p processors, generating nelem pen-
tatopes: min. (`min) and max. (`max) edge lengths,
percentage of edges in the quasi-unit range (%`unit),
min. quality (qmin) and percentage of pentatopes with
quality � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.20 4.82 92% 0.25 42% 6.86m
2 0.20 5.37 91% 0.19 41% 6.99m
4 0.14 6.77 91% 0.21 40% 7.05m
8 0.14 6.31 91% 0.21 40% 6.90m
16 0.18 5.06 89% 0.23 38% 6.59m
24 0.17 5.19 88% 0.22 37% 6.19m
36 0.15 4.63 88% 0.21 36% 6.37m

computational resources, this study is restricted to
smaller numbers of processors (up to 36). For runs
with 1� 24 processors, we used node A of Table 4 and
we used node B for runs with 36 processors. For ev-
ery test case, we report the total time to scale the
initial mesh to the final mesh (i.e. the total time
spent in Alg. 1). We also break down this total cost
into the time spent adapting and balancing the mesh,
since these were the most costly. The remaining time
was spent synchronizing the indices, pre-processing
the partitions (including moving the fixed vertices to
the front of the arrays), and the actual re-partitioning
of the mesh using ParMETIS.

The timing results are tabulated in Tables 5, 6 and
7. The total number of iterations used in Alg. 1 was
7, 6 and 10 for the Tesseract Linear, Tesseract Wave
and Cube Polar cases, respectively. We also report the
number of elements nelem and partition interface (d �
1)-facets n@P. Note that, in the case of the sequential
algorithm (p = 1), we still perform the algorithm with
3 passes, but only report the timing for a single pass.

105

Table 4: Machines used in the scalability analysis.

node A 28 ⇥ Intel Xeon Gold 5120 @ 2.20GHz
node B 36 ⇥ Intel Xeon Gold 6140 @ 2.30GHz

Next, we analyze the scalability of the parallel algo-
rithm with respect to the sequential version. To be
fair to the sequential adaptation algorithm, we only
include adaptation time for one pass in our scalability
analysis - there is clearly no need to include the time
to migrate and re-partition the mesh, but we still per-
form some of the pre-processing steps which is ignored
in the timing of the sequential algorithm. Thus, the
final speedup of the parallel algorithm is measured as
the total time (for all passes of the parallel algorithm)
divided by the time for one pass of the sequential algo-
rithm (accumulated across all iterations), which is fur-
ther normalized by the number of elements since each
test case produced a di↵erent number of elements. The
speedup obtained with various processors for all three
test cases considered in this paper is plotted in Fig. 9.
A dashed line is used to show the ideal linear speedup.
Our algorithm exhibits a linear speedup with only a
few processors (up to 8), however, it begins to exhibit
a superlinear speedup with more processors.

Table 5: Total time (ttotal) for the Cube-Polar case
running with p processors, generating nelem tetrahe-
dra, broken into adaptation (% adapt) and interface
migration (% bal.) times, with the number of interface
triangles (n@P) in the final repartitioned mesh.

p nelem n@P ttotal % adapt % bal.

1 6.46m - 1d:4h 100.0% -
2 6.46m 20.0k 1d:24m 93.1% 6.3%
4 6.45m 39.3k 7h:9m 90.1% 8.9%
8 6.45m 72.4k 2h:33m 87.8% 10.7%
16 6.45m 118.3k 56m:32s 86.7% 11.5%
24 6.45m 144.5k 31m:11s 86.2% 11.8%
36 6.45m 178.5k 16m:37s 82.6% 15.5%

The work performed by the mesh adaptation algo-
rithm is not linear in the size of the mesh, so the
speedup will be superlinear when the problem size is
evenly distributed across parallel processors. A previ-
ous analysis of the sequential mesh adaptation opera-
tors [25] suggests the work performed by, for example,
the insertion operator increases linearly with the size
of the mesh. Thus, the total work required to insert
vertices for a particular problem is roughly the num-
ber of edges to be split times the size of the mesh.
In parallel, the number of edges to be split is ideally
distributed evenly across all processors, and the size
of the partition is clearly smaller than the total size
of the mesh. Thus the cost of the insertion operator
is dramatically reduced (more than linear) when the
work is divided across a large number of parallel pro-

Table 6: Total time (ttotal) for the Tesseract-Linear
case running with p processors, generating nelem pen-
tatopes, broken into adaptation (% adapt) and inter-
face migration (% bal.) times, with the number of
interface tetrahedra (n@P) in the final repartitioned
mesh.

p nelem n@P ttotal % adapt % bal.

1 7.25m - 2d:6h 100.0% -
2 7.42m 57.7k 2d:1h 98.2% 1.4%
4 7.37m 111.0k 15h:57m 97.7% 1.7%
8 7.32m 193.2k 7h:35m 97.4% 1.9%
16 6.66m 129.0k 2h:24m 97.6% 1.7%
24 5.95m 69.8k 1h:21m 98.0% 1.3%
36 5.63m 285.7k 42m:11s 97.2% 2.1%

Table 7: Total time (ttotal) for the Tesseract-Wave
case running with p processors, generating nelem pen-
tatopes, broken into adaptation (% adapt) and inter-
face migration (% bal.) times, with the number of
interface tetrahedra (n@P) in the final repartitioned
mesh.

p nelem n@P ttotal % adapt % bal.

1 6.72m - 2d:17h 100.0% -
2 6.99m 100.7k 3d:1h 98.4% 1.3%
4 7.05m 155.2k 1d:2h 98.3% 1.3%
8 6.90m 191.3k 8h:19m 97.9% 1.6%
16 6.59m 214.7k 2h:59m 97.7% 1.7%
24 6.19m 184.0k 1h:21m 97.5% 1.9%
36 6.37m 259.9k 53m:50s 96.7% 2.6%

cessors. The fact that the mesh adaptation algorithm
exhibits this superlinear convergence while maintain-
ing reasonable metric conformity is a promising result
for large-scale 3d + t numerical simulations. Finally,
we report the time (and number of adaptation itera-
tions) to scale the mesh to much larger sizes with 36
processors for the same three test cases. All results
were obtained on node B of Table 4. Total run time
is reasonable, taking less than two days to perform 10
adaptation iterations to achieve a mesh with 69 mil-
lion pentatopes, and roughly 9 hours to perform 14
adaptation iterations to achieve a mesh with about 52
million tetrahedra. Furthermore, metric conformity
is better with these large meshes (compared with the
results on smaller meshes in the previous section).

5. CONCLUSIONS

We have demonstrated the implementation of a paral-
lel four-dimensional mesh adaptation for 3d + t space-
time numerical simulations. The developed algorithm
builds o↵ existing 3d mesh adaptation algorithms in
which the mesh adaptation problem is divided across
a specific number of processors. Within a particular
pass of an adaptation iteration, the boundaries of each

106

Table 8: Total time to adapt the mesh to 52 (Polar), 69 (Linear) and 47 (Wave) million simplices, along with metric
conformity statistics on quasi-unit edge lengths and simplex quality.

Case iter. nelem n@P ttotal % adapt % bal. %`unit %qunit

Polar (3d) 14 51.70m 703.7k 8h:59m 70.8% 28.1% 97.0% 88.0%
Linear (4d) 10 69.00m 1.779m 1d:17h 97.7% 1.7% 87.0% 45.0%
Wave (4d) 9 47.40m 1.173m 17h:24m 97.4% 2.2% 90.0% 45.0%

12 4 8 16 24 36

processors

0

20

40

60

80

100

120
speedup

Linear (4d)
Wave (4d)
Polar (3d)

Figure 9: Parallel speedup when adapting the meshes
for the Cube-Polar (Polar), Tesseract Linear (Linear)
and Tesseract Wave (Wave) cases.

partition interface are kept fixed while still allowing
the true geometric boundaries to be modified. Multi-
ple passes of the mesh adaptation algorithm are used
to migrate the previous partition interfaces to the inte-
rior of the partition so as to ensure the global mesh is
adapted before returning the mesh to the solver. The
algorithm was verified to be (1) scalable and (2) stable,
in which (1) good speedup was observed as the num-
ber of processors was increased and (2) the produced
meshes are metric-conforming for 3d and 4d problems.
In the future, we will investigate the performance of
the algorithm with larger numbers (hundreds or thou-
sands) of processors.

Future work involves integrating the parallel mesh
adaptation algorithm with a 3d + t numerical simu-
lation tool so as to perform large-scale mesh adapta-
tion for time-dependent partial di↵erential equations
in 3d [49, 50, 51, 52]. Furthermore, we hope to apply
the algorithm to problems in which the domain ge-
ometry is moving in time, particularly if the domain
topology is changing. A tool capable of generating an
initial 4d mesh within such a domain would first be
required.

The code associated with this work is publicly avail-
able in the LGPL-licensed software package: https:

//gitlab.com/philipclaude/avro.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1827373.

References

[1] Yano M., Modisette J.M., Darmofal D.L. “The
Importance of Mesh Adaptation for Higher-Order
Discretizations of Aerodynamic Flows.” 20th
AIAA Computational Fluid Dynamics Confer-
ence, 3852. Jun. 2011

[2] Slotnick J., Khodadoust A., Alonso J., Darmo-
fal D.L., Gropp W., Lurie E., Mavriplis D.J.
“CFD Vision 2030 Study: A Path to Revolu-
tionary Computational Aerosciences.” Tech. Rep.
NASA/CR-2014-218178, 2014

[3] Bangerth W., Rannacher R. “Finite Element Ap-
proximation of the Acoustic Wave Equation: Er-
ror Control and Mesh Adaptation.” East-West
Journal of Numerical Mathematics, vol. 7, no. 4,
263–282, 1999

[4] Hartmann R. “Adaptive FE Methods for Conser-
vation Equations.” H. Freistühler, G. Warnecke,
editors, Hyperbolic Problems: Theory, Numerics,
Applications, vol. 141 of International Series of
Numerical Mathematics, pp. 495–503. Feb. 2001

[5] Erickson J., Guoy D., Sullivan J., Üngör A.
“Building Space-Time Meshes over Arbitrary
Spatial Domains.” Engineering with Computers,
vol. 20, 342–353, 08 2005

[6] Behr M. “Simplex Space-Time Meshes in Finite
Element Simulations.” International Journal for
Numerical Methods in Fluids, vol. 57, no. 9, 1421–
1434, 7 2008

[7] Bangerth W., Geiger M., Rannacher R. “Adap-
tive Galerkin Finite Element Methods for the
Wave Equation.” Computational Methods in Ap-
plied Mathematics, vol. 10, no. 1, 3–48, 2010

[8] Fidkowski K.J. “Output-Based Space-Time
Mesh Optimization for Unsteady Flows Using
Continuous-in-Time Adjoints.” Journal of Com-
putational Physics, vol. 341, no. 15, 258–277, 2017

107

[9] Yano M. An Optimization Framework for
Adaptive Higher-Order Discretizations of Par-
tial Di↵erential Equations on Anisotropic Sim-
plex Meshes. PhD thesis, Massachusetts Institute
of Technology, Jun. 2012

[10] Yano M., Darmofal D.L. “An Optimization-
Based Framework for Anisotropic Simplex Mesh
Adaptation.” Journal of Computational Physics,
vol. 231, no. 22, 7626–7649, Sep. 2012

[11] Jayasinghe S. An Adaptive Space-Time Discon-
tinuous Galerkin Method for Reservoir Flows.
PhD thesis, Massachusetts Institute of Technol-
ogy, Jun. 2018

[12] Jayasinghe S., Darmofal D.L., Burgess N.K., Gal-
braith M.C., Allmaras S.R. “A Space-Time
Adaptive Method for Reservoir Flows: Formula-
tion and One-Dimensional Application.” Compu-
tational Geosciences, vol. 22, no. 1, 107–123, Feb.
2018

[13] Caplan P.C. Four-dimensional Anisotropic Mesh
Adaptation for Spacetime Numerical Simulations.
PhD thesis, Massachusetts Institute of Technol-
ogy, Jun. 2019

[14] Yano M., Darmofal D.L. “A Fully-Unstructured
Space-time Adaptive Method for Wave Propaga-
tion.” Computer Methods in Applied Mechanics
and Engineering, 2014

[15] Chrisochoides N.P. “Telescopic Approach for
Extreme-Scale Parallel Mesh Generation for CFD
Applications.” 46th AIAA Fluid Dynamics Con-
ference, 3181. 2016

[16] Tsolakis C., Chrisochoides N., Park M., Loseille
A., Michal T. “Parallel Anisotropic Unstructured
Grid Adaptation.” 2019 AIAA Science and Tech-
nology Forum, 2019–1995. 2019

[17] Michal T., Krakos J. “Anisotropic Mesh Adap-
tation through Edge Primitive Operations.” 50th
AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition,
159. Jan. 2012

[18] Loseille A., Alauzet F., Menier V. “Unique
Cavity-Based Operator and Hierarchical Do-
main Partitioning for Fast Parallel Generation
of Anisotropic Meshes.” Computer-Aided Design,
vol. 85, 53 – 67, 2017

[19] Tsolakis C., Drakopoulos F., Chrisochoides N.
“Sequential Metric-Based Adaptive Mesh Gener-
ation.” 2018 Modeling, Simulation, and Visu-
alization Student Capstone Conference. Su↵olk,
VA, Apr. 2018

[20] Park M.A., Darmofal D.L. “Parallel Anisotropic
Tetrahedral Adaptation.” 46th AIAA Aerospace
Sciences Meeting and Exhibit, 917. 2008

[21] Coupez T., Digonnet H., Ducloux R. “Parallel
Meshing and Remeshing.” Applied Mathematical
Modelling, vol. 25, no. 2, 153–175, 2000

[22] Coupez T. “Génération de Maillage et Adapta-
tion de Maillage par Optimisation Locale.” Re-
vue Européenne des Éléments Finis, vol. 9, no. 4,
403–423, 2000

[23] Loseille A., Löhner R. “Cavity-Based Operators
for Mesh Adaptation.” 51st AIAA Aerospace Sci-
ences Meeting including the New Horizons Forum
and Aerospace Exposition., 152. 2013

[24] Caplan P.C., Haimes R., Darmofal D.L., Gal-
braith M.C. “Extension of Local Cavity Opera-
tors to 3d+ t Spacetime Mesh Adaptation.” 2019
AIAA Science and Technology Forum. AIAA,
2019

[25] Caplan P.C., Haimes R., Darmofal D.L., Gal-
braith M.C. “Four-Dimensional Anisotropic
Mesh Adaptation.” Computer-Aided Design, vol.
129, 102915, 2020

[26] Haimes R., Dannenho↵er J. “The Engineering
Sketch Pad: A Solid-Modeling, Feature-Based,
Web-Enabled System for Building Parametric
Geometry.” 21st AIAA Computational Fluid Dy-
namics Conference, 2013–3073. 2013

[27] Haimes R., Dannenho↵er J. “EGADSlite: A
Lightweight Geometry Kernel for HPC.” AIAA
Aerospace Sciences Meeting, 2018–1401. 1 2018

[28] Ibanez D., Barral N., Krakos J., Loseille A.,
Michal T., Park M. “First Benchmark of the
Unstructured Grid Adaptation Working Group.”
Procedia Engineering, vol. 203, 154 – 166, 2017.
26th International Meshing Roundtable

[29] Park M.A., Balan A., Anderson W.K., Gal-
braith M.C., Caplan P.C., Carson H.A., Michal
T., Krakos J.A., Kamenetskiy D.S., Loseille A.,
Alauzet F., Frazza L., Barral N. “Verification of
Unstructured Grid Adaptation Components.” ,
no. 2019–1723, 2019

[30] Digonnet H., Silva L., Coupez T. “Massively Par-
allel Computation on Anisotropic Meshes.” Pro-
ceedings of the 6th International Conference on
Adaptive Modeling and Simulation, pp. 199–211.
2013

[31] Digonnet H., Coupez T., Laure P., Silva L. “Mas-
sively Parallel Anisotropic Mesh Adaptation.”
The International Journal of High Performance
Computing Applications, vol. 33, no. 1, 3–24, 2017

108

[32] Digonnet H., Coupez T., Laure P., Silva L. “Mas-
sively Parallel Anisotropic Mesh Adaptation.”
The International Journal of High Performance
Computing Applications, vol. 33, no. 1, 3–24, 2019

[33] Lachat C., Pellegrini F., Dobrzynski C. “PaMPA:
Parallel Mesh Partitioning and Adaptation.” 21st
International Conference on Domain Decomposi-
tion Methods (DD21). INRIA Rennes-Bretagne-
Atlantique, Rennes, France, Jun. 2012

[34] Lachat C. Conception et Validation
d’Algorithmes de Remaillage Parallèles à
Mémoire Distribuée basés sur un Remailleur
Séquentiel. PhD thesis, Université de Nice-Sophia
Antipolis, Dec. 2013

[35] Lachat C., Dobrzynski C., Pellegrini F. “Parallel
Mesh Adaptation using Parallel Graph Partition-
ing.” 5th European Conference on Computational
Mechanics, vol. 3, pp. 2612–2623. CIMNE - Inter-
national Center for Numerical Methods in Engi-
neering, Jul. 2014

[36] Lachat C., Pellegrini F., Dobrzynski C., Sta↵el-
bach G. “Fast Parallel Remeshing for Accurate
Large-Eddy Simulations on Very Large Meshes.”
Research Report RR-9133, Inria Bordeaux Sud-
Ouest, Dec. 2017

[37] Dobrzynski C. “MMG3D: User Guide.” Technical
Report RT-0422, INRIA, Mar. 2012

[38] Loseille A., Menier V., Alauzet F. “Parallel Gen-
eration of Large-size Adapted Meshes.” Procedia
Engineering, vol. 124, 57–69, 2015. 24th Interna-
tional Meshing Roundtable

[39] Loseille A. “Unstructured Mesh Generation and
Adaptation.” Handbook of Numerical Methods for
Hyperbolic Problems, vol. 18 of Handbook of Nu-
merical Analysis, chap. 10, pp. 263 – 302. 2017

[40] Drakopoulos F., Tsolakis C., Chrisochoides N.P.
“Fine-Grained Speculative Topological Transfor-
mation Scheme for Local Reconnection Meth-
ods.” AIAA Journal, vol. 57, no. 9, 4007–4018,
2019

[41] Alauzet F., Li X., Seol E.S., Shephard M.S.
“Parallel Anisotropic 3D Mesh Adaptation by
Mesh Modification.” Engineering with Comput-
ers, vol. 21, no. 3, 247–258, May 2006

[42] Schloegel K., Karypis G., Kumar V. “Parallel
Static and Dynamic Multi-Constraint Graph Par-
titioning.” Concurrency Computation, vol. 14,
no. 3, 219–240, Mar. 2002

[43] Chevalier C., Pellegrini F. “PT-Scotch: A Tool
for E�cient Parallel Graph Ordering.” Parallel
Computing, vol. 34, no. 6, 318–331, 2008. Parallel
Matrix Algorithms and Applications

[44] Devine K.D., Boman E.G., Heaphy R.T., Hen-
drickson B.A., Teresco J.D., Faik J., Flaherty
J.E., Gervasio L.G. “New Challenges in Dynamic
Load Balancing.” Applied Numerical Mathemat-
ics, vol. 52, no. 2, 133–152, 2005. ADAPT ’03:
Conference on Adaptive Methods for Partial Dif-
ferential Equations and Large-Scale Computation

[45] Lusk E., Gropp W. “The MPI Message-
Passing Interface Standard: Overview and Sta-
tus.” J. Dongarra, G. Joubert, L. Grandinetti,
J. Kowalik, editors, High Performance Comput-
ing, vol. 10 of Advances in Parallel Computing,
pp. 265–269. North-Holland, 1995

[46] Tsolakis C., Chrisochoides N., Park M.A., Lo-
seille A., Michal T. “Parallel Anisotropic Un-
structured Grid Adaptation.” AIAA Journal,
vol. 0, no. 0, 1–13, 0

[47] Carson H.A. Provably Convergent Anisotropic
Output-based Adaptation for Continuous Finite
Element Discretizations. PhD thesis, Mas-
sachusetts Institute of Technology, Jun. 2020

[48] Carson H.A., Huang A.C., Galbraith M.C., All-
maras S.R., Darmofal D.L. “Anisotropic Mesh
Adaptation for Continuous Finite Element Dis-
cretization through Mesh Optimization via Error
Sampling and Synthesis.” Journal of Computa-
tional Physics, vol. 420, 109620, 2020

[49] Galbraith M.C., Allmaras S.R., Darmofal D.L.
“A Verification Driven Process for Rapid Devel-
opment of CFD Software.” 53rd AIAA Aerospace
Sciences Meeting, 2015-0818. January 2015

[50] Nishikawa H., Padway E. An Adaptive Space-
Time Edge-Based Solver for Two-Dimensional
Unsteady Inviscid Flows

[51] Frontin C.V., Walters G.S., Witherden F.D., Lee
C.W., Williams D.M., Darmofal D.L. “Foun-
dations of Space-Time Finite Element Methods:
Polytopes, Interpolation, and Integration.” Ap-
plied Numerical Mathematics, vol. 166, 92–113,
2021

[52] Williams D.M., Frontin C.V., Miller E.A., Dar-
mofal D.L. “A family of symmetric, optimized
quadrature rule for pentatopes.” Computers &
Mathematics with Applications, vol. 80, no. 5,
1405–1420, 2020

109

SHRINK WRAP MESH GENERATION USING
MORPHOLOGICAL OPERATORS WITH SELECTED

APPLICATIONS

Vijai Kumar Suriyababu1,‡ Cornelis Vuik1 Matthias Möller1

1Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands,
{v.k.suriyababu,c.vuik,m.moller}@tudelft.nl

‡ Corresponding Author

ABSTRACT

Triangulated meshes discretized from commercial CAD applications often possess a considerable level of complexity.
However, when conducting external aerodynamics simulations at an earlier design stage, these meshes are way too
complex and contain complex features and topological holes. We propose a practical and fast algorithm to shrink
wrap triangulated surfaces with the sole intent of topology and surface simplification. Building upon the concepts
of mathematical morphology and newer advancements in geometry processing, such as generalized winding numbers,
we show that it is possible to build a straightforward and robust algorithm that can guarantee genus-zero surfaces.
Our approach uses a Cartesian background mesh (fixed and adaptive) to approximate an input triangulated surface’s
interior and exterior volume. We use an octree data structure for adaptive mesh refinement. Although we demonstrate
our algorithm exclusively on triangulated meshes, they are equally applicable to general polyhedral meshes. They
are also well suited for handling point clouds (oriented and unoriented), and we show some examples of the same
with some unoriented point clouds. We built our algorithms with a wide variety of applications in mind. However,
we showcase the applicability of our algorithms for aerodynamic simulations, fluid volume extraction, and surface
simplification. We also emphasize the practicality and ease of implementation of the proposed algorithms. We also
compare our algorithms with existing literature.

Keywords: mesh simplification, shrink wrapping, boolean operations, fluid volume extraction

NOMENCLATURE

M Triangulated mesh (or surface)
� Structuring element
�r Structuring element radius
Tl Topological sphere level
! Solid angle for a query point with respect

to an input mesh

1. INTRODUCTION

The shrink-wrapping algorithm can be a helpful tool
for remeshing triangulated (or any polyhedral) sur-
faces. Most algorithms take a volumetric approach to

solve the problem. They work by projecting a vox-
elized approximation of the input surface onto itself.
A few papers in the literature focus on this problem,
and most work is accomplished in the industry. At-
tene et al. [1] gives a very detailed comparison of dif-
ferent mesh repair algorithms. Their review article’s
“Global repair section” gives an excellent overview of
the state-of-the-art algorithms with a Global mesh re-
pair and simplification approach. A key highlight of
this discussion is that all authors take a volumetric
approach to the problem. However, none of these
explicitly solve the problem of shrink-wrapping with
CAE simulations in mind. They are generic mesh sim-
plification approaches, with the primary focus being

110

computer graphics applications. Some notable con-
tributions are from Esteve et al.[2] and Nooruddin et
al.[3], who also take volumetric approaches. Esteve et
al.[2] shrink a discrete membrane to re-mesh surface
meshes and point clouds, whereas Noorudin et al.[3]
take a strict morphological approach to the problem.
One major drawback in their works is a lack of con-
trol over the surface genus. In the case of Noorudin
et al.[2], they oversimplify the meshes in all of the
examples instead of our shrink-wrap mesh simplifica-
tion. They also do not guarantee a manifold mesh as
output, thus rendering their results unsuitable for nu-
merical simulation. Y. K. Lee et al. [4] gave a good
summary of the existing techniques that are tailored to
the problem of shrink-wrapping with engineering ap-
plications in mind. They highlight the e↵ectiveness of
these algorithms in closing gaps and removing interior
parts of complex geometry along with their potential
as remeshing algorithms. They also show that gap
detection and bridging are usually achieved with the
help of poor / coarser voxelization. There is often a
requirement to intersect these voxels with the input
surface mesh, increasing computational costs. Some
algorithms [5] require explicit tolerance values for the
gaps and holes, which could be advantageous in some
applications. However, we explicitly focus on fully au-
tomated genus simplification. Hence, we propose an
algorithm that can inherently close all the gaps in tri-
angulated surfaces and remove all internal structures.
The significant contribution in our work is an e�cient
way of computing genus simplified o↵set surface with
the help of morphological operators. Our algorithms
will guarantee an outcome even in the case of imper-
fect geometries. Imperfections can range from missing
triangles to non-manifold edges or completely sepa-
rated components. We demonstrate the same in our
numerical experiments. We also extend the existing
shrink-wrap algorithm for selective genus control. An
existing semi-heuristic algorithm that we developed [6]
for hole detection is used to control the closing opera-
tions so that only selective holes are closed.

2. MORPHOLOGICAL OPERATORS

Mathematical morphology is a vibrant subject that
finds typical applications in the area of image process-
ing [7]. However, it has been extended to many other
application areas, including three-dimensional geome-
try processing [8]. Broadly, the subject of mathemat-
ical morphology is composed of four operators.

1. Erosion (M ⌫ �)

2. Dilation (M � �)

3. Opening ((M ⌫ �) � �)

4. Closing ((M(��) ⌫ �)

Given a triangulated mesh M, a structuring element
� with a radius of �r, the erosion operator erodes a
surface iteratively for any given number of steps. The
dilation operator does the exact opposite and adds to
the given mesh. Our work is similar to the approach
of Zhen Chen et al. [9] in that they use morphological
operations to compute discrete surface o↵sets. Since
our focus here is a restricted form of mesh and topol-
ogy simplification, we take a lot of freedom to inter-
pret these morphological operators. We also do not
compute exact o↵set surfaces. Instead, we calculate
a simplified/approximated o↵set surface that is only
useful for topological simplification. We also use Oc-
trees to represent all operators, allowing the mesh to
be reused for numerical simulation. Finally, we in-
troduce a topological sphere level parameter similar
to the scaled structuring element radius given by �r

(scaled by the o↵set distance). We encourage reading
upon the work of Silvia Sellán et al. [10] for a more di-
rect interpretation of these operators in the context of
three-dimensional geometry processing. They explore
a surface-only approach that only modifies selective
areas of a surface mesh. However, as they point out,
their work su↵ers from the flaws of surface flows and
isn’t suitable for shrink wrapping applications. In our
work, we open a surface iteratively until the surface
has a spherical topology and then close it by iterative
erosion. We explain the di↵erent morphological oper-
ators in the context of mesh generation in detail in the
subsequent sections.

2.1 Mathematical morphology of surface
meshes

Morphological operators in our present investigation
do not di↵er very much from their image process-
ing counterparts. In image processing, one represents
morphological operators on simple two-dimensional
grids. For example, a binary image can be represented
on a Cartesian mesh with binary mask values (0 and
1). Therefore, the morphological operators in image
processing can be considered as two-dimensional sim-
plification of our morphological operators. First, we
represent a surface mesh in a fixed or adaptively re-
fined Cartesian mesh with binary values to identify the
geometry’s boundary. Then, we perform the morpho-
logical closing operation of this approximated geome-
try followed by surface extraction and projection. One
key di↵erence with our erosion operator is that we do
not erode the geometry beyond its original boundary
to preserve the internal volume. This is clearly shown
in subsequent sections.

Let us consider the dilation and erosion operators on
binary images and their geometric counterparts. Since
other operators such as opening and closing can be
built as a combination of these two, it is enough to

111

understand these two operators.

2.2 Dilation

We first dilate the given image with a square as a struc-
tural element. This is the most natural choice since the
images are represented as pixels. Furthermore, this
approach would only require adjacencies at the edge
level to find neighbours from a computational view-
point. Once the boundary of the image is identified,
one step of dilation becomes a straightforward prob-
lem of finding the neighbouring faces of the border.
The key detail in this approach is that the neighbours
should be chosen in the positive normal direction of
the boundary. Until a required criterion is achieved,
this process can then be repeated for any number of
steps.

Figure 1: Dilation operation on a binary image

This operation remains the same in mesh processing.
As stated earlier, we mark the boundary cells in a
Cartesian mesh. Then the dilation operation for mesh
processing is a natural extension of image processing
to a three-dimensional problem. This operation is ex-
plained in detail with algorithmic workflows for com-
puting a dilated surface from a triangulated mesh.

2.2.1 Erosion

The erosion operator also starts from the boundary of
a given image. First, however, it finds the neighbours
of the border in the negative normal direction. So
these cells would usually be part of the image itself.
A pivotal contrast to the dilation approach is that an
image cannot be eroded infinitely. Since at some point,
the erosion operation reaches a singularity.

In the case of shrink wrapping, erosion operation
should not destroy the internal volume of a surface
mesh. Hence, an erosion operation usually stops at
the boundary of a surface mesh.

2.2.2 Closing

The closing operator combines the dilation and erosion
operation. In the field of computer vision and image

Figure 2: Erosion operation on a binary image

processing, this serves as a tool to close holes (or miss-
ing pixels) in a binary image. We perform the same
operation on three-dimensional data for closing holes
in our algorithms. To provide an easy comparison
towards mesh processing, we have extracted a three-
dimensional surface of the same geometry (by extrud-
ing the contour in the Z direction) and performed the
closing operation on the same. The results for the
same can be seen in figure 4.

The two di↵erences from the image processing ap-
proach are as follows

• We do not erode beyond the boundary of the in-
put geometry

• We project the eroded geometry onto the input
geometry

Figure 3: Closing operation on a binary image (Black
blobs on the left indicate missing pixels). They are
equivalent to holes or missing triangles in a surface
mesh.

It can be observed in figure 4 that a closing opera-
tion on a surface not only closes the holes caused by
missing triangles. It also seals the topological holes
in a mesh. We leverage this benefit for shrink wrap-
ping surface meshes for external aerodynamic simula-
tions. However, the straightforward closing operation
on its own is not suitable since it has no stopping cri-
terion. Therefore, our workflow introduces a series
of algorithms and data structures such as octrees to
use these morphological operators e�ciently for shrink

112

Figure 4: Closing operation on a three dimensional surface. This geometry is equivalent to the two dimensional
binary images in figure 3. Closing operation is performed on the left most geometry and then projected onto the
ground truth.

wrapping surface meshes. We explain these in detail
in the subsequent section.

3. BASIC WORKFLOW

Our algorithm has the following basic components

1. Conversion of Boundary representation(B-Rep)
to a volumetric representation (V-Rep)

2. Computation of signed distance function

3. Dilation of the input surface for a given topolog-
ical sphere level

4. Erode the dilated surface to obtain a topologi-
cally hole-free o↵set surface

5. Iteratively project and smooth the dilated surface

6. Remesh to improve triangle quality (Optional)

We explain these individual components in detail
along with the respective algorithms in the subsequent
sections.

3.1 B-Rep to V-Rep

It was shown earlier that geometry information needs
to be encoded as binary images for e�cient computa-
tion of morphological operators in computer vision ap-
plications. This translates to a boolean value in every
voxel of a Cartesian mesh1 in three dimensions. How-
ever, it would require intersecting the surface mesh
with the Cartesian mesh. This would only work for

1We use the terms Cartesian mesh and octree inter-
changeably throughout the paper. The reader should be
aware that all the computations are performed on an oc-
tree, which we consider a special kind of Cartesian mesh.

watertight surface meshes and lead to some inaccura-
cies in the case of degenerate geometries. Hence, we
do not physically intersect the input geometry with
the Cartesian mesh. Since we only need a scalar field
to distinguish the inside and outside of the geome-
try. The usual workflow for Cartesian mesh generation
starts with a bounding box computation as shown in
figure 5. These can be an axis-aligned or oriented-
bounding box. In either case, the generated Cartesian
mesh would not be very beneficial for morphological
operations. Morphological operators such as erosion
and dilation are applied in successive layers. For ex-
ample, the dilation operator starts from the boundary
of a surface and dilates the surface one layer after an-
other, as shown in figure 1. Since we use a cube or
a voxel as a structuring element, it is easier to per-
form these operations successively if the geometry sits
approximately in the centre of the Cartesian mesh. If
the geometry is moved to the origin of the octree, a di-
lation operation may not completely dilate the entire
surface in a given step. First, the mini ball algorithm
[11] is used to obtain a tightly fitting sphere of an in-
put geometry as shown in figure 6. Then we compute
a bounding box for this sphere with a specified o↵-
set threshold to ensure that our geometry always sits
precisely at the centre of our voxelization. Next, we
refine all the cells inside the tightly fitting sphere as
shown in figure 7. Post refinement, the generalized
winding number approach [12] helps distinguish the
cells inside and outside the geometry. The generalized
winding number algorithm gives a solid angle value at
every vertex in the octree mesh. This value is thresh-
olded to mark the cells in the octree as inside, outside
or boundary cells. This refinement allows us to get a
more accurate surface description during the segmen-
tation process. Spherical refinement also limits the
inside-outside queries to the cells within the sphere.
As a result, we do not need to query the generalized
winding number for cells outside the sphere, thereby

113

saving computational time. Finally, we also ensure
a 2:1 refinement in our octree for all elements in our
workflow. The mesh generation approach referenced
in algorithm 1 can be used for any kind of numerical
simulation irrespective of the rest of the workflow.

Figure 5: Normal bounding box computation (In case
of many geometries, a manual o↵set threshold may be
required for ensuring there are enough layers of mesh
for morphological operations. The threshold might
also be di↵erent for di↵erent directions.)

Figure 6: Spherical bounding box computation (In
most cases, a threshold of 2 or 3 times the size of
the bounding sphere is enough for all morphological
operations. The scaling will be uniform irrespective of
the geometry since only the sphere is scaled and the
bounding box is always a perfect cuboid.

Figure 7: Spherical Refinement

Algorithm 1: B-Rep to V-Rep

Result: Voxelized mesh where every cell has a
scalar associated with it (inside /
outside)

Initialise Surface;
Compute a tight bounding sphere using the mini
ball algorithm and store its radius and centre ;

Calculate the bounding box of the sphere, which
is o↵set at a user-specified distance (2.0 in our
experiments);

Initialize a Cartesian mesh with a specified cell
size or number of cells (64 * 64 * 64 in all of our
experiments);

forall Cells of Cartesian mesh do
if Cell inside bounding sphere then

Mark for refinement;
end
else

Mark for coarsening;
end

end
forall Cells in bounding sphere do

Compute the Generalized winding number
(This indirectly gives us the solid angle for
all the cells in the octree);

end
Mark cells outside bounding sphere as outside
and store this in the respective cells;

forall Cells in bounding sphere do
if Solid angle is higher than 0.9 steradians
(based on our experimental observation)
then

Mark the cell as inside and store this in
the respective cell;

end
else

Mark the cell as outside and store this in
the respective cell;

end

end

3.2 Computation of signed distance func-
tion

It is evident that once the cells of the octree are classi-
fied into inside and outside (using any approach such
as generalized winding numbers in our case), an arti-
ficial signed distance function can be bestowed upon
the voxelization as shown in figure 9. We rely on Gen-
eralized winding numbers since they are swift even on
a CPU only computational environment and are im-
mune to imperfections in the input surface to a large
degree. A brief overview of this approach can be seen
in appendix A. However, for the rest of the algorith-
mic workflow, one only needs to categorize the cells
in the octree as inside or outside cells. These will

114

be used to build an approximate surface boundary
which can be used for morphological operations de-
scribed in the consequent sections. Our experimental
observation has shown that a solid angle value of 0.9
steradians indicates cells inside a surface mesh, and
everything else can be marked as outside. The bound-
ing sphere computed in the mesh generation algorithm
can be used to automatically mark all the cells outside
the sphere as outside cells.

We use the term artificial since we do not compute
the exact distance here. We only use an integer that
indicates a particular voxel’s relative position with its
respective boundary voxel. As will be evident later,
we do not need an exact signed distance field for com-
puting a Genus simplified o↵set surface. A similar
approach has been used by other researchers [13] to
calculate intersection-free o↵set surfaces. We achieve
the same by outward propagation from the zero level
set voxels. This outward propagation is done along the
normal outward direction of the surface mesh. Since
we mark all the cells in the octree as inside or out-
side, zero level set voxels or boundary voxels can be
determined by finding cells that contain faces that are
part of both inside and outside cells. As opposed to
the usual approaches, which intersect the surface mesh
with the octree mesh, our proposed method is highly
computationally e�cient. All the morphological op-
erations are explained with the help of a maple leaf
geometry shown in figure 8.

Figure 8: Maple leaf geometry

Figure 9: Artificial signed distance function of a
maple leaf (Computed using our approach)

3.3 Dilation driven approximated o↵sets

In the previous section, we proposed a straightforward
method to determine the zero level set or boundary
voxels of a given surface mesh inside an octree. We
already established that a dilation operation followed
by an erosion operation performed in a sequence leads
to the morphological closing operation as shown in fig-
ure 3. Our investigation also reveals that one does not
need to dilate the boundary voxels across the entire
voxelization. Instead, we only need to dilate the input
surface until we achieve a spherical topology. Here,
we use a user-specified parameter called “Topologi-
cal sphere level”. This parameter is the only user-
controlled input in the algorithm, and the choice of
topological sphere level dictates the number of out-
ward propagation levels as shown in algorithm 2. The
bigger the hole in the geometry, the larger the topolog-
ical sphere level. E↵ects of di↵erent Topological sphere
levels are clearly shown in the numerical experiments.
For example, the dilated maple leaf geometry can be
seen in figure 10. It is clearly evident that a spherical
topology is achieved after approximately 15 levels.

If complete automation is required from input to pro-
jection, the topological sphere level can be ignored,
and the geometry can be dilated to the maximum level.

3.4 Erosion of dilated o↵set surface

The dilated surface should now have a spherical topol-
ogy, and it needs to be eroded towards the input sur-
face. This process is similar to the dilation except for

115

Figure 10: Dilated Maple leaf geometry with a spher-
ical topology

Algorithm 2: Dilation of the input surface

Result: Dilated surface stored in the voxelized
mesh

Initialize interior cells as seed cells;
Initialize current topological sphere level to 0;
while current level  topological sphere level
do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is outside cell then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;
Increment current topological sphere level;
if current topological sphere level eq
topological sphere level then

Store these cells as
topological sphere cells;

end

end

end

the marching direction. The number of levels would be
the same as the topological sphere level chosen during
the previous step of the algorithm. Once eroded, this
will give a hole-free approximation of the input geome-
try. Once the surface is eroded to the given “Topolog-
ical Sphere Level”, the operation becomes straightfor-
ward. It is explained in detail in algorithm 3. The
scalar field can be directly eroded until it hits the
boundary voxels. This is where the erosion operation

di↵ers from the erosion operation in computer vision
algorithms. In the case of surface mesh, the geometry
is never eroded beyond the boundary voxels for vol-
ume preservation. This approach is relatively simple
since a manifold mesh can be easily extracted without
the need for any additional algorithms [14].

The o↵set surface is still embedded inside a volumetric
mesh as shown in figure 11, and a surface needs to be
extracted. Due to the artificial nature of the signed
levels in the volumetric mesh, it is easy to distinguish
the region where the genus simplified o↵set meets the
external o↵set surface. Surface extraction becomes a
simple task with this information. This is similar to
the approach proposed for identifying boundary voxels
from inside and outside voxels. The detailed algorithm
for surface extraction is listed in algorithm 4.

Figure 11: Eroded o↵set surface (Unsmoothed &
Hole Free)

Algorithm 3: Erosion of the dilated o↵set surface

Result: Eroded surface stored in the voxelized
mesh

Initialize topological sphere cells as seed cell ids;
forall topological sphere levels do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is from lower
topological sphere level then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;

end

end
Final seed cells form the basis for the Genus
simplified o↵set surface;

116

Algorithm 4: Surface Extraction

Result: Genus simplified watertight surface
Initialize topological sphere cells as seed cell ids;
forall topological sphere levels do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is from lower
topological sphere level then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;

end

end
Final seed cells form the basis for the Genus
simplified surface;

3.5 Projection and smoothing

The eroded surface needs to be projected onto the in-
put geometry. With practicality in mind, we chose a
point cloud- based approach over direct projection on
the triangulated surface. In realistic industrial geome-
tries, the construction of an AABB tree is costly and
time-consuming and leads to failure in many cases.
Since we chose to allow input meshes that are not per-
fectly two-manifold, the point cloud-based approach
will support a broader range of input meshes, includ-
ing those that are entirely degenerate, as shown in the
later section. We approximate the input geometry as
a uniformly sampled point cloud and then construct
a kD tree [15] on it. We also extended our algorithm
for point cloud due to this projection approach. How-
ever, one can choose a more sophisticated method that
projects directly onto the triangles in the input sur-
face. This might produce erroneous results if the sur-
face mesh is completely degenerate. We experimented
with both a direct projection approach and the one
using point cloud sampling as shown in algorithm 12
and the results were satisfactory for our point cloud
approach.

We can find the nearest neighbour in this point cloud
for every vertex in the eroded surface and move the
vertex to this position. Unfortunately, results do not
look good at this stage, and the mesh seems slightly
tangled. However, our experiments show that a few
cycles of Laplacian smoothing followed by projection
will immediately provide better quality results, as seen
in figure 5.

Our investigation also shows that the geometry can
be double wrapped to achieve better quality results.
In double wrapping, the final result from the first run

Algorithm 5: Projection and Smoothing

Result: Projected and smoothed mesh
Sample a uniform point cloud on the input
surface;

Build a kD tree on the uniformly sampled point
cloud;

forall vertices in the Extracted surface do
Find the nearest vertex in the kD tree and
move the vertex;

end
forall vertices in the projected mesh do

Find one ring neighbourhood;
Average the position of the current vertex
with the vertices from the one ring
neighbourhood ;

end

Figure 12: Projected & Smoothed Mesh

of the algorithm can be passed back onto the same
workflow to produce a better quality approximation.
The mesh at this stage is already analysis suitable. If
required, an optional remeshing step can be included
for improving the mesh quality further. The geome-
try practitioner is not required to follow our heuristic-
based approach. They can choose any remeshing al-
gorithm (commercial or public domain). However, the
proposed algorithms provide satisfactory results in our
investigation.

3.6 Remeshing and quality improvement
(Optional)

This step is entirely optional. The projected surfaces
are well suited for analysis, and we show the same
in numerical experiments for various surface and vol-
umetric PDEs. However, the smoothed surface may
still have a few tangled edges and triangles with lousy
quality. Hence, we propose a heuristic-based remesh-

117

Figure 13: Remeshed and quality improved maple
leaf geometry

ing approach to improve triangle quality quickly. An
overview of the same can be seen in algorithm 6. In
all our numerical experiments, this approach seems to
improve the mesh quality vastly.

Algorithm 6: Remeshing and quality improve-
ment algorithm (Heuristic driven)

Result: Quality improved mesh
Compute the bounding box of the wrapped mesh
and its diagonal length and o↵set the diagonal
length by 0.005 (Based on our experimental
observation);

Remove degenerated triangles;
Split long edges (edges longer than the diagonal
length with our o↵set);

Store the num vertices at this level;
while current num vertices ! =
previous num vertices do

Collapse short edges (threshold of 1e-06);
Remove obtuse triangles (Above 150.0);

end
Resolve self intersections;
Remove duplicated faces;
Remove isolated vertices;

An additional stopping criterion can ensure the ter-
mination of the algorithm. One can also replace this
heuristic with a more sophisticated remeshing algo-
rithm such as the one driven by di↵erent error metrics.
However, we understand that this heuristic-based ap-
proach is not very elegant. One can replace our al-
gorithm with a black-box remeshing algorithm from
libraries like CGAL[16]. Since we produce a genus

zero surface in most cases, spherical parameterization
based remeshing approaches can also be considered an
alternative. However, we found meshes at the projec-
tion stage suitable for numerical simulations. It is not
within the scope of our work to investigate a dedicated
remeshing approach. In fact, for the numerical exper-
iments shown in the subsequent section, we use the
geometries from the projection stage and ignore the
remeshing routine altogether.

4. NUMERICAL EXPERIMENTS

We perform experiments on a wide variety of input
geometries that help underscore the robustness of our
algorithm. We noticed that even in the case of entirely
ill-formed artefacts from industry, we could guarantee
some form of a Genus simplified geometry. A wide
variety of surfaces and their shrink-wrapped counter-
parts are shown in appendix B. In all cases, our al-
gorithm produced a valid two-manifold surface mesh
without any holes, and the Hausdor↵ distance was
within a reasonable range (99% of the vertices are close
to the original mesh).

4.1 E↵ect of topological sphere level

As stated earlier, “Topological sphere level” is the
only parameter in the algorithm. In simpler terms,
this is the number of layers the algorithm needs to
travel along the positive normal direction of an input
surface. It can be increased or decreased depending
on the size of the biggest hole in the geometry. Since
the algorithm is fast, the topological sphere level value
can be chosen even on a trial and error basis. The
algorithm could be allowed to propagate to the maxi-
mum possible level. However, this might significantly
increase the algorithm’s run time, which is entirely
unnecessary in our case. We show some examples of
the same in section 5.2.1 and some of its pleasant side
e↵ects.

4.2 E↵ect on bad quality geometries

We show a car geometry in figure 16 which is missing
most of its bottom. We use a coarser grid to pro-
duce a simplified approximation of the car geometry.
It can be seen that our algorithm produces a tight
wrap even in this case and simplifies the geometry.
Since the o↵set computation does not require an ex-
act segmentation of the geometry boundary, the hole
free o↵set computation works even in such extremely
poor quality geometries. The topological sphere level
can be tuned on a trial and error basis for such ge-
ometries until the complete geometry is wrapped. In
the case of skull geometry shown in figure 14, it has
many non-manifold edges and has many disconnected
components. There is no pre-processing requirement

118

on either of the geometries, and their shrink-wrapped
results are shown in figure 15 a perfect two-manifold
mesh without any leaks.

4.3 Boosting projection quality using ex-
ternal sources

We mentioned earlier that we double wrap the geome-
tries to achieve a better projection quality. This is
primarily due to the geometric structure of morpho-
logical erosion. It leads to a competitive projection
which can be beneficial in many cases. For example,
if the bottom is entirely missing, rather than failing
to close the hole in the bottom, vertices are projected
to the next closest area, which would be the bound-
ary of the bottom hole. This ensures a good priori for
the next wrapping stage. Hence, the double wrapping
stage would provide a better distribution of triangles.
This is an undesirable yet pleasant side e↵ect of the
competitive nature of the projection of the algorithm
to stick to whatever comes first. However, if the geom-
etry practitioner/end-user in the industry would like
to have better conditioning for such holes / even topo-
logical holes, using external sources would help. In
our earlier work [6], we proposed a semi heuristic al-
gorithm to detect topological and geometric cavities in
a triangulated mesh. Just like our present algorithm,
it does not need a perfect two manifold mesh. We
show later in section 5.2 that this can also be useful
for selective Genus closing.

4.4 Runtime analysis

The algorithm proposed in this paper is memory
bound, and memory usage depends entirely on the size
of the octree and the number of triangles in the in-
put mesh. Even though we mentioned the Topological
sphere level as the only parameter in the algorithm,
di↵erent geometric parameters related to octree could
also be tuned towards requirements. All the investi-
gations in the paper are carried out with a fixed ini-
tial grid size of 64 x 64 x 64 and 3 levels of spheri-
cal refinement, and it gives satisfactory results. The
code was implemented in C++ with OpenMP paral-
lelization, and the software is available as a binary (for
Linux) for reproduction. However, the source code is
not available due to commercial interests. All the re-
sults were obtained on a laptop with a 12 core Intel
Core i7 CPU with 64 gigabytes of RAM. The program
runtime (in minutes) versus the number of triangles in
the input mesh is shown in figure 17. Our algorithm
can scale linearly with the increasing number of tri-
angles. The largest triangulation in our investigation
had 23 million triangles, and the algorithm converged
to a manifold surface in under 10 minutes.

5. APPLICATIONS AND VARIANTS

5.1 Surface PDE

Surface-based finite element methods[17] and Bound-
ary element methods (BEM) have gained a lot of mo-
mentum in recent years among the geometry process-
ing and engineering research community in general.
Our goal here is to show the shrink-wrapped geome-
tries suitability for surface PDE computations on stan-
dard benchmark problems. For the first example, we
obtain selective eigenmodes of the Laplace equation
(using Laplace Beltrami operator) based on the work
of Vallet, B et al. [18]. For the second example, we
solve for Geodesic distance using the heat method on
our shrink-wrapped geometries. There are numerous
PDE’s and applications besides the ones shown in our
investigation. We make no e↵ort to suggest that we
modified or improved the methodology in either of
these examples. We only use these as an example to
show that our geometries are suitable for analysis.

5.1.1 Eigenmode decomposition of the
Laplace equation

Eigenmode decomposition of the Laplace equation[18]
can be helpful to represent functions on surfaces. It
is most useful in real-time deformation problems. We
use the famous Laplace-Beltrami operator to obtain its
eigen decomposition on shrink-wrapped geometries. A
generalized eigenvalue problem is of the form.

Ax = �Bx (1)

Here we use Laplace-Beltrami operator L for A and
use per vertex mass matrix M of the shrink-wrapped
surface as B. The Eigen mode functions can then be
represented as follows[18]:

f =

nX

i=1

ai�i (2)

where ai represents the scalar coe�cients and �i rep-
resents the Eigen functions which satisy ��i = �i�i.
Hence, we end up with an equation as follows

L�i = �iM�i (3)

For low-frequency modes, it produces smooth and
slowly changing functions on the shrink-wrapped
mesh. For a more thorough understanding of the the-
ory of manifold harmonics, it is best to refer to Vallet,
B et al. [18]. We only chose Eigen decomposition as an
example problem for showcasing the analysis suitabil-
ity of our shrink-wrapped surfaces, and a detailed ex-
planation of the underlying theory is beyond the scope

119

Figure 14: A human skull geometry with atleast 15 non-manifold edges and many disconnected components. Various
defects in a skull geometry (gaps, disconnected tooth, non-manifold edges and holes) are highlighted. It also includes
the bottom view of the skull which is entirely deformed.

of our work. We solve for the first three Eigenmodes
on a shrink-wrapped surface.

5.1.2 Geodesic distance (Heat method)

Geodesic distance has numerous applications in ge-
ometry processing and physics-driven simulations.
We calculate the geodesic distance using the heat
method[19] on our shrink-wrapped meshes. Geodesic
distance contours at di↵erent point sources show a
smooth transition of the heat contours across the sur-

face. Furthermore, there is no noticeable noise any-
where in the scalar field, proving the algorithm’s ro-
bustness in producing simulation capable meshes.

5.2 Selective Genus Closing

Almost all of the shrink wrapping algorithms are ei-
ther used as remeshing (i.e. preserve the genus of the
input mesh) or surface simplification algorithms (i.e.
turn the input mesh into a topological sphere or Genus
zero). However, there are scenarios where an indus-

120

(a) Wrapped (Front View) (b) Wrapped (Bottom View)

Figure 15: Wrapped skull geometry (Watertight geometry with a genus zero)

(a) (b)

(c)

Figure 16: Bad quality geometries shrink wrapped (Car with hole) - Input mesh along with wrapped output mesh.
It can be observed that the bottom of the car is completely closed.

trial practitioner is only interested in closing selective
holes. We could not find any other works that directly
address this problem. We propose two ways to do this

in our paper.

• Implicit Genus control

121

Figure 17: Run time comparison for increasing num-
ber of triangles

• Explicit Genus control

5.2.1 Implicit Genus control

In this case, no additional algorithms are required.
However, to achieve the necessary genus, it can be an
iterative process. We leverage the topological sphere
level’s ability to control the genus implicitly. A lower
value for the topological sphere level usually leads to
incomplete closing of the geometry. This can be a de-
sirable side e↵ect in the case of selective Genus control.
We have an example geometry in figure 20 below with
a huge topological hole in the top and a smaller one in
the bottom. The e↵ects of di↵erent topological sphere
levels are shown in the figure 21. It can be observed
that a value of 50 yields a Genus zero surface; how-
ever, at a level 10, only the smallest hole in the mesh
is closed.

5.2.2 Explicit Genus control

Explicit Genus control requires prior information
about the topological holes in the mesh. Therefore,
we use our topological hole detection algorithm to ac-
complish the same. In this case, topological hole infor-
mation is extracted from the hole detection algorithm,
and this information is used as a boundary condition in
the dilation stage. The hole detection algorithm would
provide the centre, and the radius of the holes and the
desired hole radius can be given as a criterion. The
radius criterion is only suitable for circular holes. If
the geometry also has non-circular holes, hole surface
patches from the algorithm can be used to compute
the surface area of individual holes. This can be used
as a further filtering criterion. Then the faces which
are part of the desired holes are not di↵used into the

(a) Mode 1

(b) Mode 2

(c) Mode 3

Figure 18: First 3 Eigen modes of a shrink wrapped
mesh

volume, thus preserving the structure. The algorithm
2 would have to be modified for Explicit Genus con-
trol, and it can be seen in algorithm 7

As explained earlier, the dilation process happens layer
by layer. Therefore, to achieve selective genus control,
one would have to ignore the blacklisted boundary cells
for the dilation process.

122

(a) Side

(b) Top

(c) Bottom

Figure 19: Geodesic distance computed on shrink
wrapped meshes at di↵erent sources using Heat
method

5.3 Fluid Volume Extraction

Fluid volume extraction is yet another excellent appli-
cation of our shrink wrapping algorithm. If the goal is
to generate the fluid volume or topological holes in a
geometry, simple boolean operations help extract these
volumes. There are practical di�culties in extracting
topological holes in a geometry (multiple holes) since

(a) Bigger hole

(b) Smaller hole

Figure 20: An example geometry with a big hole on
top and a small hole at the bottom

there will be a lot of noise to sift through. However,
suppose the industrial practitioner is interested in ex-
tracting a single fluid volume like a fluid volume of an
interior of a car. In that case, it is possible to auto-
mate the process entirely. Once we have a Genus zero
shrink-wrapped surface, a straightforward algorithm
can be laid out with the following steps

1. Subtract the genus zero shrink wrapped geometry
from the input geometry

2. Split the result based on connectivity and com-
pute the component volumes

3. Largest volume geometry is the fluid volume

We did not implement any of the boolean operations
for this algorithm and used the existing functionalities
from CGAL[16].

Smoothed particle hydrodynamics (SPH) is a meshless
method requiring a volumetric point distribution for
numerical simulation. In example 1, we show a partial
car in figure 22 that has been shrink-wrapped, and its

123

(a) Level 10 (top)

(b) Level 10 (bottom)

(c) Level 50

Figure 21: Shrink wrapped geometry for di↵erent
topological sphere levels

fluid volume has been extracted for a smoother particle
hydrodynamic simulation.

In the second example, we show a case for raspberry
pi, and its shrink-wrapped geometry and the subse-
quent fluid volume in figure 23. Again, it can be seen
that our algorithm produces a very clean fluid volume.
The results can be further de-noised to turn them into
developable surfaces.

5.4 External aerodynamic simulation

One of the primary focuses of our investigation is ex-
ternal aerodynamic simulations. Since they do not re-
quire all the internal components of a geometry, a sim-
plified geometry can be considered during early proto-
typing. We ran the RANS simulations on a generic
shrink wrapped car geometry using OpenFoam[20].
The car geometry was meshed using the snappy-
HexMesh tool from OpenFoam with a base refinement
of 10 cells in all three directions. We considered the

Algorithm 7: Dilation of the input surface (with
Genus control)

Result: Dilated surface stored in the voxelized
mesh

Detect holes using hole detection algorithm;
Mark the cells that intersect with the holes and
mark them as blacklisted cells;

Initialize interior cells as seed cells;
Ensure that the blacklisted cells are removed
from the initial seed cells;

Initialize current topological sphere level to 0;
while current level  topological sphere level
do

Initialize a newer seeds cells id vector;
forall cells in seed cells do

forall cell neighbours in voxelized mesh do
if Neighbour is outside cell then

Add neighbour to
newer seeds cells id;

end

end
Set newer seeds cells id as seed cells;
Increment current topological sphere level;
if current topological sphere level eq
topological sphere level then

Store these cells as
topological sphere cells;

end

end

end

entire car geometry for numerical simulation without
using any symmetry boundary conditions. We used a
steady-state incompressible SIMPLE solver for solving
the Reynolds Averaged Navier Stokes equation with a
k-! SST turbulence model. A velocity inlet with a
velocity of 20 ms was used as the boundary condi-
tion. The shrink-wrapped geometry produces physi-
cally consistent results, as shown in the figure 24. We
have not made a rigorous mathematical analysis or
experimental verification for these simulations. We
only performed this simulation to show the suitability
of shrink-wrapped geometries for computational fluid
dynamic simulations.

6. COMPARISON AGAINST SIMILAR
APPROACHES

Many recent papers in geometry processing use deep
learning-based approaches to solve geometric prob-
lems. One such recent article is Point2Mesh[21] where
the authors shrink wrap an oriented point cloud based
on self-similarity. Their algorithm is built on mesh-
based convolutional neural networks and similar algo-
rithms found in computer vision. We extended our

124

(a) Wrapped Car

(b) Car fluid volume

Figure 22: A Partial car geometry that has been
shrink wrapped and its fluid volume extracted as a vol-
umetric point cloud. Volumetric point clouds are oth-
erwise considered as particle distributions for mesh-
less methods like Smoothed particle hydrodynamics
method.

shrink wrapping algorithm for point clouds to make a
fair comparison. Since we rely on generalized wind-
ing numbers for inside-outside segmentation, there is
a straightforward extension to point clouds. Usually,
this is done by computing point areas using a Voronoi
diagram[12]. However, we found that such a complex
approximation is not always required. We compute a
series of local triangulations and consistently ensure
their orientation using a greedy approach. Hence, our
algorithm does not require an oriented point cloud.
This modification ensures that we do not have to mod-
ify the rest of our shrink wrapping algorithm. Once
the inside-outside segmentation is done in the octree,
the rest of the algorithm remains the same. We chose
the same geometries as the authors, and we found that
we produce similar quality results in most cases. While
we provided a variety of heuristics to avoid this in a
surface mesh-based approach, we did not thoroughly
investigate the same for point clouds since it was be-
yond the scope of our work.

An observation can be made that our algorithm com-
plements the authors’ work nicely. If our algorithm
is considered an initial priori, it improves the con-

(a) Raspberry pi case geometry

(b) Wrapped Geometry

(c) Fluid volume

Figure 23: A raspberry pi case and its fluid volume

vergence speed of Point2Mesh algorithm. For exam-

125

Figure 24: External aerodynamic simulation of a
generic car model (shrink wrapped)

ple, their algorithm relies on an initial mesh computed
based on a convex hull approach and converges to a
ground truth based on self-similarity. However, our
algorithm’s mesh before the projection stage serves as
a better priori. It also converges the Point2Mesh[21]
algorithm in a fraction of the time. It can also be no-
ticed that their approach is not meant for mechanical
parts, and features found in CAD geometries cannot
be preserved without significant modifications. Our
goal is to produce genus-zero surfaces for aerodynamic
simulations. We optionally provide variants that allow
various levels of control over the genus of the wrapped
surface. However, their approach is strictly a surface
construction approach and does not consistently pro-
duce zero surfaces. It can only be achieved by stopping
the algorithm halfway; the reconstruction might not
be accurate globally in such cases, and a projection
might be required.

7. LIMITATIONS

Since the proposed algorithms are built on top of mor-
phological operators, they inherit the drawbacks of
mathematical morphology. In concave regions, the
erosion stops once it hits the closest triangle in the
mesh. This leads to over closing of specific features in
the mesh. However, since the primary application for
our algorithms is external aerodynamic simulations,
these do not make a massive di↵erence in the macro
scale. There are scenarios, however, where the algo-
rithm can significantly alter the geometry. The tech-
niques listed in section 4.3 can alleviate this problem
to a large extent. However, no algorithmic guarantees
can be made here.

8. CONCLUSION

We presented a practical algorithm that can perform
Genus simplified shrink wrapping for polyhedral sur-
faces with the help of morphological operators. We
also show that these algorithms extend easily for point
clouds. One can implement the algorithms proposed in

this paper in the same mesh used for numerical simu-
lation, thereby avoiding another expensive volumetric
mesh generation process. The algorithms also run at a
linear runtime and are not heavily CPU bound. Fur-
thermore, user-defined constraints and additional in-
teractivity could lead to further improvements in the
output quality of the algorithm. Finally, our fluid vol-
ume extraction variant of the algorithm can signifi-
cantly benefit industrial fluid dynamic practitioners.

ACKNOWLEDGEMENTS

Österreichische Forschungsförderungsgesellschaft has
funded this research under an industrial Ph.D. grant
titled “HIOMESH”.

References

[1] Attene M., Campen M., Kobbelt L.
“Polygon Mesh Repairing: An Appli-
cation Perspective.” ACM Comput.
Surv., vol. 45, no. 2, Mar. 2013. URL
https://doi.org/10.1145/2431211.2431214

[2] Esteve J., Brunet P., Vinacau A. “Approximation
of a Variable Density Cloud of Points by Shrink-
ing a Discrete Membrane.” Computer Graphics
Forum, vol. 24, no. 4, 791–807, 2005

[3] Nooruddin F., Turk G. “Simplification and re-
pair of polygonal models using volumetric tech-
niques.” IEEE Transactions on Visualization and
Computer Graphics, vol. 9, no. 2, 191–205, 2003

[4] Lee Y.K., Lim C.K., Ghazialam H., Vardhan H.,
Eklund E. “Surface Mesh Generation for Dirty
Geometries by Shrink Wrapping using Cartesian
Grid Approach.” P.P. Pébay, editor, Proceedings
of the 15th International Meshing Roundtable, pp.
393–410. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006

[5] Wang Z.J., Srinivasan K. “An adaptive Carte-
sian grid generation method for ‘Dirty’ geome-
try.” International Journal for Numerical Meth-
ods in Fluids, vol. 39, no. 8, 703–717, 2002

[6] Vijai Kumar S., Vuik C. “A Simple and Fast Hole
Detection Algorithm for Triangulated Surfaces.”
Journal of Computing and Information Science
in Engineering, vol. 21, no. 4, 02 2021. URL
https://doi.org/10.1115/1.4049030. 044502

[7] Najman L., Talbot H. Introduction to
Mathematical Morphology, chap. 1, pp. 1–
33. John Wiley & Sons, Ltd, 2013. URL
https://doi.org/10.1002/9781118600788.ch1

126

Figure 25: Few point cloud geometries from Point2Mesh[21] along with its output. It can be noticed that our wrap
algorithm produces equally smooth results except for a few artefacts created as a result of morphological operators.

[8] Jeulin D. Analysis and Modeling of 3D
Microstructures, chap. 19, pp. 421–444.
John Wiley & Sons, Ltd, 2013. URL
https://doi.org/10.1002/9781118600788.ch19

[9] Chen Z., Panozzo D., Dumas J. “Half-Space
Power Diagrams and Discrete Surface O↵sets.”
IEEE Transactions on Visualization and Com-
puter Graphics, vol. 26, no. 10, 2970–2981, 2020

[10] Sellán S., Kesten J., Sheng A.Y., Jacobson
A. “Opening and Closing Surfaces.” ACM
Trans. Graph., vol. 39, no. 6, Nov. 2020. URL
https://doi.org/10.1145/3414685.3417778

[11] Gärtner B. “Fast and Robust Smallest Enclosing
Balls.” Proceedings of the 7th Annual European
Symposium on Algorithms, ESA ’99, pp. 325–338.
Springer-Verlag, London, UK, UK, 1999

[12] Barill G., Dickson N., Schmidt R., Levin D.I.,
Jacobson A. “Fast Winding Numbers for Soups
and Clouds.” ACM Transactions on Graphics,
2018

[13] Liu S., Wang C.C.L. “Fast Intersection-Free O↵-
set Surface Generation From Freeform Models
With Triangular Meshes.” IEEE Transactions
on Automation Science and Engineering, vol. 8,
no. 2, 347–360, 2011

[14] Lorensen W.E., Cline H.E. “Marching Cubes: A
High Resolution 3D Surface Construction Algo-
rithm.” Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’87, p. 163–169. Association
for Computing Machinery, New York, NY, USA,
1987

[15] Blanco J.L., Rai P.K. “nanoflann: a C++
header-only fork of FLANN, a library for
Nearest Neighbor (NN) with KD-trees.”
https://github.com/jlblancoc/nanoflann,
2014

[16] The CGAL Project. CGAL User
and Reference Manual. CGAL Edi-
torial Board, 5.3 edn., 2021. URL
https://doc.cgal.org/5.3/Manual/packages.html

127

[17] Alexa M., Wardetzky M. “Discrete Lapla-
cians on General Polygonal Meshes.” ACM
Trans. Graph., vol. 30, no. 4, Jul. 2011. URL
https://doi.org/10.1145/2010324.1964997

[18] Vallet B., Lévy B. “Spectral Geometry Process-
ing with Manifold Harmonics.” Computer Graph-
ics Forum, vol. 27, no. 2, 251–260, 2008. URL
https://doi.org/b24vx4

[19] Crane K., Weischedel C., Wardetzky M. “The
Heat Method for Distance Computation.” Com-
mun. ACM, vol. 60, no. 11, 90–99, Oct. 2017.
URL http://doi.acm.org/10.1145/3131280

[20] Foundation T.O. “OpenFOAM
v8 User Guide.”, 2021. URL
https://cfd.direct/openfoam/user-guide

[21] Hanocka R., Metzer G., Giryes R.,
Cohen-Or D. “Point2Mesh: A Self-Prior
for Deformable Meshes.” ACM Trans.
Graph., vol. 39, no. 4, jul 2020. URL
https://doi.org/10.1145/3386569.3392415

[22] Jacobson A., Kavan L., Sorkine-Hornung O. “Ro-
bust Inside-Outside Segmentation Using Gener-
alized Winding Numbers.” ACM Trans. Graph.,
vol. 32, no. 4, Jul. 2013

[23] Carrier J., Greengard L., Rokhlin V. “A
Fast Adaptive Multipole Algorithm for Parti-
cle Simulations.” SIAM J. Sci. Stat. Com-
put., vol. 9, no. 4, 669–686, Jul. 1988. URL
https://doi.org/10.1137/0909044

APPENDIX A: GENERALIZED WINDING
NUMBER BASED SOLID ANGLE FOR

SURFACE SEGMENTATION

We rely on a classical di↵erential geometry idea called
winding numbers, which uses solid angles for surface
segmentation. For a given surface S, for a query point
p, the solid angle is the signed surface area of the
projection of S onto the unit sphere centred at p as
shown in figure 26. We rely on its definition in discrete
setting[22].

!(p) = 2 ⇤ tan�1

✓
det([abc])

abc + (a.b)c + (b.c)a + (c.a)b

◆

Triangle = {vi, vj , vk}
a = vi � p,b = vj � p, c = vk � p

a = kak
b = kbk
c = kck

(4)

Figure 26: Solid angle of a query point

Given this relation for solid angle given by !(p), we
can compute winding number as follows

w(p) =
PnTriangles

n=1

1

4⇡
!f (p)

For every query point, the direct implementation w(p)
would require the contribution of all triangles in the
surface mesh. Since this would yield a solution with
time complexity of O(n2), we rely on the work of
Gavin Barill et al[12]. They proposed a fast multi-
pole method[23] style implementation that uses direct
computation for triangles near the query point and
approximates the result everywhere else, making it a
O(log(n)) algorithm.

APPENDIX B: VARIOUS INPUT
GEOMETRIES AND THEIR SHRINK

WRAPPED RESULTS

We show a few geometries and their shrink-wrapped
results. The results shown below are shrink-wrapped
with a topological sphere level of 15. In all the
cases shown below, our algorithm could produce a
genus zero surface consistently. It also creates a two-
manifold mesh suitable for external aerodynamics or
finite element analysis simulations.

128

Figure 27: A variety of geometries and their shrink wrapped results.

129

SMOOTHING OF SHELL MESHES ON FACETED B-REP
GEOMETRY

Harold J. Fogg1 Jonathan E. Makem1

1Meshing & Abstraction, Simulation and Test Solutions, Siemens Digital Industry Software, 112 Hills
Road, Cambridge, UK. jonathan.makem@siemens.com

ABSTRACT

Most smoothing methods are designed to move nodes in the interior of a domain whilst holding the nodes on
boundaries fixed. By incorporating a stage to move nodes along edges a further improvement in mesh quality may
be achieved. This is particularly true of meshes on complex B-rep models with many thin faces and curved edges.
The work presented here describes a two-stage process for smoothing shell meshes on the edges and faces of a faceted
B-rep geometry. The first stage involves the global smoothing of the mesh to generally improve its quality by
Laplacian smoothing along edges with tangent line constraints and variational smoothing on faces. The second local
optimisation smoothing stage is designed to make additional local adjustments to the mesh by targeting a specific
element quality metric subject to constraints. Again, nodes on edges as well as on faces are smoothed. The approach
is demonstrated on a selection of geometries of varying complexity.

Keywords: mesh smoothing, mesh optimisation

1. INTRODUCTION

On models of industrial complexity even the most ad-
vanced mesh generators will produce imperfect initial
meshes that require post processing before they are fit
for purpose. In order for the particular simulation to
be performed e�ciently with fidelity to the underlying
physics and with the appropriate accuracy the mesh
must fulfil certain quality criteria. Unfortunately, the
quality criteria are problem dependent and an accept-
able mesh for one simulation may be inadequate for
another. Certain criteria are almost universally re-
quired, such as non-negative element Jacobians, and
others are treated as “good rules of thumb”. Typically,
element quality metrics such as skew, aspect-ratio, ta-
per, warp, distortion etc. (see e.g. [1]) are required to
fall within a specified range.

There are two broad categories of approach for mesh
quality improvement: 1) Topological improvement
methods such as edge swap, element merge, etc. 2)
Smoothing where nodes are repositioned. Both are
needed in practice. This paper presents smoothing
methods in the second category. Two smoothing
methods are outlined, the first to e�ciently move all
the nodes of the mesh to improve its general quality

overall and the second to make slight local adjustments
that improve specific element quality metrics which are
di�cult to target globally.

2. RELATED WORK

Ruiz-Girones et al. [2] presented a hierarchical iter-
ative approach whereby a two stage smoothing and
untangling procedure is used to move interior nodes
as well as boundary nodes. The technique is applied
to analytic CAD geometries and cannot be directly
applied to polygonalised faceted representations of ge-
ometry. The Gauss-Seidel scheme that the authors
use for computing and updating the position of the
new node locations may be slow to converge on cer-
tain geometries where nodal perturbation is substan-
tial. The single objective function that the authors use
will not improve element quality measures which are
not strongly correlated with mesh distortion such as
Taper for example. The models used to demonstrate
the e↵ectiveness of the approach are relatively basic in
comparison to the models shown in this work (num-
ber of edges and faces ⇠100 versus ⇠1k). An overall
running time in the order of minutes quoted by the au-
thors suggests that the technique is computationally

130

expensive.

Garimella et al. [3, 4] reported a procedure to improve
the quality of complex polygonal surface meshes on
faceted geometries. Again an iterative approach is
used and the mesh vertices are repositioned using a
non-linear optimisation process. More precisely, two
methods are used in the optimisation procedure. The
first approach minimises a global condition number
and the second method uses a Reference Jacobian Ma-
trix (RJM) to improve mesh quality whilst keeping
nodal perturbation to a minimum. The authors don’t
report exact computation times but instead compare
one approach against the other to evaluate computa-
tional e�ciency as a percentage. All the geometries
used are quite simple closed surfaces (although com-
plex for the time) and in some cases the results do not
honour the boundary edges of the geometry.

Shivanna et al. [5] proposed a parametrisation and
projection-based technique for optimisation of quad
shell meshes on underlying triangulated surfaces. The
main limitation of the approach is that the nodal per-
turbation is restricted to surfaces with no infrastruc-
ture in place to support node movement along bound-
aries. The authors use an iterative scheme to update
the nodal position on a node-by-node basis. The com-
putational e�ciency of the approach has not been eval-
uated.

Escobar et al. [6] described a Gauss-Seidel approach
for tri mesh quality improvement by minimising an
objective function derived from algebraic quality mea-
sures of the local mesh in the immediate vicinity of
the node being perturbed. Constraints are imposed to
ensure the objective function restricts the node within
a feasible region. The authors construct a local pa-
rameter space via orthographic projection but this is
not ideal in the vicinity of G1 discontinuities. The ap-
proach is not applied to quad meshes and nodal per-
turbation along edges is not possible. The e↵ectiveness
of the method on complex geometries with many faces
and edges is not demonstrated.

Gargallo-Peiro et al. [7] developed a continuous opti-
mization procedure to improve the quality of meshes
on parametrised CAD surfaces by smoothing and un-
tangling. Initially, the optimisation process did not
consider the prescribed element size so the authors
also used the size-shape distortion measure that com-
bines the previous distortion measures to produce a
mesh that preserves a prescribed element size field
and generates well-shaped elements. Further work is
required to extend the untangling capability on such
meshes. The approach isn’t extended to smooth nodes
on edges.

The work presented here outlines a practical method
for smoothing large shell meshes on faceted B-rep

models of industrial complexity, unlike other meth-
ods which are demonstrated on simpler CAD models.
The smoothing of nodes on piece-wise linear geom-
etry edges is achieved without using parametrisation
derivatives which are not necessarily available. A com-
plementary local optimisation smoothing method is
also described which can be applied to nodes on geom-
etry faces and edges to target specific element quality
metrics. These methods are straightforward to imple-
ment and have reasonable execution times when run
on large meshes of complex models.

3. FACETED B-REP GEOMETRY

In 3D solid modelling or CAE software such as Sim-
center 3D [8] a boundary representation (B-rep) of the
modelling geometry is used. This comprises topolog-
ical components (faces, edges and vertices) and the
connections between them, along with geometric def-
initions for those components (surfaces, curves and
points, respectively). The geometric definitions may
be continuous mathematical equations (e.g. splines,
NURBS) or facetings where simply connected trian-
gles represent geometry faces and geometry edges are
described by polylines composed of triangle edges. In
Simcenter 3D the modelling geometry is always con-
verted to a faceted B-rep known as a ‘polygon geom-
etry’ which is then simplified and de-featured using
merging operations to eliminate artefacts and details
below the mesh size. The mesh is then generated on
the polygon geometry. The continuous geometry to
which the polygon geometry approximates is inferred
when needed by using a variety of numerical tech-
niques including triangular Bezier patches and Her-
mite interpolation.

The majority of shell meshing algorithms essentially
work in 2D and to apply them to 3D faces a bijec-
tive parametrisation is required. For faceted geome-
try faces a range of practical and robust methods are
available [9, 10].

4. GLOBAL SMOOTHING

The global smoothing procedure consists of five steps
as shown in Fig. 1. These are iterated over until the
solution converges or the number of iterations reaches
a prescribed maximum number. Pseudo-code for the
procedure is given in algorithm 1.

Algorithm 1: Global smoothing pseudocode

for i in range (num i t e r a t i o n s) :
a c t i v e edges = edges not converged
smooth a c t i v e edges

a c t i v e f a c e s = f a c e s not converged
for f a c e in a c t i v e f a c e s :

smooth f a c e

Geometry edges and faces are marked as converged if

131

Input: 2d shell mesh on
geometry edges and

faces,
n_max = max num

iterations

1. Smooth
nodes on

edges along
tangents

in 3D

i � n_max
or

converged?

i = 0

++i

FINISH

YES

NO

START

before after

2. Closest
point

projection of
nodes to

edges in 3D

3. Update
edge node

2D
coordinates
(per face)

4. Smooth
face meshes
in 2D space

5. Update
face node

3D
coordinates

distortion
0

0.5

1

before after before after

Figure 1: Global smoothing procedure

the maximum movement of a node in the previous iter-
ation is below a small percentage of the local element
size (e.g. 4%).

In Fig. 1 the meshes are coloured by element distor-
tion [11], a general element quality metric for triangles
and quadrilaterals where ideal elements have a value
of 1 and degenerate elements a value of 0.

4.1 Smooth nodes on geometry edges
along tangents in 3D

Laplacian smoothing is used with tangent constraints
to smooth the nodes along a geometry edge. The
unique solution is the distribution of node positions, x,
that minimises the sum of squared distances between
neighbouring nodes (i.e. those that are connected by
element edges),

argmin{xi}

#mesh nodesX

i=0

ei,

ei =

#neighboursiX

j=0

↵ij

2
||xj � xi||2 +

�i

2
||xi � xi0||2.

(1)

The coe�cient ↵ij can be chosen to prioritise cer-
tain edges and also to reduce the dominance of long

edges by setting the values as inversely proportional
to the initial edge length squared. The second term of
Eqn. (1) with coe�cient �i (e.g. =0.0005) is added to
to penalise large displacements from the initial posi-
tions, xi0. This is a regularisation strategy. Since the
initial positions are reset in each iteration nodes may
move a long way from their pre-smoothing positions af-
ter a few iterations. Adding constraints to keep nodes
on curved geometry edges would make the problem
non-linear. Instead tangent line constraints are added
to keep the nodes close to the geometry edges, but not
exactly on them. The nodes are projected back to the
edge in the subsequent step.

Figure 2: Laplacian smoothing of node on geometry edge

Tangents are approximated by the unitised displace-
ments from the previous node to the next node, as
show in Fig. 3 (a). The tangents that are computed
are thus una↵ected by small shape details of the ge-

132

ometry edge that are not captured by the initial mesh
discretisation.

Figure 3: Approximating tangent vectors

If the angle between the previous node, the central
node and the next node, ✓, is below a tolerance, ✓max,
then the node is fixed and not smoothed. Without
doing this there is a risk that the local tangent ap-
proximation of the geometry edge is too crude and
problems with mesh tangling could occur during the
next projection stage. Experiments have found that
using ✓max = 80� avoids such issues.

For a node on a geometry edge, as shown in Fig. 2,
at initial position xi0 with tangent vector t, Laplacian
smoothing with a tangent constraint satisfies

argminxi
ei (2)

s.t. gi1 = (xi � xi0) · n1 = 0, (3)

gi2 = (xi � xi0) · n2 = 0, (4)

where n1 and n2 are two mutually perpendicular unit
vectors are perpendicular to the edge tangent vector t.
A possible choice for n1 and n2 are the the normal and
bi-normal in a Frenet-Serret frame. Using Lagrange
multipliers the Lagrangian is

Li(xi, �1, �2) = ei(xi) � �1gi1(xi) � �2gi2(xi). (5)

The solution is an extremum,

rxi,�1,�2Li = 0 (6)

)
(

@Li
@xi

= @ei
@xi

� �1
@gi1
@xi

� �2
@gi2
@xi

= 0,
@Li
@�i

= �gi = 0.
(7)

The equation @Li
@xi

= 0 can be expanded and simplified

to

#neighboursiX

j=0

(↵ij + �i)xi �
#neighboursiX

j=0

↵ijxj

+�1n1 + �2n2 = �ixi0. (8)

The nodes on edges may be smoothed one at a time
in a local iteration scheme or alternatively the nodes

on edges can be smoothed together in one shot in
a global linear system. Equations (3), (4) and (8)
give a linear system of 5 equations with 5 unknowns
(xi, yi, zi, �i1, �i1) for a single node. The nodal contri-
butions can be assembled together into a global linear
system for the entire mesh and decomposed by Schur
complement to give a sparse system of dimension 5
times the number of free nodes. For a row correspond-
ing to a free node the number of non-zero entries is
three times the number of free nodes that are adja-
cent to the node.

4.2 Closest point projection of nodes to
geometry-edges

A simple closest point algorithm is used to project the
smoothed edge nodes back onto the polyline geome-
try edge. This algorithm has quadratic complexity so
it becomes prohibitively expensive if the polyline has
many points. If the polyline has more points than
O(102) then spatial trees (e.g. R-trees) can be used to
reduce the expense of the algorithm.

After the global smoothing has been completed the
nodes are lifted o↵ the polyline geometry edges and
repositioned on the inferred continuous geometry edge
by cubic Hermite interpolation.

4.3 Update geometry edge node 2D posi-
tions (per face)

Since the 3D positions of the nodes on the geometry
edges have been moved in steps 1 and 2 the 2D posi-
tions have to be updated. This can be done e�ciently
using the closest point projection data of step 2. The
closest polyline segment has been identified and the
2D positions of the closest point along the segment can
be calculated by linearly interpolating between the 2D
positions of the facet vertices at the start and end of
the segment. For every node on an edge its 2D po-
sitions of every connected face (1 for a free edge, 2
for a manifold edge, +2 for non-manifold connections)
are updated. On seam edges (see e.g. Fig. 9) nodes
have two corresponding 2D positions and both must
be updated.

4.4 Smooth face meshes in 2D space

In response to the updated positions of the nodes on
edges the interior nodes on the faces are smoothed with
the edge nodes held fixed. All the interior nodes may
be smoothed or to improve computational e�ciency a
subset of nodes in proximity to edges can be smoothed.
The subset can be defined based on:

adjacency: a specified number of layers from the
edges (0 – no face smoothing, 1 – the neighbours

133

of the edge nodes, 2 – the neighbours of neigh-
bours of the edge nodes, etc.), or
distance: the nodes within an o↵set distance from
the edges.

For the smoothing of the mesh in 2D the variational
smoothing scheme of Knupp [12, 13] is used. It is as-
sumed that there is a twice di↵erentiable map, x, for
every local region of the mesh to go from 2D refer-
ence space (⇠, ⌘,) to 2D physical space (u, v) (which
is a face’s parametric space). The element shapes in

reference space physical space

Figure 4: Reference to physical space map

reference space are ideal and unit in length, e.g. equi-
lateral triangles and squares. A variational principle
is a rule for evaluating an entire mesh to give a sin-
gle real number. A smoothed mesh minimises some
variation principle, typically of the form

I[x] =

ZZ
Hd⇠ d⌘. (9)

The metric tensor, G, of the map from reference space
to physical space and it governs the shapes of the ele-
ments in physical space,

G =


g11 g12

g12 g22,

�
(10)

g11 = x⇠ · x⇠ (11)

g12 = x⇠ · x⌘ (12)

g22 = x⌘ · x⌘ (13)

Of practical interest are variational principles that are
expressed in terms of the metric tensor and relate to
geometric properties. Some important integrands are
listed in Tab. 1.

Principle H

Length Squared trG
Area Squared detG

Winslow trG
detG

Orthogonality g2
12

Combinations
P

i ↵iHi

Table 1: Some metric tensor based variational principle
integrands

The inverse map x�1 at a node n is assumed to equally
spread the neighbouring nodes mi around a unit cir-
cle as shown in Fig. 5. Finite di↵erence stencils are

reference space physical space

Figure 5: Reference to physical space inverse map

derived for approximating the first and second deriva-
tives of the map, xu, xv, xuu, xuv and xvv, by lin-
ear expressions using the positions of the neighbouring
nodes. For the case of a node with four adjacent el-
ements the diagonal nodes of adjacent quad elements
are also used in the stencil.

As described in [13], the Euler-Lagrange equation
which minimises the variational principle can be ex-
pressed in the form

T11xuu + T12xuv + T22xvv = 0. (14)

T11, T12 and T22 are 2 ⇥ 2 matrices with entries that
only involve xu and xv and partial derivatives of H
with respect to g11, g12,g22 and detG. The method of
Picard iterations can be used to solve this non-linear
system by treating T11, T12 and T22 as constants to
give a linearised system of dimension 2 ⇥ 2. This is
solved and followed by an update of the matrices T11,
T12 and T22. This is repeated for a few iterations until
the solution converges.

The node contributions of Eqn. (14) can be assembled
into a global system for a face. The dimension would
be the number of free nodes if the variational principle
is uncoupled with respect to the u and v coordinates
(Length Squared and Winslow) and twice that other-
wise. For a row corresponding to a particular free node
the number of non-zero entries is the number of free
nodes that are adjacent to the node for an uncoupled
variational principle and twice that otherwise.

Combining variational principles is useful to achieve
a compromise between the properties controlled by
each. No ideal combination exists in general so empir-
ical testing is required to find e↵ective weights for the
kinds of meshes that are expected. It has been found
that for quad-dominant body panel meshes an e↵ec-
tive combination of variational principles is Length
Squared, Area Squared and Orthogonality with the
weights 1.0, 0.01 and 0.01 at a reference length of 100.
Using a dominant weight for Length Squared means
that the numerical scheme is stable, whilst the small
weight for area prevents the mesh inverting and the
small weight for Orthogonality improves the element
shapes without causing instability.

134

4.5 Update face node 3D positions

The 3D positions of the face nodes that were smoothed
in the previous step must be updated. The bijective
parametrisation is stored simply as 2D positions at ev-
ery facet vertex. The standard operation for mapping
a point from 2D to 3D involves first finding the con-
taining or closest facet and then using the three 3D
positions of its vertices to interpolate the 3D point.
The first task can be done e�ciently using bounding
boxes and spatial hashing.

4.6 Results

Example results of the global smoother are shown in
Figs. 9, 7 and 6. Their timing data is given in Tab. 2
where the following notation is used:

nedge/face – the number of nodes on edges/faces
that were smoothed.
tinit – the time to initialise data structures.
tedge/face – the time taken to smooth the nodes
on edges.
tproj – the time taken to do all node projections
on edges.
ttotal – the total time taken.

All results were generated using a desktop machine
with a Intel Xeon CPU E3-1240 v6 at 3.70GHz (8
CPUs) with 64GB RAM. The algorithms are executed
in serial.

A swept hex mesh example is shown in Fig. 6.
The wall-faces (i.e the four-sided faces connecting
the source and target faces) are transfinite mapped
meshed which results in a high degree of distortion
in this case. By applying the global smoother to the
wall-face shell meshes before the generation of the vol-
ume mesh the quality of the final hex mesh is greatly
improved.

In Fig. 7 the global smoother is applied to a quad dom-
inant mesh on an Opel body panel [15] that was gen-
erated in Simcenter 3D for a transient dynamic crash
simulation. Elements in some thin fillet regions which
have been mapped meshed exhibit large distortion in
the initial mesh. This is significantly alleviated by
smoothing. Similarly, the skewed elements in the se-
ries of concentric annulus faces around an inner hole
are e↵ectively straightened after smoothing.

Fig. 9 shows an example of smoothing a quad mesh
on a curved pipe face. The pipe face was constructed
by revolving a circular profile curve around two or-
thogonal axes. A seam edge connecting the edge loops
was automatically added in the CAE software to fa-
cilitate the parametrisation of the face. Each node
along the seam has two 2D positions and both must
be smoothed and updated. Global smoothing signif-
icantly improves the mesh quality and in this case a

0 20 40
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 50 100 150 200 250 300
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(b)

(a)

sc
al

ed
 j
ac

ob
ia

n
sc

al
ed

 j
ac

ob
ia

n

#elements

#elements

Figure 6: Swept hex mesh without (a) and with (b)
smoothing the wall face meshes. Mesh sections are
shown on top. (Images generated using Hexalab [14].)

global system scheme is found to be more e↵ective
than a local iteration scheme. This will be further
discussed in the next section.

4.6.1 Local iteration versus global sys-
tem

There are two possible schemes for performing the
global smoothing of the mesh:

1. Local iteration – Sequentially visit each free node
and solve its new position treating the adjacent
nodes as fixed. If the node position is updated
immediately it is a Gauss-Seidel scheme.

2. Global system – Solve a global system (iteratively
if it is non-linear) for the positions of all free
nodes together in one shot.

The global system can be solved using a sparse system
solver, e.g. [16]. In our implementation a SuperLU
direct solver is used for matrices with less than 106

entries. For larger matrices the memory usage may

135

model #edges #faces nedge nface tinit tedge tface tproj ttotal

S O↵set (Local iteration) (Fig. 1) 6 4 136 1260 0.19s 0.32s 1.01s 0.08s 1.61s
Sweep (Local iteration) (Fig. 6) 15 6 247 782 0.16s 0.28s 0.47s 0.14s 1.06s
Body panel 1 (Figs. 7 and 8 (a)) 3138 1140 22120 39472

- Local iteration 12.29s 9.78s 5.87s 0.26s 28.20s
- Global system 12.32s 4.18s 5.73s 0.42s 22.65s

Body panel 2 (Fig. 8 (b)) 1170 423 8912 16308
- Local iteration 4.64s 3.37s 2.33s 0.12s 10.47s
- Global system 4.88s 1.25s 1.57s 0.14s 7.84s

Body panel 3 (Fig. 8 (c)) 2118 789 16245 28070
- Local iteration 8.19s 6.15s 3.57s 0.23s 18.13s
- Global system 8.70s 2.38s 1.63s 0.30s 13.01s

Pipe (Fig. 9) 3 1 121 1452
- Local iteration 0.19s 0.07s 0.77s 0.01s 1.03s
- Global system 0.20s 0.12s 1.43s 0.02s 1.77s

Table 2: Timings for global smoothing.

approach the heap memory limits and an indirect bi-
conjugate gradient stabilized solver is used which is up
to ten times slower.

The two main advantages of the local iteration Gauss-
Seidel scheme are the ease of its implementation and
that it is straightforward to ensure that no element
quality regressions (e.g. negative Jacobian) are caused
by smoothing. This is done by performing checks af-
ter a local smoothing iteration and avoiding updat-
ing the position if necessary. On the other hand the
global system scheme may be faster. In Fig. 8 (top) the
convergence behaviour of global smoothing using both
the local iteration and global system schemes on three
large meshes (⇠10k) on body panel geometries with
many faces and edges (⇠1k) are shown. Both schemes
reach convergence in less than 7 global iterations. In
Fig. 8 (bottom) it can be seen that the distortion qual-
ity improvements of the mesh are similar. However, as
reported in Tab. 2 the execution times are marginally
faster for the global system scheme.

For cases where smoothing must move the nodes rela-
tively far from their initial positions to reach conver-
gence the global system scheme may outperform the
local iteration scheme. For example in Fig. 9 a quad
mesh on a pipe face is smoothed to convergence using a
local iteration scheme and a global system scheme. A
comparison of the histograms for element distortion in-
dicates that the local iteration scheme converged pre-
maturely and that a superior result was produced by
using the global scheme.

Overall for most B-rep models resembling body pan-
els with many edges and faces the advantages of the
local iteration scheme outweigh those of the global it-
eration scheme. The ability to maintain valid-in valid-
out meshes at every stage of the smoothing process
is of major benefit to the algorithm robustness in the
general case.

5. LOCAL OPTIMISATION
SMOOTHING

The global smoothing procedure is capable of large-
scale changes to the mesh to improve its general qual-
ity. It can do this robustly and quite e�ciently. How-
ever, some element quality metrics might be important
to the analyst but they may not be expressible in the
form a variational principle in Eqn. (9). Moreover,
they might not be strongly correlated with the chosen
variational principle that is used for global smoothing.
To deal with this problem another phase of smoothing
is applied to the mesh.

Local optimisation smoothing is designed to solve the
following problem: For a target element quality met-
ric and a specified range, smooth the nodes of a mesh
so that the fewest elements have a target metric value
outside of the range (i.e. they fail). An alternative ob-
jective could be to minimise (or maximise) the highest
(or lowest) target element quality metric value. Con-
straints can also be added to keep other constraint
element quality metrics within their specified ranges.

An element quality metric is a function that evaluates
the node positions of an element to give a value. Many
are routinely used for assessing mesh quality such as
skew, warp, jacobian etc. [1]. Often their response sur-
face plots have discontinuous features which can cause
problems in gradient based optimisation methods.

Taper is an element quality metric that often sees
many failures as it is not tightly coupled with more
intuitive element quality metrics such as min/max an-
gles and aspect ratio. Using the NX Nastran defini-
tion [1] (other slightly di↵erent formulae exist), the
taper of a quad element ABCD is computed by

taper =
Amax � Q

Q
, (15)

where Amax is the largest of the triangle areas ABD,
BCA, CBD and DAC and Q = 0.5⇥total quad area.
It does not apply to triangle elements. The ideal taper
value is 0.0 and the worst value is 1.0 so it should
be minimised in optimisation. For certain structural

136

0.0 0.75

4000

0.0 0.75

4000

0.0 1.0

distortion

distortion distortion

before after

before after

before

after

before after

el

em
en

ts

el

em
en

ts

Figure 7: Global smoothing of a quad dominant shell mesh on an body panel.

137

0 1
distortion

0

2000

4000

6000

8000

10000

12000

#
 e

le
m

en
ts

initial
smoothed (global sys.)
smoothed (local itr.)

0 1
distortion

0

500

1000

1500

2000

2500

3000

3500

#
 e

le
m

en
ts

0 1
distortion

0

2000

4000

6000

8000

10000

#
 e

le
m

en
ts

0 1 2 3 4 5 6 7
iterations

0

500

1000

1500

2000

2500

3000
#

 a
ct

iv
e

0 1 2 3 4 5 6 7
iterations

0

200

400

600

800

1000

1200

#
 a

ct
iv

e

0 1 2 3 4 5 6 7
iterations

0

500

1000

1500

2000

#
 a

ct
iv

e

body panel 1

body panel 2
body panel 3

initial
smoothed (global sys.)
smoothed (local itr.)

initial
smoothed (global sys.)
smoothed (local itr.)

edges (global sys.)
faces (global sys.)
edges (local itr.)
faces (local itr.)

edges (global sys.)
faces (global sys.)
edges (local itr.)
faces (local itr.)

edges (global sys.)
faces (global sys.)
edges (local itr.)
faces (local itr.)

Figure 8: Comparison between the global system and local iteration methods for three body panels. Graphs showing
the number of unconverged (active) edges and faces per iteration for global system and local iteration methods (top).
Histograms showing mesh distortion improvements (bottom).

(a)

(b)

(c)

distortion

0 1

220

0 1

220

0 1

220

#
el
em
en
ts

#
el
em
en
ts

#
el
em
en
ts

Figure 9: Smoothing a quad mesh on a pipe model.
(a) Initial mesh. (b) Smoothed mesh using local itera-
tion scheme. (c) Smoothed mesh using global system
scheme. The histograms show the distributions of ele-
ment distortion.

mechanics analyses it is required that the taper values
of all quad elements are less than 0.5.

Local optimisation smoothing is performed in a iter-
ation scheme. The whole process is outlined in algo-

rithm 2.

Algorithm 2: Local optimisation smoother

for i in range (0 , n max) :
get f a i l i n g e lements
i f no f a i l i n g e lements :

break
for node in f a i l i n g e lements :

opt imise node po s i t i o n

First all the elements that fail the target quality metric
are identified. Next all the positions of the nodes of
the failing elements are optimised with respect to their
one-rings (adjacent elements and nodes). Nodes on
faces are visited first before nodes on edges. This is
done repeatedly for a fixed number of iterations or
until there are no failing elements.

Algorithm 3 describes the process for node optimisa-
tion.

Algorithm 3: Optimisation of a node position

i f node on edge :
get prev ious and next nodes
l o c a l l y parametr i se edge (node po s i t i o n

,! = pos (t))
opt imise t
i f t i s v a l i d :

update node po s i t i o n
e l s e : #node on f a c e

l o c a l l y parametr i se one r ing (node
,! po s i t i o n = pos (u , v))

opt imise (u , v)
i f (u , v) i s v a l i d :

update node po s i t i o n

A node’s position is optimised in a local paramet-
ric space that is established immediately before the
optimisation process. For an interior node of a face

138

the parametrisation method that is used is an ortho-
graphic projection onto a local tangent plane. The
angle-weighted normal of the one-ring elements is used
for the normal. Minimal distortion is expected in this
parametrisation as it is applied locally, except for ex-
treme curvature cases. The search space of uv coordi-
nates is the area of the projected one-ring elements.

Nodes on edges are parametrised locally in one of two
ways with the choice depending on the relative posi-
tions of the node, its previous node and its next node
along the edge. If the positions are almost co-linear
then the edge is parametrised as a straight line, as
shown in Fig. 10 (a). In this case the search space is
t 2 (0, ||pnext � pprev||). Otherwise a circle is fitted to

(a) (b)

Figure 10: Local edge parametrisation. (a) Straight line
parametrisation; (b) Arc parametrisation.

the three nodes and the parametric value corresponds
to a subtended angle as shown in Fig. 10 (b). In this
case the search space is t 2 (0, ✓pn).

The default objective function that is used is

f =

one-ring elementsX

i=1

target metric(elementi)
2. (16)

Through testing this has been found to be the most
e↵ective objective function for minimising the num-
ber of failing elements. If the overall goal is to to
minimise (or maximise) the highest (or lowest) target
element quality metric value then tests indicated that
it is better to do all iterations using equation (16) as
the objective function except for the final iteration for
which the following objective function is used,

f = min
�
target metric(elementi)

�

| i 2 [1, # one-ring elements]. (17)

Powell’s method [17] is used as the optimisation
method. No derivatives of the objective function are
taken, which is convenient because the objective func-
tions are typically not fully di↵erentiable. However, it
may not be as e�cient as other non-linear optimisation
methods that use derivatives. The initial node posi-
tion is used as the initial starting point. Constraints
are added to the optimisation method which are of the
form:

constraint metric(element) < threshold. (18)

For example, a constraint on the maximum corner an-
gle of an element to be less than 150�.

5.1 Results

In Fig. 11 an example is shown of a close up region of a
quad mesh between two connected faces. The local op-
timisation smoother was used to resolve two elements
failing taper, i.e. elements with a taper element quality
metric value greater than 0.5. The nodes of the ele-
ments were perturbed along the faces and along edges
to improve taper.

taper

0

0.5

1

(a)

(b) (d)

0.54

0.60

(c)

before

after

Figure 11: An example of optimisation smoothing for
fixing taper failures (> 0.5). (a) The initial mesh with
two failures; (b) The smoothed mesh with no failures; (c
& d) Overlays of the meshes (initial mesh in black and
smoothed mesh in magenta).

In Fig. 12 the local optimisation smoother was used
to resolve taper failures in the quad dominant mesh of
a body panel to which the global smoother was previ-
ously applied (Fig. 7). Three constraints are applied
to keep the minimum and maximum corner angles and
the minimum edge lengths of the elements within ac-
ceptable ranges. Twelve iterations are performed and
the taper failures are reduced from 179 to 47, as shown
in Fig. 13. Noticeably, most of the improvement is
achieved in the first iteration and thereafter the con-
vergence is slow. The timings are reported in Tab. 3.
The mapping and inverse mapping times are negligible
and most of the time is taken in the Powell optimisa-
tion solver, which typically converges in less than 5
iterations for each optimisation. The whole process is
reasonably quick (3.2s) which demonstrates its e↵ec-
tiveness on a complex geometry.

6. LIMITATIONS

The global smoother has two theoretical limitations.
Firstly, the variational principle is inconsistent for
the separate stages of smoothing on edges and faces.
Nodes on edges are smoothed by Laplacian smoothing
(Eqn. (1)) in 3D whereas nodes on faces are smoothed
according to another variational principle (Eqn. (9)) in

139

after

0.6

0.3

0.53

0.55

0.56

0.27

0.37

0.4

0

0.5

1

before

taper

Figure 12: Optimisation smoothing of the quad dominant body panel mesh to resolve taper failures. To the left the whole
body panel is shown with the the failing elements highlighted in red. To the right close ups of two regions are shown that
demonstrate how the nodes are perturbed to resolve the failures.

Target metric Taper
Constraint metrics Min Angle, Max Angle,

Min Edge Length
Num. edge optimisations 1621
Num. face optimisations 387
Edge optimisation time 0.712s
Face optimisation time 2.518s
Initialisation time 0.008s
Mapping time <0.001s
Inverse mapping time 0.002s
Total time 3.240s

Table 3: Timings for the local optimisation smoother on
the body panel mesh.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

25

50

75

100

125

150

175

200

iterations

#
 t

ap
er

 f
ai

lu
re

s

Figure 13: Number of elements failing Taper versus it-
erations in the optimisation smoother for the quad dom-
inant body panel mesh.

2D. From a theoretical standpoint it may be preferable
in edge smoothing to minimise the sum squared of the

variational principles of the connected faces. However,
this formulation would be more complex and less well
behaved than the linear system of the employed for-
mulation. In practice this inconsistency has not been
found to be an issue and convergence is achieved in all
tests within a few iterations.

Secondly, smoothing on faces is performed in 2D para-
metric space but the quality of the mesh is measured
in 3D. Therefore any distortion of the parametrisa-
tion compromises the e↵ectiveness of the smoothing.
But typical parametrisations of faceted B-rep faces do
not exhibit severe distortion and this limitation is not
significant. Other authors have developed smoothing
methods that can account for the parametric space dis-
tortion [2, 18]. But incorporating these adjustments
would lead to non-linear equations which would be
more di�cult to solve. Also, they involve paramet-
ric derivatives which are not directly available in our
case.

A practical limitation is that a varying target ele-
ment size cannot be accommodated. This would be
possible in the edge smoothing method by adding a
penalty term to Eqn. (8) for deviation of edge length
from the target element size. However, the system
would then become non-linear so an iterative line-
search solver would have to be used. Varying tar-
get element size could also be accommodated be in
face variational smoothing by adding space-weighting
terms to Eqn. (14). Implementing these will be the
subject of future work.

140

7. CONCLUSION

In this work we have described a process for smooth-
ing shell meshes on 3D faceted B-rep geometries. The
approach comprises a two-stage method whereby the
mesh is first globally smoothed for large-scale move-
ment of nodes across faces and along edges to minimise
a variational principle. Finally, the mesh is fined-
tuned using a local optimisation method to improve
element quality metrics which may have non-smooth
response surfaces and hence are not suitable for use in
global objective functions. Constraints can be added
to the local optimisation method to ensure that key
element metrics are not regressed.

The global smoothing procedure involves iteratively
smoothing nodes on edges and then smoothing nodes
on faces. Smoothing on edges is done in 3D with
tangent line constrains which avoids the need to
parametrise the edges. Complex edges with G1 dis-
continuities can be robustly handled with this ap-
proach. Although smoothing nodes on edges not a
completely new concept it has not been widely adopted
especially on faceted geometries. The smoothing on
faces is done in parametric space and a variational
method is used. The variational principle that is used
may be adjusted to suit the mesh properties most de-
sired. A weighted sum of the Length Squared, Area
Squared, Orthogonality and Winslow principles with
well chosen weights will tend to produce good quality
inversion-free meshes.

Results indicate that both smoothers perform e↵ec-
tively on complex models with reasonable execution
times. Both a local iteration scheme and a global sys-
tem scheme have been tested in global smoothing. It
has been found that the global system scheme can pro-
duce superior results when the nodes must travel rela-
tively large distances along the faces. However, there
is a theoretical risk that elements may be inverted al-
though in practice this has not been observed. The
advantage of the local iteration scheme is that checks
can be easily performed after each local smoothing op-
eration to ensure that certain element properties are
preserved. For example it is important that element
edge length is kept above a specified tolerance for tran-
sient dynamic analyses.

The combination of both smoothers gives a compre-
hensive process for generally improving the mesh qual-
ity whilst also targeting particular element quality
metrics. The methods have been implemented in the
commercial CAE software package Siemens Simcenter
3D.

References
[1] “NX Nastran User’s Guide.” https://docs.

plm.automation.siemens.com/data_services/

resources/nxnastran/11/help/tdoc/en_US/pdf/
User.pdf. Accessed: 18-Jan-2022

[2] Ruiz-Gironés E., Roca X., Sarrate J. “Optimizing
Mesh Distortion by Hierarchical Iteration Relocation
of the Nodes on the CAD Entities.” Procedia Engi-
neering, vol. 82, 101–113, 2014. 23rd International
Meshing Roundtable (IMR23)

[3] Garimella R.V., Shashkov M.J. “Polygonal surface
mesh optimization.” Engineering with Computers,
vol. 20, no. 3, 265–272, Sep 2004

[4] Garimella R.V., Shashkov M.J., Knupp P.M. “Trian-
gular and quadrilateral surface mesh quality optimiza-
tion using local parametrization.” Computer Methods
in Applied Mechanics and Engineering, vol. 193, no. 9,
913–928, 2004

[5] Shivanna K.H., Grosland N., Magnotta V. “An An-
alytical Framework for Quadrilateral Surface Mesh
Improvement with an Underlying Triangulated Sur-
face Definition.” Proceedings of the 19th International
Meshing Roundtable. 2010

[6] Escobar J.M., Montero G., Montenegro R., Rodŕıguez
E. “An algebraic method for smoothing surface tri-
angulations on a local parametric space.” Interna-
tional Journal for Numerical Methods in Engineering,
vol. 66, 740–760, 2006

[7] Gargallo-Peiró A., Roca X., Sarrate J. “A surface
mesh smoothing and untangling method independent
of the CAD parameterization.” Computational Me-
chanics, vol. 53, 587–609, 2013

[8] “Siemens Simcenter 3D.” https://www.plm.
automation.siemens.com/global/en/products/
simcenter/simcenter-3d.html. Accessed: 21-Sep-
2021

[9] Hormann K., Polthier K., She↵er A. “Mesh Parame-
terization: Theory and Practice.” ACM SIGGRAPH
ASIA 2008 Courses, SIGGRAPH Asia ’08, pp. 12:1–
12:87. ACM, New York, NY, USA, 2008

[10] Jacobson A., Panozzo D., et al. “libigl: A sim-
ple C++ geometry processing library.” https:
//libigl.github.io/libigl-python-bindings/
tut-chapter4/, https://libigl.github.io/, 2018.
Accessed: 28-Sep-2021

[11] Lee C., Lo S. “A new scheme for the generation of a
graded quadrilateral mesh.” Computers & Structures,
vol. 52, no. 5, 847–857, 1994

[12] Knupp P.M. “Winslow Smoothing on Two-
Dimensional Unstructured Meshes.” Proceedings of
the 7th International Meshing Roundtable, Park City,
UT, pp. 449–457. 1998

[13] Knupp P. The fundamentals of grid generation. CRC
Press, Boca Raton, 1993

[14] Bracci M., Tarini M., Pietroni N., Livesu M., Cignoni
P. “HexaLab.net: An online viewer for hexahedral
meshes.” Computer-Aided Design, vol. 110, 24–36,
2019

[15] “Opel international.” https://www.opel.com/. Ac-
cessed: 14-Oct-2021

[16] Guennebaud G., Jacob B., et al. “Eigen v3.”
http://eigen.tuxfamily.org, 2010

[17] Press W.H., Teukolsky S.A., Vetterling W.T., Flan-
nery B.P. Chapter 10. Minimization or Maximization
of Functions, Numerical Recipes 3rd Edition: The Art
of Scientific Computing. Cambridge University Press,
USA, 3 edn., 2007

[18] Gargallo-Peiró A., Roca X., Peraire J., Sarrate J. “A
distortion measure to validate and generate curved
high-order meshes on CAD surfaces with indepen-
dence of parameterization.” International Journal for
Numerical Methods in Engineering, vol. 106, 1100–
1130, 2016

141

	Title
	01-Estrems
	02-Sanchez
	03-Zint
	04-Zhang
	05-Lecallard
	06-Maunoury
	07-Loseille
	08-BeldaFerrin
	09-Caplan
	10-Suriyababu
	11-Fogg

