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1 – Introduction



Continuum vs. Discrete
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Continuum

Constitutive laws are employed to relate 

stress and strain / strain rate

Discrete

The macroscopic behavior results from the 

individual particle interactions

σ

ε δ

Two modeling approaches are commonly used for granular media

F

F

F



Hard-Sphere vs. Soft-Sphere
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Two types of simulation are commonly used within the discrete approach

Hard-Sphere

• Interaction forces are impulsive and 

not explicitly considered.

• Particles only exchange 

momentum through collision.

• Binary (pairwise) collisions only.

• Event-driven time steps: contact is 

instantaneous.

• Efficient for dilute systems: when

the time between collisions is much

larger than the collision duration.

Soft-Sphere

• Small overlaps are allowed to 

represent deformations during contact.

• Multiple contacts can happen 

simultaneously.

• Contact duration is finite and happens 

over several time steps.

• More time consuming due to smaller 

time steps.

• Most accurate and common approach 

for dense systems.

In both approaches, the geometry of particles is maintained during and after contacts.

Many shapes can be used, but spheres are the most common due to simplicity.

Focus here on soft-sphere-shaped particles!



Time Step Calculation Cycle
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Accelerations Velocities & Displacements

Forces & Torques Particles Interaction

Numerical

integration

Contact search

algorithms

Newton’s

2nd law

Forces computation

DEM = Newton’s 2nd law + Contact Mechanics



Forces Acting on a Particle
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𝐹𝑓

𝑀

𝐹𝑔

𝐹𝐶

𝐹𝑁𝐶

Contact forces with particles/walls:

Deformation of particle surface due 

to mechanical contact.

Non-contact forces:

Cohesion (e.g. liquid bridging), 

electrostatics, Van der Waals, etc.

Gravitational force (weight):

Acts on the center of mass and 

does not cause rotation.

Fluid forces:

Occur in multiphase flows

(drag, buoyancy, lift, etc.).

Torque:

Resultant torque from forces 

eccentricities and rolling resistance.

The resulting force / torque acting on a particle at any time step is given by the sum of 

the pairwise interaction with all other particles or walls.

𝑀

𝐹𝐶

𝐹𝑁𝐶

𝐹𝑔

𝐹𝑓













Contact Forces
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• Particles deformation during collision is represented as overlaps.

• Limited to small overlaps: contact area much smaller than the radii of spheres.

• Normal and tangential overlaps are considered, leading to forces in these directions.

• Normal forces (𝐹𝑛) cause change of translational motion;

Tangential forces (𝐹𝑡) cause changes of rotational motion.

𝐹𝐶 = 𝐹𝑛 + 𝐹𝑡

𝐹𝐶

𝐹𝑛

𝐹𝑡

Overlap
(DEM assumption)

Deformation
(real collisions)



Contact Force Models
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Contact force models relate the amount of overlaps with the magnitude of forces.

T0 T1 T2 T3 T4

v1 v1 v1 v2v2v2v1 v2

𝐹𝐶 𝐹𝐶 𝐹𝐶 𝐹𝐶 𝐹𝐶 𝐹𝐶

T

𝐹𝐶

T0 T1 T2 T4T3

Mechanical contact:

Normal overlap (𝛿𝑛)>0
Detachment

Separation /

unloading

Approach /

loading



Contact Force Models
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The force-displacement law is a function of the material parameters, amount of overlaps, 

relative velocity, and contact history.

There are way too many contact models and only some basic and common ones will be 

presented here.

Spring
(elastic force)

Slider
(friction force)

There are several models capable of simulating linear and nonlinear elastic,

viscoelastic, elastoplastic and viscoplastic collisions by employing conservative and

dissipative mechanical elements between particles, in normal and tangential directions,

such as:

Dashpot
(damping/viscous force)



2 – Contact Kinematics



Contact Kinematics
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Contact plane

Particle 1

Particle 2

X

Y

Z

𝑥 2

𝑥 1

𝑟 1

𝑟 2

𝑣 1

𝑣 2

Ƹ𝑡

ො𝑛

𝜔 1
𝜔 2

𝑣 𝑟

𝛿𝑛



Contact Kinematics
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Lengths & Positions Velocities

𝑑 = 𝑥 2 − 𝑥 1

𝛿𝑛 = 𝑅1 + 𝑅2 − 𝑑

𝛿𝑡 = න
𝑇0

𝑇
ሶ𝛿𝑡𝑑𝑇 ≅෍

𝑇0

𝑇

∆𝛿𝑡 → ∆𝛿𝑡 = ሶ𝛿𝑡. ∆𝑇

ො𝑛 = Τ𝑥 2 − 𝑥 1 𝑑

Ƹ𝑡 = Τ𝑣 𝑟
𝑡 𝑣 𝑟

𝑡

𝑟 1 = 𝑅1 − Τ𝛿𝑛 2 ො𝑛

𝑟 2 = − 𝑅2 − Τ𝛿𝑛 2 ො𝑛

𝑣 𝑟1 = 𝑣 1 + 𝜔 1 × 𝑟 1

𝑣 𝑟2 = 𝑣 2 + 𝜔 2 × 𝑟 2

𝑣 𝑟 = 𝑣 𝑟1 − 𝑣 𝑟2 = 𝑣 𝑟
𝑛 + 𝑣 𝑟

𝑡

𝑣 𝑟
𝑛 = 𝑣 𝑟 ∙ ො𝑛 ො𝑛 = ሶ𝛿𝑛 ො𝑛

𝑣 𝑟
𝑡 = 𝑣 𝑟 ∙ Ƹ𝑡 Ƹ𝑡 = ሶ𝛿𝑡 Ƹ𝑡

ሶ𝛿𝑛 = 𝑣 𝑟 ∙ ො𝑛

ሶ𝛿𝑡 = 𝑣 𝑟 ∙ Ƹ𝑡

𝑣 𝑟
𝑡 = 𝑣 𝑟 − 𝑣 𝑟

𝑛

Position of contact point:

Unit vectors:

Overlaps:

Distance between spheres: Particle velocities at contact point:

Relative velocity components:

Relative velocity at contact point:



Contact Kinematics
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Effective Parameters for the Collision of 2 Spheres

ത𝑅 =
1

𝑅1
+

1

𝑅2

−1

=
𝑅1 ∙ 𝑅2
𝑅1 + 𝑅2

ഥ𝑚 =
1

𝑚1
+

1

𝑚2

−1

=
𝑚1 ∙ 𝑚2

𝑚1 +𝑚2

ത𝐸 =
1 − υ1

2

𝐸1
+
1 − υ2

2

𝐸2

−1

ҧ𝐺 =
2 − υ1

2

𝐺1
+
2 − υ2

2

𝐺2

−1

Collision with a rigid wall:

𝑅wall = 𝑚wall = 𝐸wall = 𝐺wall = ∞



3 – Normal Force



Coefficient of Restitution
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𝜀𝑛 =
ሶ𝛿𝑛
𝑟𝑒𝑏

ሶ𝛿𝑛
0

The restitution coefficient measures the velocity decrease of a particle before and after 

a collision.

It consists on the fraction of kinetic energy recovered during collision.

Perfectly elastic collision:

Perfectly inelastic collision: 

Real collisions:

Normal relative velocity after collision (rebound)

Normal relative velocity before collision (impact velocity)





It is usually a basic property of a particle, and can be 

measured experimentally with a simple free-fall test:

Max. height after rebound

Height of drop

𝜀𝑛 = 1

0 < 𝜀𝑛 < 1
ℎ𝑟𝑒𝑏

ℎ0

Dissipation of

kinetic energy:

Thermal energy, elastic waves (sound), 

viscoelasticity, plastic deformations, etc.

𝜀𝑛 =
ℎ𝑟𝑒𝑏
ℎ0





𝜀𝑛 = 0



Viscoelastic Model
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The collision force consists of a conservative and a 

dissipative component.

η𝑛

𝐾𝑛

𝛿𝑛𝐹𝑛 𝐹𝑛

Particle 1 Particle 2

Force on particle 1:

𝐹𝑛 = − 𝐹𝑛
𝑒𝑙 + 𝐹𝑛

𝑣𝑖𝑠 ො𝑛

𝐾𝑛
η𝑛

Normal spring stiffness

Normal damping coeff.





Elastic Force (𝐹𝑛
𝑒𝑙):

• Simulated by a spring.

• A function (linear or not) of the normal overlap,

given by a stiffness coefficient.

• Repulsive force that provides elastic rebound.

• Conserves the kinetic energy of collision.

Viscous Force (𝐹𝑛
𝑣𝑖𝑠):

• Simulated by a dashpot.

• A function (linear or not) of the relative normal velocity, 

given by a damping coefficient.

• Resisting force against the motion.

• Dissipates the kinetic energy of collision.



Viscoelastic Model
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Remarks on viscoelastic models:

• Little energy dissipation for quasi-static systems:

The reason is that the dissipative term is a velocity-dependent viscous force.

• Reduction of spring stiffness:

It is common to use a stiffness value smaller than the real one in order to increase 

the contact duration, so a larger time step can be used (less costly simulation).

Although it can provide good results, care must be taken as the stiffness affects the 

magnitude of overlaps / forces and can lead to unrealistic results.

E.g. soft springs can make the solid fraction above 1.0 in compressed systems, and 

provide overlaps so large that the small deformation assumption is not valid, 

causing modeling errors due to the excluded volume effect.

• Unrealistic cohesive force:

During the separation stage (𝛿𝑛 > 0 and ሶ𝛿𝑛 < 0), towards the end of the impact,

it is possible that the viscous force (proportional to ሶ𝛿𝑛) exceeds the elastic force 

(proportional to 𝛿𝑛), resulting in a total force that is attractive, which is non-realistic.



Viscoelastic Model
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• Reduction collision time:

Physically, the unrealistic attractive force means that the separation of particles is 

occurring so fast that the deformation cannot recover at the same speed. 

Therefore, although an overlap is considered, the particles do not touch anymore 

and the velocity should not change.

Contact with

deformation and DEM overlap

No contact with

deformation and DEM overlap

No contact with no

deformation nor DEM overlap

A consequence of the unrealistic attractive force is that particles separate at a

lower velocity. An overcome to consider the reduction collision time is to always

limit the total force value to a positive value (Poschel & Schwager, 2005):

𝐹𝑛
𝑒𝑙 + 𝐹𝑛

𝑣𝑖𝑠 ≥ 0



Viscoelastic Model – Linear
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Both elastic and viscous forces are a linear function of the normal overlap and the 

relative normal velocity, respectively:

൝
𝐹𝑛
𝑒𝑙 = 𝐾𝑛𝛿𝑛

𝐹𝑛
𝑣𝑖𝑠 = η𝑛 ሶ𝛿𝑛

Equation of motion for a particle collision: ഥ𝑚 ሷ𝛿𝑛 + η𝑛 ሶ𝛿𝑛 + 𝐾𝑛𝛿𝑛 = 0

Initial conditions: ൝
𝛿𝑛 0 = 0
ሶ𝛿𝑛 0 = ሶ𝛿𝑛

0

Solution:
(Analytical!)

𝛿𝑛 𝑇 =
ሶ𝛿𝑛
0

𝑊
𝑒−Ψ𝑇 sin 𝑊𝑇

ሶ𝛿𝑛 𝑇 =
ሶ𝛿𝑛
0

𝑊
𝑒−Ψ𝑇 𝑊 cos 𝑊𝑇 −Ψsin 𝑊𝑇

Auxiliary parameters:

Ψ = Τη𝑛 2 ഥ𝑚

Φ = Τ𝐾𝑛 ഥ𝑚

𝑊 = Φ2 −Ψ2

𝛽 = Τ𝜋 ln 𝜀𝑛

Normal Linear Spring-Dashpot (LSDn)

*Proposed by Cundall & Strack (1979)



Viscoelastic Model – Linear
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𝛿𝑛 𝑇𝑐 = 0 →
ሶ𝛿𝑛
0

𝑊
𝑒−Ψ𝑇𝑐 sin 𝑊𝑇𝑐 = 0 → 𝑊𝑇𝑐 = 𝜋 → 𝑇𝑐 =

𝜋

𝑊

𝑇𝑐 =
𝜋

Τ𝐾𝑛 ഥ𝑚 − Τη𝑛
2 4 ഥ𝑚2

𝑇𝑐 = 𝜋
ഥ𝑚

𝐾𝑛
1 +

1

𝛽2

Rebound velocity:

Maximum overlap:

ሶ𝛿𝑛
𝑟𝑒𝑏 = ሶ𝛿𝑛

0exp −
η𝑛𝜋

2 ഥ𝑚 Τ𝐾𝑛 ഥ𝑚 − Τη𝑛
2 4 ഥ𝑚2

𝛿𝑛
𝑚𝑎𝑥 = ሶ𝛿𝑛

0
ഥ𝑚

𝐾𝑛
exp −

tan−1 𝛽

𝛽

Collision duration:

or also

ሶ𝛿𝑛
𝑟𝑒𝑏 = ሶ𝛿𝑛 𝑇𝑐 =

ሶ𝛿𝑛
0

𝑊
𝑒−Ψ𝑇𝑐 𝑊cos 𝑊𝑇𝑐 −Ψsin 𝑊𝑇𝑐 = ሶ𝛿𝑛

0𝑒−Ψ𝑇𝑐



Viscoelastic Model – Linear

21

𝜀𝑛 =
ሶ𝛿𝑛
𝑟𝑒𝑏

ሶ𝛿𝑛
0

= exp −
η𝑛𝜋

2 ഥ𝑚 Τ𝐾𝑛 ഥ𝑚 − Τη𝑛
2 4 ഥ𝑚2

η𝑛 = −
2 ln 𝜀𝑛 ഥ𝑚𝐾𝑛

ln 𝜀𝑛
2 + 𝜋2

Damping coefficient:

Since the coefficient of restitution is a given particle property,

the damping coefficient is obtained in terms of it by rearranging the previous equation:

η𝑛 =
4 ഥ𝑚𝐾𝑛
1 + 𝛽2

or also

The coefficient of restitution is expressed in terms of the damping coefficient

(inversely proportional – 𝜀𝑛 ↓ as  η𝑛 ↑):

P.S.: When the collision time reduction is applied, a slightly larger restitution coefficient is 

obtained and it should be considered in the derivation of the equations.



Viscoelastic Model – Linear
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Spring stiffness coefficient:

There are many methods to determine the spring stiffness and a general method is not 

widely agreed upon.

3 methods will be presented, each one sets a particular parameter equal to the 

respective result obtained with the NSDn model.

1) Equivalent Collision Duration:

𝑇𝑐 = 𝜋
ഥ𝑚

𝐾𝑛
1 +

1

𝛽2

𝑇𝑐 = 2.870
ഥ𝑚2

ሶ𝛿𝑛
0 ത𝑅 ത𝐸2

ൗ1 5

LSDn:

NSDn:

𝐾𝑛 ≅ 1.198 ሶ𝛿𝑛
0 ത𝑅 ത𝐸2 ഥ𝑚

ൗ2 5 1 +
1

𝛽2

Equalizing and rearranging the terms:



Viscoelastic Model – Linear
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2) Equivalent Maximum Overlap:

3) Equivalent Maximum Strain Energy:

𝛿𝑛
𝑚𝑎𝑥 = ሶ𝛿𝑛

0
ഥ𝑚

𝐾𝑛
exp −

tan−1 𝛽

𝛽

𝛿𝑛
𝑚𝑎𝑥 =

15

16

ഥ𝑚

ത𝑅 ത𝐸

ሶ𝛿𝑛
0 2

ൗ2 5

LSDn:

NSDn:

𝐾𝑛 ≅ 1.053 ሶ𝛿𝑛
0 ത𝑅 ത𝐸2 ഥ𝑚

ൗ2 5 exp −
tan−1 𝛽

𝛽

2

1

2
𝐾𝑛 𝛿𝑛

𝑚𝑎𝑥 2

2

5
𝐾𝐻𝑍 𝛿𝑛

𝑚𝑎𝑥 ൗ5 2

LSDn:

NSDn:

𝐾𝑛 ≅ 1.053 ሶ𝛿𝑛
0 ത𝑅 ത𝐸2 ഥ𝑚

ൗ2 5



Viscoelastic Model – Linear
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Graphs aspect for different values of the restitution coefficient:

𝛿𝑛

𝐹𝑛
𝜀𝑛 = 0.9𝜀𝑛 = 0.6𝜀𝑛 = 0.4

𝜀𝑛 = 0.9

𝜀𝑛 = 0.5

𝜀𝑛 = 0.1

𝛿𝑛

T

T

ሶ𝛿𝑛

Loading and unloading curves are not the

same due to viscous dissipation (energy

dissipation is the area between these

curves).

𝜀𝑛 = 0.9

𝜀𝑛 = 0.1

𝜀𝑛 = 0.5

The maximum overlap of the particle

decreases and the distance between

loading and unloading curves becomes

broader with increasing the damping

coefficient.



Viscoelastic Model – Linear
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Remarks on the LSDn model:

• Advantages:

Simple model; easy to implement; widely used; relies on analytical solution.

• Independency on impact velocity:

Restitution coefficient and collision duration are independent of the impact velocity.

However, in real collisions: ሶ𝛿𝑛
0 ↑ makes 𝜀𝑛 ↓ and 𝑇𝑐 ↓.

• Discontinuous force:

The contact force is non-zero at the start / end of the contact due to the viscous 

dissipation, which occurs because the relative velocity is not zero when particles 

touch / detach.

However, in real collisions the forces are continuous at the start / end of the contact

(there are remedies to overcome this behavior but with limitations).

• Parameters behavior:

𝑇𝑐 ↑ as  𝐾𝑛 ↓,  ഥ𝑚 ↑,  𝜀𝑛 ↓,  η𝑛 ↑

𝛿𝑛
𝑚𝑎𝑥 ↑ as  ሶ𝛿𝑛

0 ↑,  𝐾𝑛 ↓, ഥ𝑚 ↑,  𝜀𝑛 ↓,  η𝑛 ↑



Viscous Force:

There are different 

ways to introduce 

the viscous force, 

which lead to 

different types of 

nonlinear 

viscoelastic models. 

Elastic Force:

The Hertz theory 

(Hertz,1882) 

accurately describes 

the elastic behavior 

of collisions and 

thus is always used 

to compute the 

elastic force.

Viscoelastic Model – Nonlinear
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Normal Nonlinear Spring-Dashpot (NSDn)

The NSDn model has a higher accuracy than the LSDn model and is in better 

agreement with experimental results.



Viscoelastic Model – Nonlinear
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Nonlinear elastic force:

The Hertzian contact is based on the linear theory of elasticity (Johnson, 1985).

Considering a perfectly elastic and smooth sphere compressed against a frictionless

rigid wall with a force 𝐹𝑛
𝑒𝑙, it is possible to compute the stress distribution, 𝑃 𝑟 , and the

contact geometry in order to find the relation between 𝐹𝑛
𝑒𝑙 and 𝛿𝑛.

The contact area is circular, with radius 𝑎, and it predicts an axisymmetric distribution 

of normal stress over the contact area as a function of the radial coordinate r.

𝑃𝑚𝑎𝑥

𝑃 𝑟

𝑟 = 𝑎𝑟 = −𝑎 0

𝛿𝑛

𝐹𝑛
𝑒𝑙

𝑃 𝑟 = 𝑃𝑚𝑎𝑥 1 −
𝑟

𝑎

2

𝑃𝑚𝑎𝑥 =
3𝐹𝑛

𝑒𝑙

2𝜋𝑎2
=

6𝐹𝑛
𝑒𝑙 ത𝐸2

𝜋3 ത𝑅

ൗ1 3

Normal pressure distribution:



Viscoelastic Model – Nonlinear

28

From the equation of maximum pressure, the radius of the contact area, and 

subsequently the normal overlap, are obtained: 

Rearranging the terms of the last equation, it is possible to find the relation between 

the elastic normal force and the normal overlap: 

𝐹𝑛
𝑒𝑙 = 𝐾𝐻𝑍𝛿𝑛

ൗ3 2 𝐾𝐻𝑍 =
4

3
ത𝐸 ത𝑅

𝑎 =
3

4

𝐹𝑛
𝑒𝑙 ത𝑅

ത𝐸

ൗ1 3

𝛿𝑛 =
𝑎2

ത𝑅
=

9

16

𝐹𝑛
𝑒𝑙2

ത𝑅 ത𝐸2

ൗ1 3

We note that the Hertz contact force does not depend linearly on the overlap, although

the bodies are elastic. This is due to the increase of the contact area as the force

increases, which increases the effective stiffness



Viscoelastic Model – Nonlinear
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Solving for a purely elastic collision (no viscous force included yet):

Equation of motion for a particle collision: ഥ𝑚 ሷ𝛿𝑛 + 𝐾𝐻𝑍𝛿𝑛
ൗ3 2 = 0

Initial conditions: ൝
𝛿𝑛 0 = 0
ሶ𝛿𝑛 0 = ሶ𝛿𝑛

0

Maximum overlap: 𝛿𝑛
𝑚𝑎𝑥 =

15

16

ഥ𝑚

ത𝑅 ത𝐸

ሶ𝛿𝑛
0 2

ൗ2 5

𝑇𝑐 ≅ 2.86
ഥ𝑚2

ሶ𝛿𝑛
0 ത𝑅 ത𝐸2

ൗ1 5

Collision duration:

The force-displacement curves are considerably different from real collisions.

However, The collision duration is now an inverse function of the impact speed (in the 

linear model they were not related), so the collision duration is closer to experiments.



Viscoelastic Model – Nonlinear
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Nonlinear viscous force:

There are different ways to introduce the velocity-dependent energy dissipation, which 

lead to different types of nonlinear viscoelastic models. A few of them will be shown.

In most of them, the value of damping coefficient is usually obtained by experiments or 

calibrated to fit experimental results.

1) BSHPn Model:

Proposed by Brilliantov et. al (1996).

𝐹𝑛
𝑣𝑖𝑠 =

4

3
ത𝐸 ത𝑅 ҧ𝐴 𝛿𝑛

ൗ1 2 ሶ𝛿𝑛

where A is a dissipative constant that depends on the material viscosity and can be 

obtained experimentally.

For 2 particles with different materials, Poschel & Schwager (2005) suggest to use the 

arithmetic mean of A as the effective dissipative constant:

ҧ𝐴 = Τ𝐴1 + 𝐴2 2
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2) KKn Model:

Proposed by Kuwabara & Kono (1987).

3) TTIn Model:

Proposed by Tsuji et. al (1992).

𝐹𝑛
𝑣𝑖𝑠 = η𝑛 𝛿𝑛

ൗ1 2 ሶ𝛿𝑛

𝐹𝑛
𝑣𝑖𝑠 = η𝑛 𝛿𝑛

ൗ1 4 ሶ𝛿𝑛

η𝑛 = −2.2664
ln 𝜀𝑛 ഥ𝑚𝐾𝐻𝑍

ln 𝜀𝑛
2 + 10.1354

An expression for the damping coefficient is proposed by Norouzi et. al (2016), which 

is a correlation based on experimental data:

The value of the damping coefficient is usually calibrated to fit experimental results.

η𝑛 =
4

3
ത𝐸 ത𝑅 ҧ𝐴Equivalent to the previous model by taking:
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Graphs aspect for different values of the restitution coefficient:

𝛿𝑛

𝐹𝑛 𝜀𝑛 = 0.9

𝜀𝑛 = 0.7

𝜀𝑛 = 0.5

Loading and unloading curves are not

the same due to viscous dissipation

(energy dissipation is the area between

these curves).

The maximum overlap of the particle

decreases and the distance between

loading and unloading curves becomes

broader with increasing the damping

coefficient.
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Remarks on the NSDn model:

• Dependency on impact velocity:

The collision duration is an inverse function of the impact velocity, which is an 

improvement relative to the LSDn model.

• Continuous force:

The normal force is zero at the start / end of contact for all values of the restitution 

coefficient, which is an improvement relative to the LSDn model and is in agreement 

with real collisions.

• Cohesive force:

As in the LSDn model, the force is cohesive towards the end of the impact, due to 

the collision time reduction.
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• Energy dissipation due to spring hysteresis:

The spring stiffness adopts different values depending on whether particles 

approach or depart from each other.

• Elastic perfectly plastic model:

The hysteretic stiffness behavior models the strain hardening of the material due to 

plastic deformation.

*Proposed by Walton & Braun (1986)

𝐾𝑛
𝐿

𝛿𝑛𝐹𝑛 𝐹𝑛

Particle 1 Particle 2

𝐾𝑛
𝑈

Force on particle 1:

𝐾𝑛
𝐿

𝐾𝑛
𝑈

Loading spring stiffness

Unloading spring stiffness (𝐾𝑛
𝑈 ≥ 𝐾𝑛

𝐿)





𝐹𝑛
𝑒𝑙 = ൞

𝐾𝑛
𝐿𝛿𝑛 if ሶ𝛿𝑛 ≥ 0

𝐾𝑛
𝑈 𝛿𝑛 − 𝛿𝑛

𝑟𝑒𝑠 if ሶ𝛿𝑛 < 0, 𝛿𝑛 > 𝛿𝑛
𝑟𝑒𝑠

0 if ሶ𝛿𝑛 < 0, 𝛿𝑛 ≤ 𝛿𝑛
𝑟𝑒𝑠

𝛿𝑛
𝑟𝑒𝑠

Residual overlap

𝐹𝑛 = −𝐹𝑛
𝑒𝑙 ො𝑛

Hysteric Linear Spring (HLS)
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𝛿𝑛

𝐹𝑛

𝐾𝑛
𝐿

𝛿𝑛
𝑚𝑎𝑥

𝐾𝑛
𝑈1 𝐾𝑛

𝑈2

𝛿𝑛
𝑟𝑒𝑠1 𝛿𝑛

𝑟𝑒𝑠2

𝐹𝑛
𝑚𝑎𝑥

The loading path is always the same regardless of the restitution coefficient.

The residual overlap represents a permanent plastic deformation.

The energy dissipated during contact is the area between loading and unloading paths.

After full unloading, the residual deformation is forgotten for the next collisions.

𝜀𝑛 =
𝐾𝑛
𝐿

𝐾𝑛
𝑈

The restitution coefficient is related to 

the ratio between loading and 

unloading stiffness as: 

ቊ
𝐾𝑛
𝑈1 < 𝐾𝑛

𝑈2

𝜀𝑛1 > 𝜀𝑛2
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𝑇𝑐 =
𝜋

2

ഥ𝑚

𝐾𝑛
𝐿 𝜀𝑛 + 1

Maximum overlap:

Residual overlap:

𝛿𝑛
𝑟𝑒𝑠 = 𝛿𝑛

𝑚𝑎𝑥 1 −
𝐾𝑛
𝐿

𝐾𝑛
𝑈 = ሶ𝛿𝑛

0
ഥ𝑚

𝐾𝑛
𝐿 1 − 𝜀𝑛

2

𝛿𝑛
𝑚𝑎𝑥 = ሶ𝛿𝑛

0
ഥ𝑚

𝐾𝑛
𝐿

Maximum force:

𝐹𝑛
𝑚𝑎𝑥 = 𝐾𝑛

𝐿 ሶ𝛿𝑛
0

ഥ𝑚

𝐾𝑛
𝐿

1) Equivalent Collision Duration:

2) Equivalent Maximum Overlap:

3) Equivalent Maximum Strain Energy:

𝐾𝑛
𝐿 ≅ 0.2996 ሶ𝛿𝑛

0 ത𝑅 ത𝐸2 ഥ𝑚
ൗ2 5 𝜀𝑛 + 1 2

𝐾𝑛
𝐿 ≅ 1.053 ሶ𝛿𝑛

0 ത𝑅 ത𝐸2 ഥ𝑚
ൗ2 5

𝐾𝑛
𝐿 ≅ 1.053 ሶ𝛿𝑛

0 ത𝑅 ത𝐸2 ഥ𝑚
ൗ2 5

Loading spring stiffness:

As with the LSDn model, 3 methods will

be presented, each one sets a particular

parameter equal to the result obtained

with the NSDn model.

Collision duration:
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Constant unloading spring stiffness:

Assumes a constant unloading stiffness value, regardless of the maximum force,

and thus a constant restitution coefficient.

𝛿𝑛

𝐹𝑛

𝐾𝑛
𝐿

𝛿𝑛
𝑚𝑎𝑥2𝛿𝑛

𝑟𝑒𝑠1 𝛿𝑛
𝑟𝑒𝑠2

𝐹𝑛
𝑚𝑎𝑥2

The unloading stiffness is obtained

from the loading stiffness and a given

constant restitution coefficient:

𝐹𝑛
𝑚𝑎𝑥1

𝐾𝑛
𝑈 𝐾𝑛

𝑈

𝛿𝑛
𝑚𝑎𝑥1

𝜀𝑛 =
𝐾𝑛
𝐿

𝐾𝑛
𝑈 → 𝐾𝑛

𝑈 =
𝐾𝑛
𝐿

𝜀𝑛
2
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Variable unloading spring stiffness:

The unloading stiffness assumes different values depending on the maximum force, 

which results in a variable restitution coefficient.

𝛿𝑛

𝐹𝑛

𝐾𝑛
𝐿

𝛿𝑛
𝑚𝑎𝑥2𝛿𝑛

𝑟𝑒𝑠1 𝛿𝑛
𝑟𝑒𝑠2

𝐹𝑛
𝑚𝑎𝑥2

𝐹𝑛
𝑚𝑎𝑥1

𝐾𝑛
𝑈1 𝐾𝑛

𝑈2

𝐾𝑛
𝑈 = 𝐾𝑛

𝐿 + 𝑆𝐹𝑛
𝑚𝑎𝑥

The unloading stiffness is given by:

𝛿𝑛
𝑚𝑎𝑥1

where the S can be determined 

empirically from experiments.

𝜀𝑛 =
𝐾𝑛
𝐿

𝐾𝑛
𝐿 + 𝑆𝐹𝑛

𝑚𝑎𝑥 =
1

1 + 𝑆 ሶ𝛿𝑛
0 ഥ𝑚

𝐾𝑛
𝐿

Applying the expression of 𝐾𝑛
𝑈 to 

the restitution coeff., it becomes a 

function of the impact velocity:
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Remarks on the HLS model:

• Dependency on impact velocity:

In the constant unloading stiffness, as in the LSDn model, the restitution coefficient 

and collision duration are independent of the impact velocity. 

In the variable unloading stiffness, as in real collisions, the restitution coefficient

and collision duration are an inverse function of the impact velocity

(the former matches experimental data reasonably well while the later doesn’t). 

• Continuous force:

The normal force is zero at the start / end of contact.

• Cohesive force:

Differently from the viscoelastic models presented, the force is always repulsive and 

no reduction of contact time is needed.

• Parameters behavior:

𝑇𝑐 ↑ as  𝐾𝑛
𝐿 ↓,  ഥ𝑚 ↑,  𝜀𝑛 ↑ (Directly proportional to 𝜀𝑛, opposite to LSDn model)

𝛿𝑛
𝑚𝑎𝑥 ↑ as  𝐾𝑛

𝐿 ↓,  ഥ𝑚 ↑,  ሶ𝛿𝑛
0 ↑ (Independent of 𝜀𝑛, unlike in the LSDn model)
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𝐹𝑛 = − 𝐹𝑛
𝑒𝑙 + 𝐹𝑛

𝑣𝑖𝑠 ො𝑛

𝐹𝑛
𝑒𝑙 = 𝐾𝑛𝛿𝑛

𝐹𝑛
𝑣𝑖𝑠 = η𝑛 ሶ𝛿𝑛

𝐹𝑛
𝑒𝑙 = 𝐾𝐻𝑍𝛿𝑛

ൗ3 2

𝐹𝑛
𝑣𝑖𝑠 = η𝑛 𝛿𝑛

ൗ1 4 ሶ𝛿𝑛

𝐾𝑛 ≅ 1.053 ሶ𝛿𝑛
0 ത𝑅 ത𝐸2 ഥ𝑚

ൗ2 5

η𝑛 = −
2 ln 𝜀𝑛 ഥ𝑚𝐾𝑛

ln 𝜀𝑛
2 + 𝜋2

𝐾𝐻𝑍 =
4

3
ത𝐸 ത𝑅

η𝑛 = −2.2664
ln 𝜀𝑛 ഥ𝑚𝐾𝐻𝑍

ln 𝜀𝑛
2 + 10.1354

Viscoelastic

Elastic Perfectly

Plastic
𝐹𝑛 = −𝐹𝑛

𝑒𝑙 ො𝑛 𝐹𝑛
𝑒𝑙 = ൝

𝐾𝑛
𝐿𝛿𝑛 if ሶ𝛿𝑛 ≥ 0

𝐾𝑛
𝑈 𝛿𝑛 − 𝛿𝑛

𝑟𝑒𝑠 if ሶ𝛿𝑛 < 0

𝐾𝑛
𝐿 ≅ 1.053 ሶ𝛿𝑛

0 ത𝑅 ത𝐸2 ഥ𝑚
ൗ2 5

𝐾𝑛
𝑈 =

𝐾𝑛
𝐿

𝜀𝑛
2

𝐾𝑛
𝑈 = 𝐾𝑛

𝐿 + 𝑆𝐹𝑛
𝑚𝑎𝑥

Time reduction: 𝐹𝑛
𝑒𝑙 + 𝐹𝑛

𝑣𝑖𝑠 ≥ 0









Linear

Nonlinear

(TTIn model)
(Poschel & Schwager, 2005)

(Equivalent

maximum

strain energy)

Constant:

Variable:



4 – Tangential Force
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The tangent component of contact forces appears in oblique collisions due to surface 

friction between particles since the texture is never perfect but has small asperities.

To take into account the surface roughness, tangent force models usually incorporate

parameters that cannot be derived from basic material properties nor experiments, but

only by adjusting simulation results with experimental data.

Surface roughness allows

a heap of sphere particles

to be built on a flat surface

Non-spherical shapes may

be more appropriate for

static granular systems in

which the tangent force is

velocity-dependent
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The surface friction between particles is well modeled by Coulomb’s law of friction.

𝐹𝑛

𝐹𝑛

𝑄

𝐹𝑡

𝐹𝑡

𝑄

𝐹𝑡 = ቊ
𝑄 if 𝑄 < 𝜇𝑠𝐹𝑛

𝜇𝑘𝐹𝑛 if 𝑄 ≥ 𝜇𝑠𝐹𝑛

𝜇𝑠
𝜇𝑘

Static friction coeff.

Kinetic friction coeff.





(1 > 𝜇𝑠 > 𝜇𝑘 > 0.1)

𝑄

𝐹𝑡

𝜇𝑠𝐹𝑛

𝜇𝑠𝐹𝑛

𝜇𝑘𝐹𝑛

For low shear forces, 

there is no relative 

motion (stick)

For high shear forces,

there is a relative motion 

(slip – gross sliding)
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In the tangent contact models, a single friction coefficient 𝜇 is usually considered.

If Coulomb’s criterion is violated ( 𝑄 ≥ 𝜇 𝐹𝑛 ), gross sliding occurs and a slider is 

activated, in series with other mechanical elements, to provide the friction force.

The total force provided by other mechanical elements (say Q) never exceeds the 

friction force.

Therefore, the most common way to apply Coulomb’s law is to limit the tangential force 

to the friction force provided by the slider (Cundall & Strack, 1979):

𝐹𝑡 = min 𝑄 , 𝜇 𝐹𝑛

𝐹𝑛

𝜇
𝐹𝑡 = 𝑄

𝐹𝑡 𝑄 < 𝜇𝐹𝑛

𝛿𝑡
𝐹𝑛

𝜇
𝐹𝑡 = 𝜇𝐹𝑛

𝐹𝑡 𝑄 > 𝜇𝐹𝑛

𝛿𝑡
v
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Materials Friction coefficient (μ)

soda lime glass / soda lime glass 0.092 ± 0.006

“fresh” glass / “fresh” glass 0.048 ± 0.006

“spent” glass / “spent” glass 0.177 ± 0.020

cellulose acetate / cellulose acetate 0.250 ± 0.020

nylon / nylon 0.175 ± 0.100

acrylic / acrylic 0.096 ± 0.0006

polystyrene / polystyrene 0.189 ± 0.009

stainless steel / stainless steel 0.099 ± 0.008

acrylic / aluminum plate 0.140

radish seeds / aluminum plate 0.190

“fresh” glass / aluminum plate 0.131 ± 0.007

“spent” glass / aluminum plate 0.126 ± 0.009

glass plate / glass plate 0.400

glass plate / nickel plate 0.560

glass plate / carbon plate 0.180

The friction coefficient of a material is given considering the contact of two surfaces of

the same material; for two particles with different materials, the friction coefficient, when

unknown, is taken as the minimum one, as proposed by Poschel & Schwager (2005).

Friction coefficients for the contact between materials (Wassgren & Sarkar, 2008):
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Complementing the kinematics of motion previously presented here.

𝐹𝑡 = −𝐹𝑡 Ƹ𝑡

The tangential direction Ƹ𝑡 points towards 

the relative tangential velocity direction.

Current idealized contact pointParticle 1

Particle 2

C1

C2

C

ො𝑛

Ƹ𝑡

𝑣 𝑟
𝑣 𝑟

𝑛

𝑣 𝑟
𝑡

C

C1

C2 





Initial contact point of particle 1

Initial contact point of particle 2

The tangential forces acts against the

motion, therefore the force acting on

particle 1 (reference particle throughout

the presentation) is:
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𝐹𝑡

ሶ𝛿𝑡

𝜇 𝐹𝑛

−𝜇 𝐹𝑛

Particle 1

Particle 2

𝜇

𝛿𝑡

𝐹𝑡

𝐹𝑡

Force is discontinuous

at ሶ𝛿𝑡 = 0.

𝛿𝑛

A slider is used to incorporate only the sliding friction.

It does not account for tangential deformation.

The force is always constant and changes only its direction.

𝐹𝑡 = 𝜇 𝐹𝑛
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A dashpot is used to incorporate only viscous force (η𝑡  tangential damping coeff.).

It does not account for tangential deformation nor sliding friction.

No dependency on normal force leads to poor behavior for grazing impacts.

It is physically justified for lubricated contacts.

𝐹𝑡

ሶ𝛿𝑡

Particle 1

Particle 2

𝛿𝑡

𝐹𝑡

𝐹𝑡
𝛿𝑛

𝐹𝑡 = η𝑡 ሶ𝛿𝑡

η𝑡

Force is continuous

at ሶ𝛿𝑡 = 0.

η𝑡
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A dashpot is used to incorporate a viscous force, which is limited by Coulomb’s law 

(combination of previous models).

It does not account for tangential deformation.

Particle 1

Particle 2

𝛿𝑡

𝐹𝑡

𝐹𝑡
𝛿𝑛

𝐹𝑡

ሶ𝛿𝑡

η𝑡

𝜇 𝐹𝑛

−𝜇 𝐹𝑛

𝐹𝑡 = min η𝑡 ሶ𝛿𝑡 , 𝜇 𝐹𝑛

η𝑡
𝜇

*Proposed by Haff & Werner (1986)

Force is continuous

at ሶ𝛿𝑡 = 0.
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Remarks:

For a small tangential velocity or a large normal force, the tangential force is a shear 

damping that grows linearly with the velocity; For a large tangential velocity or a small 

normal force, the sliding friction force is selected.

Gives reliable results in systems where particles collide and do not rest statically at 

each other (e.g. a sand heap). Also appropriate for lubricated contact.

Problems appear in static systems when the relative velocities, and hence the 

tangential force, vanish since the model does not incorporate static friction.

Therefore, this model is not suited for the simulation of static granular systems

(a heap of such particles dissolves slowly).

A solution for this problem is to choose more complicatedly shaped particles.

A further problem concerns the damping coefficient. The tangential force is mainly 

determined by surface properties, i.e., by very small asperities at the particle surface. 

Therefore, there is no experimentally measurable material constant from which this 

coefficient could be derived. Instead this coefficient can only be determined à posteriori 

from the comparison of simulation results with experiments.
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A linear tangential spring is used to incorporate a elastic force of static friction

(𝐾𝑡  tangential spring stiffness), which is limited by Coulomb’s law.

It does not depend on velocity and provides good results for static behavior.

The spring stiffness is determined by comparing simulation results with experiments.

*Proposed by Cundall & Strack (1979)

Particle 1

Particle 2

𝛿𝑡

𝐹𝑡

𝐹𝑡
𝛿𝑛

𝐹𝑡

𝛿𝑡

𝐾𝑡

𝜇 𝐹𝑛

−𝜇 𝐹𝑛

𝐹𝑡 = min 𝐾𝑡𝛿𝑡 , 𝜇 𝐹𝑛

𝜇
𝐾𝑡

Dynamics of impact is governed by the ratio of tangent to normal stiffness: 

Normal spring sets the contact duration while tangent response is a function 

of the tangent spring stiffness.
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A linear tangential spring and dashpot are used to incorporate viscoelastic forces, 

analogous to the LSDn model, but limited by Coulomb’s law of friction.

It assumes no micro-slip in the contact area and constant spring stiffness.

Particle 1

Particle 2

𝛿𝑡

𝐹𝑡

𝐹𝑡
𝛿𝑛

𝜇

𝐾𝑡

η𝑡

𝐹𝑡 = min 𝐹𝑡
𝑒𝑙 + 𝐹𝑡

𝑣𝑖𝑠 , 𝜇 𝐹𝑛 ൝
𝐹𝑡
𝑒𝑙 = 𝐾𝑡𝛿𝑡

𝐹𝑡
𝑣𝑖𝑠 = η𝑡 ሶ𝛿𝑡

When slip occurs, the spring extension is adjusted to

a value such that spring force matches friction force.

Hence, another way to apply Coulomb’s law is to limit

the tangential overlap when gross sliding occur

(Maw et. al, 1976). This limited overlap can provide

better estimation of experimental data:

𝛿𝑡 = sign 𝛿𝑡
𝜇 𝐹𝑛 − η𝑡 ሶ𝛿𝑡

𝐾𝑡

Then 𝐹𝑡 is re-computed as 𝐹𝑡
𝑒𝑙 + 𝐹𝑡

𝑣𝑖𝑠. 
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Spring stiffness:

It is common to set the tangential stiffness from the ratio between normal and

tangential stiffness. From the elastic solid mechanics analysis of Mindlin (1949):

𝐾𝑡
𝐾𝑛

=
1 − ν

1 − ൗν 2

For common values of Poisson ratio:

(0 < ν < 0.5)

2

3
<
𝐾𝑡
𝐾𝑛

< 1

Damping coefficient:

The value of the damping coefficient can only be determined by comparing results of 

simulation and experiments.

An expression was provided by Deen et. al (2007), based on the tangent coefficient of 

restitution (𝜀𝑡, obtained experimentally). This relation was obtained analytically, 

similarly to the expression of the LSDn model:

η𝑡 =
−
2 ln 𝜀𝑡 ൗ2 7 ഥ𝑚𝐾𝑡

ln 𝜀𝑡
2 + 𝜋2

if 𝜀𝑡 ≠ 0

2 ൗ2 7 ഥ𝑚𝐾𝑡 if 𝜀𝑡 = 0

Cundall & Strack

(1979) set the

tangential damping

coefficient to be

proportional to the

tangential spring

stiffness.
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Nonlinear version of previous model and analogous to the NSDn model, but again 

limited by Coulomb’s law of friction.

There are many ways to set the spring stiffness and the damping coefficient, some of 

them are presented in the following.

1) DDt model (Di Renzo & Di Maio, 2005):

𝐹𝑡
𝑒𝑙 = 𝐾𝑡𝛿𝑡 𝐾𝑡 =

16

3
ҧ𝐺 ത𝑅𝛿𝑛

Micro-slip conditions on the contact area and variable normal force on the contact 

surface are approximately considered.

Unlike the linear model, the nonlinear spring stiffness is continuously changing during a 

collision because the normal overlap is not constant.

This model does not consider viscous force. However, it can be incorporated by a 

damping force proportional to the velocity similar to the linear model.
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𝛿𝑡
𝑚𝑎𝑥 = 𝜇

2 − ν

2 1 − ν
𝛿𝑛

𝐹𝑡
𝑒𝑙 = 𝜇 𝐹𝑛 1 − 1 −

min 𝛿𝑡 , 𝛿𝑡
𝑚𝑎𝑥

𝛿𝑡
𝑚𝑎𝑥

ൗ3 2

𝐹𝑡
𝑣𝑖𝑠 = η𝑡

6 ഥ𝑚𝜇 𝐹𝑛 1 −
min 𝛿𝑡 , 𝛿𝑡

𝑚𝑎𝑥

𝛿𝑡
𝑚𝑎𝑥

𝛿𝑡
𝑚𝑎𝑥

ൗ1 2

ሶ𝛿𝑡

2) LTH model (Langston et. al, 1994):

Simplified model for a contact with constant normal force.

Ensures that gross sliding occurs when tangent displacement is greater than the 

displacement in which sliding starts (𝛿𝑡
𝑚𝑎𝑥):
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3) ZZYt model (Zheng et. al, 2012):

The elastic force is computed as in model 2, but the viscous force is computed in an 

improved way:

𝐹𝑡
𝑣𝑖𝑠 =

η1
2𝐺𝑖𝛿𝑡

𝑚𝑎𝑥 1 −
0.4η1 ሶ𝛿𝑡
2𝐺𝑖𝛿𝑡

𝑚𝑎𝑥 1.5𝜇 𝐹𝑛 1 −
min 𝛿𝑡 , 𝛿𝑡

𝑚𝑎𝑥

𝛿𝑡
𝑚𝑎𝑥

ሶ𝛿𝑡

4) TTIt model (Tsuji et. al, 1992):

A tangential stiffness was derived from the no-slip solution of Mindlin (1949), assuming 

a damped Hertz normal spring force and constant coefficient of restitution.

The tangential damping coefficient is set equal to the normal damping coefficient.

𝐾𝑡 =
2𝑅𝐸

2 − ν 1 + ν
𝛿𝑛𝐹𝑡

𝑒𝑙 = 𝐾𝑡𝛿𝑡
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Complementary to the HLS model in normal force: a hysteric spring with different 

loading and unloading stiffness provides an elastic force limited by Coulomb’s law.

More sophisticated: It is not only determined by the particle positions and velocities at 

the present time, but also depends on the history of the interaction.

Particle 1

Particle 2

𝛿𝑡

𝐹𝑡

𝐹𝑡

𝜇
𝐾𝑡

*Proposed by Walton & Braun (1986)

𝛿𝑛

𝐹𝑡

𝛿𝑡

a: initial loading 

b: direction reversal

c: direction reversal

d: slipping

(assuming constant normal force)

a

b

c

d
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The tangential force is computed incrementally: the force at a time step T2 is obtained 

from the force at time step T1 plus an increment of force associated to an increment of 

tangential overlap (∆𝛿𝑡):

When particles collide at certain angle, they begin to slide against each other and the 

tangential force increases with the spring elongation, limited by Coulomb’s law.

If the particles begin to slide in the opposite direction (direction reversal), the tangential 

force decreases, but with a different path.

After direction reversal, the spring stiffness assumes a different value, such that

Coulomb’s law is enforced (𝐾𝑡 = 0 when 𝐹𝑡
𝑇1 = 𝜇𝐹𝑛) and depends on the initial stiffness

value (𝐾𝑡
0 ) and on the tangent force when the last slipping reversal occurred

(𝐹𝑡
∗
 initially 0):

𝐹𝑡
𝑇2 = 𝐹𝑡

𝑇1 + 𝐾𝑡∆𝛿𝑡

𝐾𝑡 = 𝑠𝐾𝑡
0 1 −

𝐹𝑡
𝑇1 − 𝐹𝑡

∗

𝜇𝐹𝑛 − 𝑠𝐹𝑡
∗

ൗ1 3

𝑠 =

If ሶ𝛿𝑡 is in the initial direction

(slipping increases 𝐹𝑡
𝑇1)

If ሶ𝛿𝑡 is in the opposite direction

(slipping decreases 𝐹𝑡
𝑇1)

1

−1
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Remarks:

• Assumes that normal the normal force remains constant between time steps

(justified for a gradually changing normal force).

• The difference of the tangent stiffness of loading and unloading paths is the source 

of energy dissipation.

• For implementation, it needs to store some information of the contact history.

• Extension to 3D is complicated because of the definition of a direction reversal.
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Nomenclature

Geometric and Physical Properties

𝑅𝑖 Radius of particle i

ത𝑅 Effective radius of two particles

𝑚𝑖 Mass of particle i

ഥ𝑚 Effective mass of two particles

𝐸𝑖 Young modulus of particle i

ത𝐸 Effective Young modulus of two particles

𝐺𝑖 Shear modulus of particle i

ҧ𝐺 Effective shear modulus of two particles

𝐴𝑖 Dissipative constant 

ҧ𝐴 Effective dissipative constant of two particles

ν𝑖 Poisson ratio of particle i

𝜀𝑛, 𝜀𝑡 Normal / tangential coefficient of restitution

Kinematics

𝑋, 𝑌, 𝑍, 𝑟 Cartesian and radial coordinate systems

𝑑 Distance between center of two particles

𝛿𝑛, 𝛿𝑡 Normal / tangential overlap

𝛿𝑛
𝑚𝑎𝑥, 𝛿𝑡

𝑚𝑎𝑥 Maximum normal / tangential overlap

𝛿𝑛
𝑟𝑒𝑠 Residual normal overlap

ሶ𝛿𝑛, ሶ𝛿𝑡 Normal / tangential relative velocity

ሶ𝛿𝑛
0, ሶ𝛿𝑛

𝑟𝑒𝑏 Normal relative velocity of Impact / rebound

ሷ𝛿𝑛 Normal relative acceleration

ℎ0, ℎ𝑟𝑒𝑏 Height of drop / rebound in free-fall test

𝑥 𝑖 Position vector of center of particle i

𝑟 𝑖
Position vector from center of particle i to contact 

point

ො𝑛, Ƹ𝑡 Normal / tangential unit vectors

𝑣 𝑖 Translational velocity vector at the center of particle i

𝑣 𝑟𝑖
Translational velocity vector at the contact point of 

particle i

𝑣 𝑟
Translational velocity vector of particle 2 relative to 

particle 1 at contact point

𝑣 𝑟
𝑛, 𝑣 𝑟

𝑡 Normal / tangential components of 𝑣 𝑟

𝜔 𝑖 Rotational velocity vector of particle i

Forces

𝐹 Generic force

𝑀 Generic torque

𝐹𝐶 Contact force

𝐹𝑁𝐶 Non-contact force

𝐹𝑔 Gravitational force

𝐹𝑓 Fluid force



Nomenclature

𝐹𝑛, 𝐹𝑡 Normal / tangential component of contact force

𝐹𝑛
𝑒𝑙, 𝐹𝑡

𝑒𝑙 Elastic normal / tangential force

𝐹𝑛
𝑣𝑖𝑠, 𝐹𝑡

𝑣𝑖𝑠 Viscous normal / tangential force

𝐹𝑛
𝑚𝑎𝑥 Maximum normal force

𝐹𝑛
𝑇, 𝐹𝑡

𝑇 Normal / tangential force at time step T

𝐹𝑡
∗ Tangent force at the last slipping reversal

Model Parameters

𝐾𝑛, 𝐾𝑡 Normal / tangential spring stiffness

𝐾𝐻𝑍 Hertzian normal spring stiffness

𝐾𝑛
𝐿, 𝐾𝑛

𝑈 Loading / unloading normal spring stiffness

𝐾𝑛
0, 𝐾𝑡

0 Initial normal / tangential stiffness value

η𝑛, η𝑡 Normal / tangential damping coefficient

𝜇𝑠 Static friction coefficient

𝜇𝑘 Kinetic friction coefficient

𝜇 General Coulomb friction coefficient

Others

∆ Time step increment of a variable

𝑇 Generic time

𝑇𝑐 Collision duration

𝑃 Normal stress distribution on collision contact area

𝑃𝑚𝑎𝑥 Maximum value of normal stress distribution

𝑎 Radius of collision contact area

𝑆 Variable unloading stiffness parameter

𝑄 Generic shear force

Ψ, Φ,

𝑊, 𝛽
Auxiliary parameters
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