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1 — Introduction
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Hard-Sphere vs. Soft-Sphere

Two types of simulation are commonly used within the discrete approach

(&

)

‘@
Hard-Sphere

* Interaction forces are impulsive and
not explicitly considered.

* Particles only exchange
momentum through collision.

* Binary (pairwise) collisions only.

» Event-driven time steps: contact is
instantaneous.

» Efficient for dilute systems: when
the time between collisions is much
larger than the collision duration.
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Soft-Sphere

« Small overlaps are allowed to
represent deformations during contact.

» Multiple contacts can happen
simultaneously.

» Contact duration is finite and happens
over several time steps.

» More time consuming due to smaller
time steps.

» Most accurate and common approach
for dense systems.

/

In both approaches, the geometry of particles is maintained during and after contacts.

Many shapes can be used, but spheres are the most common due to simplicity.

Focus here on soft-sphere-shaped particles!



Time Step Calculation Cycle

DEM = Newton’s 2"d |aw + Contact Mechanics

_ Numerical » )
Accelerations _ : = Velocities & Displacements
= integration

Newton’s Contact search
2nd law algorithms

\

Forces & Torques < //—’:—\ Particles Interaction




Forces Acting on a Particle

Fnc

(Fe »

Fyc =

Contact forces with particles/walls:
Deformation of particle surface due
to mechanical contact.

Non-contact forces:
Cohesion (e.g. liquid bridging),
electrostatics, Van der Waals, etc.

Gravitational force (weight):
Acts on the center of mass and
does not cause rotation.

Fluid forces:
Occur in multiphase flows
(drag, buoyancy, lift, etc.).

Torque:
Resultant torque from forces
eccentricities and rolling resistance.

The resulting force / torque acting on a particle at any time step is given by the sum of
the pairwise interaction with all other particles or walls.




Contact Forces

» Particles deformation during collision is represented as overlaps.
« Limited to small overlaps: contact area much smaller than the radii of spheres.

« Normal and tangential overlaps are considered, leading to forces in these directions.

« Normal forces (E,) cause change of translational motion;
Tangential forces (F;) cause changes of rotational motion.

Deformation Overlap
(real collisions) (DEM assumption)




Contact Force Models

Contact force models relate the amount of overlaps with the magnitude of forces.
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Contact Force Models

There are several models capable of simulating linear and nonlinear elastic,
viscoelastic, elastoplastic and viscoplastic collisions by employing conservative and
dissipative mechanical elements between particles, in normal and tangential directions,
such as:

Spring Dashpot Slider

(elastic force) (damping/viscous force) (friction force)

The force-displacement law is a function of the material parameters, amount of overlaps,
relative velocity, and contact history.

There are way too many contact models and only some basic and common ones will be
presented here.




2 — Contact Kinematics




Contact Kinematics

Particle 1

Particle 2




Contact Kinematics

Lengths & Positions

Distance between spheres:

d = [{x}, — {x}hl

Overlaps:
6n= (Rl‘I‘Rz)—d

T
8, = TSth = 2 AS, = AS; = 6,.AT
To o N
Unit vectors:
fi = ({x}, —{x})/d
t={h/Ivll < -

Position of contact point:
{r}y = (R, — 6,/2)0
{r}; = —(R; — 6,/2)7

I
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Velocities

Particle velocities at contact point:
{v}1 ={vh +{wh x{rk
{v}ho = {v}; +{w}; x{r};

Relative velocity at contact point:

v}y = (V31 — Wl = (W17 + (W}
Relative velocity components:

iy = (v} - WA = 6,7

it = ({v}, - DE = 6,¢
-— {v}; = {v}, — (v}}




Contact Kinematics

Effective Parameters for the Collision of 2 Spheres
1 1\ Ry-R
R= (— + —) =
Ry Ry (Ry + Ry)

_ (1 1)_1 my - my,
m=\\—+-— =
(my +m,)

Collision with a rigid wall:

Ryann = Myan = Ewall = Gwan =

P 1- ()7 1-(vy)? '

- < E E, )

N O S R
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3 — Normal Force




Coefficient of Restitution

The restitution coefficient measures the velocity decrease of a particle before and after
a collision.

~reb
On

5

—> Normal relative velocity after collision (rebound)

gn_

- Normal relative velocity before collision (impact velocity)

It consists on the fraction of kinetic energy recovered during collision.
Perfectly elastic collision: &, =1 h Q
Perfectly inelastic collision: ¢, =0 $ |

Real collisions: 0<¢, <1
‘ T hreb

It is usually a basic property of a particle, and can be
measured experimentally with a simple free-fall test:

hrep > Max. height after rebound
ho > Height of drop Dissipation of

FTTTTTTrrrrrrrrr  Kinetic energy:

Thermal energy, elastic waves (sound),
viscoelasticity, plastic deformations, etc.

En =




Viscoelastic Model

The collision force consists of a conservative and a
dissipative component.

Elastic Force (E):
« Simulated by a spring.

« Afunction (linear or not) of the normal overlap,
given by a stiffness coefficient.

» Repulsive force that provides elastic rebound.
« Conserves the kinetic energy of collision.

Viscous Force (EY¥):
« Simulated by a dashpot.

« Afunction (linear or not) of the relative normal velocity,
given by a damping coefficient.

» Resisting force against the motion.
« Dissipates the kinetic energy of collision.

Particle 1 Particle 2

Ky

W

[
LN
Nn

K,, = Normal spring stiffness

Nn = Normal damping coeff.

Force on particle 1:
(R} = —(Ft + FY)d



Viscoelastic Model

Remarks on viscoelastic models:

Little energy dissipation for quasi-static systems:
The reason is that the dissipative term is a velocity-dependent viscous force.

Reduction of spring stiffness:

It is common to use a stiffness value smaller than the real one in order to increase
the contact duration, so a larger time step can be used (less costly simulation).
Although it can provide good results, care must be taken as the stiffness affects the
magnitude of overlaps / forces and can lead to unrealistic results.

E.g. soft springs can make the solid fraction above 1.0 in compressed systems, and
provide overlaps so large that the small deformation assumption is not valid,
causing modeling errors due to the excluded volume effect.

Unrealistic cohesive force:

During the separation stage (6, > 0 and &,, < 0), towards the end of the impact,

it is possible that the viscous force (proportional to §,,) exceeds the elastic force
(proportional to §,,), resulting in a total force that is attractive, which is non-realistic.

CIMNE’ @



Viscoelastic Model

* Reduction collision time:
Physically, the unrealistic attractive force means that the separation of particles is
occurring so fast that the deformation cannot recover at the same speed.
Therefore, although an overlap is considered, the particles do not touch anymore
and the velocity should not change.

Contact with No contact with No contact with no
deformation and DEM overlap  deformation and DEM overlap  deformation nor DEM overlap

A consequence of the unrealistic attractive force is that particles separate at a
lower velocity. An overcome to consider the reduction collision time is to always
limit the total force value to a positive value (Poschel & Schwager, 2005):

&L+ FYS >0




Viscoelastic Model — Linear

Normal Linear Spring-Dashpot (LSDn)

Both elastic and viscous forces are a linear function of the normal overlap and the
relative normal velocity, respectively:

Fnel = K6,
F‘ryis = nnSn

Equation of motion for a particle collision: mé, + 1,,6,, + K,,6,, = 0

6,(0) =0
Initial conditions: ."( ) 0
511(0) = On —
Auxiliary parameters:
( 50 Y =n,/2m
5,(T) = —e *T sin(WT) o = /K, /m
Solution:;  { Mg nz -
Analytical! : o W=+os-W¥
Anabtieal) 1 s (1) = 20 e=%T (W cos(WT) — W sin(WT))
\ W ﬁ — T[/ln(gn)

*Proposed by Cundall & Strack (1979)



Viscoelastic Model — Linear

S0

.. : ) [
Collision duration: §,(T.) =0 - Wne-‘”c sim(WT,)=0->WT.=n>T, = v
T, ~ or also T, m (1 + . )
= =1 |— —_
i \/Kn/m - nn2/4ﬁl2 ’ Kn '82
ity: Areb \ 679 —-WT, : 0 ,—WT,
Rebound velocity: §7¢° = §,,(T,) = e c(Wcos(WT,) —¥sin(WT,)) = 6,e” "'
. . T
oreb = §lexp | — On
2imy/ Ky, /T — 2 /4m2

Maximum overlap:

smax — 6,2\/5 exp (_ tanZ(ﬁ))




Viscoelastic Model — Linear

Damping coefficient:

The coefficient of restitution is expressed in terms of the damping coefficient
(inversely proportional — ¢, | as n, 1):
6‘17;eb

J

B N T

- <_ 2K,/ — nn2/4m2>

gn_

Since the coefficient of restitution is a given particle property,
the damping coefficient is obtained in terms of it by rearranging the previous equation:

B 21In(e,) /MK,

| 4K,
= or also M = [——
In JIn(gy)? + w2 " (1+p8%)

P.S.: When the collision time reduction is applied, a slightly larger restitution coefficient is
obtained and it should be considered in the derivation of the equations.




Viscoelastic Model — Linear

Spring stiffness coefficient:

There are many methods to determine the spring stiffness and a general method is not
widely agreed upon.

3 methods will be presented, each one sets a particular parameter equal to the
respective result obtained with the NSDn model.

1) Equivalent Collision Duration:

_ _ m 1 Equalizing and rearranging the terms:
LSDn: 1 = ann (1 ¥ /32> 2y 1
> K, = 1.198(6pRE*Vm) ° <1 + —2>
7?_12 /5 ﬁ
NSDn: T, = 2.870| ——==
’ <6,2RE2> )




Viscoelastic Model — Linear

2) Equivalent Maximum Overlap:

\

— -1
LSDn: §7e* = §9 \/Eexp (—tan (b )>

n :8 N 2/5 tan‘l(ﬁ) 2

y > K, = 1.053(83RE*Vm) ' | exp( — z
— 5
NSDn: smax — <Ei 8,9)2>
)

16 RE

3) Equivalent Maximum Strain Energy:

\
1
LSDN: Ky (874%)?

L 2
¥ K, = 1.053(69RE*m) /s

2
NSDn: gKHz(&T“x)S/Z
)




Viscoelastic Model — Linear

Graphs aspect for different values of the restitution coefficient:

O A e =09 OnA

\ > T
g, = 0.5
e, =09

fLoading and unloading curves are not the
same due to viscous dissipation (energy
dissipation is the area between these
curves).

The maximum overlap of the particle
decreases and the distance between
loading and unloading curves becomes
broader with increasing the damping
\ coefficient.




Viscoelastic Model — Linear

Remarks on the LSDn model:

Advantages:
Simple model; easy to implement; widely used; relies on analytical solution.

Independency on impact velocity:
Restitution coefficient and collision duration are independent of the impact velocity.
However, in real collisions: 62 T makes ¢, | and T, !.

Discontinuous force:

The contact force is non-zero at the start / end of the contact due to the viscous
dissipation, which occurs because the relative velocity is not zero when particles
touch / detach.

However, in real collisions the forces are continuous at the start / end of the contact
(there are remedies to overcome this behavior but with limitations).

Parameters behavior:
T. 1T as K,l, mT, ¢, !, 0,1
smax 1t as 691, K, L, m1, g, !, n, 1



Viscoelastic Model — Nonlinear

Normal Nonlinear Spring-Dashpot (NSDn)

The NSDn model has a higher accuracy than the LSDn model and is in better
agreement with experimental results.




Viscoelastic Model — Nonlinear

Nonlinear elastic force:
The Hertzian contact is based on the linear theory of elasticity (Johnson, 1985).

Considering a perfectly elastic and smooth sphere compressed against a frictionless
rigid wall with a force E¢!, it is possible to compute the stress distribution, Py, and the
contact geometry in order to find the relation between E¢ and §,,.

The contact area is circular, with radius a, and it predicts an axisymmetric distribution
of normal stress over the contact area as a function of the radial coordinate r.

g
Normal pressure distribution:

Pmax

P(r) = Pnax |1— (2)2

/ /// AN \\\
‘ 4\ 4\ el elp2 1/ 3
S T ~ 3E§ <6Fn E )

~— — P - == -
max - 2mra? 3R




Viscoelastic Model — Nonlinear

From the equation of maximum pressure, the radius of the contact area, and
subsequently the normal overlap, are obtained:

_. 1
<3F,$1R) /3
a=\|—-———=

4 E

1

42 <9 Fnelz> /3
6 _- —— = —_—
"R 16 RE?

Rearranging the terms of the last equation, it is possible to find the relation between
the elastic normal force and the normal overlap:

. 4 _ —
Fnel = KHZ5n /2 KHZ = §E\/E

We note that the Hertz contact force does not depend linearly on the overlap, although
the bodies are elastic. This is due to the increase of the contact area as the force

increases, which increases the effective stiffness




Viscoelastic Model — Nonlinear

Solving for a purely elastic collision (no viscous force included yet):

Equation of motion for a particle collision: mé,, + Ky;6, /2 =

5,(0) =0

Initial conditions: { . .
{611(0) — 579

ﬁlz /5
Collision duration: T, = 2.86<. — >

SORE?
_ /s
i . max — 1_5 m 202
Maximum overlap: §7* = e =2 Oy

The force-displacement curves are considerably different from real collisions.

However, The collision duration is now an inverse function of the impact speed (in the
linear model they were not related), so the collision duration is closer to experiments.




Viscoelastic Model — Nonlinear

Nonlinear viscous force:

There are different ways to introduce the velocity-dependent energy dissipation, which
lead to different types of nonlinear viscoelastic models. A few of them will be shown.

In most of them, the value of damping coefficient is usually obtained by experiments or
calibrated to fit experimental results.

1) BSHPn Model:
Proposed by Brilliantov et. al (1996).

4= 4.
EVis = §E\/EA((SN) /2§,

where A is a dissipative constant that depends on the material viscosity and can be
obtained experimentally.

For 2 particles with different materials, Poschel & Schwager (2005) suggest to use the
arithmetic mean of A as the effective dissipative constant:

A= (A, +4,)/2




Viscoelastic Model — Nonlinear

2) KKn Model:
Proposed by Kuwabara & Kono (1987).
Frfis - nn(6n)1/28n

The value of the damping coefficient is usually calibrated to fit experimental results.

4 _
Equivalent to the previous model by taking: n,, = §E R

3) TTIn Model:
Proposed by Tsuji et. al (1992).
Frfis — nn(5n)1/45n

An expression for the damping coefficient is proposed by Norouzi et. al (2016), which
IS a correlation based on experimental data:

In(e,) yMKyz

J(n(gy))? + 10.1354

N, = —2.2664




Viscoelastic Model — Nonlinear

Graphs aspect for different values of the restitution coefficient:

Loading and unloading curves are not
the same due to viscous dissipation
(energy dissipation is the area between
these curves).

The maximum overlap of the particle
decreases and the distance between
loading and unloading curves becomes
broader with increasing the damping
coefficient.



Viscoelastic Model — Nonlinear

Remarks on the NSDn model:

 Dependency on impact velocity:
The collision duration is an inverse function of the impact velocity, which is an
improvement relative to the LSDn model.

« Continuous force:
The normal force is zero at the start / end of contact for all values of the restitution
coefficient, which is an improvement relative to the LSDn model and is in agreement

with real collisions.

 Cohesive force:
As in the LSDn model, the force is cohesive towards the end of the impact, due to

the collision time reduction.




Elastic Perfectly Plastic Model

Hysteric Linear Spring (HLS)

Energy dissipation due to spring hysteresis:
The spring stiffness adopts different values depending on whether particles

approach or depart from each other.

Elastic perfectly plastic model:
The hysteretic stiffness behavior models the strain hardening of the material due to

plastic deformation.

1 . — ela
Particle 1 Particle 2 Force on particle 1: {E,} = —Ef'n

KLs, if 6, =0
E, | Eft =1 KY (8, —67%5) if 6, <0,8, > 865
—> . .
0 if &, <0,8, <8,

[ KL > Loading spring stiffness
Ky > Unloading spring stiffness (kY > KL)

| 87°° > Residual overlap

*Proposed by Walton & Braun (1986)



Elastic Perfectly Plastic Model

AFn

max
Fy

The restitution coefficient is related to
the ratio between loading and
unloading stiffness as:

Ky
En = K—#

{K,ﬁ’ L < kY2
6;;651 5172852 §Trlnax

ki ky ngz

The loading path is always the same regardless of the restitution coefficient.
The residual overlap represents a permanent plastic deformation.
The energy dissipated during contact is the area between loading and unloading paths.
After full unloading, the residual deformation is forgotten for the next collisions.




Elastic Perfectly Plastic Model

Loading spring stiffness:
As with the LSDn model, 3 methods will

Collision duration:

T[’

Maximum overlap:

5max — 50 %
w} n

Residual overlap:
L

sres = gmax <1 _ F

Maximum force:

Fe* = Ky /

3|3

K —
) 0\/% (1 - (gn)z)

be presented, each one sets a particular
parameter equal to the result obtained
with the NSDn model.

1) Equivalent Collision Duration:

L 2
KL = 0.2996(52RE*Vm) / (g, +1) ?

2) Equivalent Maximum Overlap:

. 2
KL = 1.053(62RE*Vm) /s

3) Equivalent Maximum Strain Energy:

. 2
KL = 1.053(62RE*Vm) /s



Elastic Perfectly Plastic Model

Constant unloading spring stiffness:

Assumes a constant unloading stiffness value, regardless of the maximum force,
and thus a constant restitution coefficient.

Fy 4

max?2
Fy

The unloading stiffness is obtained
from the loading stiffness and a given
constant restitution coefficient:

anaxl
&, = K—ﬁ - KU = Kﬁl
UK T (&P

resl res?2 max1 max2
6% 6p° Oy On




Elastic Perfectly Plastic Model

Variable unloading spring stiffness:

The unloading stiffness assumes different values depending on the maximum force,
which results in a variable restitution coefficient.

Fnt The unloading stiffness is given by:
Fmaxz
" Ky = Ky + SE"**
where the S can be determined
empirically from experiments.
anaxl

Applying the expression of KY to
the restitution coeff., it becomes a
function of the impact velocity:

K,% KTllll K#Z ., = \/ Krlll _ 1

L max . =~
Kn + 5k, 1+ 549 /ﬁL
| . >3, \ Ky

resl maxl Sres?2 max2
On Op 76577 67




Elastic Perfectly Plastic Model

Remarks on the HLS model:

Dependency on impact velocity:

In the constant unloading stiffness, as in the LSDn model, the restitution coefficient
and collision duration are independent of the impact velocity.

In the variable unloading stiffness, as in real collisions, the restitution coefficient
and collision duration are an inverse function of the impact velocity

(the former matches experimental data reasonably well while the later doesn't).

Continuous force:
The normal force is zero at the start / end of contact.

Cohesive force:
Differently from the viscoelastic models presented, the force is always repulsive and
no reduction of contact time is needed.

Parameters behavior:
T. 1T as KL 1, m1, g 1 (Directly proportional to ¢,,, opposite to LSDn model)

smax 1 as KL l, m1, 8§21 (Independent of ¢,, unlike in the LSDn model)



Summary of Normal Forces

Viscoelastic {F,} = —(E¢' + EVS)A —

Elastic Perfectly
Plastic

{F.} = _Fnelﬁ

2, (Equivalent

. r ES =K,65, > K, = 1.053(6'31?1772@) > maximum
L'near; { _ strain energy)
Evis = 6 N 21In(e,) ymK,
! JIn(g,)? + w2
( 3/ 4 _ —=
Fnel = KHZ6n 2 9 KHZ = §E\/E
— 5 —
Nonlinear | pis _ 1/, ¢ — 22664 In(&n) MKy,
EYS =1y(8p) /48, > Mn = —2.
\ J(n(g,))? +10.1354
(TTIn model)
(Poschel & Schwager, 2005)
(KL ~ 05 E2 =) /5
KL = 1.053(83RE*Vm)
Kkés if 6,>0 K}
> E'= e " { Constant: KV =—"

Ky (8, —67%%) if Sn <0 " (en)?

| Variable: Ky = Ky + SE"*

Time reduction: E¢' + EV'S > 0



4 — Tangential Force




Tangential Force

The tangent component of contact forces appears in oblique collisions due to surface
friction between particles since the texture is never perfect but has small asperities.

Non-spherical shapes may
be more appropriate for
static granular systems in
which the tangent force is
velocity-dependent

Surface roughness allows
a heap of sphere particles
to be built on a flat surface

To take into account the surface roughness, tangent force models usually incorporate
parameters that cannot be derived from basic material properties nor experiments, but
only by adjusting simulation results with experimental data.




Coulomb’s Law of Friction

The surface friction between particles is well modeled by Coulomb’s law of friction.

F Q if Q< usF, Us —> Static friction coeff.
P mF ifQ 2 sy Hx > Kinetic friction coeff.
(1> ps > py > 0.1)

Fe A
UsEy /
Wiy
. Q
<
>(
UsEy
E, For low shear forces, For high shear forces,
there is no relative <€——> there is a relative motion

motion (stick) (slip — gross sliding)




Coulomb’s Law of Friction

In the tangent contact models, a single friction coefficient u is usually considered.

If Coulomb’s criterion is violated (|Q| = u|F,|), gross sliding occurs and a slider is
activated, in series with other mechanical elements, to provide the friction force.

The total force provided by other mechanical elements (say Q) never exceeds the
friction force.

Ot — Ot
Bl W= Bl W=
Fe™ —  Q<uk, Fe [F Q > uF,
—” —”
Y R=0 Y R =uR

Therefore, the most common way to apply Coulomb’s law is to limit the tangential force
to the friction force provided by the slider (Cundall & Strack, 1979):

Fe = min(|Q], u| 1)




Coulomb’s Law of Friction

Friction coefficients for the contact between materials (Wassgren & Sarkar, 2008):

Materials Friction coefficient (u)
soda lime glass / soda lime glass 0.092 + 0.006
“fresh” glass / “fresh” glass 0.048 + 0.006
“spent” glass / “spent” glass 0.177 £+ 0.020
cellulose acetate / cellulose acetate 0.250 + 0.020
nylon / nylon 0.175 + 0.100
acrylic / acrylic 0.096 + 0.0006
polystyrene / polystyrene 0.189 + 0.009
stainless steel / stainless steel 0.099 + 0.008
acrylic / aluminum plate 0.140
radish seeds / aluminum plate 0.190
“fresh” glass / aluminum plate 0.131 + 0.007
“spent” glass / aluminum plate 0.126 + 0.009
glass plate / glass plate 0.400
glass plate / nickel plate 0.560
glass plate / carbon plate 0.180

The friction coefficient of a material is given considering the contact of two surfaces of
the same material; for two particles with different materials, the friction coefficient, when
unknown, is taken as the minimum one, as proposed by Poschel & Schwager (2005).




Tangential Kinematics

Complementing the kinematics of motion previously presented here.

Particle 1

C)

.C2

Particle 2

C - Current idealized contact point
C1l -> Initial contact point of particle 1
C2 => Initial contact point of particle 2

The tangential direction £ points towards
the relative tangential velocity direction.

The tangential forces acts against the
motion, therefore the force acting on
particle 1 (reference particle throughout
the presentation) is:

{Ft} = —th



Simple Sliding Friction

A slider is used to incorporate only the sliding friction.
It does not account for tangential deformation.
The force is always constant and changes only its direction.

thﬂanl Fi

ulFy

56,
Force is discontinuous
—u|E,|




Simple Viscous Damping

A dashpot is used to incorporate only viscous force (n; = tangential damping coeff.).
It does not account for tangential deformation nor sliding friction.

No dependency on normal force leads to poor behavior for grazing impacts.
It is physically justified for lubricated contacts.

Fy =16, Fy

N¢
_ _ >0,
Force is continuous
Particle 2
[C
LI

Nt




Viscous Damping with Sliding Friction

A dashpot is used to incorporate a viscous force, which is limited by Coulomb’s law
(combination of previous models).

It does not account for tangential deformation.

Fi = min(lnt&l,uIFnl) FAt

/ianl
N¢
56,
Force is continuous
_.uanl
LI
Nt H

*Proposed by Haff & Werner (1986)



Viscous Damping with Sliding Friction

Remarks:

For a small tangential velocity or a large normal force, the tangential force is a shear
damping that grows linearly with the velocity; For a large tangential velocity or a small
normal force, the sliding friction force is selected.

Gives reliable results in systems where particles collide and do not rest statically at
each other (e.g. a sand heap). Also appropriate for lubricated contact.

Problems appear in static systems when the relative velocities, and hence the
tangential force, vanish since the model does not incorporate static friction.
Therefore, this model is not suited for the simulation of static granular systems
(a heap of such particles dissolves slowly).

A solution for this problem is to choose more complicatedly shaped particles.

A further problem concerns the damping coefficient. The tangential force is mainly
determined by surface properties, i.e., by very small asperities at the particle surface.
Therefore, there is no experimentally measurable material constant from which this
coefficient could be derived. Instead this coefficient can only be determined a posteriori
from the comparison of simulation results with experiments.




Linear Spring with Sliding Friction

A linear tangential spring is used to incorporate a elastic force of static friction
(K; = tangential spring stiffness), which is limited by Coulomb’s law.

It does not depend on velocity and provides good results for static behavior.
The spring stiffness is determined by comparing simulation results with experiments.

/f F; = min(|K; 8¢, u|F, ) F
article 1 A

+6t ulF,
Kq
¢ I‘S" > 5,
Particle 2 —u|E,|
/,u— Dynamics of impact is governed by the ratio of tangent to normal stiffness:

Normal spring sets the contact duration while tangent response is a function
of the tangent spring stiffness.

*Proposed by Cundall & Strack (1979)



Linear Spring-Dashpot with Sliding Friction

A linear tangential spring and dashpot are used to incorporate viscoelastic forces,
analogous to the LSDn model, but limited by Coulomb’s law of friction.

It assumes no micro-slip in the contact area and constant spring stiffness.

m1

N¢

Ki

Particle 2

|_

| FE' = K,6
Fy = min(|Fg* + FS|, ulF,|) F,;is _ nttéi
When slip occurs, the spring extension is adjusted to
a value such that spring force matches friction force.
Hence, another way to apply Coulomb’s law is to limit
the tangential overlap when gross sliding occur
(Maw et. al, 1976). This limited overlap can provide
better estimation of experimental data:

pE | — nt&
K

&y = sign(¢)

Then F, is re-computed as F£! + FP.



Linear Spring-Dashpot with Sliding Friction

Spring stiffness:

It iIs common to set the tangential stiffness from the ratio between normal and
tangential stiffness. From the elastic solid mechanics analysis of Mindlin (1949):

K; 1—-v For common values of Poisson ratio: 2 K

Kn:l_V/Z (0 <v < 0.5) §<K_n<1

Damping coefficient:

The value of the damping coefficient can only be determined by comparing results of
simulation and experiments.

An expression was provided by Deen et. al (2007), based on the tangent coefficient of
restitution (&;, obtained experimentally). This relation was obtained analytically,
similarly to the expression of the LSDn model:

( Cundall & Strack

2 ln(é‘t) 2/7 Tl_’LKt (1979) set the
if € =#0 tangential damping

\/ln(gt)z + 712 coefficic_ant to be
proportional to the

_ i tangential  spring
\ 2,’2/7 mKy if &=0 stiffness.

A

Ne =




Nonlinear Spring-Dashpot with Sliding Friction

Nonlinear version of previous model and analogous to the NSDn model, but again
limited by Coulomb’s law of friction.

There are many ways to set the spring stiffness and the damping coefficient, some of
them are presented in the following.

1) DDt model (Di Renzo & Di Maio, 2005):
FE'=K.5; K,=—0G |RéS,

Micro-slip conditions on the contact area and variable normal force on the contact
surface are approximately considered.

Unlike the linear model, the nonlinear spring stiffness is continuously changing during a
collision because the normal overlap is not constant.

This model does not consider viscous force. However, it can be incorporated by a
damping force proportional to the velocity similar to the linear model.




Nonlinear Spring-Dashpot with Sliding Friction

2) LTH model (Langston et. al, 1994).

Simplified model for a contact with constant normal force.

Ensures that gross sliding occurs when tangent displacement is greater than the

displacement in which sliding starts (6{***):

max _ (Z_V)
T Te

3/
min(|&,, 6{") "2
Fel =M|Fn|<1—(1— 5§1axt

On

1,

_ min(|6,], 674
6m.u|Fn|\/1 — (lcgrl;llaxt )
_ t
vis

Ft = N¢ 6Znax




Nonlinear Spring-Dashpot with Sliding Friction

3) ZZYt model (Zheng et. al, 2012):

The elastic force is computed as in model 2, but the viscous force is computed in an
improved way:

vis _ __ N1 0.414 || min(|&|, 5;%) 5
Fe™ = 26,0 1- 26,07 1.5ulE,| (1 - 5ax ’

4) TTIt model (Tsuiji et. al, 1992):

A tangential stiffness was derived from the no-slip solution of Mindlin (1949), assuming
a damped Hertz normal spring force and constant coefficient of restitution.
The tangential damping coefficient is set equal to the normal damping coefficient.

V2RE
Ftelth5t Kt=(2—v)(1+v)‘/5_"




Incrementally Slipping Friction

Complementary to the HLS model in normal force: a hysteric spring with different
loading and unloading stiffness provides an elastic force limited by Coulomb’s law.

More sophisticated: It is not only determined by the particle positions and velocities at
the present time, but also depends on the history of the interaction.

Fi 4 d
i >
@ 1 / b
2 ‘L6t
_
‘ a ~
L - é\t
Particle 2 a: initial loading
— b: direction reversal
o c: direction reversal
d: slipping
K, H c (assuming constant normal force)

*Proposed by Walton & Braun (1986)



Incrementally Slipping Friction

The tangential force is computed incrementally: the force at a time step T2 is obtained
from the force at time step T1 plus an increment of force associated to an increment of
tangential overlap (Aéd;):

F/? = F/* + K5,

When particles collide at certain angle, they begin to slide against each other and the
tangential force increases with the spring elongation, limited by Coulomb’s law.

If the particles begin to slide in the opposite direction (direction reversal), the tangential
force decreases, but with a different path.

After direction reversal, the spring stiffness assumes a different value, such that
Coulomb’s law is enforced (K, = 0 when F!t = uE,) and depends on the initial stiffness
value (K?) and on the tangent force when the last slipping reversal occurred
(F7 - initially 0):

) " If &, is in the initial direction
K — KO <1 B FI't — F; ) /3 ‘= (slipping increases F{1)
t — t * — .
pbn — sk If 6 IS In the opposite direction
\ (slipping decreases F; )




Incrementally Slipping Friction

Remarks:

« Assumes that normal the normal force remains constant between time steps
(justified for a gradually changing normal force).

» The difference of the tangent stiffness of loading and unloading paths is the source
of energy dissipation.

* For implementation, it needs to store some information of the contact history.

« Extension to 3D is complicated because of the definition of a direction reversal.




Nomenclature & Bibliography




Nomenclature

Geometric and Physical Properties

R;

N2> D m =3 Fom

Vi
Ens &t
Kinematics
X, Y, Z, r
d
On, Ot
smax | gmax
sres

S Ot

Radius of particle i

Effective radius of two particles

Mass of particle i

Effective mass of two particles

Young modulus of patrticle i

Effective Young modulus of two particles
Shear modulus of particle i

Effective shear modulus of two particles
Dissipative constant

Effective dissipative constant of two particles
Poisson ratio of particle i

Normal / tangential coefficient of restitution

Cartesian and radial coordinate systems
Distance between center of two particles
Normal / tangential overlap

Maximum normal / tangential overlap
Residual normal overlap

Normal / tangential relative velocity

89, yev
On
ho, hyep
{x};
{r};
fl, t
{v}i
{vhr

v}

v, (v3r
{w};

Forces

Normal relative velocity of Impact / rebound
Normal relative acceleration

Height of drop / rebound in free-fall test
Position vector of center of particle i

Position vector from center of particle i to contact
point

Normal / tangential unit vectors
Translational velocity vector at the center of particle i

Translational velocity vector at the contact point of
particle i

Translational velocity vector of particle 2 relative to
particle 1 at contact point

Normal / tangential components of {v},.

Rotational velocity vector of particle i

Generic force
Generic torque
Contact force
Non-contact force
Gravitational force

Fluid force



Nomenclature

E,, F; Normal / tangential component of contact force P Normal stress distribution on collision contact area
ES, F'  Elastic normal / tangential force Phax  Maximum value of normal stress distribution
EYis, F¥'s  Viscous normal / tangential force a Radius of collision contact area
Emax Maximum normal force S Variable unloading stiffness parameter
ET, FT Normal / tangential force at time step T Q Generic shear force
F} Tangent force at the last slipping reversal ‘;’V q;) Auxiliary parameters

Model Parameters
K,, K; Normal / tangential spring stiffness
Kyz Hertzian normal spring stiffness
KL KV  Loading/ unloading normal spring stiffness
K2, K Initial normal / tangential stiffness value

Mn» Ne Normal / tangential damping coefficient

Us Static friction coefficient

Uk Kinetic friction coefficient

U General Coulomb friction coefficient
Others

A Time step increment of a variable

T Generic time

T, Collision duration
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