
TreeQSM
Quantitative Structure Models for Single Trees from Laser Scanner Data

Instructions for MATLAB-software TreeQSM, version 2.4.1

Author: Pasi Raumonen, Mathematics, Tampere University
Email: pasi.raumonen@tuni.fi
Web: https://research.tuni.fi/inverse/ and https://github.com/InverseTampere
Published papers: Raumonen et al. 2013, Remote Sensing,
Calders et al. 2015, Methods in Ecology and Evolution,
Raumonen et al. 2015, ISPRS Annals, Åkerblom et al. 2015, Remote Sensing

Point cloud data shown in many of the pictures in this document are from Eric Casella, Forest
Research Agency, UK.

The software works at least with MATLAB version R2022a 64-bit (Mac OS X). Should work with
newer versions and probably also with some of the older versions and also with Windows and Linux.
The software may require some toolboxes that are not part of the basic MATLAB installation such
as ”stats”. If you encounter errors, please send notification of them to the above email, so that they
can be corrected for new versions.

1

https://www.mdpi.com/2072-4292/5/2/491
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12301
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W4/189/2015/isprsannals-II-3-W4-189-2015.html
https://www.mdpi.com/2072-4292/7/4/4581

License

Copyright (C) 2013-2022 Pasi Raumonen
TreeQSM is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

TreeQSM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with TreeQSM. If not,
see http://www.gnu.org/licenses/

Contents

1 Basics 3
1.1 What is quantitate structure model or QSM? . 3
1.2 MATLAB setup . 3
1.3 Importing data into MATLAB . 3
1.4 The basic command . 3
1.5 Inputs structure . 4
1.6 Filtering point cloud . 4
1.7 Test run . 4
1.8 Output structure . 7

1.8.1 cylinder . 9
1.8.2 branch . 9
1.8.3 treedata . 9
1.8.4 rundata . 17
1.8.5 pmdistance . 17
1.8.6 triangulation . 17

1.9 Main assumptions of the method . 17
1.10 Reconstruction in practice . 20

1.10.1 Optimization of input parameters . 20
1.10.2 Multiple models with same inputs . 21
1.10.3 Sensitivity of results to the input parameters 23
1.10.4 Downsampling point cloud . 24
1.10.5 Making QSMs in practice . 24
1.10.6 Plotting . 26

1.11 QSM simplification . 26

2 The reconstruction method - How it works? 27
2.1 Overview of the main steps . 27
2.2 Topological reconstruction of branching structure . 27

2.2.1 Cover sets . 27
2.2.2 Tree sets . 29
2.2.3 Segmentation . 31
2.2.4 Correct segmentation . 32

2.3 Geometrical reconstruction of branch surfaces . 33
2.3.1 Surface coverage and surface coverage filtering 33
2.3.2 Cylinder fitting . 35
2.3.3 Radius correction . 35
2.3.4 Triangulation . 37

3 Version history 38

2

1 Basics

1.1 What is quantitate structure model or QSM?

A QSM of a tree is a model of the woody structure of the tree that describes quantitatively its basic
topological (branching structure), geometric and volumetric properties. These include properties such
as number of branches in total and in any branching order, the parent-child relations of the branches
and lengths, volumes, and angles of individual branches and branch size distributions. And there are
countless other attributes and distributions that can be easily computed from a QSM.

A QSM consists of building blocks, which usually are some geometric primitives such as cylinders
and cones. The circular cylinder is used here and it is the most robust choice and (in most cases) a very
accurate choice for estimating diameters, lengths, directions, angles and volumes. A QSM consisting
of cylinders (or other simple geometric primitives) offers a compact representation of the tree and as
was described above it can store countless number of information about the tree.

1.2 MATLAB setup

1. Start MATLAB and set the main path to the root folder, where treeqsm.m is located.

2. Use Set Path → Add with Subfolders → Open → Save → Close to add the subfolders, where all
the codes of the software are, to the paths of MATLAB.

3. Import a point cloud of a tree into the workspace. Let us name it P.

1.3 Importing data into MATLAB

Text files can be imported into the workspace using the import command or tool. Popular point
cloud formats .las- and .laz-files can be imported using lasFileReader and readPointCloud func-
tions (these require the Lidar toolbox):

� lasReader = lasFileReader(’file name.las’);

� ptCloud = readPointCloud(lasReader);

� P = ptCloud.Location;

It is also good to note that the data is often in some global coordinate system, meaning that the x-
and y-coordinates of the points can have large values, and this is known to cause some issues. Thus,
it is recommended to transform the data into a local coordinates system for the QSM reconstruction
process:

� P = P-mean(P);

1.4 The basic command

First the basic command that produces QSMs is explained and then more details how the algorithm
works is given. The basic command is:

� QSM = treeqsm(P, inputs);

where P is (filtered) point cloud, (mpoints, 3)-matrix, the rows give the coordinates of the points, and
inputs structure array containing the input parameters.

inputs structure is created by first modifying and then running the script create input. More-
over, to define reasonable reconstruction parameters (”PatchDiam”), you can use define input func-
tion, which is a new addition. However, if you are not already familiar with the TreeQSM (or its older

3

versions), then it might be challenging to understand them and so it is advised that you first skip the
next section and return to it later when you have a better understanding of the method.

1.5 Inputs structure

Next the content of create input script is shown and the parameters briefly explained. Notice that
the parameter values are usually just examples and they can and in many cases should be changed.
Also, to define the values for the important PatchDiam and BallRad parameters, you can use the new
define input function. Tables 1 and 2 explain briefly all the parameters.

1.6 Filtering point cloud

The method assumes that most of the points are part of the stem or branches and thus it tries to
reconstruct QSMs using them. If, however, there are lot of points from leaves or noise or ”phantom
points” that are not part of the woody structure of the tree, then to ensure a good reconstruction
most of these points should be removed before QSM reconstruction. Sometimes it is thus better first
filtering the point cloud. Simple filtering based on local statistical knn-distance or point density and
separate cluster size can be tried with the following command:

Pass = filtering(P0, inputs);

P = P0(Pass,:);

where P0 is the unfiltered point cloud, inputs is the inputs-structure defined above and it defines
the filtering parameters. There are two alternative methods to filter points locally, both based on
local statics: Statistical k-nearest neighbour distance outlier filtering computes for the user defined k
the kth-nearest neighbour distance for each point, and then removes all the points whose distance is
larger than the average distance + the user defined multiplier for the standard deviation. The average
and the standard deviations are computed for each one meter layer of the point cloud so that the
usually observed decreasing point density with height is considered. Statistical point density outlier
filtering computes for the user defined ball radius the number of points (”density”) in the ball for
each point, and then removes all the points whose density smaller than the average density - the user
defined multiplier for the standard deviation. Similarly, the average and the standard deviations are
computed for each one meter layer of the point cloud. There is another method that removes small
separate clusters of points. The point cloud is covered with patches (user defined patch size), and the
connected components are defined. Then all the components that have less than user defined number
of patches are removed.

Notice that the point cloud can contain some points from the ground and understory without that
causing a problem in the QSM reconstruction. Finally, the ”filtering” function may not work well in
many cases, particularly it usually cannot properly remove leaves, and the user is recommended to
use some other filtering method for that.

1.7 Test run

� QSM = treeqsm(P,inputs)

—————
oak, Tree = 1, Model = 1
PatchDiam1 = 0.05
BallRad1 = 0.065
PatchDiam2Min = 0.01
PatchDiam2Max = 0.04
BallRad2 = 0.05
nmin1 = 3, nmin2 = 1
Tria = 1, OnlyTree = 1
Progress:

4

Table 1: Inputs structure. Accessed by inputs.

QSM reconstruction parameters (can be varied and should be optimised, they can
have multiple values given as vectors, e.g. [0.05 0.08]):

inputs.PatchDiam1 Patch size of the first uniform-size cover

inputs.PatchDiam2Min Minimum patch size of the cover sets in the second cover

inputs.PatchDiam2Max Maximum cover set size in the stem’s base in the second
cover

The following parameters can be varied but can be usually kept as given (i.e. little
bigger than PatchDiam parameters, inputs.BallRad1 = inputs.PatchDiam1+0.01):

inputs.BallRad1 Ball radius in the first uniform-size cover generation

inputs.BallRad2 Maximum ball radius in the second cover generation

The following parameters can be usually kept fixed as given:

inputs.nmin1 Minimum number of points in BallRad1-balls, generally
good value is 3

inputs.nmin2 Minimum number of points in BallRad2-balls, generally
good value is 1

inputs.OnlyTree If 1, point cloud contains points only from the tree

inputs.Tria If 1, produces a triangulation

inputs.Dist If 1, computes the point-model distances

Different cylinder radius correction options for modifying too large and too small
cylinders.

inputs.MinCylRad Minimum cylinder radius, used particularly in the taper cor-
rections

inputs.ParentCor Radii in a child branch are always smaller than the radii of
the parent cylinder in the parent branch

inputs.TaperCor Use parabola taper corrections

Growth volume correction approach introduced by Jan Hackenberg, allometry:
Radius = a ∗GrowthV olb + c:

inputs.GrowthVolCor Use growth volume (GV) correction

inputs.GrowthVolFac fac-parameter of the GV-approach, defines upper and lower
bound of allowed radius from the predicted radius: 1/fac ∗
predicted radius ≤ radius ≤ fac ∗ predicted radius

Filtering parameters for the ”filtering” function, all optional:

inputs.filter.k Statistical k-nearest neighbour distance outlier filtering, ap-
plied if filter.k > 0. The value filter.k is the number of
nearest neighbours.

inputs.filter.radius Statistical point density outlier filtering, applied if radius >
0. filter.radius is the radius of the ball neighbourhood.

inputs.filter.nsigma The multiplier of the standard deviation of the kth-nearest
neighbour distance/point density and points whose kth-
nearest neighbour distance/point density is larger/lower
than the average +/- filter.nsigma * std are removed.

inputs.filter.PatchDiam1 Small component filtering, based on cover whose patches are
defined by filter.PatchDiam1 and filter.BallRad1.

inputs.filter.BallRad1 Small component filtering, based on cover whose patches are
defined by filter.PatchDiam1 and filter.BallRad1.

inputs.filter.ncomp Small component filtering, applied if ncomp > 0. The points
which are included in components that have less than fil-
ter.ncomp patches are removed.

inputs.filter.EdgeLength The length of the cube edges in cubical downsampling, ap-
plied if EdgeLength > 0.

inputs.filter.plot Plots the filtering results after the filtering if plot > 0.

5

Table 2: Inputs structure continued. Accessed by inputs.

Other inputs. These parameters don’t affect the QSM-reconstruction but define
what is saved, plotted, and displayed and how the models are named/indexed:

inputs.name Name string for saving output files and naming models

inputs.tree Tree index. If modelling multiple trees, then they can be
indexed uniquely

inputs.model Model index, can separate models if multiple models with
the same inputs

inputs.savemat If 1, saves the output struct QSM as a matlab-file into results
folder. If name = ”pine”, tree = 2, model = 5, the name of
the saved file is ”QSM pine t2 m5.mat”

inputs.savetxt If 1, saves the models in .txt-files

inputs.plot 2 = plots the model, the segmented point cloud and distri-
butions; 1 = plots the model and the segmented point cloud;
0 = plots nothing

inputs.disp Defines what is displayed during the reconstruction: 2 =
display all including QSMs, segmented point cloud, and dis-
tributions; 1 = display name, parameters and distances; 0
= display only the name

Cover sets 3.5 sec. Total: 3.5 sec
Tree sets 0.1 sec. Total: 3.6 sec
Initial segments 0.8 sec. Total: 4.5 sec
Final segments 0.4 sec. Total: 4.8 sec
Cover sets 19.4 sec. Total: 24.2 sec
Tree sets 8.7 sec. Total: 32.9 sec
Initial segments 12.6 sec. Total: 45.5 sec
Final segments 3.3 sec. Total: 48.8 sec
Cylinders 1 min 50.9 sec. Total: 2 min 39.6 sec
————
Tree attributes:
TotalVolume = 836.8 L
TrunkVolume = 582 L
BranchVolume = 254.8 L
TreeHeight = 19.29 m
TrunkLength = 17.89 m
BranchLength = 668.4 m
TotalLength = 686.2 m
NumberBranches = 1891
MaxBranchOrder = 8
TrunkArea = 10.63 m2

BranchArea = 42.6 m2

TotalArea = 53.23 m2

DBHqsm = 0.2617 m
DBHcyl = 0.2609 m
CrownDiamAve = 5.282 m
CrownDiamMax = 7.116 m
CrownAreaConv = 25.32 m2

CrownAreaAlpha = 22.51 m2

CrownBaseHeight = 5.904 m
CrownLength = 13.39 m
CrownRatio = 0.6939

6

CrownVolumeConv = 187.3 m2

CrownVolumeAlpha = 84.66 m2

—–
Tree attributes from triangulation:
DBHtri = 0.2559 m
TriaTrunkVolume = 303.4 L
MixTrunkVolume = 571.2 L
MixTotalVolume = 825.9 L
TriaTrunkArea = 4.856 m2

MixTrunkArea = 10.6 m2

MixTotalArea = 53.2 m2

TriaTrunkLength = 6.096 m
—–
Branch and data 3.7 sec. Total: 2 min 43.4 sec
———
PatchDiam1 = 0.05, PatchDiam2Max = 0.04, PatchDiam2Min = 0.01
Average cylinder-point distance (trunk, branch, 1branch, 2branch): 3.9 4.8 3.7 4.3 mm
———
Distances 1.7 sec. Total: 2 min 45.1 sec
———————————-

Figures 1, 2 and 3 show examples of the branch-segmented point clouds, QSMs and triangulation
model of the stem.

Figure 1: Branch-segmented point clouds. Left: Colors based on branching order (blue = stem, green
= 1st-order branches). Right: Unique colour for each branch.

1.8 Output structure

The output QSM is a structure array. It contains the structures: cylinder, branch, treedata,
rundata, pmdistance and triangulation.

7

Figure 2: QSMs. Left: Colors based on branching order (blue = stem, green = 1st-order branches).
Right: Unique colour for each branch.

Figure 3: Close-ups of the QSM and stem model with triangulation: Left: QSM together with the
point cloud. Right: Triangulated part (bottom) and cylinders (top) of the stem.

8

1.8.1 cylinder

The cylinder structure contains info of each cylinder, whose name/index is the row number in the
file, and the fields contained in the structure are given in Table 3.

Table 3: Cylinder structure. Accessed by QSM.cylinder.
field name explanation

radius radius of the cylinder

length length of the cylinder

start x,y,z-coordinates of the starting point of the cylinder

axis x,y,z-components of the cylinder axis, unit vector

parent parent cylinder (row number)

extension extension cylinder (row number)

branch branch of the cylinder (row number in the branch structure)

BranchOrder branch order of the branch the cylinder belongs

PositionInBranch running number of the cylinder inside the branch it belongs

mad mean absolute distance of points to the cylinder surface

SurfCov surface coverage

UnmodRadius radius of the cylinder before any possible modifications

added if =1, then the cylinder is added after normal cylinder fitting

1.8.2 branch

The branch structure contains info of each branch, whose name/index is the row number in the file,
and the fields contained in the structure are given in Table 4.

Table 4: Branch structure. Accessed by QSM.branch.
order branch order (0 = trunk, 1 = branches starting from the trunk, etc.)

parent parent branch (row number)

volume volume (L) of the branch

area area (m2) of the branch

length length (m) of the branch

angle branching angle (deg) (between the branch and its parent)

height height (m) of the branch base from the ground

azimuth azimuth (deg) of the branch’s base, angle to x-axis in the xy-plane

zenith zenith (deg) of the branch’s base, cylinder?s angle to z-axis

diameter diameter (m) of the branch at the base

1.8.3 treedata

The treedata structure contains a lot of single-number tree attributes (volumes, areas, lengths, etc.)
and distributions computed from the QSM, some of which can be displayed or plotted at the end of
the modelling run (see the above example). These fields are explained in Table 5 and 6

Crown definition for those attributes, such as crown base height, where the actual crown definition
is needed: Define first major branch as a large enough branch (large enough radius and reach) whose
diameter < min(0.05 ∗ dbh, 5cm) and whose horizontal relative reach is more than the median reach
of 1st-order branches (or at maximum 10). The reach is defined as the horizontal distance from the
base to the tip divided by the dbh.

When a triangulation model is reconstructed for the bottom of the stem, then additional fields of
treedata are included and these are given in Table 7.

9

Table 5: Treedata structure. Accessed by QSM.treedata.
TotalVolume Total volume (L) of the tree

TrunkVolume Volume (L) of the stem

BranchVolume Volume (L) of all the branches

TreeHeight Height (m) of the tree

TrunkLength Length (m) of the stem

BranchLength Total length (m) of all the branches

TotalLength Total length (m) of all the branches and stem

NumberBranches Number of branches

MaxBranchOrder Maximum branching order

TrunkArea Total surface area (m2) of the stem

BranchArea Total surface area (m2) of the branches

TotalArea Total surface area (m2) of the tree

DBHqsm DBH (m), the diameter of the cylinder in the QSM at the
right height

DBHcyl DBH (m), the diameter of the cylinder fitted to the height
1.1-1.5 m

CrownDiamAve Average crown diameter (m): planar projection of the tree
crown is divided into 18 cones (10 deg sector and its opposite
sector) and for each cone the maximum extent is computed
and averaged over all cones

CrownDiamMax Maximum horizontal crown diameter (m)

CrownAreaConv Area (m2) of the crown’s planar projection’s convex hull

CrownAreaAlpha Area (m2) of the crown’s planar projection’s alpha shape

CrownBaseHeight Crown’s base height (m) from the ground

CrownLength Crown’s vertical length (m)

CrownRatio Ratio of the crown length to the tree height

CrownVolumeConv Volume (L) of the crown’s convex hull

CrownVolumeAlpha Volume (L) of the crown’s alpha shape

location Location of the tree, (x,y,z)-coordinates of the cylinder at
the stem’s base

StemTaper Stem taper curve, first row is the distance along the stem in
meters, second row is the diameter in meters

spreads Horizontal spreads (m) of the tree in 18 directions and in 20
(tree height over 10 m) or 10 (height over 2 m) or 5 (height
under 2 m) height layers.

VerticalProfile Average spread in each height layer giving kind of vertical
profile of the tree, how spread the tree crown is in average
at different heights

10

Figure 4: Relative spreads for each height layer (different colors, from blue = lowest to red = highest)
shown in a polar plot. To plot this figure use command plot spreads(QSM.treedata,1,1,1).

Figure 5: Average (”Vertical profile”), maximum and minimum spreads for each height layer. Notice
in the first five meters there are no branches and the spread is from the stem alone that is why it is
so small and the minimum and maximum are almost the same.

11

Figure 6: Crown area from the convex hull and an alpha shape. The red line shows the convex hull.
The shaded area is the alpha shape. The red point in the middle is the center of gravity of the
convex hull and it is used to compute the average crown diameter as the mean of the spreads into 18
directions.

12

Figure 7: Crown volume from the convex hull and an alpha shape. The two figures give two different
point of views into the same model.

13

Table 6: Treedata structure continued. Accessed by QSM.treedata.
VolCylDia, AreCylDia,
LenCylDia

Volume, area and length of the cylinders as function of the
cylinder’s diameter (1 cm diameter classes)

VolCylHei, AreCylHei,
LenCylHei

Volume, area and length of the cylinders as function of the
cylinder’s height (1 m height classes)

VolCylZen, AreCylZen,
LenCylZen

Volume, area and length of the cylinders as function of the
cylinder’s zenith (10 deg angle classes)

VolCylAzi, AreCylAzi,
LenCylAzi

Volume, area and length of the cylinders as function of the
cylinder’s azimuth (10 deg angle classes)

VolBranchOrd, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem) as
functions of branch order

VolBranchDia, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem)
as functions of branch diameter at the base (1 cm diameter
classes)

VolBranch1Dia, Are-,
Len-, Num-

Volume, area, length, and number of 1st-order branches as
functions of branch diameter at the base (1 cm diameter
classes)

VolBranchHei, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem) as
functions of branch height at the branch base (1 m height
classes)

VolBranch1Hei, Are-,
Len-, Num-

Volume, area, length, and number of 1st-order branches as
functions of branch height at the the branch base (1 m height
classes)

VolBranchAng, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem) as
functions of branching angle (10 deg angle classes)

VolBranch1Ang, Are-,
Len-, Num-

Volume, area, length, and number of 1st-order branches as
functions of branching angle (10 deg angle classes)

VolBranchAzi, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem)
as functions of branch azimuth angle at the branch base (10
deg angle classes)

VolBranch1Azi, Are-,
Len-, Num-

Volume, area, length, and number of 1st-order branches as
functions of branch azimuth angle at the branch base (10
deg angle classes)

VolBranchZen, Are-,
Len-, Num-

Volume, area, length, and number of branches (not stem) as
functions of branch zenith angle at the branch base (10 deg
angle classes)

VolBranch1Zen, Are-,
Len-, Num-

Volume, area, length, and number of 1st-order branches as
functions of branch zenith angle at the branch base (10 deg
angle classes)

14

Figure 8: Stem taper, cylinder (”Tree segment”) volume, area and length distributed in diameter
classes, branch volume, area, length and number distributed in branching orders. To plot these dis-
tributions use the command plot distribution(QSM,fig,rel,cum,dis), where fig is the figure
number, rel = 1 means using relative values, cum = 1 means cumulative distributions, dis is a the
field name of the plotted distribution. For example, plot distribution(QSM,1,0,0,’VolCylDia’)

plots the volume-diameter distribution with absolute values into figure 1. It is possible to plot mul-
tiple different distributions in the same figure, e.g. plot distribution(QSM,15,1,0,’VolCylDia’,

’AreCylDia’), in which case relative values are used.

Table 7: Treedata structure, additional field if inputs.Tria = 1.
DBHtri DBH (m), mean length of the ”diagonals” in the triangulation

TriaTrunkVolume Volume (L) of the triangulation

MixTrunkVolume Volume (L) of the stem, computed from triangulation (bottom) and
cylinders (top)

MixTotalVolume Total volume (L) of the tree = MixTrunkVolume + BranchVolume

TriaTrunkArea Side area (m2) of the triangulated volume

MixTrunkArea Area (m2) of the stem, computed from triangulation (bottom) and cylin-
ders (top)

MixTotalArea Total area (m2) of the tree = MixTrunkArea + BranchArea

TriaTrunkLength Length/height (m) of the triangulated stem part

15

Figure 9: Cylinder (”Tree segment”) volume, area and length distributed in height, zenith angle, and
azimuth angle classes.

Figure 10: All branch and 1st-order branch volume, area, length, and number distributed in diameter,
height and branching angle classes.

16

Figure 11: All branch and 1st-order branch volume, area, length, and number distributed in zenith
and azimuth angle classes.

1.8.4 rundata

The rundata structure contains the fields given in Table 8.

Table 8: Rundata structure. Accessed by QSM.rundata.
inputs the input structure

time computation times of the main reconstruction step

date date and time of the start and end of the reconstruction

version the version of the treeqsm used for the QSM reconstruction

1.8.5 pmdistance

The pmdistance structure contains mean point cylinder model distances computed for each cylinder
and then the median, mean, max and standard deviation of these distances for all, stem, branch,
1st-order branch, and 2nd-order branch cylinders. The content of this structure is optional and can
be turned off by setting inputs.Dist = 0. Table 9 explains the fields.

1.8.6 triangulation

Finally, the optional structure triangulation contains information about the triangulation model.
The software tries to triangulate the stem up to the first branch, see examples in Figure 12. The
triangulation can be turned on by setting: inputs.Tria = 1. Table 10 explains the fields.

1.9 Main assumptions of the method

TreeQSM reconstruction method is based on a number of basic assumptions that must be filled to
ensure reasonable results. The most important ones are:

17

Table 9: Point-model distance structure. Accessed by QSM.pmdistance.
CylDist mean point-model distance (m) for each cylinder (vector)

median median of CylDist

mean average of CylDist

max maximum of CylDist

std standard deviation of CylDist

TrunkMedian median of trunk cylinders’ CylDist

TrunkMean average of trunk cylinders’ CylDist

TrunkMax maximum of trunk cylinders’ CylDist

TrunkStd standard deviation of trunk cylinders’ CylDist

BranchMedian median of branch cylinders’ CylDist

BranchMean average of branch cylinders’ CylDist

BranchMax maximum of branch cylinders’ CylDist

BranchStd standard deviation of branch cylinders’ CylDist

Branch1Median median of 1st-order branch cylinders’ CylDist

Branch1Mean average of 1st-order branch cylinders’ CylDist

Branch1Max maximum of 1st-order branch cylinders’ CylDist

Branch1Std standard deviation of 1st-order branch cylinders’ CylDist

Branch2Median median of 2nd-order branch cylinders’ CylDist

Branch2Mean average of 2nd-order branch cylinders’ CylDist

Branch2Max maximum of 2nd-order branch cylinders’ CylDist

Branch2Std standard deviation of 2nd-order branch cylinders’ CylDist

Figure 12: Triangulation models of the bottom part of trunks. Plot the triangulation plus the rest of
the stem or the tree with cylinders using the code plot triangulation(QSM).

18

Table 10: Triangulation structure. Accessed by QSM.triangulation.
vert coordinates of the vertices of the model

facet indices of vertices forming each triangle

fvd colour information for plotting the model with patch-command

volume volume (L) enclosed by the model

SideArea area (m2) of the triangulated surface (not including the area of top and bottom)

BottomArea area (m2) of the triangulated bottom surface

TopArea area (m2) of the triangulated top surface

bottom minimum z-coordinate of the model

top maximum z-coordinate of the model

triah input triangle height

triaw input triangle width

cylind Index of the cylinder up to whose bottom the triangulation model is defined

A1. Single tree point cloud. Except some ground and understory points that can be approxi-
mately removed by the method, the point cloud contains points from only one tree. Moreover, lot
of noise in the data, which is not filtered, is considered as true measurements from the tree and can
cause erroneous reconstructions.
A2. 3D data. Only (x,y,z)-coordinate data of the point cloud is needed in the reconstruction. Thus,
there is no need for intensity, color, etc. data. However, the additional data might be useful for
filtering out leaves/needles, noise, etc.
A3. Only sufficiently covered tree parts can be accurately reconstructed. The tree and its
details must be sufficiently covered with measured points so that they can be reconstructed accurately
with cylinders. The parts of the tree that are insufficiently visible/covered are not accurately recon-
structed and may be not reconstructed at all and e.g. a branch with no points is not reconstructed
at all. Thus, the resolution and the number of scans around the tree needs to be high enough to
sufficiently catch the details of the tree. The problem of determining sufficient resolution and number
of scans is not yet well studied and therefore there is no good rule of thumb which can be applied and
the numbers may vary case-by-case basis. Notice that high enough scanning resolution and number of
scans can result in large point cloud that can be downsampled for most parts without compromising
accuracy of the resulting QSMs while speeding up the reconstruction process.
A4. Whole tree is wood. If leaves or needles are present in the data and are not filtered, then they
are used also in the reconstruction of the woody structure. This can result in a model with too thick
branches or (small) non-existent branches. Thus leaf-off scans are highly recommended, also because
they increase the visibility. However, some evergreen trees are possible for modelling but may have
large local errors. Thus, with leaf-on scans, the user is advised to consider methods that can separate
the leaf and wood points before the QSM reconstruction.
A5. Cylinder is an acceptable building block. Locally the shape of the stem and branches
should be approximately cylindrical so that their diameter, volume, direction, etc. can be well ap-
proximated with right circular cylinders as the geometric primitive. However, there is the possibility
for triangular mesh for modelling the bottom of the stem to capture better its volume, shape and
diameters (inputs.Tria).
A6. Branches taper and are smaller than their parents. There are two basic methods for
controlling too large (and too small) cylinders that sometimes results in from least squares fitting
due to multiple reasons: 1) The radii of the cylinders in a child branch are always smaller than the
radius of the cylinder in the parent branch from which the child branch starts. 2) The taper of the
branch is decreasing from the base towards the tip. A quite relaxed parabola constraint is used to
enforce this tapering for branches. It is described in detail later on in this document. Both of these
radius controlling methods can be turned on and off with inputs.ParentCor and inputs.TaperCor.
Another and possibly additional option for radius control to have tapering branches is to use growth
volume approach (inputs.GrowthVolCor).

19

A7. Separate stem near the ground. There must be clearly separate and visible stem near the
ground, because the segmentation process starts from the base of the stem. Furthermore, if the lower
branches touch the ground, the reconstruction can fail badly.
A8. No special assumptions about tree species or size. Basically, the limits come from the
quality of point cloud data: if the branches are small compared to laser spot size and noise levels, then
the branch cannot be resolved accurately. Furthermore, species that conform to the above assumptions
should be possible for reasonable reconstruction.

There are few assumptions for the optional triangulation to work properly:
AT1. Sufficient point cover. The bottom of the stem should be sufficiently covered with points
without major gaps in the cover.
AT2. Sufficiently low noise level. Noise should be small compared to the details of the stem (e.g.
the width of a buttress root).
AT3. Sufficiently small triangles. The triangle size (width and height) should be small compared
to the details of the stem but not smaller than the resolution of the point cover.
AT4. Horizontal cross-sections down to the ground level. The stem point cloud is partitioned
into horizontal layers of given thickness and the boundary curves are defined, with extrapolation if
necessary, to every layer from the top to the bottom.
AT5. Only stem points and no bifurcations. All points are considered data and thus no ground
and understory points are removed by the reconstruction process. The stem cannot have bifurcations
and thus it needs to be one tube-like (even if with complex shape cross-sections) structure from the
top to the bottom (ground).

1.10 Reconstruction in practice

There are two practical considerations for producing good results. Input parameters need to be
optimized and multiple models need to be reconstructed with the same input. Furthermore, suitable
downsampling of the point cloud can speed up the QSM reconstruction process considerably without
compromising the accuracy of the resulting QSM. Similarly, using distributed computing with multiple
processors/cores can speed up the computation of the multiple models that need to be generated.

1.10.1 Optimization of input parameters

If the values of input parameters, such as PatchDiam2Min and PatchDiam2Max, are changed, then of
course the resulting QSM is changed. Thus, there is a need for some kind of optimization process that
selects the best or good parameters within practically meaningful limits. There are many ways to
realize the optimization and it has two key ingredients, the optimization method and the metric/cost
function that is minimized with the method. The optimization method depends more on the number
of optimized parameters and there are only 3 (PatchDiam1, PatchDiam2Max, PatchDiam2Min) that
are most meaningful in this respect. Thus, a simple grid search can work reasonably: Select a few
reasonable values for each parameter and then reconstruct the models for every parameter value
combination. For example, 2 values for 3 parameters makes 8 different combinations and 3 values
for 3 parameters makes 27 combinations. The grid search or brute force approach is realized with
make models. To use parallel computing with multiple cores/processors, use make models parallel

(requires Parallel Computing Toolbox of the Matlab).
A bigger challenge is the selection of a suitable metric. Now the default option we use is the

following metric: Select the points closest to each cylinder and calculate the average distances to
the cylinders. This produces one distance for each cylinder (”cylinder distance”), the average point-
cylinder distance. Then the final metric-value is the mean of these cylinder distances. Function
select optimum realizes the selection of the optimal models based on this metric as the default
option. The function selects for each tree the optimal models based on the minimum metric value
(minimum average metric value over the models with the same inputs) and computes average values
for each treedata from the models.

In version 2.4.0 there are readily available more than 90 different other metrics that the user can
choose. And the user can easily modify them or add new ones. There are four types of metrics

20

available: cylinder distance, standard deviation, distribution-, and surface coverage- based metrics.
The distance-based metrics are similar to the default option. For example, mean of trunk cylinder
distances, mean of branch cylinder distances or mean of trunk cylinder distances plus mean of 1st-
order branch cylinder distances. Then there are the versions of these based on the maximum distance.
For example, the maximum trunk cylinder distance. And finally, there are also the combination of
the mean and the maximum distances. For example, the mean of trunk cylinder distances plus the
maximum trunk cylinder distance. The standard deviation (SD) based metrics are, for example, SD of
total volume in the models with the same inputs or SD of number of branches in the models with the
same inputs. The idea of SD metrics is that if e.g. the SD of total volume is small, then the modelling
is robust which is indicates some kind reliability in the models. Thus, for the SD based metrics it is
important to make many models with the same inputs in order to have robust SDs. The distribution
based metrics include e.g. mean difference in volume of 1-10 cm diameter cylinder classes. That is, we
compare volume distributions (mean difference in small branches) between different models and the
parameters that produce the smallest difference in the distributions is the most robust and indicates
again reliability in the models. Lastly, the surface coverage (SC) based metrics measure how much
cylinder’s surface is covered with points (high coverage indicates high reliability) and the metrics
minimize 1-SC, which maximizes SC. The surface coverage is defined in section 2.3.1.

The above optimization procedure, where perhaps hundreds of models per every tree are generated,
might be too excessive work in some cases, particularly if the results do not depend too much on the
exact values of the input parameters close to the optimal values. Thus, in some cases where we have
lot of similar trees (similar size, height, complexity) and with similar measurements (similar number
of scans, scanner distances, point density, occlusion) it might be workable option just optimize the
parameters with one or few trees and then apply those parameters to all the other trees. Or at least
reduce the number of input parameter values used for most of the trees based on the optimization of
the few trees.

1.10.2 Multiple models with same inputs

There are random elements in the reconstruction process (in the cover generation as explained in the
section 2), which always results in little different models for every modelling run, even with the same
inputs. This is not a bad feature but in fact allows the estimation of the uncertainty in the modelling
results by making multiple models and computing the variance / standard deviation / coefficient of
variation as the parameter estimating the uncertainty (or precision) of the results. We can think that
there are distributions of results, e.g. total and stem volumes, with the same inputs. Although it is
not true that the mean of the distribution is the correct value, we can assume that the mean is often
a very reasonable value. We will show below that the mean is robust and about 5 models with the
same inputs is already enough to estimate the means of the distributions within about a few percent
error. The estimation of the standard deviations of the distributions is harder and reliable estimates
would require more models, perhaps 20-30. However, if one wants to make better and more reliable
estimate of the variance/std/CV, one could first optimize the parameters using 5 models per inputs
and then make more models with the optimal parameters to estimate the uncertainty more reliably.

Next, we investigate the distribution of the modelling results with the same inputs and show how
many models or repeat modelling runs are needed to achieve robust results. We do this with the
following test: We reconstruct 500 QSMs with the same inputs which produces empirical distributions
of modelling results, such as volumes as shown in Figure 13. The empirical distributions are then
taken as good approximations of the real distribution of the results. Then we randomly sample the
empirical distribution with different sample sizes large number of times to estimate the distributions
of sample means and sample standard deviations for each sample size (see Figures 14 and 15).

Figure 14 shows the distributions of sample means compared to the mean of the empirical distri-
bution and we can see that a very small sample size, about 5, will give reliable estimate of the mean
within a few percent. In other words, if one for example generates 5 models with the same inputs
and then computes the average total volume from those five models, the resulting average differs from
the real average (the mean of the empirical distribution) about 2% in 99% of cases. Of course, the
exact results depend on the tree, point cloud quality, the inputs, attribute, etc. but in general we

21

can say that with a fairly small number of models we can estimate the means (volumes, lengths, etc.)
accurately and reliably.

Figure 13: Volume results from 500 QSMs shown in histograms. Total (left), stem (middle) and branch
(right) volumes shown. Red lines indicate the mean volumes and green lines indicate the mean +/-
one standard deviation volumes.

Figure 14: Sample mean distributions for different sample sizes. The values are relative to the means
of the empirical distributions of 500 models. Inside the red and green lines are 99% and 95% of sample
means, respectively. Light blue lines are the medians of samples and the blue lines show +/- standard
deviation from the mean.

Figure 15 shows similar results for the sample standard deviation, that is the distributions of
sample SDs compared to the SD of the empirical distribution. However, unlike the mean, the standard
deviation cannot be robustly estimated with a fairly small number of models. We can see from figure
Figure 15 for total volume that even with 30 models the 99% confidence interval contains samples
whose error is about 30% and 95% interval have samples with errors about 25%. Again of course the
exact results vary depending on the tree, attribute, etc., but reliably and accurate estimation of the
standard deviation requires a large number of models.

As it is recommended to produce multiple QSMs (e.g. 5) per each input, the single number
tree attributes (e.g. total volume) can be computed as the average from the QSMs. Similarly, the
standard deviation of the attribute computed from the QSMs with the same inputs, is an estimate for
the uncertainty or precision of the results. The function select optimum not only selects the optimal
inputs but also computes the ”treedata” from the QSMs made with the optimal inputs and gives them
in the form: [average SD].

22

Figure 15: Sample standard deviation distributions for different sample sizes. The values are relative
to the standard deviations of the empirical distributions of 500 models. Inside the red and green lines
are 99% and 95% of sample means, respectively. Light blue lines are the medians of samples and the
blue lines show +/- standard deviation from the mean.

1.10.3 Sensitivity of results to the input parameters

The values of the parameters PatchDiam1, PatchDiam2Max, PatchDiam2Min need to be optimized,
and then we use the QSMs made with the optimal values. However, as the optimization is not perfect
(e.g. was the values chosen reasonably, was the metric reasonable, etc.), it could be important to know
if the optimal results (e.g. total volume) computed from the optimal QSMs are robust: Do the results
change a lot if we change the parameter values little or not? Thus if the result do not change a lot if
we had chosen other but close values for the parameters, then results are robust and do not depend
much how the parameter values were chosen and optimized.

The function select optimum computes the sensitivity for the ”treedata” as follows: The sensi-
tivity of an attribute is its relative change divided by the relative change of the input parameter value
and the value is expressed as percentage, i.e. multiplied by 100. Let us explain how the sensitiv-
ity of total volume is computed for PatchDiam1 as it is computed similarly for PatchDiam2Min and
PatchDiam2Max. We first fix PatchDiam2Min and PatchDiam2Max to their optimal values, so we select
only those QSMs that have these as inputs. Then we further select the QSMs whose PatchDiam1

values are the closest to the optimal PatchDiam1 value. Say, PatchDiam1 has values [0.1 0.2 0.3 0.4
0.5] and the optimal value is 0.4, then we select the values 0.3 and 0.5 as they are the closest to 0.4.
In this case the relative change in the input is (0.5 − 0.4)/0.4 = (0.4 − 0.3)/0.4 = 0.1/0.4 = 0.25.
Then we compute the change in the volume for the QSMs that have PatchDiam1 = 0.3 or 0.5, to the
QSM with the optimal PatchDiam1 = 0.4. Say V0.3 = 1000 and V0.5 = 1100 and Vopt = V0.4 = 1060,
in which case the absolute changes are 1060 − 1000 = 60 and 1100 − 1060 = 40, and the maximum
of these is 60. Relative to the optimal value we get 60/1060 = 0.0566. Finally the sensitivity is the
quotient of the two relative changes: Sensitivity of total volume for PatchDiam1 parameter = relative
change in volume divided by relative change in input = 0.0566/0.25 = 0.226 = 22.6%. This sensitivity
value can be interpreted as follows: If the PatchDiam1 value changes 1% (from the optimal value),
then the total volume changes 0.226%, or equivalently, if PatchDiam1 changes 10%, then the total
volume changes 2.6%. In other words, in this example, the change of 1% or 10% of the PatchDiam1

value from 0.4 to 0.404 or 0.44, would result in change of 0.226% or 2.6% of the volume from 1060 to
1062 or 1084. Sensitivity values of a few percents indicate very robust results.

The output ”TreeData” of the function select optimum contains (in version 2.4.1) five values
for each attribute: [average SD sensitivity for PatchDiam1 sensitivity for PatchDiam2Min sensitiv-
ity for PatchDiam2Max].

23

1.10.4 Downsampling point cloud

To see all, or at least most, of the branches of the tree and cover them sufficiently with measurements,
one may have to scan the tree with high resolution and/or from high number of positions around the
tree. This is likely to result in a large point cloud that has high point density, particularly on the
bottom of the stem and on other parts not really requiring so high point density. Naturally, the more
points there are the more computation time and memory are required for the QSM reconstruction.
On the other hand, it is clear that increasing the point density can only improve the accuracy of
the resulting QSMs up to a limit and increasing the point density beyond this does not improve the
results anymore but only requires more computational resources. Thus, in some situations it can make
sense to try to downsample the point clouds before the QSM reconstruction. However, as we often
want to reconstruct branches whose diameter can be even under 1 cm, then it does not make sense to
downsample the whole point cloud so that the ”resolution” of the point cloud is e.g. 1 or 2 cm.

The function cubical downsampling is quick way to downsample point clouds by specifying cubi-
cal volume size (by giving the side length of the cubes) so that each cubical volume containing points
in the original point cloud will contain only one of those points after the downsampling. Notice that
this function selects a subset of the original point cloud and does not do averaging. If the user wants to
do averaging, i.e. downsample the point cloud by replacing the points in the cubes with the average of
the points, then he can use the function cubical averaging. Notice also that cubical downsampling

is now also part of the filtering function.

1.10.5 Making QSMs in practice

Based on the above, the practical way to use the code is:

(1) (Optional) Point cloud filtering. Filter out noise, e.g. using filtering, and leaves from the
point clouds. NOTE: the leaf-filtering needs a separate method/code not included in TreeQSM
package. Notice that downsampling of the point cloud is also possible with filtering:
First define the filtering parameters with the create input.m script (one needs to modify the
script) and then apply the filtering:
� inputs = create input;

� F = filtering(P0 , inputs);

� P = P0(F , :);

(2) Save the point clouds into single .mat-file. For example, save five point clouds P1, P2,

P3, P4, P5 into file trees.mat:
� save(’trees’ , ’P1’ , ’P2’ , ’P3’ , ’P4’ , ’P5’);

Notice that to make the process work optimally and quickly, it might be useful to save and
process similar size trees and similar quality point clouds together, separately from trees with
clearly different size and quality. This way one can select less and better input parameters (next
step).

(3) Define the input parameters. Give multiple reasonable values for the parameters PatchDiam1,
PatchDiam2Min and PatchDiam2Max in the create input.m script (and possible modify other
parameters). Then run the script to produce the inputs structure:
� create input

NOTE: A recommended option to define reasonable values for PatchDiam- and BallRad-parameters
for each tree separately is to use define input function:
� inputs = define input(P , nPD1, nPD2Min, nPD2Max);

where nPD1, nPD2Min, nPD2Max are the number of values for the parameters. For exam-
ple, reasonable choice would be nPD1 = 2, nPD2Min = 3, nPD2Max = 2 or nPD1 = 2,
nPD2Min = 4, nPD2Max = 3. You can generate the inputs for all the points clouds saved in
.mat file
� inputs = define input(’trees’ , nPD1, nPD2Min, nPD2Max);

NOTE: When using define input you still need to define the other inputs with the create input,
because define input just updates the PatchDiam-parameters.

24

(4) Use make models (or make models parallel) to produce QSMs. Call the functions with
the name (and address) of the point clouds file, the name of the file where the QSMs are saved,
and the number of model-runs (e.g. 5-10), and inputs (created above) as the inputs:
� QSMs = make models(’trees’ , ’QSMs trees’ , 5 , inputs);

(5) Select optimal QSMs. Use select optimum function to select the optimal QSMs and to
compute results:
� [TreeData , OptModels , OptInputs , OptQSM] = select optimum(QSMs);

If no metric is specified, the default average cylinder point-model distance is used. But one can
and should try other metrics by specifying the metric as the second input:
� TreeData = select optimum(QSMs , ’trunk+branch mean dis’);

The output TreeData contains the averages and the standard deviations computed from the
optimal models for each single number attribute (not distributions). It contains now also sensi-
tivity of the attributes to the PatchDiam-parameters (columns 3 to 5). The output OptModels

contains the list of indexes of the optimal QSMs (the QSMs with the optimal inputs) and the
index of the single best QSM for each tree. The output OptInputs contains the optimal inputs
for each tree. The output OptQSM is similar structure as QSMs but now contains the single best
QSM for each tree.

(6) (Optional) Estimate uncertainty more reliably. Use make models to make additional
models (about 10-25 additional models) with the optimal inputs to estimate the standard devi-
ation (precision/uncertainty) of the results more reliably:
� QSMs2 = make models(’trees’ , ’QSMs trees2’ , 20 , OptInputs);

� QSMs2 = make models parallel(’trees’ , ’QSMs trees2’ , 20 , OptInputs);

Then use estimate precision to combine all the optimal models and compute the standard
deviations from all the optimal models:
� [TreeData , OptQSMs , OptQSM] = estimate precision(QSMs , QSMs2, TreeData,

OptModels);

Now the TreeData contains better estimates for the averages and in particular for the standard
deviation.

Convenient and perhaps most of the time reasonable way to select values for the parameters
PatchDiam1, PatchDiam2Min and PatchDiam2Max (and the BallRad) is to use the define input func-
tion. User only needs to determine how many values for each parameters are needed. Usually 2-3
values for PatchDiam1 and PatchDiam2Max and the 3-5 values for PatchDiam2Min are enough.

However, if you are not using the define input function, there are few rule of thumbs for selecting
reasonable values for the parameters PatchDiam1, PatchDiam2Min and PatchDiam2Max:
1) The larger the tree and its details are, or the lower the point density of the point cloud is, or the
more occlusion there are in the point cloud, particularly if the tree was scanned only from one or two
positions and large parts of the tree are occluded, the larger the values for the parameters should be
(larger patches). Also the larger the difference between BallRad and PatchDiam parameters should
be.
2) Usually the optimal values are as small as possible so that the smaller the values are, then often
the better the results are, but when the values go below certain thresholds (depending on the tree’s
size and complexity, resolution, occlusion, etc.) the result quickly become much worse.
3) Usually the most important parameter is PatchDiam2Min so it could have more values than
PatchDiam1 and PatchDiam2Max.

For example, if we have a 20-30 m high tree with the total volume of few cubic meters and
with high enough resolution (e.g. about 1 or more points per 1 cubic centimetre), not too much
occlusion and lot of small branches, then PatchDiam1 could have values [0.05 0.07], PatchDiam2Min
could have values [0.01 0.015 0.02] or [0.008 0.013 0.018 0.023], and PatchDiam2Max could have values
[0.06 0.08] or [0.05 0.065 0.08] (the units are meters). In this case BallRad parameters could have
values BallRad1 = PatchDiam1+0.02 and BallRad2 = PatchDiam2Max+0.01. If, on the other hand,
we have a 2-7 m high tree with the total volume of few tens of liters and with high enough resolution
(e.g. about 1 point per 1 cubic millimetre), not too much occlusion and lot of small branches, then

25

PatchDiam1 could have values [0.015 0.02], PatchDiam2Min could have values [0.004 0.008 0.012] or
[0.003 0.006 0.009 0.012], and PatchDiam2Max could have values [0.015 0.02] or [0.015 0.02 0.025]. In
this case BallRad parameters could have values BallRad1 = PatchDiam1+0.007 and BallRad2 =

PatchDiam2Max+0.003. Or if we have a huge 40 m tall tree with the total volume of tens of cubic meters
and with relative low resolution (e.g. about 1 point per 3cm x 3cm x 3cm), not too much occlusion
and lot of small branches, then PatchDiam1 could have values [0.2 0.3], PatchDiam2Min could have
values [0.05 0.065 0.08] or [0.04 0.055 0.06 0.075], and PatchDiam2Max could have values [0.25 0.3] or
[0.2 0.25 0.3] In this case BallRad parameters could have values BallRad1 = PatchDiam1+0.05 and
BallRad2 = PatchDiam2Max+0.03.

1.10.6 Plotting

There are many functions in the plotting-subfolder that the user can use in MATLAB for plotting.
Plot single point clouds using the function plot point cloud and comparing two point clouds with
plot comparison (e.g. comparing filtered and unfiltered point cloud). Plot branch-segmented point
clouds with plot branch segmentation with colors denoting the branching order or each branch
uniquely coloured (requires the point cloud, its cover and segment structures). Plot the cylinder model
with plot cylinder model with colors denoting the branching order or each branch uniquely coloured.
Plot the triangulation model with plot triangulation. Plot distributions with plot distribution

and the spreads as a polar plot with plot spreads.

1.11 QSM simplification

Reconstruction of accurate QSMs may require that the whole tree is modelled carefully. This often
means short cylinders and therefore a lot of cylinders. However, in some applications the user may only
be interested in the stem and bigger branches and furthermore the number of cylinders needs to be
low. Fortunately, the topological and quantitative features of QSM lend itself to orderly simplification.
The user can simplify a given QSM by three different ways using simplify qsm function: there are
two ways to remove branches and one way to decrease the number of cylinders inside branches. The
first way to remove branches is by giving a maximum acceptable branching order. The second way to
remove branches is by giving a minimum acceptable diameter at the base of the branch (child branches
of a removed small branch are automatically always also removed). The third way to simplify was
to reduce the number of cylinders inside branches: two consecutive cylinders inside a branch (i.e.
cylinders 1 and 2, 3 and 4, 5 and 6, etc.) can be replaced with a single cylinder that starts from
the base of the first cylinder and ends at the top of the later cylinder and whose radius is such
that its volume equals the sum volumes of the replaced cylinders. The user species here the number
of replacement iterations so that with one iteration the number of cylinders is about halved. Two
iterations mean that the same process is applied to the cylinders resulting from the first iteration
and thus the number of cylinders is again about halved and equals about one quarter of the number
without replacements. Notice that the latest version simplify qsm function modifies also the branch

and treedata to make them correspond to the changes in cylinders.

26

2 The reconstruction method - How it works?

2.1 Overview of the main steps

There are several main steps in the QSM reconstruction method. In the highest level, there are two or
three steps: First step is optional and it is filtering noise from the point cloud. The method assumes
that most points are data from the tree and thus lot of noise in the point cloud could be, if not filtered
out, a major source of error. This filtering step could be considered to include also the leaf-wood
separation. Filtering of noise was considered already above and you can have your own methods for
it. The second step is the topological reconstruction of branching structure, which is the segmentation
of the point cloud into stem and individual branches. The third step is the geometrical reconstruction
of branch surfaces, which is realized by fitting cylinders. The cylinders then give the surface, volume,
lengths etc. for each branch.

2.2 Topological reconstruction of branching structure

There are many conceptually separate steps in the method for the segmentation of the point cloud
and these have their own functions that are described in the following sections. The basis of the
segmentation is cover sets that are small subsets of the point cloud and can be thought as small
patches in the tree surface. The sets form a quite uniform Voronoi tessellation of the point cloud.
They can be thought as the smallest ”unit” for separating branches from each other in the segmentation
process. They have also natural neighbor-relation, which is used for ”surface growing”, where adding
neighboring sets to existing set grows the set along the surface. The cover sets are generated with the
function cover sets.

Because of the gaps in the data due to occlusion, there are parts in the tree that form separate
components in the sense that the different parts are not connected through the neighbor-relation (it
is not possible to connect the parts with surface growing). Thus, the next step is to update the
neighbor-relation so that the whole tree is one connected component. Moreover, in some cases the
point cloud may contain points not from trees such as points from ground and understory. These
points need to be removed before the segmentation process. Updating the neighbors and removing
non-tree points/sets are done with the function tree sets.

The next step is to segment the point cloud into segments that do not have bifurcations, that is
the segmentation process finds the branching points of the branching structure. Function segments

reconstruct the initial segmentation of the tree patches into stem and branches. However, segment
finds the branching points by local examination of connectivity and this does not generally result
in complete branches but the segments tend to ”end too soon” by making a ”wrong turn” at some
branching point. The next step is to correct the initial segments so that they better correspond to real
branches (and stem). This is realized with function correct segments, that takes in a segmentation
and tries to improve it by making the segments as long as possible.

To improve and accelerate the above segmentation process it is actually realized as a two-iteration
process. First, large and uniform size cover sets are used to remove the non-tree points if necessary
and particularly to reconstruct the main branching structure and use that information for smarter and
refined cover set partitioning and segmentation. The bigger sets are particularly good for segmentation
of main branching structure as they are quite insensitive for small gaps in the data that are generally
quite numerous. The first segmentation gives good information how the size of the cover sets should
vary locally in the point cloud so that they are not too large or small for the local details. Also, the
connectivity along the branches of the first segmentation can be easily enforced to the new smaller
cover sets.

2.2.1 Cover sets

The QSM reconstruction method uses a ”cover set” approach, where the point cloud is partitioned
into small sets that correspond to small patches in the surface of the tree (see Figure 16). These
sets form the smallest ”unit” we use to segment the point cloud into trunk and individual branches.
They are randomly generated by the input parameters PathcDiam, BallRad, nmin. The generation

27

process produces a Voronoi partition of the point cloud so that the cell size (maximum diameter)
is controlled and varies between PatchDiam and 2*PatchDiam. The following iterative process, that
generates centers/seed points, generates the cover sets (Voronoi partition): First select a random seed
point Q and define BallRad-ball, i.e. those points that are closer than BallRad to Q. If this ball has
at least nmin points, then the ball is accepted and Q is the center of the ball and the cover set to be
formed later. Next define a PatchDiam-ball centered also at Q. Here PatchDiam is usually little smaller
than BallRad. PatchDiam is the minimum distance between nearby centers of cover sets (or seed
points), so the points in the PatchDiam-ball will not be centers of other cover sets (seed points). Then
select randomly another point R as a center of another BallRad-ball (seed point). This point R cannot
now be in the PatchDiam-ball centered at Q. Similarly define the BallRad- and PatchDiam-balls for
point R. Proceed this way until all points are included in some balls or are too far away from other
points not be accepted in any BallRad-ball. Finally define the cover sets (Voronoi cells) to consist
those points that are closest to the centers (seed points), i.e. each point belongs only one cover set
(Voronoi cell). Because BallRad-balls can intersect, each point may belong to multiple BallRad-balls,
but it will be assigned to the cover set whose center (seed point) is the closest. This way the points
are partitioned into ”cover sets” or ”surface patches” (Voronoi cells).

Because most of the BallRad-balls intersect some other BallRad-balls and each cover set has its
own BallRad-ball associated with it, we define two cover sets as neighbors if their balls intersect.
To ensure that cover sets next to each other are neighbors, BallRad should be little bigger than
PatchDiam.

Figure 16: Comparison of the covers of a branch. The minimum diameters (PatchDiam) of the cover
sets are 2 cm (left) and 10 cm (right). The smaller cover sets can capture much more detail but form
more disconnected structure.

The average size of the cover sets is thus controlled by PatchDiam-parameter, which represent the
minimum patch diameter and the maximum is two times this. There is a trade-off with the size of
cover sets, as can be seen in Figure 16. The smaller it is, the more details we can capture and smaller
branches can be separated. However, the smaller size means more sets, which means almost quadratic
increase in modelling time (half the size means about four times the cover sets and up to 4-fold
modelling time). Also, memory requirements increase with decreasing cover set size. Furthermore,
very small sets can segment a branch into multiple smaller branches if the branch is not covered fully
with points. On the other hand, bigger sets mean faster computation and less memory required. With

28

bigger sets, the smallest branches may not be separable. Also, the beginning of each branch may be
less accurately determined which means that fitted cylinders might be too large (include points from
the child branch).

The method uses two different covers. The first cover uses large and uniform size sets and the
other uses smaller and variable size sets. In the above example run the first cover had PatchDiam1 =

5 cm and often 5-15 cm is a good range for the size of the sets. The purpose of this first cover is to
1) remove the points that don’t belong to the tree, e.g. ground and understory points, and 2) make
initial segmentation that is used as a priori information for the branch connections and size of the
cover sets in the second cover set generation. The actual value of PatchDiam1 for the first cover is not
often very important because it has not so much effect for the final result (this is true up to a point
of course, but e.g. values 5 cm - 15 cm for some cases could work almost equally well). On the other
hand, the size of the sets in the second cover is very important for the final results.

For the second cover the user specifies the minimum and the maximum patch sizes with parameters
PatchDiam2Min and PatchDiam2Max. The maximum size is at the base of the stem and the minimum
at the tips of the branches and the stem, see Figure 17 for an example of varying patch size. The size
of the sets should be small enough for the local details of the branches: The cover sets near the tips
of the branches need to be small so that all the details can be seen. At the same time these small sets
near the base of the trunk are too small for efficiency and may even lead wrong segmentation. Thus,
the size of the cover sets should be varying and based on the first segmentation we approximately know
the branching structure and the size of the branches. The local PatchDiam is determined for each
branch base by comparing its size to the size of the stem?s base. The sizes of the bases are estimated
roughly by comparing the number of cover-sets near the bases (as the cover set size in the first cover is
uniform everywhere, smaller branches need less cover sets to cover their surface than bigger branches).
However, we compute a priori upper bound for PatchDiam-value based on the branching order and
height of the branch: if the estimated PatchDiam-value is bigger than the upper bound, then the
PatchDiam is set to the upper bound-value. Now the PatchDiam is set for the base and tip for every
branch, including the stem. Along the branches the PatchDiam-value varies from the base-value to
the tip-value (the minimum size) ”quadratically” so that the size decreases slowly at the beginning
and then faster near the tip. Finally, one more modification is done for the local patch size in the
parent branch around each base of its child segments: The local PatchDiam is halved in order to have
small enough patches for accurate separation of branches. The local size of the cover sets for the
second cover is determined as a relative size by the relative size function, where you can find more
information.

2.2.2 Tree sets

When the first cover is generated there are a few things that need to be done before the segmentation.
First of all, the point cloud may contain points from the ground and understory and these non-tree
points need to be removed. Secondly, for the segmentation we need to determine the base of the
stem, which works as the starting point for the segmentation process. Finally, the segmentation
process assumes that the tree cover sets form one connected whole in terms of their neighbor relation.
Because of occlusion there are often lot of gaps that need to ”bridge over” by modifying the neighbor
relation to make the tree connected. With the second cover, when the non-tree points are already
removed and first segmentation is available, the step of removing the non-tree points is replaced with
the following step: The neighbor relation of the new cover sets is modified so that the branches of the
first segmentation are connected and they are connected to the stem. These steps are realized by the
function tree sets.

Let’s next see these steps with more details. First the stem and its base are located. If there
no ground and understory points, then we can utilize this and set the input parameter OnlyTree as
true or 1. Then the base of the stem will be simply a thin bottom layer of the point cloud as we
can now assume that these points must be from the bottom of the stem. If, on the other hand, there
are non-tree points, such as points from the ground, then this approach does not work in general.
So, if OnlyTree is false or 0, the code tries to locate the stem differently: The stem is assumed to
be quite vertical and long so that if we project the location of the cover sets into a horizontal plane,

29

Figure 17: Relative size of the cover sets for the second cover. Value 1 corresponds to the maximum
size and value 0 to the minimum size.

30

then the highest density of sets should be very close where the base of the stem is. This is actually
realized as maximizing a function defined on 1m times 1m grid of squares that considers the number
of sets, the vertical layers with sets above the squares (10 layers) and the number of sets in the first
two vertical layers. Thus, the grid square with the maximum function value defines the location of the
stem approximately and more accurate location is estimated with cylinder fitting. When the stem is
defined (the first few meters anyway), then the ground and other non-tree points are defined by region
growing from the base of the stem as much as possible and finally by classifying all bottom sets (not
the stem sets) as the ground sets.

The first cover is with large and uniform sets, which are good for quick estimation of the main
branching structure, particularly because they are not so sensitive to small gaps in the data. With the
second cover, we use the stem and branches up to 3rd-order from the previous segmentation to modify
the neighbor-relation so that these branches form connected wholes and that 1st-order branches are
connected to the stem. This step ensures that we can retain the branching structure from the first
segmentation. However, this does not mean that the second segmentation is the same up to 3rd-order
branches as the first segmentation, only that it can be.

Finally, if there are still separate components (usually there are many), then these are connected
by modifying the neighbor-relation so that the whole tree is a single connected whole. First the initial
connected tree is defined by the region growing as much as possible from the base of the stem. Then
the separate components of the other parts are determined and they are connected to the initial tree
as follows: For each component check if its nearby space has cover sets from the tree and then make
a connection between the closest cover sets. Repeat this as long as new connections can be made
and separate components remain. If there are still components that cannot be connected to the tree,
then increase the size of the nearby search space and repeat the process again. Increase the nearby
search space as long as all the components are connected to the tree. In the case of point clouds
with non-tree points (OnlyTree = 0), there is a minimal nonzero component size depending on the
distance that can be connected to the tree. This minimal component size increases with the size of
the nearby search space, the idea being that small sets far away from the tree are probably from other
trees or understory. Thus, components smaller than the minimal size are classified as non-tree points
and excluded from the QSM reconstruction process.

2.2.3 Segmentation

Next, we segment the cover sets (i.e. the point cloud) into stem and individual branches. This process
starts from the base of the trunk and in step-by-step proceeds along the stem (later along branches).
At each step, possible bifurcations are determined. If there is a branch, its base is saved as new
basis for later segmentation. This way the stem is segmented and its branches are separated from it.
Then the same process continues from the base of the first found branch. This way the stem is first
determined, then the 1st-order branches, then 2nd-order branches, etc., see figure 18 as an example.

The determination of possible bifurcations (branches) is based on a local topological analysis of
cover sets, where connectedness of small regions is determined. The idea is as follows: Start from the
base of the stem (or a branch) and expand it with the neighbors a few times. This grows the base
along the stem with a few layers of cover sets. Let us now assume that this resulting region of a few
layers of cover sets contains only sets from the stem and is a single connected whole. When this region
is moved along the stem one layer at the time and when there is a branch, the region diverges into two
parts, one in the stem and the other in the branch. Thus, when moved far enough, the region becomes
disconnected, which then indicates that there is a possible branch. However, due to small gaps in
the data, the region may become disconnected even when being only along the stem. Therefore, very
small components are considered being along the stem. If there are multiple components that are
possible branches, then the biggest component is handled as the continuation of the stem. When a
component is classified as a branch, its base is saved as a starting point for the segmentation of the
branch later in the process and further expansion in the branch is prohibited as long as the current
segment (stem) is under segmentation. When the stem is segmented, then the same process continues
from the branch base saved first and the branches are segmented in the same order their bases were
defined. When there are no bases of unsegmented branches, the segmentation process stops as every

31

cover set now belongs to a segment (branch).

2.2.4 Correct segmentation

The initial segmentation is based on quite rough local examination and thus may result incorrect
decisions, such as ending the segment too early by making wrong decisions where the segment continues
at bifurcation points. Thus, the initial segmentation requires corrections so that each segment would
correspond to the real branches as well as possible. Of course, due to many reasons such as noise
and gaps in the data, it is not possible to perfectly correct the segments, but the following correction
operation achieves quite good results. We use the following robust heuristic property: The tip of the
branch is the tip among all the tips of the child segments that is the furthest away from the base
of the branch. Thus, the idea is to make the segments as long as possible and define them from the
tips backwards to their bases. This process modifies the topology or the branching structure of the
segmentation and next it is explained in detail.

The segments are corrected, in the increasing branching order starting from the stem (0th-order),
so that the segments are made to reach as far as possible. In other words, take a segment and all
its current child segments and calculate the distances from the base of the segment to the tip of the
segment and to the tips of all its child segments. Notice this distance is not along the branches but is
the direct or the smallest distance between points. If the distance to the tip of the segment is less than
to some other tip of a child segment, then the segment is corrected so that it goes to this furthest tip
(and other segments are also modified suitably) (See figure 18). For the stem and 1st-order branches
we select the possible new tip with the restriction to the ”straightness” of the segment by limiting the
acceptable ratio (length of the segment)/(distance between the base and the tip).

Figure 18: Initial segmentation (left) and corrected final segmentation (right). Notice how trunk (blue)
and other segments are corrected and how in general branching order of the segments is reduced.

This kind of correction makes the resulting segmentation much more robust, i.e. with different
covers the resulting segmentation is usually close to identical. Thus, the volume reconstruction will also
be more robust in the same sense. Also, the maximum branching order is reduced much more realistic

32

levels. Notice that while this modification of branching structure usually makes the segmentation
more correct, there are of course situations where the modification may change initial segmentation
to worse. For example, if the tip of the main branch is broken off, the modification may now change
the segment because its tip is not the furthest tip anymore.

Accurate cylinder fitting to the segments requires some more modifications to the segments. Firstly,
in the second segmentation there may be very small segments that do not have child segments and are
difficult to estimate accurately if they really are part of their parent segment or are they real segments.
These segments are simply removed because their true contribution to the total volume and structure
is very small but at the same they can be problematic for the cylinder fitting in some cases.

Secondly, because the branches were separated from their parent based on the disconnection of
certain moving region, the branch base may not be very accurately defined and often the parent
segment contains small ledge-like parts from the branches. Now these small branch base parts can
be problematic when fitting cylinders because the resulting cylinder may be too large in radius as it
considers these branch parts. Thus, the base of every segment is modified so that potentially some
parts from the parent segment are removed. In the case of first segmentation, the part from the parent
is added to the child segment. In the case of the second segmentation, the part from the parent is
simply removed as this is best option for cylinder fitting.

2.3 Geometrical reconstruction of branch surfaces

After segmentation, we fit cylinders to the segments using the least squares fitting. Then optional
modifications/corrections follow the fitting to prevent some in a priori sense too small or too large radii.
Also, the cylinders are connected to each other and bigger gaps between child and parent segments are
filled, either by extending the first cylinder in the child segment or by adding a new cylinder. All these
steps are realized with the function cylinders. After cylinder fitting the branch data are computed,
including the length, volume and angle of each branch, in the function branches. Then some tree
attributes such as volumes and lengths are computed in the function tree data. If the input Tria is
set to 1, then the surface and volume of the bottom part of the stem up to the lowest branch is modelled
with a triangulation. The triangulation can offer better estimates of the volume and diameters for
stems with e.g. big buttresses or otherwise clearly non-circular cross-sections. Finally, distances
between the QSM surface and the point cloud are computed in the function point model distance.
These distances can quantitatively describe the goodness of the reconstructed QSM and thus can be
used in an optimization process, where the input parameter values are optimized.

2.3.1 Surface coverage and surface coverage filtering

A section of a segment, where a cylinder is fitted, is a point cloud whose points sample a surface that
is approximately a cylinder (otherwise cylinder would not be a good ”building block”). To measure
how much the points cover the surface (area) of the ”underlying” cylinder, we compute a value called
surface coverage (SC). It is defined as follows: Partition the points into equal-high vertical layers in
the direction of the cylinder axis, then partition the points into equal-angle sectors based on their
azimuth angle, and finally take the intersections of these partitions to produce a cell-partition of the
cylindrical surface. The relative number of non-empty cells is then the surface coverage. Figure 19
gives an example.

Not only this cell-partition give an estimate how much of the cylinder?s surface is covered but it
also gives a way to efficiently filter outliers: If there are noise or part of the child branch, as seen in
Fig. 19, the cells in these locations are large in radial direction and only the points closest to the axis
are needed/should be kept. Thus, we can accurately remove local outliers and we call this approach
surface coverage filtering. Figure 20 gives the examples of the filtering corresponding to the Fig. 19.
Moreover, as we can estimate each cell?s distance to the cylinder axis, we can estimate the radius of
the cylinder as mean or median of the non-zero cell distances.

33

Figure 19: Surface coverage. Partition of a section of a segment into cells (intersections of layers and
sectors). Different colors denote the different cells. The three figures give different point of views of
the same section.

Figure 20: Surface coverage filtering corresponding to Fig. 19. Blue points denote the points passing
the filtering and the red points are the filtered points.

34

2.3.2 Cylinder fitting

After segmentation, we fit cylinders to the segments using the least squares fitting with the function
cylinders. The process of fitting cylinder and the optional modifying the resulting radii based on
tapering are done for each segment at a time, starting from the stem and then continuing with the 1st-
order branches. The process of fitting cylinders to a segment is adaptive in the sense that the length
of the cylinder or the region/section of the segment used for the cylinder fitting is adapted/optimized
for each cylinder. The process starts from the base of the segment and it proceeds along the segment
as long as the whole segment is covered with cylinder. For each cylinder to be added to the model at
least three cylinder candidates of increasing length are fitted, and the process is continued up to ten
times of increasing length of cylinders to find the best cylinder to continue the segment.

For each cylinder the first step is to define the region/section of the segment where the cylinder
is fitted by selecting certain number of consecutive layers of cover sets along the segment. From
the section the initial values of the cylinder’s radius, starting point and axis are estimated because
these estimates are needed for non-linear least squares fitting: The axis is simply the line segment
connecting the averages of points in the bottom and top layers of the region and the starting point
is in this line. From these we can use surface coverage filtering to remove outliers from the region
and estimate the radius. After fitting the first three cylinders of different length, if there is at least
one cylinder whose optimization process converged reliably and whose relative length (length/radius)
is over 1.5 and whose SC is over 40% (over 70% for stem cylinders), then the one of these with the
highest SC is selected. If in the first three cylinder candidates there are no acceptable cylinders, then
the process continues, up to ten times, as long as an acceptable candidate is found. If there are ten
candidates and no one is not acceptable (reliable convergence, relative length > 1.5, SC > 40%), then
the one with the highest SC is selected.

Because the cylinders are separate sections of the segment (as they should form continuous and
accurate approximation of the segment’s surface), they are also independent of each other. This
means in particular that a section may have e.g. local occlusion in the point cloud data and thus the
radius and direction of the fitted cylinder may be quite different from the previous and the subsequent
cylinders even if they should not be. To make the cylinders more dependent on their neighbours we
actually add points from the previous and the subsequent sections to the fitting process but with
less weight than the points in the section have. The cylinder’s length and starting points (and SC
estimate) are computed from the points of the section.

Notice that the above process can produce in some cases, especially if the patch sizes are large com-
pared to the segments diameter, very elongated cylinders that have large relative length (length/radius).

2.3.3 Radius correction

Because the fitted radii of the cylinders forming a branch, particularly for thinner branches, is often
varying unnaturally, there are also optional controls on the radius: First, the user can enforce the
empirically very universally valid fact that the radius of the child branch is always smaller than the
radius of the parent branch. This is enabled with the input ParentCor which makes sure that the
maximum radii of the cylinders in a branch, whose surface coverage are less than 70%, cannot exceed
the radius of the parent cylinder in the parent branch. Or even in the case of higher than 70% of
surface coverage the radius can be at most 20% larger than in the parent. We also determine the
minimum radius Rmin of the cylinders: First Rmin is estimated from cylinders with SC over 70%
but if no such cylinder exist in the segment, then the Rmin is estimated from cylinders with SC over
40% but if even those not exists, then Rmin is given by the input MinCylRad. However, if Rmin from
cylinders with SC over 70% is more than three times the minimum from all cylinders, then Rmin is
the minimum from cylinders with SC over 40%. All radii below Rmin are set to Rmin.

Second, we want the local value and change of the radii to have some bounds and to be generally
decreasing towards the tip of the branch. We always use the following simple approach for smoothing
radii based on comparing surface coverage of consecutive cylinders: if SC of (i-1)th and (i+1)th
cylinders is over 70% but SC of ith cylinder is under 70%, then the radius of the ith cylinder is set to
the mean of the radii of (i-1)th and (i+1)th cylinders.

35

Third, the user can also use the following approach to modify the radii to be generally tapering,
enabled with the input TaperCor: The idea is to fit a parabola shape taper curve to the branch length-
radii data from the cylinders, which gives the local maximum and minimum radii values. And then
these local maximum and minimum curves guide modifications of radii based on SC: If the radius is
over the predicted value, the closer to the predicted value the radius is corrected the smaller the SC is.
We do this as follows: We fit the parabola R(len) = a ∗ len2 + b to the (length to the midpoint of the
cylinder from the branch base, 1.05*radius of the cylinder) data using linear least squares such that
the data points are weighted with the surface coverage of the cylinders. This parabola gives the local
maximum radius and if a cylinder has radius R larger than Rparabola, the predicted by the parabola,
and its SC is below 70%, then the radius is set to the closer the predicted maximum value Rparabola the
smaller the SC value is or precisely to Rparabola +SC/0.7 ∗ (R−Rparabola). If the cylinder has SC over
70% and the radius is 33% larger than the predicted parabola value, then the radius is also set similarly
but now the correction is Rparabola + SC ∗ (R − Rparabola). Similarly, we scale down the parabola of
the local maximum by 25% to define the local minimum radius. And similarly, if the radius is below
the predicted value when SC is below 70%, the radius is corrected to the predicted parabola value.
And if the radius is less than 50% of the predicted parabola value, the radius is set to the predicted
value. See Figures 21 and 22 for examples. For segments with small number of cylinders, the radii are
modified to be linearly decreasing. For those cylinders with large corrections/modifications on their
radius the starting point and SC are estimated again to correspond better to the new radius. The
starting point is estimated by first projecting the points into plane orthogonal to the axis and then
fitting a circle whose radius is given to the projected points.

Figure 21: Cylinder radius modification with parabolas. Red circles and lines denote the original fitted
radius, green lines denote the maximum and minimum radius parabolas, blue circles and lines denote
the final modified radii, and the light blue lines denote the surface coverage (right vertical axis).

There is an another option for controlling the radii of the cylinders: The ”growth volume” allometry
based approach introduced by Jan Hackenberg in his SimpleTree software. It is enabled by the input
GrowthVolCor and its effects are controlled by the input GrowthVolFac. In this approach, the total

36

Figure 22: Cylinder radius modification with parabolas. Top: Similar figure as in Figure 21. Bottom:
Actual cylinders (left: before any modification; right after the modifications) of the case shown in top
figure.

volume of all the cylinders following the given cylinder (”the growth volume”) is computed for every
cylinder and this produces (growth volume, radius) data set. Then we fit the following function
Radius = a ∗ GrowthV olb + c in the least squares sense and this function together with the factor
GrowthVolFac gives the upper and lower bound for the radius of every cylinder: 1/fac*predicted
radius ≤ radius ≤ fac*predicted radius.

2.3.4 Triangulation

If the input Tria is set to 1, then the software tries to triangulate the bottom part of the stem up to
the first main branch. The triangulation is based on the boundary curves of horizontal cross-sections
of the stem, where the user gives the width and height of the triangles such that the thickness of the
cross-section layers equals to the height and the length of the curve line elements is approximately
equal to the width.

37

3 Version history

Version 2.3.0 was the initial release in 2017.

Version 2.3.1 was released in October 2019. Mainly some bug fixes and changes to the optimization
and make models functions:
• Fixed bugs that could cause errors in some special cases in tree sets, correct segments,
cylinders and estimate precision.
• Fixed bug: wrong computation of cylinder starting points in least squares cylinder.
• Changed what and how is displayed during the run of treeqsm.
• Added many more optimization metrics to select optimum.
• Changes in the make models and make models parallel:

– Added try-catch structure where treeqsm is called, so that if there is an error during the
reconstruction process of one tree, then the larger process of making multiple QSMs from
multiple trees is not stopped.

– Changed the way the data is loaded. Previously all the data was loaded into workspace,
now only one point-cloud at the time is in the workspace.

– Corrected a bug where an incomplete QSM was saved as complete QSM.

Version 2.3.2 was released in December 2019. Mainly some small bug fixes to handle trees without
branches:
• cylinders: Increased the minimum number ”n” of estimated cylinders for initialization of

vectors at the beginning of the code.
• point model distance: Corrected the computation of the output at the end of the so that trees

without branches are computed correctly.
• estimate precision: Added the ”name” of the point cloud from the inputs.name to the output
TreeData as a field. Also, now displays the name together with the tree number.
• select optimum:

– Added the ”name” of the point cloud from the inputs.name to the output TreeData as a
field. Also, now displays the name together with the tree number.

– TreeData contains now correctly fields (location, StemTaper, VolumeBranchOrder, etc)
from the Optimal QSMs.

• tree data:
– Bug fix: Added a statement ”C ¡ nc” for a while command that makes sure that the index

”C” does not exceed the number of stem cylinders, when determining the index of cylinders
up to first branch.

– Bug fix: Changed ”for i = 1:BO” to ”for i = 1:max(1,BO)” where computing branch order
data.

– Added the plotting of the triangulation model.
• initial boundary curve: Added ”return” if the ”Curve” is empty after it is first defined.
• curve based triangulation: Removed the plotting of the triangulation model at the end of

the code.

Version 2.4.0 was released in August 2020. First major update. Cylinder fitting process and the
taper correction has changed. The fitting is adaptive and no more lcyl and FilRad parameters.
Treedata has many new fields: Branch and cylinder distributions; surface areas; crown dimensions.
More robust triangulation of stem. Branch, cylinder and triangulation structures have new fields.
More optimisation metrics. More plots of the results and more plotting functions.
• cylinders:

– Many comprehensive and small changes
– regions and cylinder fitting are combined into cylinder fitting and the process is

more adaptive as it now fits at least 3 (up to 10) cylinders of different lengths for each

38

region.
– lcyl and FilRad parameters are not used anymore
– Surface coverage (SurfCov) and mean absolute distance (mad) are added to the cylinder

structure as fields.
– Surface coverage filtering is used in the definition of the regions and removing outliers
– adjustments has many changes, particularly in the taper corrections where the parabola-

taper curve is fitted to all the data with surface coverage as a weight. Adjustment of radii
based on the parabola is closer the parabola the smaller the surface coverage. For the stem
the taper correction is the same as for the branches. The minimum and maximum radii
corrections are also modified.

– Syntax has changed, particularly for the cyl-structure
• tree data:

– Totally newly written code, structure has more sub-functions
– Changed the setup for triangulation:
∗ The size of the triangles is more dependent on the dbh
∗ The height of the stem section is defined up to the first major branch but keeping the

stem diameter above 25% of dbh.
– Makes now more tries for triangulation, also changes triangle size and the length of the

stem section if necessary.
– Changed the names of some fields in the output:
∗ VolumeCylDiam → VolCylDia

∗ LengthCylDiam → LenCylDia

∗ VolumeBranchOrder → VolBranchOrd

∗ LengthBranchOrder → LenBranchOrd

∗ NumberBranchOrder → NumBranchOrd

– Added a lot of new fields into the output treedata structure array, including:
∗ TrunkArea, BranchArea, TotalLength

∗ Crown dimensions (spreads, areas, volumes, vertical profile)
∗ Distribution of branches (volumes, areas, lengths, number) in terms of branch order,

diameter, height, branching angle, azimuth and zenith angle
∗ Distribution of cylinder (volumes, areas, lengths) in terms of cylinder diameter, height,

azimuth and zenith angle
∗ Displays the distributions if inputs.disp == 2

– Added new area-related fields into the output triangulation: side, top and bottom area
– Added new triangulation related fields to the output treedata:
∗ TriaTrunkArea: side area of the triangulation
∗ MixTrunkArea: trunk area from triangulation and cylinders
∗ MixTotalArea: total area where the MixTrunkArea used instead of TrunkArea

– Changed the coding for cylinder fitting of DBH to conform new output of the least square cylinder

• select optimum:
– Major change in the structure: sub-functions
– Removed the two cylinder fitting parameters lcyl and FilRad from the optimisation.
– Added more choices for the optimisation criteria or cost functions (”metric”) that are

minimised. There are now 91 metrics and the new ones include some area related metrics,
branch and cylinder distribution based metrics and cylinder surface coverage based metrics.

• tree sets:
– make tree connected:
∗ Removed ”Trunk(Base) = false;” at the beginning of the function as unnecessary and

to prevent errors in a special case where the Trunk is equal to Base.
∗ Removed from the end the generation of ”Trunk” again and the new call for the function

if ” Trunk” had nonzero elements
∗ Increased the minimum distance of a component to be removed from 8m to 12m.

– define base forb: Changed the base height specification from 0.1*aux.Height to 0.02*aux.Height

39

– define base forb: changed the cylinder fitting syntax corresponding to the new input and
outputs of least squares cylinder

• correct segments:
– modify topology: ”if size(ChildSegs,1) ¡ size(ChildSegs,2)”→ ”if isempty(ChildSegs) &&

size(ChildSegs,1) ¡ size(ChildSegs,2)”
– modify topology: added ”if isempty(SegChildren)” before ”SegInd = SegChildren(1);” in

order to prevent error in a special case.
• branches:

– Changed the coding to simplify and shorten the code
– Added branch area and zenith direction as new fields in the branch-structure array
– Removed the line were ChildCyls and CylsInSegment fields are removed from the cylinder-

structure array
• treeqsm:

– Removed the for-loops for lcyl and FilRad.
– Changed what is displayed about the quality of QSMs (point-model-distances and surface

coverage) during reconstruction
– Added version number to rundata

– Added remove of the field ChildCyls and CylsInSegment of cylinder from branches to
treeqsm

• least squares cylinder:
– Changed the input parameters of the cylinder to the struct format.
– Added optional input for weights
– Added optional input ”Q”, a subset of ”P”, the cylinder is intended to be fitted in this

subset but it is fitted to ”P” to get better estimate of the axis direction and radius
• make models parallel: Changed ”m = m+n;” to ”m = m+n(j);” at the end of the function.
• save model text:

– Added the new fields of cylinder, branch and treedata structures
– Added header names to the files
– Changed the names of the files to be saved
– Changed the name of second input from ”string” to ”savename”
– Changed the rounding of some parameters and attributes

• plot models segmentations: Plots segmented point clouds and cylinder models with two dif-
ferent colourings, one based on branching order and the other on branch

Version 2.4.1 was released in May 2022. Includes an update of the filtering process, code for se-
lecting automatically PatchDiam parameter values for the optimization process, sensitivity estimates
of the results, a smoother and more 3D look for the cylinder model plots, small bug fixes and code
streamlining:
• filtering: Major changes and additions.

– Added two new filtering options: statistical kth-nearest neighbor distance outlier filtering
and cubical downsampling .

– Changed the old point density filtering, which was based on given threshold, into statistical
point density filtering, where the threshold is based on user defined statistical measure

– All the input parameters are given by ”inputs”-structure
– Streamlined the coding and what is displayed

• create input: Added filtering parameters, so that they are included in the same inputs-
structure.
• define input: Completely new code for defining the PatchDiam and BallRad parameters for

QSM reconstruction process.
• select optimum:

– Added estimation of (relative) sensitivity of the single number attributes in TreeData for
the inputs PatchDiam1, PatchDiam2Min, PatchDiam2Max. Now TreeData contains also

40

these values as the columns 3 to 5.
– Corrected a small bug in the subfunction ”collect data” that caused error for QSMs whose

maximum branch order is less than 2.
– Bug fix for 3 lines (caused error for some cases and for other cases the optimal single model

was wrongly selected).
• cylinders:

– Added the growth volume correction option back, which was removed from the previous
version by a mistake.

– Added the fields ”branch”, ”BranchOrder”, ”PositionInBranch” to the output structure
”cylinder”

– Removed the fields ”CylsInSegment” and ”ChildCyls” from the output structure ”cylinder”
• least squares cylinder:

– Included the Gauss-Newton iterations into this function (removed the call to nlssolver
function)

– Changed how the update step is solved from the Jacobian
– Simplified some expressions and added comments
– ”mad” is computed only from the points along the cylinder length in the case of the optional

input ”Q” is given.
– Changed the surface coverage estimation by filtering out points whose distance to the axis

is less than 80% of the radius
• tree data:

– Small changes in ”crown measures” when computing crown base to prevent errors in special
cases.

– Small change for how to compute the ”first major branch” in ”triangulate stem”.
– Modified code so that ”n” cannot be empty in ”branch distribution” and cause warning
– Decreased the minimum triangle sizes in ”triangulate stem”

• branches: Changed the code such that the input ”segment” and output ”cylinder” are not
needed anymore, which simplified the code in many places. Cylinder info is now computed in
”cylinders” function.
• tree sets: Added new lines of code at the end of the ”define main branches” to make sure that

the ”Trunk” variable defines connected stem
• correct segmentation: Added ”if isempty(SegChildren)... ” statement to the ”modify topology”

subfunction where next branch is selected based on the increasing branching order to prevent a
rare bug.
• cover sets: Added comments and changed some variable names and enforced that input pa-

rameters are type double.
• curve based triangulation:

– Increased the radius of the balls at seed points from TriaWidth to 2*TriaWidth in the input
of ”boundary curve”

– Added triangle orientation check after the side is covered with triangles so that the surface
normals are pointing outward

– Modified the check if the new boundary curve changes only a little and then stop recon-
struction

– Added halving the triangle height if the boundary curve length has increased three times.
– Changed the bottom level from the smallest z-coordinate to the average of the lowest 100

z-coordinates.
• estimate precision: Added ”TreeData”, the output of ”select optimum”, as an input, and

now it is updated.
• cubical partition: Changed the determination of EL and NE so that the while loop don’t

continue endlessly in some cases.
• point model distance: Changed the determination of NE, the number of empty edge layers,

so that is now limited in size, before it is given as input for ”cubical partition” function.
• surface coverage filtering: Small changes to make the code little faster

41

• plot cylinder model:
– Changed the surface plot (”patch”) so that the edges are not plotted with separate colour,

so the surface looks more smooth. Added also shading.
– Added cylinder branch ”Bran” and branch order ”BOrd” vectors where the colouring op-

tions are defined to prevent some errors.
• simplify qsm:

– Added modification of branch and treedata structures based on the modified cylinders
– Added input for plotting and displaying the results
– Corrected some bugs that could cause errors in some special cases

• growth volume correction: Changed the roles of RADIUS and GROWTH VOLUME in the
allometry, i.e. the radius is now predicted from the growth volume. Also does not increase the
radius of the branch tip cylinders.

42

	Basics
	What is quantitate structure model or QSM?
	MATLAB setup
	Importing data into MATLAB
	The basic command
	Inputs structure
	Filtering point cloud
	Test run
	Output structure
	cylinder
	branch
	treedata
	rundata
	pmdistance
	triangulation

	Main assumptions of the method
	Reconstruction in practice
	Optimization of input parameters
	Multiple models with same inputs
	Sensitivity of results to the input parameters
	Downsampling point cloud
	Making QSMs in practice
	Plotting

	QSM simplification

	The reconstruction method - How it works?
	Overview of the main steps
	Topological reconstruction of branching structure
	Cover sets
	Tree sets
	Segmentation
	Correct segmentation

	Geometrical reconstruction of branch surfaces
	Surface coverage and surface coverage filtering
	Cylinder fitting
	Radius correction
	Triangulation

	Version history

